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This work introduces JaxPruner, a JAX-based sparsity library for machine learn-
ing research. JaxPruner aims to accelerate research on sparse neural networks by
providing concise implementations of popular pruning and sparse training algo-
rithms with minimal memory and latency overhead. Algorithms implemented in
JaxPruner share a common API and works seamlessly with Optax, a widely-used
optimization library in JAX, which further enables easy integration with other JAX-
based libraries. We demonstrate the ease of integration by providing examples in
four different codebases: Scenic, t5x, Dopamine and FedJAX and provide baseline
experiments on popular benchmarks. JaxPruner is hosted at github.com/google-
research/jaxpruner

1. Why a new sparsity library in JAX?
Sparsely connected neural networks have shown to achieve better performance than dense mod-
els with the same parameter count [1, 2]. However, utilizing sparsity and realizing its potential
in realistic scenarios requires a close collaboration between hardware, software and algorithms re-
search. To this end, it often requires a flexible code library to enable rapid prototyping of ideas and
evaluating them on a variety of ever-changing benchmarks.
Over the last few years, JAX [3] has seen increasing adoption by the research community [4–7].
The key difference between JAX and other popular deep learning frameworks such as PyTorch [8]
and Tensorflow [9] is the clear separation between functions (e.g. neural networks) and states (e.g.
parameters). This makes function transformations like taking gradients, Hessian calculations or
vectorization1 relatively easy, thus reducing the time required for implementing complex ideas [10].
Similarly, having the entire state of a function isolated under a single dictionary makes it easy to
modify and transform. As we will shortly discuss, these features also ease the implementation of
common subroutines across different algorithms used in sparsity research.
Though implementations of individual algorithms with different sparsity structures exist [11, 12]),
there is no comprehensive library for sparsity research in JAX. This motivated us to develop Jax-
Pruner. There are two high-level strategies for achieving parameter sparsity: (1) pruning which
aims to obtain sparse networks starting from dense networks for inference efficiency and (2) sparse
training which aims to train sparse networks from scratch, thus reducing training cost as well. Jax-
Pruner implements key baselines for each family of algorithms and makes it easy to extend them.

1https://jax.readthedocs.io/en/latest/jax-101/03-vectorization.html
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In what follows, we discuss key design principles of JaxPruner (Section 2), provide a short overview
of the library (Section 3) and share our results with baseline pruning and sparse training algorithms
in (Section 4). We conclude with our plans for future versions.

2. Tenets: Fast Integration, Research First and Minimal Overhead
We want JaxPruner to facilitate sparsity research by providing strong baselines, making them easy
to extend. Furthermore, we want algorithms in JaxPruner to work seamlessly in different libraries.
We were guided by three tenets when designing the library in order to achieve these goals:

Fast Integration Research in Machine Learning (ML) is fast paced. Combined with the huge vari-
ety of ML applications, this results in a high number of ever-changing codebases. At the same time,
adoptability of new research ideas is highly correlated with their ease of use. For these reasons,
we aimed to reduce friction for those integrating JaxPruner into an existing codebases by using the
popular Optax optimization library [10]. State variables (i.e. masks, counters) needed for prun-
ing and sparse training algorithms are stored together with the optimization state, which makes
parallelization and checkpointing easy.

Research First Often research projects require running multiple algorithms and baselines, and so
they benefit greatly from rapid prototyping. JaxPruner achieves this by committing to a generic API
shared among different algorithms, which in turn facilitates switching between algorithms. We
provide well-documented implementations of common baselines, which facilitate modifications.
Furthermore, we have made it easy to switch between common forms of sparsity (unstructured,
N:M, block, etc.). A quick overview of such features is discussed in the next section.

Figure 1: Visualization of a training loop. (left)
common training loop (right) JaxPruner wraps
the existing Optax transformations to store and
update variables like masks needed for pruning.
Additional operations (pre/post-op) are added to
modify parameters at different points.

Minimal Overhead There are a growing num-
ber of options for accelerating sparsity in neu-
ral networks (e.g. N:M sparsity [13], CPU-
acceleration [14], activation sparsity [15]).
However, integration with existing ML frame-
works is often lacking, making these advances
relatively difficult to use, especially in research.
Given our main goal of facilitating research,
JaxPruner follows the tradition of using binary
masks for representing sparsity, which intro-
duces some additional operations and requires
additional storage. We minimize this memory
and run-time overhead by compressing mask
variables. Furthermore we optimize the top-
k functions used frequently in sparse training
and pruning algorithms to reduce the run-time
overhead. We also provide examples for using
the experimental sparsity feature in JAX2.

3. Overview
JaxPruner consists of about 1000 lines of code (+850 lines of tests), organized into six modules. The
library also includes interactive Python notebooks and integration with popular research libraries.
Here we give a short overview of the JaxPruner API and list its key features.

Optax Integration State-of-the-art pruning algorithms often require iterative adjustments to the
sparsity mask used. Such iterative approaches are stateful, i.e., they require some additional vari-
ables likemasks, counters, initial values, etc. This is similar to common optimization algorithms like
Adam [16] and Momentum SGD, which require their optimization state to be handled throughout
training. The majority of codebases in JAX achieve this through Optax, which bundles all variables
of the optimization state as a parameter tree. A simplified diagram of a neural network training loop
in JAX is given in Figure 1. At every step of the training, parameters and optimizer state are trans-
formed using the gradients calculated through back-propagation. The Optax update_fn is used to

2https://jax.readthedocs.io/en/latest/jax.experimental.sparse.html
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transform the gradients and the optimizer state. Finally, the resulting gradients are added to the
parameters.
JaxPruner exploits the observation that most iterative pruning and sparse training algorithms can be
thought of as special kinds of optimizers, which confine parameters into a sparse sub-domain. This
key observation motivates us to use Optax gradient transformations to implement our algorithms.
This approach reduces boiler-plate code required to integrate JaxPruner to existing codebases (e.g.
checkpointing and handling mask variables). Below we give an example usage of JaxPruner inside
an existing training loop and visualize these changes in Figure 1.

1 import jaxpruner
2
3 tx , params = _existing_code ()
4 pruner = jaxpruner.MagnitudePruning (...) # Line 1: Create pruner.
5 tx = pruner.wrap_optax(tx) # Line 2: Wrap optimizer.
6
7 opt_state = tx.init(param)
8 # Line 3: [Optional] modifies weights temporarily for the forward pass.
9 forward_params = pruner.post_gradient_update(forward_params , opt_state)

10 new_params , new_opt_state = _training_step(tx , opt_state , forward_params)
11 # Line 4: Apply masks to parameters.
12 new_params = pruner.post_gradient_update(new_params , new_opt_state)

One-shot Pruning Most iterative pruning algorithms can be converted into one-shot pruning al-
gorithms and vice-versa. Similarly, one can use pruning algorithms outside of a training loop.
In order to address such this use case we include the instant_sparsify method in our API.
instant_sparsify supports variable collections and individual JAX arrays. Below we give an ex-
ample.

1 pruner = jaxpruner.MagnitudePruning (...) # Line 1: Create pruner.
2 X_pruned = pruner.instant_sparsify(X) # Line 2: Prune parameters.

BaseUpdater Most pruning or sparse training algorithms share the following routines: (1) initial-
ize masks (2) apply masks and (3) update masks. This motivates us to unify common pruning and
sparse training operations under a single stateless class: jaxpruner.BaseUpdater. BaseUpdater
implements most of the API functions (like wrap_optax, and instant_sparsify) in a modular way
such that different pruning algorithms can be implemented by overwriting only a few functions.
This makes the extension of common pruning or sparse training algorithms relatively easy, reduc-
ing friction when trying new ideas. The BaseUpdater class is also highly customizable, in what
follows we present three ways of controlling the behaviour of our algorithms.

Custom Sparsity Distributions In the pruning literature, it is common to apply custom sparsity
levels to some of the layers, sometimes keeping themdense [17, 18]. We implement some of themost
common sparsity distributions like uniform and erk. These distributions can be customized further
by passing amapping between individual parameters and their target sparsity values. Alternatively,
users can define their own distribution functions and pass them to JaxPruner algorithms directly.

Update Schedules Most pruning algorithms work during training, but differ in how frequently
they increase the sparsity, and when they apply the masks to parameters. Similarly, sparse training
algorithms often require changes in the sparsity pattern at different frequencies. We implement
common scheduling functions: one-shot, periodic, polynomial schedule [19]. Similar to sparsity
distributions, users can define their custom schedules easily and pass them to the existing algo-
rithms.

Structured Sparsity Despite exciting developments [14, 20], the challenge of accelerating unstruc-
tured sparse neural networks remains due to irregular memory access. Using more regular sparsity
patterns like block [21–24] and N:M sparsity [13, 25–27] reduces irregular memory access and thus
makes acceleration easier. However, networks with structured sparsity often perform worse com-
pared to unstructured sparsity. Reducing this performance gap through better sparsity structures
and algorithms is an active area of research. To this end, wemake the sparsity type easy to customize
by including common sparsity structures like Block and N:M sparsity [28]:

1 pruner = jaxpruner.MagnitudePruning(sparsity_type=jaxpruner.NbyM (2,4))
2 X_pruned = pruner.instant_sparsify(X)
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Other Features We use uint8 types for storing masks to reduce the memory footprint of our algo-
rithms. For example, mask variables can increase the peak memory usage for training ViT-B/16 by
about 3.9% (6592→ 6850 MiB) when the batch size is 32. Since masks are binary variables (i.e. 0
or 1), they can be compressed further to reduce the memory footprint, which we support via the
use_packed_masks flag. When packed masks are enabled the memory overhead reduces to 0.32%
(6592→ 6613 MiB) for the ViT setting just mentioned. We also provide an example that converts
masked dense parameters of a prunedViT-B/16model to a sparse BCOO format and runs themodel
with significantly lower memory footprint using jax.experimental.sparse.

4. Baselines
Though sparsity research historically focused on computer vision benchmarks, there is a growing
interest and need for using a more diverse set of domains when evaluating our research. To serve
this goal, we provide integrationswith some of the popular JAX libraries fromdifferent domains and
benchmark algorithms implemented in JaxPruner. Speficically, we integrate JaxPruner with Scenic
[29], T5x [30], Dopamine [31] and FedJAX [6]. Typically this requires changing only a few lines of
code in the training loop as shown in the previous section.
Our unified API enables easy experimentation with a wide variety of algorithms. We implement
the following set of algorithms as a representative set of baselines:

1. Gradual Pruning with random (Rand), saliency (Sal) [32] and weight magnitude (Mag)
[19] criteria. We also implement global pruningwith theweightmagnitude criterionwhere
pruning criterion is applied to all parameters at once (Mag-G). For global magnitude prun-
ing we normalize the parameters of each layer before flattening using the L2 norm.

2. Straight Through Estimator with top-k weight magnitude selection (STE). In sparse train-
ing with straight through gradients [33], parameters are projected into a sparse sub-space
before the forward pass. Then gradients are calculated for all parameters and applied to
the original set of dense parameters. STE is often applied using a fixed sparsity from the
start of the training. In our experiments, however, we use the polynomial schedule used by
the gradual pruning algorithms [19], as we observed this to give better results.

3. Sparse Training including static sparse training (Static) and dynamic sparse training with
random (SET) [18] and gradient based (RigL) [34] growth. In all of our experiments we
use an initial drop fraction of 0.1 and apply cosine decay [35].

We benchmark pruning and sparse training algorithms in 4 different domains and discuss them in
subsequent sections:

• (Section 4.1) ImageNet-2012 [36] image classification using the ViT-B/16 [37], PlainViT-
S/16 [38] and ResNet-50 [39] architectures.
• (Section 4.2) Federated EMNIST [40] character recognition using aCNNwith dropout [41].
• (Section 4.3) C4 language modelling using the T5-Base encoder-decoder transformer archi-
tecture [42, 43].
• (Section 4.4) a DQN agent [44] with a convolutional backbone trained on the MsPacman
Atari 2600 game [45].

We share our results in Table 1. These baseline results provide a solid starting point for new research
projects. Finally in Section 4.5, we re-visit some of the popular questions in sparsity research and
run experiments using different sparsity distributions and structures.

4.1. Image Classification
We apply JaxPruner algorithms to train 80% sparse ViT-B/16, PlainViT-S/16 (PViT) and ResNet-50
models. Our goal in these experiments is not to get state-of art results. Instead, we aim to provide
some baseline results using different training recipes and architectures to showcase the flexibility of
JaxPruner. For all experiments, we use the default hyper-parameters provided by the Scenic library.
ResNet-50 is a popular architecture in sparsity literature [46, 47]. We train 80% sparse ResNet-
50 models on ImageNet to reproduce previous results reported in the literature [17, 34]. We use
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T5-Base (↓) DQN ResNet-50 ViT-B/16 ViT-B/16+ PViT-S/16+ Fed. MNIST
Dense 2.57 ±0.00 2589 ±503 76.60 ±0.12 73.94 ±0.11 74.71 ±0.27 80.11 ±0.07 86.21 ±0.39
Rand 3.28 ±0.01 1435 ±381 70.31 ±0.07 69.67 ±0.08 73.47 ±0.12 71.00 ±0.23 83.53 ±0.25
Mag 2.98 ±0.00 2124 ±63 75.48 ±0.14 73.43 ±0.35 75.49 ±0.06 77.19 ±0.16 85.74 ±0.20
Sal 3.52 ±0.00 - 74.76 ±0.15 73.36 ±0.28 75.41 ±0.16 75.67 ±0.10 85.60 ±0.14
Mag-G 5.68 ±0.10 2322 ±154 75.69 ±0.02 73.24 ±0.29 75.39 ±0.11 77.34 ±0.14 86.01 ±0.20
STE 2.71 ±0.00 - 73.74 ±0.16 74.42 ±0.16 76.06 ±0.18 76.31 ±0.12 86.16 ±0.36
Static 3.21 ±0.02 1157 ±367 71.15 ±0.13 65.05 ±0.58 70.69 ±0.48 71.77 ±0.31 83.33 ±0.27
SET 3.13 ±0.01 1723 ±414 74.12 ±0.07 69.83 ±0.56 75.47 ±0.54 76.40 ±0.18 84.20 ±0.12
RigL 3.10 ±0.01 1535 ±434 74.51 ±0.11 71.10 ±0.32 75.52 ±0.27 75.46 ±0.05 84.64 ±0.14

Table 1: Performance of a selected subset of algorithms implemented in JaxPruner on a variety of
benchmarks. We group algorithms that require storage or compute proportional to dense training in
the middle and at the bottom group the fully sparse training algorithms. We report the validation
accuracy for the image classification experiments (right). For T5-Base, we report per token cross
entropy loss on the C4 validation split. DQN experiments report average returns on MsPacman
environment. PViT corresponds to the ViT variant and training recipe suggested by [38].

ViT-B16 ViT-B16+ PlainViT-S16
Validation Training Validation Training Validation Training

Dense 73.94 ±0.11 82.85 ±0.12 74.71 ±0.27 90.75 ±0.10 80.11 ±0.07 64.24 ±0.35
Mag-G 73.24 ±0.29 75.57 ±0.26 75.39 ±0.11 80.96 ±0.13 77.34 ±0.14 57.37 ±0.62
STE 74.42 ±0.16 78.01 ±0.22 76.06 ±0.18 85.46 ±0.05 76.31 ±0.12 54.86 ±0.41
RigL 71.10 ±0.32 70.63 ±0.29 75.52 ±0.27 78.81 ±0.34 75.46 ±0.05 53.89 ±0.58

Table 2: Classification accuracies (%) of different recipes on ImageNet-2012 training and validation
sets. The original ViT recipe for dense models leads to overfitting, while sparse networks achieve
better generalization due to the regularization effect of sparsity.

uniform sparsity across layers and leave the first convolutional layer dense as recommended by
Gale et al. [17]. Though most results match previous work, we observe a significant improvement
for the accuracy achieved by the SET algorithm compared to the implementation done in [34].
We use a uniform sparsity distribution in our ViT experiments as we found using ERK distribution
[18, 34] didn’t lead to better results. Sparse vision transformers trained using the original recipe
achieve better generalization even for the shorter, 90 epoch, training runs (ViT-B16). STE obtains
the best results and exceeds the baseline performance by 0.2%. Interestingly, when we increase the
number of training epochs to 300 (ViT-B16+), this gapwidens and sparse ViT-B/16 trainedwith STE
obtains 1.2% higher accuracy, despite having worse (higher) training loss. Dynamic sparse training
methods (RigL and SET) perform poorly in shorter training runs, however with extended training,
they achieve almost 5% higher accuracy and exceed the dense baseline.
Sparse models trained using the original ViT training recipe leads to better generalization despite
having worse training performance (see Table 2). Next we train sparse models using the improved
ViT recipe (PlainViT [38]), which achieves better generalization. Here validation performance fol-
lows training performance closesly and the best pruning algorithm falls 3% short of the dense net-
work.

4.2. Federated Learning and JaxPruner

Given the compute and communication constraints of the federated learning setting, pruning and
sparse training are critical mechanisms to explore. FedJAX [6] supports federated learning research
through JAX-based federated algorithm design and simulation, and can easily be integrated with
JaxPruner to explore how to leverage sparse training in federated learning. In this paper we bench-
mark server-side pruning by using JaxPruner algorithms to change the server optimization step.
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We test the effect of various pruning algorithms on the federated EMNIST character recognition
benchmark [40], using themodel architecture and task setup presented in Reddi et al. [41]. Pruning
is applied on the server model on each round of training specified by the pruning schedule, before
being broadcast to a sampled selection of clients to continue training. Each experiment is run for
1000 federated rounds, in which 50 clients are sampled and complete a single epoch of training on
their data using a batch size of 32. For optimizers, we use SGD on clients and Adam on the server.
All pruning algorithms are configuredwith a target sparsity of 80%, the ERKdistribution, an update
frequency of every 10 rounds, and an update end step of 750 federated rounds. The sparse training
algorithms (Static, RigL and SET) are configured to start updating in the first federated round, while
the gradual pruning and straight through estimator algorithms are configured to begin pruning
at round 250. All results reported are the average final accuracy on the evaluation dataset across
five random trials. We find STE to perform best among the gradual pruning methods and RigL to
outperform the other sparse training methods tested.

4.3. Language Modeling
We also build a JaxPruner integration with the t5x library [30], which opens access to a suite of
Transformer-based [42] Language Models (LMs). In this section, we apply JaxPruner algorithms to
a T5 encoder-decoder LM model [43].
Similar to experiments in Section 4.1, we prune 80% of the weights (5x compression) of our LM
architecture. We train from scratch a T5-base (220M parameter) model to predict missing words
within a corrupted span of text on the C4 dataset3 with the Adam optimizer [48]. We report the per
token cross-entropy loss on the validation split in Table 1. Our results show large differences in per-
formance across the pruning algorithms. As in our ViT vision and federated learning experiments,
STE outperforms other pruning algorithm and is within 5% of the dense baseline performance.

4.4. Deep Reinforcement Learning on Atari
Dopamine [31] library provides stable and comprehensive implementations for various Deep RL
algorithms in JAX.We integrate JaxPrunerwith Dopamine as it has been used in the past for sparsity
research [49, 50].
The Dopamine framework includes DQN [44], Rainbow [51], and other distributional deep RL
agents like Quantile Regression for Distributional RL (QR-DQN) [52] and Implicit Quantile Net-
works (IQN) [53]. Though it is possible to run any of the Atari games [45] and agents, we choose
MsPacman and DQN for our experiments.
We use the default hyper-parameter values provided in the Dopamine library together with the
CNN architecture used in original DQN paper [44]. We apply sparsity to the existing model using
the ERK distributions and at 98% target sparsity. We ran our experiments for 40M frames, 5 inde-
pendent seeds and report the average returns calculated over 125000 environment steps at the end
of the training.

4.5. Further Experiments
In this section we re-visit some of the common research questions in sparsity research and use Jax-
Pruner to answer them. The experiments presented here only require a few lines of change in con-
figurations.

How do different sparsity structures affect pruning and sparse training? Previous research has
shown the importance of allowing full freedom to the algorithms when selecting parameters to
prune. However such unstructured sparsity patterns are more difficult to accelerate compared to
more structured sparsity patterns. Block sparsity, for example, removes weights in one or two di-
mensional blocks, leading to increased memory re-use and faster run-times [21]. Another more
recent type of structured sparsity is called N:M sparsity [13], which allows at most N non-zero val-
ues over a one dimensional slice of M values. In JaxPruner such different sparsity structures are

3https://www.tensorflow.org/datasets/catalog/c4
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Dense Unstructured 2:4 1:4 1:8 4x1 4x4 8x8
Total Sparsity (%) 0 80 49.9 74.9 87.4 79.8 79.7 79.9
Gradual Magnitude 73.94 73.43 73.29 72.35 44.96 69.28 67.61 68.57
Magnitude STE 74.42 73.72 73.50 71.46 45.02 32.74 43.94

Table 3: ImageNet-2012 validation accuracies of sparse ViT-B/16 models with different sparsity
structures after 90 epochs of training. N:M sparsity corresponds to the sparsity structure intro-
duced in Mishra et al. [13], whereas NxM corresponds to block sparsity, which is applied along
the first 2 dimensions. Total sparsities are slightly lower than the target since single dimensional
variables are kept dense.

Dense Embedding-Only Encoder-Only Decoder-Only MLP-Only All
Total Sparsity (%) 0 8 27 44 36 80
Validation Loss 2.55 2.56 2.61 2.88 2.67 2.98

Embedding Sparsity (%) 80 90 95 98 99
Total Sparsity (%) 8 9 9.4 9.7 9.8
Validation Loss 2.56 2.59 2.58 2.61 2.66

Table 4: (top) Pruning different parts of the encoder-decoder T5-Base model to 80% sparsity. (bot-
tom) Effect of increasing sparsity on embedding layers to the final validation loss. Both results are
obtained using the STE method.

implemented through custom top-k functions 4 and can be configured easily. In Table 3, we ran ex-
periments with these different sparsity structures (types) using 2 different algorithms: magnitude
based STE and gradual magnitude pruning. Results shows that STE achieves good results for N:M,
however performs poorly with block sparsity; for which gradual magnitude pruning achieves the
best results.

Uniform ERK
ViT-B/16 71.52 70.90
T5-Base 2.72 2.71

Table 5: Effect of uniform and non-
uniform sparsity distributions in trans-
former models at 80% overall sparsity.

How does ERK compare to uniform sparsity distribu-
tion? The sparsity level of each layer in JaxPruner can
be configured through the sparsity distribution function.
We provide implementations for 2 common distributions:
(1) Uniform, which uses the same target sparsity for each
layer (2) Erdos-Renyi-Kernel (ERK) [18], which adjust
sparsity at every layer proportionally to the sum of its di-
mensions. We run these 2 distributions again by changing
a single line in the configuration an share the results in Ta-
ble 5. Unlike the results observed in previous work when
using ResNet-50 models [34], Transformer models with ERK distribution don’t achieve higher ac-
curacy (ImageNet-2012) or significantly lower loss (C4) compared to a uniform distribution, high-
lighting an important area for future research.

Which layers of a transformer model are easier to prune? Neural network architectures are often
built from smaller building blocks and often multiple networks are combined for a specific purpose
[54, 55]. When multiple types of layers, blocks and architectures are used together, looking solely
at the shape of the parameters of each layer is not sufficient to determine the optimal sparsity. For
example Graesser et al. [49] showedwhen training a reinforcement learning agent (SAC) [54], actor
networks are significantly easier to prune than critic networks in the SAC agent. We do a similar
study here with the T5-Base model trained on the C4 dataset. We prune 4 different parts of the
T5-Base architecture in Table 4: (1) embedding layer. (2) Encoder blocks (self-attention andMLPs)
(3) Decoder blocks (self/cross-attention andMLPs) (4)MLP layers after attention (both in encoder
and decoder). Pruning different parts of an architecture, again, done through single line change in
the configuration file by passing a filter_fnwhich decides which parameters to prune. We prune
each layer to 80% sparsity, however since these different parts have different amounts of trainable
parameters, models achieve different total sparsities. Though it is difficult to make a strict conclu-

4Sparsity pattern is calculated by selecting top-k scoring values using a givenmetric. Wemodify these top-k
functions such that they follow the structure chosen.
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sion due this, we observe embedding layer to be easy to prune. Therefore we perform additional
experiments pushing the sparsity even further achieving 95% embedding sparsity with almost no
performance drop.

5. Related Work
JAX JAX [3] is a Python library for high-performance machine learning research. With Autograd
[56], JAX can automatically differentiate native Python and Numpy functions such as loops and
branches in both forward and backward modes. Also, JAX supports just-in-time compilation of
NumPy programs on multiple GPUs or TPUs in parallel with XLA [57]. Following the functional
programming paradigm all transformations in JAX work on pure functions and thus can be com-
posed together in an arbitrary order. Since these features can dramatically facilitate machine learn-
ing research, the community has started adopting JAX to develop new research frameworks in recent
years, including for example Optax [10], FedJAX [6], Flax [5], JaxOpt [58], just to name a few.

Hardware There are numerous efforts towards hardware and software support for sparsity. An
example of hardware acceleration for inference is the 2:4 fine-grained structured sparsity that was
introduced by theNvidiaAmpereGPU series [28, 59]. When each contiguous block of four elements
contains two zeros (viz. 50% sparsity), a low-overhead compression becomes possible which stores
the non-zero values together with 2-bit indices. The hardware supports this compressed format by
only operating on the nonzero values during the computation.

Software A promising direction for developing sparse software was pioneered for sparse linear
algebra in the MT1 compiler [60] and generalized to sparse tensor algebra in the Tensor Algebra
Compiler [61–63]. In these approaches, sparsity is treated as a property of tensors, not a tedious
implementation detail, and a compiler automatically generates sparse code from a ‘dense’ definition
of the computationwhere the programmermerely adds sparsity annotations to the tensor operands.
A single description of a computation can be mapped to a wide range of sparse implementations,
each tailored to specific sparsity properties. These ideas gave rise to, for example, sparse tensor
support in the MLIR compiler-infrastructure [64] and proposed sparse extensions to JAX [3].
Sparse linear algebra binary libraries such as MKL [65] and cuSPARSE [66] implement sparse ba-
sic linear algebra subroutines for a small set of sparse data types. Generic libraries like Eigen [67]
and CUSP [68] allow writing math-like expressions for a wider choice of data types. The Graph-
BLAS [69] standard specifies a core set of general sparse matrix-based graph operations over arbi-
trary semi-rings. Many libraries implement this standard [70–73] for CPUs and GPUs. Libraries
such as Sputnik [20], cuSPARSELt [74], and LIBXSMM [75] add new kernels and data types spe-
cific to deep learning, but still with limited portability. MegaBlocks [15] is a framework of efficient
Mixture-of-Experts training on GPUs.

Sparsity Pruning and sparse training have witnessed a resurgence of research interests over the
last few years, with many exciting developments and variations of standard sparsity approaches.
See Hoefler et al. [47], Liu andWang [76] for comparisons between various sparsity methods and a
comprehensive analysis. Despite progress made, there is a need for sparsity libraries, benchmarks,
and evaluation protocols. Gale et al. [17] compared few popular algorithms across different do-
mains and architectures. Similarly [46] provided an extensive report on benchmarks used in prun-
ing papers. One of the key existing libraries, OpenLTH [77], is primarily focused on easing research
related to the Lottery Ticket Hypothesis [78], and facilitates implementation of magnitude-based
pruning methods as well as computation of related metrics. Other mask-based pruning libraries in
PyTorch include [79] and [80]. Alternatively, Ivanov et al. [81] focuses on providing acceleration in
PyTorch through sparse matrix representations and operations. Many of these libraries have been
used by many published papers. We hope our library would facilitate research in a similar way.

6. Conclusion
In this work we introduced JaxPruner, a new JAX library which aims to accelerate research in spar-
sity using 3 tenets: (a) fast integration (b) research first (c) minimal overhead. JaxPruner provides
concise implementations of a diverse set of sparse training and pruning algorithms. Provided al-
gorithms are easy to extend and support common sparsity distributions and structures. JaxPruner
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also includes integration with other JAX libraries focusing four different domains. We benchmark
our algorithms in these domains and share these baseline results alongside the library.
JaxPruner makes the implementation of new ideas and evaluation of them easy providing an excel-
lent starting point for future sparsity research. Finally, though the primary goal of JaxPruner is to
accelerate sparsity research, we believe its tenets and design can provide a blueprint for JAX libraries
focusing different research domains.
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