Exploring Distributional Shifts in Large Language Models for Code
Analysis

Anonymous ACL submission

Abstract

We systematically study the capacity of two
large language models for code - CodeT5 and
Codex - to generalize to out-of-domain data. In
this study, we consider two fundamental appli-
cations - code summarization, and code gener-
ation. We split data into domains following its
natural boundaries - by an organization, by a
project, and by a module within the software
project. This makes recognition of in-domain
vs out-of-domain data at the time of deploy-
ment trivial. We establish that samples from
each new domain present both models with a
significant challenge of distribution shift. We
study how well different established methods
can adapt models to better generalize to new
domains. Our experiments show that while mul-
titask learning alone is a reasonable baseline,
combining it with few-shot finetuning on exam-
ples retrieved from training data can achieve
very strong performance. In fact, according to
our experiments, this solution can outperform
direct finetuning for very low-data scenarios.
Finally, we consider variations of this approach
to create a more broadly applicable method to
adapt to multiple domains at once. We find that
in the case of code generation, a model adapted
to multiple domains simultaneously performs
on par with those adapted to a single domain.

1 Introduction

Since the late 2000s, researchers have been re-
porting poor generalization of statistical learning
models to new software systems (Turhan, 2012;
Zimmermann et al., 2009), a phenomenon that
has become increasingly important with the rise
of large language models (LLMs) for code, such as
GitHub Copilot, Amazon CodeWhisperer, Replit,
etc. Thus, it is crucial to understand when pre-
trained large language model performance on a
private software system will differ from the perfor-
mance obtained on a benchmark. Prior work has
studied some aspects of this problem, among others
studying generalization from older to newer code,

large software projects, and small competition prob-
lems, authors, and code representations (Nie et al.,
2022; Li et al., 2021; Hu et al., 2022).

However, the challenges of distribution shifts
stemming from the hierarchical nature of software
data, as depicted in Figure 1, have not been sys-
tematically studied with regard to large language
models for code. Motivated by that, in this work we
probe the generalization capacity of large language
models for code, specifically Codex (Chen et al.,
2021) and CodeT5 (Wang et al., 2021), in code
generation and summarization tasks, examining
three scenarios: generalization across companies,
projects, and project components. These scenar-
ios are routinely considered for analyzing software
systems (Ma et al., 2012; Li et al., 2009; Mair et al.,
2000) due to the careful consideration that goes
into combining or separating such entities.

The entire Classes are encapsulating Minimal syntactic unit
software system data and behaviour .

Modules or components : atec tements .
making up the system H performing a task H

System Component [Class] Eunctiorz] Etatement:]

Folders in
repasitories

Company

GitHub repository Gittub
ouners repositories

In this study

Figure 1: Organization of a software system by the
granularity of its components

First, we want to understand how models per-
form on new domains - if models struggle with
out-of-domain generalization, they should be used
with caution. At the same time, we empirically
establish the legitimacy of our definitions for out-
of-domain scenarios by demonstrating that these
examples present a distributional shift. To answer
this question we compare the performance of the
models without any additional adaptation, with that
of the models that have been adapted on limited
data from a random domain, or from the test do-
main. Adaptation with labeled examples from the
test domain is the proxy for model performance if
there were no distributional shift. We find that both
models suffer from a drop in performance when

applied out-of-domain. In this experiment, the dif-
ference is more pronounced for code summariza-
tion, where adapting models with few in-domain
examples, on average, leads to an improvement of
over 10 BLEU (Papineni et al., 2002) score points.

Next, we explore ways to improve the out-of-
domain generalization of large language models
for code, recognizing that relying on labeled in-
domain data for every new domain is impractical.
Instead, we investigate the use of labeled out-of-
domain data and small amounts of unlabelled in-
domain data to enhance generalization. We test
methods known to be successful in other transfer
learning scenarios, such as meta-learning (Thrun
and Pratt, 1998; Vilalta and Drissi, 2002) and mul-
titask learning (Caruana, 1996; Silver, 1996). We
also leverage unlabeled in-domain data to retrieve
similar labeled examples from an out-of-domain
corpus for adapting to the new domain. We find
that while meta-learning and multitask learning do
not solve the out-of-domain generalization prob-
lem, domain adaptation with retrieved examples is
a good technique for low-data domains. Models
using retrieved examples perform on par, or better,
than models that have been adapted using a few
samples (e.g., 8 or 16) of in-domain labeled data.

Lastly, can we make the code models more
broadly applicable and retain their generalization
capacities, rather than having to adapt them to ev-
ery new domain? Depending on the approach to
model adaptation (e.g. weight update vs in-context
demonstrations) we varied the set of retrieved ex-
amples for each new domain, or for each test input
individually. We compare performance obtained
this way with that of the models that are adapted
simultaneously to multiple domains (or instances,
correspondingly). We find that Codex is very sensi-
tive to these changes, so it is best to retrieve similar
instances for each test data point. On the other
hand, CodeT5 has a minor drop in code summariza-
tion and a negligible drop in code generation. This
makes it feasible to adapt and apply CodeT5 to mul-
tiple domains simultaneously with minimal trade-
off, eliminating the need to store separate copies of
the model for each domain.

2 Background

Distribution shifts, the shifts in underlying seman-
tics between the training and evaluation data, can
be one of the most impacting factors for deteriorat-
ing performance at test time. Prior work in code
analysis has mainly focused on cross-project dis-

tribution shifts, training the model on one set of
code projects and evaluating them on unseen code
projects. Additionally, the studies were mainly
conducted in the context of traditional machine
learning methods, such as linear classifiers, support
vector machines, and later, LSTMs (Zimmermann
et al., 2009; Turhan, 2012; Angioni et al., 2022).

Recently, there has been a resurgence of inter-
est in studying distribution shifts in code analy-
sis, with newer works considering shifts caused
by different authors of the code, the timeline of
the project, distributions of code tokens, etc (Li
et al., 2021; Hu et al., 2022; Nie et al., 2022). Ad-
ditionally, large language models trained on code
have demonstrated remarkable capabilities in code
analysis tasks, however, their abilities under do-
main shift are still under-explored. In this work,
we conduct a comprehensive empirical analysis to
probe the large language models’ capabilities in
handling three different granularity of distribution
shifts (company, domain, module) when different
training and adaptation methods are used. In addi-
tion to directly fine-tuning vanilla LLMs, we exper-
iment with enhancing pretrained models using the
methods described below.

Meta-Learning and Multi-task Learning. In
our work, we experimented with both Meta-
Learning and Multi-task learning to get better ini-
tialization for few-shot performance on the down-
stream task. For meta-learning, we have cho-
sen Model-agnostic Meta-Learning(MaML) (Finn
et al., 2017) which is a gradient-based method. It
is a conceptually simple and model-agnostic algo-
rithm that has been shown to outperform existing
approaches in several tasks. Multi-task Learning
aims to learn a shared and generalized represen-
tation by jointly training on several tasks. We
adopted the simplest approach to multi-task learn-
ing by jointly finetuning a shared language model
on multiple tasks.

Parameter Efficient Methods. Parameter-
efficient methods have been shown to obtain
performance comparable to finetuning all model
parameters with only a tiny fraction of model
parameters. In our work, we have experimented
with Low-Rank Adaptation (LoRA) (Hu et al,,
2021), which is a low-rank update method.

In-context learning. GPT-3 (Brown et al., 2020)
demonstrated the ability of large language models
to perform few-shot predictions, where the model is
given a description of the task in natural language

with few examples. In our work, we conducted
experiments on in-context learning on Codex.

Retrieval Based Example Selection. It has been
shown in Liu et al. (2021) that in-context exam-
ples selected following a strategy may serve as
more informative input to unleash GPT3’s exten-
sive knowledge. Inspired by this, we leveraged
a simple similarity-based retrieval module to aug-
ment Codex for in-context learning example selec-
tion. Also, for the few-shot training of CodeT5,
we experimented with a retrieval-based stratified
few-shot example selection approach.

3 Problem setting

ul ul \\ ul
2
<> @
=fo) g 3%
[[[
[) [
Repositories Organizations Folders

Figure 2: We divide and group the functions from Code-
SearchNet by the repositories, organizations, and folders
that they belong to.

We are considering the scenario where a user
is looking to use a large language model, such as
Codex or CodeT3, in their software project. We
want to understand how these models will perform
particularly considering that the code may be com-
ing from an unseen organization, an unseen project,
or a previously unseen part of the project.

Let us have two mutually exclusive sets of code
data points: Xypqin and Xyese. Assuming that the
code in the data is extracted from some software
projects, we can identify the organization, project,
and the module within the project that the data point
came from. Based on each of those characteristics
we can group the data points into sets, and end up
with three sets of sets, as illustrated in Figure 2.
For example, the middle set in the figure contains
multiple sets of data points. Each of those sets cor-
responds to a unique organization which all data
points within it originated from. In other words,
according to our prior definitions, all data points
within a set belong to the same domain. For sim-
plicity, we will refer to a set of examples from the
same domain as 7;. We also will refer to splits of
such a set into train/development or test portions

7 C Xtrain (total) 7 C Xirain(|7] > 96) 7 C Xiest(|7] > 96)

org. 9737 195 8
repos. 15858 147 15
fold. 25268 100 10

Table 1: CodeSearchNet dataset, split according to the
domain definitions. The left column shows the set used
for training. The middle column shows the number of
domains of each kind from X;,,;, that have at least
96 samples. The right column shows the number of
domains in the X, after filtering all domains with
less than 96 samples.

as Tirains Tdevs aNd Tiest.

3.1 Data
For our experimentation, we use CodeSearch-
Net (Husain et al., 2019) dataset!, in particular,
the partition containing JavaScript language. In our
setup, the train section of the dataset corresponds to
Xirain, and development and test sections to Xyeg;.
We wanted to keep all of the domains in Xyeg
unseen, and for that reason, we removed any do-
main from X4 that has also appeared in X;,.qip,.
This can happen because CodeSearchNet dataset
was split into partitions by projects, so the same
organizations can appear in differents splits. This
way, any domain coming from X< will be, by our
definition, out-of-domain for the model trained on
Xirain- We further split each domain 7; C Xyeg
INtO T¢rgin, Tdew aNd Tiest. The evaluation is per-
formed on Tyest. Tirain and T4e, are used to obtain
a proxy for the upper-bound performance of the
model if the domain 7; was seen during training,
i.e. if there was no distribution shift for 7;c;.

Preprocessing We used the “path” field of the
CodeSearchNet dataset to determine each code
snippet’s belonging to an organization, repository,
and lowest-level folder. We use 5 different random
seeds to divide a domain into Tyrgin, Tdew, and Trest.
We aim to have at least 32 samples each in 7¢.s; and
Tdev, and up to 32 samples for 7yqin. Thus, from
Xiest we filtered any domain that had less than 96
samples in total. The final dataset statistics that we
ended up with are presented in Table 1.

3.2 Applications and Metrics

We evaluated our method on two generation ap-
plications: code summarization and code genera-
tion. Code summarization aims to summarize a
code snippet into a natural language description.

'Since the exact training data of Codex models is undis-
closed, we cannot be sure that it did not include CodeSearch-
Net dataset. However, as seen later in the experiments, we see
a performance difference for in-domain and out-of-domain
experiments regardless of this.

The code snippet in CodeSearchNet dataset is a
function, and the natural language description con-
sists of the docstring of that function. The eval-
uation metric for this task is BLEU-4 (Papineni
et al., 2002). Code generation performs the re-
verse operation - given a natural language descrip-
tion of code, the model is asked to generate the
corresponding function. We follow prior work and
use CodeBLEU (Ren et al., 2020) for evaluating
generated code. We modified an existing Code-
BLEU implementation by adding our own set of
JavaScript keywords, the full list can be found in
Appendix 7.1. However, recent research has estab-
lished that CodeBLEU scores can disagree with hu-
man judgment scores (Evtikhiev et al., 2022), and
motivated by these findings we additionally eval-
uate code generation models with chrF (Popovic,
2015) and RougeL (Lin, 2004) metrics. These met-
rics agree according to our results, so we report
results for chrF and RougeL in Appendix 9.

3.3 Models

We have experimented with two large language
models for code: (1) CodeT5 (Wang et al., 2021),
which is an encoder-decoder model based on
T5 (Raffel et al., 2019) and (2) Codex (Chen et al.,
2021), which is a decoder only model based on
GPT-3 (Brown et al., 2020). Both T5 and GPT-3
have strong zero-shot learning (Wei et al., 2022;
Sanh et al., 2022) and transfer learning capabili-
ties, and their versions for programming languages
exhibit strong performance across multiple bench-
marks. The two models are of different sizes -
the CodeT?5 is using 700M parameters T5-large
architecture, and the Codex model uses GPT-3 ar-
chitecture with more than 100B parameters. We
have provided a more detailed discussion of these
models in the Appendix, Section 7.3.

4 Analysis

In this section, we formulate the research ques-
tions that we aim to answer, and give more detailed
description of the setups that we have used for ana-
lyzing and answering each question.

RQ 1 How do code models perform on new do-
mains?

We test models’ capacity for generalization to
new domains by comparing the performance of
the models that have been adapted to the new do-
main using few-shot instances of in-domain data
(ID) vs those that only encountered out-of-domain
data. For CodeT5 few-shot domain adaptation

data is used to update the model weights, whereas
for Codex it is included as demonstrations in the
prompt to the model.

CodeT5

Next, we discuss the adaptation techniques for the
CodeT5 model. For these methods, we have exper-
imented with using a different number of supervi-
sion examples - 8, 16, or 32.

The first adaptation method we used is full model
fine-tuning (FT). Information on the hyperparam-
eters for this and all other methods is available in
Appendix 8. Besides FT, we also experiment with
a parameter-efficient fine-tuning method - Low-
Rank Adaptation (LoRA) (Hu et al., 2021). This
method adds trainable pairs of rank decomposi-
tion matrices in parallel to existing weight matrices
thus enabling parameter-efficient adaptation to new
domains without forgetting. We used the imple-
mentation from T-Few (Liu et al., 2022) library.

Codex
For Codex, we do not perform weight updates. In-
stead, very large models, such as Codex, have been
shown to be capable to generalize to unseen tasks
using only the instruction for the task. In the sim-
plest case, we evaluated Codex by directly present-
ing it with the instruction, for example "Summarize
following JavaScript code”, and input (i.e. instruc-
tion only). It has been established that Codex can
be sensitive to the wording of the instructions, so
we used a number of different instruction variations
for each application and averaged the results.
Besides that, larger models have been shown to
be able to “learn” from demonstration examples
that are provided as part of their input, even though
this process does not involve any weight updates.
This phenomenon is known as in-context learning
(ICL) technique, which is what we use for domain
adaptation for Codex. Due to the limit on the size
of the input to the Codex model (4096 tokens), we
used as many demonstrations as would fit, includ-
ing up to 8 demonstrations with each test example.
And since the model can also be sensitive to the
order of examples, we shuffled the order of the
demonstrations 5 times and averaged the results.

Finding: Both models struggle on new domains

Tables 2 and 3 demonstrate the performance ob-
tained by CodeT5 and Codex (additional results
for code generation metrics chrF and rougeL are
available in Appendix Section 9). We see that both
models for code struggle with OOD generalization

.. folder repo org
Code summarization

8-shot 16-shot 32-shot 8-shot 16-shot 32-shot 8-shot 16-shot 32-shot
CodeT5 FT ID 14.39 16.06 18.31 12.68 14.73 16.82 13.14 16.35 17.65
CodeT5 LoRA ID 16.57 19.07 2093 15.22 17.14 21.20 15.61 18.56 20.87
CodeT5 FT random 3.58 4.30 5.02 4.35 4.70 5.79 4.53 5.47 6.27
CodeT5 LoRA random 3.69 4.37 4.92 4.70 5.56 5.92 5.27 5.53 6.26
Codex ICL ID 20.72 - - 2034 - - 19.00 - -
Codex ICL random 6.73 - - 7.17 - - 6.84 - -
Codex instr. only (0-shot) (1.61) - - (1.55) - - (1.52) - -

Table 2: Comparison of model performance for code summarization on in-domain (ID) vs out-of-domain (random)

test data. Reported metric is BLEU (higher is better).

. folder repo org
Code generation

8-shot 16-shot 32-shot 8-shot 16-shot 32-shot 8-shot 16-shot 32-shot
CodeT5 FT ID 14.67 15.22 16.13 16.15 17.42 18.62 14.54 15.34 16.43
CodeT5 LoRA ID 14.14 15.06 16.36 16.23 17.45 1896 14.17 15.30 16.62
CodeT5 FT random 15.23 14.94 1515 14.19 14.14 14.67 13.39 13.43 14.44
CodeT5 LoRA random 14.45 14.29 1537 14.29 13.74 15.04 13.76 13.85 14.81
Codex ICL ID 23.87 - - 2573 - - 24.64 - -
Codex ICL random 16.82 - - 16.82 - - 1747 - -
Codex instr. only (0-shot) (5.77) - - (549 - - (5.72) - -

Table 3: Comparison of model performance for code generation on in-domain (ID) vs out-of-domain (random) test

data. Reported metric is CodeBLEU (higher is better).

as demonstrated by the performance difference for
models that have encountered in-domain examples
vs those that have not. For example, CodeT5 model
on code summarization in most scenarios gains
about 200% relative improvement after updating
the model with few-shot in-domain data.

It is worth noting that while there is still differ-
ence in performance for CodeT5 model on code
generation ID and OOD, the performance differ-
ence is next to negligible. We hypothesize that this
can be due to the fact that code generation is a more
challenging task for a large language model, and
so the effect of distribution shift is less noticeable.
This way, for CodeT5, which is a smaller model
and is evaluated lower on OOD code generation,
the gain is smaller. On the other side, Codex is
evaluated higher on OOD code generation, and for
it the addition of the in-domain data results in up
to 50% of relative improvement.

RQ 2 How to get better out-of-domain general-
ization?

We saw that models for code performed signifi-
cantly better after being adapted for new domains
using in-domain data. However, there are many
reasons why adapting to every new domain with
the help of labeled examples might be impractical.

Thus, we consider some alternative approaches,
that would not require labeled data but can hope-
fully close the performance gap partially or fully.
A high-level overview is illustrated in Figure 3.

CodeT5
In the previous setup, we started from a pre-trained

checkpoint of the model and experimented with
different approaches for domain adaptation. To an-
swer the current question, we additionally consider
different methods to use before the domain adap-
tation stage, particularly, multi-task learning and
meta-learning. The resulting experimental setups
are illustrated in Figure 3a.

Multitask learning (MTL) MTL is the sim-
ple method of combining data from different do-
mains and training the model on all the domains
simultaneously. For code summarization, we used
the model checkpoint provided by the authors of
CodeT5, which was fine-tuned on the training
portion of CodeSearchNet. For code generation,
we performed our own training since the original
model was not trained to generate JavaScript code.

Dual-gen MTL In the setup described above, the
model is trained to perform either code generation
or summarization. In addition to that, we experi-
ment with a multitask model that has been trained

Multitask |
learning
(MTL)

Retrieved

Random
CodeT5 [
-] Dual-gen
MTL

D

Meta-
learning

(MamML) Method Data

Training Domain adaptaticn

(a) CodeT5

Instruction
only

Retrieved

4 Random
In-context

learning
(ICL)

D

Method Data

Domain adaptation

(b) Codex

Figure 3: For the CodeT5 model we perform evaluation
of different methods for training and domain adaptation
techniques, as well as using different data sources dur-
ing the domain adaptation stage. For Codex we perform
evaluation of scenarios with different data sources dur-
ing the domain adaptation stage.

on both code generation and code summarization
simultaneously. We refer to this model as “dual-
gen” MTL, following the authors of CodeT5. We
prepended the inputs to the model with a generation
or summarization instruction for each instance.

Model-Agnostic Meta Learning For model-
agnostic meta-learning or MaML (Finn et al.,
2017), we filtered the domains in X4y, set, only
leaving those that have at least 96 samples (see the
middle column of Table 1). This was to ensure that
each domain contains disjoint sets of adequate size
for both training and meta-training. We used the
library Higher (Grefenstette et al., 2019) for our
implementation.

Stratified example retrieval for supervision In
addition to the strategies above, we experiment
with a domain adaptation method that does not re-
quire in-domain labeled data for supervision. We
used cosine similarity on embeddings obtained
from the pre-trained CodeT5 model checkpoint to
retrieve k£ most similar examples for every exam-
ple in Tyes from Xypqin. We set k to 4, 8, or 32,
and since |Tyest| = 32 the combined size of the set
would be 128, 256, or 1024. Finally, we removed
any duplicates. We will refer to this set as 7,.¢¢.

Codex
Stratified example retrieval for demonstrations

Similarly to the strategy for CodeT5, for Codex we
employed in-context learning with retrieved demon-

stration examples. For each test query, instead of
using random sets of in-domain or out-of-domain
demonstrations, we used 4 or 8 of the query’s most
similar samples from Xjy,.4;, as demonstrations.
This case will be referred to as ICL ret.

Finding: Strategic adaptation has best
out-of-domain performance in low data
scenarios

Figure 4a and 4b demonstrate the performance of
the CodeT5 and Codex models. For CodeT?, it con-
tains the performance obtained without adaptation
(0-shot), as well as after in-domain few-shot fine-
tuning (additional results for LoRA are presented
in Appendix 9). None of the evaluated methods
perform comparably in zero-shot setting to those
with few-shot domain adaptation - whether on ex-
amples retrieved from training data or obtained
from test domains. So these training methods do
not result in a general-purpose model that handles
out-of-domain generalization well.

Adapting the MTL model to test domains with
the help of stratified supervision provides a con-
siderable boost to the performance of CodeT5 and
Codex. Results for CodeT5 are shown in Figure 5
with bars marked “ret k£, where k refers to the
number of examples included in 7,.; per test exam-
ple. For Codex, Figure 4b reports the performance
using 4 or 8 retrieved demonstrations, signified as
“ICL ret 4” and “ICL ret 8” respectively.

First of all, we notice that there is a saturation in
terms of gained performance vs the number of strat-
ified supervision or demonstration examples used.
For CodeT5 using 32 examples per test instance
is almost always worse than using 4 or 8 exam-
ples. For Codex, using 4 or 8 examples results in
approximately the same performance.

Next, for code summarization, retrieving 4 or 8
examples from out-of-domain train data leads to
performance comparable, or even better, than that
of the model adapted using 8 examples from the test
domain. This trend is observed for both Codex and
CodeTS5, particularly strongly when generalizing to
new repositories and new organizations. A similar
trend can be observed for code generation, and
to a much stronger degree for CodeT5 - stratified
supervision models can even outperform models
trained with 32 examples from the test domain.
However, while the performance of the stratified
supervision models plateau after a certain number
of examples, supervision on in-domain samples
does not demonstrate such a trend.

Code Summarization

folder repo org
. MTL * *
[Dual-gen MTL 2 =
0 MaML » =
18 18 18
D 16 16 16
w
ou 14 14
12 12 12
10 10 10
8 8 8
6 6 6
0O-shot ret 8 8-shot ID 0-shot ret8 8-shot ID 0O-shot ret 8 8-shot ID
Code Generation
folder repo org
30 30 30
28 28 28
5 26 26 26
w
o 2 24 24
<
15 22 22 22
o
20 20 20
18 18 18
16 T T T 16 T T T 16 T T T
0-shot ret 8 8-shot ID 0-shot ret8 8-shot ID 0-shot ret 8 8-shot ID
(a) CodeT5
Code Summarization Code Generation
o/ EEE Folder 25
[Repo
54 @ Org @ 20
@ 15
21 2
8w
i H_H
Em LI
0 0

Instruction only ICL random ICLID ICLret 4 ICLret8

Instruction only ICL random ICLID ICL ret 4 ICLret8

(b) Codex

Figure 4: Performance for models with downstream adaptations on ID and retrieved data.

RQ 3 Can we have more generic solutions for
out-of-domain generalization?

In the previous experiment, we saw that models can
generalize better to new domains without relying
on labeled data from that domain. Unfortunately,
this still requires adapting to every test domain
individually for CodeT5, and even more strictly
- to every test sample individually - for Codex.
For example, for CodeT5, this means maintaining
multiple copies of the model, performing the
training for the adaptation stage multiple times,
and storing a large amount of out-of-domain data
to retrieve examples from.

In this experiment, we try to create more general
models. Our interpretation of such a model for
CodeTS5 is generalizing to multiple domains with-
out needing to train on them separately. For Codex,
since previously we were obtaining demonstrations
for each individual example, we consider sampling
from demonstrations collected for the entire do-
main - in other words, sampling demonstrations
from 7,.¢;. For CodeTS5, we finetune it on the com-
bined set of 7,..; for all domains. For Codex, for
a query from 7.4, we consider sampling 4 or 8
demonstration examples from 7;.¢.

Finding: We can build more generic models for
code generation with finetuning without
sacrificing the performance

The results for both models are presented in Table 4.
Results for CodeT5 for this experiment are referred
to as “FT: combined k”, where k is the number of
retrieved examples per test example. For each cell
in the table, the first number is the raw score ob-
tained by the “combined FT”” model. It is followed
by the difference between the score of the com-
bined model and the score that we had previously
obtained with domain-specific models. As can be
seen, training a single model on combined retrieved
samples results in a moderate drop in performance
for code summarization, and a negligible drop for
code generation. In other words, a model finetuned
on stratified supervision data for new domains can
be a viable solution for the out-of-domain general-
ization problem for code generation. Interestingly,
this also indicates that for code generation, good
performance on one domain does not hinder the
performance on another domain, i.e. there is little
to no negative transfer between different domains.

For Codex, the results of the experiment are re-
ferred to as “ICL: k from 7,..;” in Table 4, where k

Code Summarization

folder

gp mmmmmmmm———- 8-shot

18 - 1

BLEU

10, 0-shot

repo
u- P

12 O-shot 12-

-8-shot

org

Code Generation

folder

-8-shot 29-

CodeBLEU

30 -

29-

- 28 -

27 -

repo

8-shot

0-shot

8-shot 26-

0-shot

0-shot *°~

org

30 -

29 -

28 -

27 -

26 -

25 ~

8-shot
0-shot

- T T - T T - T T 24— T T 24— T T 24 T T
ret 4 ret 8ret 32 ret 4 ret 8ret 32 ret 4 ret 8ret 32 ret 4 ret 8ret 32 ret 4 ret §ret 32 ret 4 ret 8ret 32

Figure 5: Performance for CodeT5 model finetuned with retrieved supervision, with different number of retrieved
examples per test sample. Scores reported are BLEU for code summarization (left-most three plots), and CodeBLEU
for code generation (right-most three plots). The performances of the CodeT5 MTL model evaluated in zero-shot,
and 8-shot (ID) scenarios are illustrated with dotted lines for reference.

Code Summarization

Code Generation

BLEU /A BLEU CodeBLEU / A CodeBLEU
org repo folder org repo folder
FT: combined 4 18.74/-4.74 18.59/-447 18.06/-1.06 29.46/-0.19 29.41/-0.01 26.60/-1.53
FT: combined 8 18.46/-5.07 18.58/-3.03 17.57/-3.48 29.13/-0.73 28.83/-0.22 27.23/-0.92
FT: combined 32 17.35/-231 17.63/-0.94 15.57/-2.56 26.28/-3.63 25.01/-4.02 25.14/-2.88
ICL: 4 from 7. 14.66/-7.04 12.68/-795 12.10/-6.96 20.52/-6.73 20.06/-7.78 19.39/-6.21
ICL: 8 from 7,..¢ 13.77/-8.53 12.96/-8.52 12.26/-7.17 20.81/-7.05 20.23/-8.16 19.48/-7.00

Table 4: Results for models using retrieved supervision examples in modified scenarios.

is the number of sampled demonstrations. The first
number in each cell is the raw score obtained for
Codex with sampling from similar examples for the
domain, and the second number is the difference
between that score, and the score obtained with sim-
ilar demonstrations for each individual test exam-
ple. It appears that for Codex replacing demonstra-
tions selected for individual examples with those
selected for a domain introduce too much noise,
and degrade the performance a lot.

5 Limitations and Threats to Validity

As can be seen from Table 1, as a result of the
process of filtering, we skew the data towards
larger projects and eliminate from the dataset many
samples that could potentially come from smaller
projects. We believe that this step is necessary to
make the results more reliable, due to the high vari-
ance that can be observed in datasets with very
small test sets. However, we wanted to draw atten-
tion to this circumstance once more, to make sure
that our findings are interpreted correctly.
Additionally, while we do evaluate distribution
shift and out-of-domain generalization, we believe
it is important to highlight again that the out-of-
domain data in our analysis still originated from
the same dataset. Thus its distribution is likely

closer to the original training set distribution than
it will be the case in the wild.

6 Conclusion

In this work, we systematically evaluated two large
language models for code - CodeT5 and Codex
(code-cushman-001) - on two fundamental code
applications - code generation and code summa-
rization. We studied how the models perform under
distribution shifts that can commonly occur due to
the nature of the software. We experimented with
three granularities for defining domains in applica-
tions for code - organization, project, and module,
or folder, level. Our experiments showed that both
CodeT5 and Codex are susceptible to reduced per-
formance due to domain shifts. We experimented
with a number of training and domain adaptation
techniques for achieving better out-of-domain gen-
eralization. We discovered that retrieving similar
out-of-domain examples from training data is the
most effective approach for adapting to a new, low-
resource domain. In addition, we experimented
with adapting models to multiple new domains si-
multaneously and found that such models can per-
form very well for code generation. However, we
found the generality of the model to be a tradeoff
for its performance for code summarization.

References

Daniele Angioni, Luca Demetrio, Maura Pintor, and
Battista Biggio. 2022. Robust machine learning for
malware detection over time. In Proceedings of
the Italian Conference on Cybersecurity (ITASEC
2022), Rome, Italy, June 20-23, 2022, volume 3260
of CEUR Workshop Proceedings, pages 169—180.
CEUR-WS.org.

Antreas Antoniou, Harrison Edwards, and Amos J.
Storkey. 2018. How to train your maml. ArXiv,
abs/1810.09502.

Ankur Bapna, N. Arivazhagan, and Orhan Firat. 2019.
Simple, scalable adaptation for neural machine trans-
lation. In Conference on Empirical Methods in Natu-
ral Language Processing.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, T. J. Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. ArXiv,
abs/2005.14165.

Rich Caruana. 1996. Algorithms and applications
for multitask learning. In Machine Learning, Pro-
ceedings of the Thirteenth International Conference
(ICML °96), Bari, Italy, July 3-6, 1996, pages 87-95.
Morgan Kaufmann.

Rich Caruana. 1997. Multitask learning. Machine
Learning, 28:41-75.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde, Jared Kaplan, Harrison Ed-
wards, Yura Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Moham-
mad Bavarian, Clemens Winter, Philippe Tillet, Fe-
lipe Petroski Such, David W. Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, William H. Guss, Alex Nichol, Igor
Babuschkin, S. Arun Balaji, Shantanu Jain, Andrew
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew M. Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. ArXiv,
abs/2107.03374.

Rajarshi Das, Manzil Zaheer, Dung Ngoc Thai, Ameya
Godbole, Ethan Perez, Jay Yoon Lee, Lizhen Tan,
Lazaros Polymenakos, and Andrew McCallum. 2021.
Case-based reasoning for natural language queries

over knowledge bases. In Conference on Empirical
Methods in Natural Language Processing.

Mikhail Evtikhiev, Egor Bogomolov, Yaroslav Sokolov,
and Timofey Bryksin. 2022. Out of the BLEU: how
should we assess quality of the code generation mod-
els? CoRR, abs/2208.03133.

Chelsea Finn, P. Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In International Conference on Ma-
chine Learning.

Chelsea Finn, Kelvin Xu, and Sergey Levine. 2018.
Probabilistic model-agnostic meta-learning. In Neu-
ral Information Processing Systems.

Edward Grefenstette, Brandon Amos, Denis Yarats,
Phu Mon Htut, Artem Molchanov, Franziska Meier,
Douwe Kiela, Kyunghyun Cho, and Soumith Chin-
tala. 2019. Generalized inner loop meta-learning.
arXiv preprint arXiv:1910.01727.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In Inter-
national Conference on Machine Learning.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. 2021. Lora: Low-rank adaptation of large
language models. ArXiv, abs/2106.09685.

Qiang Hu, Yuejun Guo, Xiaofei Xie, Maxime Cordy,
Lei Ma, Mike Papadakis, and Yves Le Traon.
2022. Codes: A distribution shift benchmark
dataset for source code learning. arXiv preprint
arXiv:2206.05480.

Hamel Husain, Hongqi Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. ArXiv, abs/1909.09436.

Gregory R. Koch. 2015. Siamese neural networks for
one-shot image recognition.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio
Savarese, and Steven C. H. Hoi. 2022. Coderl: Mas-
tering code generation through pretrained models and
deep reinforcement learning. CoRR, abs/2207.01780.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. ArXiv, abs/2104.08691.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), abs/2101.00190.

http://ceur-ws.org/Vol-3260/paper12.pdf
http://ceur-ws.org/Vol-3260/paper12.pdf
http://ceur-ws.org/Vol-3260/paper12.pdf
https://doi.org/10.48550/arXiv.2208.03133
https://doi.org/10.48550/arXiv.2208.03133
https://doi.org/10.48550/arXiv.2208.03133
https://doi.org/10.48550/arXiv.2208.03133
https://doi.org/10.48550/arXiv.2208.03133
https://doi.org/10.48550/arXiv.2207.01780
https://doi.org/10.48550/arXiv.2207.01780
https://doi.org/10.48550/arXiv.2207.01780
https://doi.org/10.48550/arXiv.2207.01780
https://doi.org/10.48550/arXiv.2207.01780

Yan-Fu Li, Min Xie, and T. N. Goh. 2009. A study of
mutual information based feature selection for case
based reasoning in software cost estimation. Expert
Syst. Appl., 36(3):5921-5931.

Yufei Li, Simin Chen, and Wei Yang. 2021. Estimating
predictive uncertainty under program data distribu-
tion shift. CoRR, abs/2107.10989.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.
2022. Few-shot parameter-efficient fine-tuning is
better and cheaper than in-context learning. arXiv
preprint arXiv:2205.05638.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-3? In Work-
shop on Knowledge Extraction and Integration for
Deep Learning Architectures; Deep Learning Inside
Out.

Ying Ma, Guangchun Luo, Xue Zeng, and Aiguo Chen.
2012. Transfer learning for cross-company software
defect prediction. Inf. Softw. Technol., 54(3):248—
256.

Carolyn Mair, Gada F. Kadoda, Martin Lefley, Keith
Phalp, Chris Schofield, Martin J. Shepperd, and Steve
Webster. 2000. An investigation of machine learning
based prediction systems. J. Syst. Softw., 53(1):23—
29.

Elliot Meyerson and Risto Miikkulainen. 2019. Mod-
ular universal reparameterization: Deep multi-
task learning across diverse domains. ArXiv,
abs/1906.00097.

Pengyu Nie, Jiyang Zhang, Junyi Jessy Li, Raymond J.
Mooney, and Milos Gligoric. 2022. Impact of eval-
uation methodologies on code summarization. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2022, Dublin, Ireland, May 22-27,
2022, pages 4936—4960. Association for Computa-
tional Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Maja Popovic. 2015. chrf: character n-gram f-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
WMT@EMNLP 2015, 17-18 September 2015, Lis-
bon, Portugal, pages 392-395. The Association for
Computer Linguistics.

10

Colin Raffel, Noam M. Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the
limits of transfer learning with a unified text-to-text
transformer. ArXiv, abs/1910.10683.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie
Liu, Duyu Tang, M. Zhou, Ambrosio Blanco, and
Shuai Ma. 2020. Codebleu: a method for automatic
evaluation of code synthesis. ArXiv, abs/2009.10297.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal V. Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-
drea Santilli, Thibault Févry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M. Rush. 2022. Multi-
task prompted training enables zero-shot task gener-
alization. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net.

Adam Santoro, Sergey Bartunov, Matthew M.
Botvinick, Daan Wierstra, and Timothy P. Lillicrap.
2016. Meta-learning with memory-augmented neural
networks. In International Conference on Machine
Learning.

Richard Shin, C. H. Lin, Sam Thomson, Charles C.
Chen, Subhro Roy, Emmanouil Antonios Platan-
ios, Adam Pauls, Dan Klein, Jas’ Eisner, and Ben-
jamin Van Durme. 2021. Constrained language
models yield few-shot semantic parsers. ArXiv,
abs/2104.08768.

Daniel L. Silver. 1996. The parallel transfer of task
knowledge using dynamic learning rates based on a
measure of relatedness. Connect. Sci., 8(2):277-294.

Jake Snell, Kevin Swersky, and Richard S. Zemel. 2017.
Prototypical networks for few-shot learning. ArXiv,
abs/1703.05175.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip
H. S. Torr, and Timothy M. Hospedales. 2017. Learn-
ing to compare: Relation network for few-shot learn-
ing. 2018 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 1199-1208.

Sebastian Thrun and Lorien Y. Pratt. 1998. Learning to
learn: Introduction and overview. In Sebastian Thrun
and Lorien Y. Pratt, editors, Learning to Learn, pages
3—17. Springer.

Burak Turhan. 2012. On the dataset shift problem
in software engineering prediction models. Empir.
Softw. Eng., 17(1-2):62-74.

https://doi.org/10.1016/j.eswa.2008.07.062
https://doi.org/10.1016/j.eswa.2008.07.062
https://doi.org/10.1016/j.eswa.2008.07.062
https://doi.org/10.1016/j.eswa.2008.07.062
https://doi.org/10.1016/j.eswa.2008.07.062
http://arxiv.org/abs/2107.10989
http://arxiv.org/abs/2107.10989
http://arxiv.org/abs/2107.10989
http://arxiv.org/abs/2107.10989
http://arxiv.org/abs/2107.10989
https://doi.org/10.1016/j.infsof.2011.09.007
https://doi.org/10.1016/j.infsof.2011.09.007
https://doi.org/10.1016/j.infsof.2011.09.007
https://doi.org/10.1016/S0164-1212(00)00005-4
https://doi.org/10.1016/S0164-1212(00)00005-4
https://doi.org/10.1016/S0164-1212(00)00005-4
https://aclanthology.org/2022.acl-long.339
https://aclanthology.org/2022.acl-long.339
https://aclanthology.org/2022.acl-long.339
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/w15-3049
https://doi.org/10.18653/v1/w15-3049
https://doi.org/10.18653/v1/w15-3049
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://doi.org/10.1080/095400996116929
https://doi.org/10.1080/095400996116929
https://doi.org/10.1080/095400996116929
https://doi.org/10.1080/095400996116929
https://doi.org/10.1080/095400996116929
https://doi.org/10.1007/978-1-4615-5529-2_1
https://doi.org/10.1007/978-1-4615-5529-2_1
https://doi.org/10.1007/978-1-4615-5529-2_1
https://doi.org/10.1007/s10664-011-9182-8
https://doi.org/10.1007/s10664-011-9182-8
https://doi.org/10.1007/s10664-011-9182-8

Ricardo Vilalta and Youssef Drissi. 2002. A perspective
view and survey of meta-learning. Artif. Intell. Rev.,
18(2):77-95.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Ko-
ray Kavukcuoglu, and Daan Wierstra. 2017. Match-
ing networks for one shot learning.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven
C. H. Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code under-
standing and generation. ArXiv, abs/2109.00859.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022. Finetuned
language models are zero-shot learners. In The Tenth
International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

Yongxin Yang and Timothy M. Hospedales. 2016. Deep
multi-task representation learning: A tensor factori-
sation approach. ArXiv, abs/1605.06391.

Thomas Zimmermann, Nachiappan Nagappan, Har-
ald C. Gall, Emanuel Giger, and Brendan Murphy.
2009. Cross-project defect prediction: a large scale
experiment on data vs. domain vs. process. In Pro-
ceedings of the 7th joint meeting of the European
Software Engineering Conference and the ACM SIG-
SOFT International Symposium on Foundations of
Software Engineering, 2009, Amsterdam, The Nether-
lands, August 24-28, 2009, pages 91-100. ACM.

11

https://doi.org/10.1023/A:1019956318069
https://doi.org/10.1023/A:1019956318069
https://doi.org/10.1023/A:1019956318069
http://arxiv.org/abs/1606.04080
http://arxiv.org/abs/1606.04080
http://arxiv.org/abs/1606.04080
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://doi.org/10.1145/1595696.1595713
https://doi.org/10.1145/1595696.1595713
https://doi.org/10.1145/1595696.1595713

7 Appendix

7.1 Javascript Keywords

The Javascript keywords that we included in the
CodeBleu implementation for evaluation is listed
in table 7.1.

7.2 Extended Background
7.2.1

Meta-learning focuses on adapting knowledge
gained from previous tasks to be applied to
new tasks with limited training examples. Most
meta-learning algorithms can be categorized into
three groups: 1) Black-box meta-learning ap-
proaches (Santoro et al., 2016) train a black-box
model to take in training data of a target task to
output parameters for the neural network used for
making prediction for that task; 2) Optimization-
based methods (Finn et al., 2017, 2018; Antoniou
et al., 2018) uses gradient descent to learn model
parameters which can be adapted to a future target
task with few gradient steps on a few-shot training
dataset; 3) Non-parametric methods (Vinyals et al.,
2017; Snell et al., 2017; Sung et al., 2017; Koch,
2015) learns a metric space in which predictions
can be performed by computing some similarity
metric, like distance and cosine similarity, to repre-
sentations of each class. In our work, we are using
the MAML (Finn et al., 2017) approach, which is
a gradient-based method and learns model initial-
ization (i.e., initial parameters) that is amenable to
fast fine-tuning with few instances. This method
is a conceptually simple and model-agnostic algo-
rithm that has been shown to outperform existing
approaches in several tasks.

Meta-learning and Multi-task-learning

Multi-task Learning aims to jointly learn sev-
eral related tasks providing a generalized represen-
tation with the added benefit of compute and mem-
ory in terms of shared model parameters (Yang and
Hospedales, 2016; Caruana, 1997; Meyerson and
Miikkulainen, 2019). MTL also has a regulariza-
tion effect on the model parameters. By definition,
MTL aims to solve a fixed number of known tasks,
whereas the point of meta-learning is often to solve
unseen future tasks. But both methods capture a
good prior from the training tasks, which can be
used for getting model parameters for future target
tasks.

In our work, we have experimented with both
MAML and multi-task learning to check which

12

of the method gives us a better prior for few-shot
performance in our setting.

7.2.2 Few-shot Methods

Parameter-efficient finetuning: Conventional
fine-tuning methods retrains all the model parame-
ters for every new task, which becomes infeasible
as the model size increases to the level of GPT-3.
In recent times, parameter-efficient methods have
been studied and it has been demonstrated that
state-of-the-art PEFT methods can match the per-
formance of finetuning all the model’s parameters
while updating only a tiny fraction of the model
parameters. Initially adapters (Raffel et al., 2019;
Houlsby et al., 2019; Bapna et al., 2019) were intro-
duced, which are new feed-forward modules added
between the layers of the fixed pre-trained model.
Since then, various sophisticated PEFT methods
have been proposed, including methods like LoRA
that produce low-rank updates (Hu et al., 2021)
and prompt tuning (Lester et al., 2021) and prefix-
tuning (Li and Liang, 2021) concatenate learned
continuous embeddings to the model’s input or ac-
tivations to induce it to perform a task.

Retrieval-based Example selection: In a study
conducted by Liu et al. (2021) , they explored how
different prompts can impact the performance of
GPT-3 and found that the use of in-context exam-
ples has a significant influence on the downstream
results. To achieve this, they utilized an unsuper-
vised sentence encoder to encode training examples
and then retrieved the nearest neighbors for each
test instance. On a similar note, Das et al. (2021)
developed a supervised prompt retriever for an-
swering knowledge-based questions. Their method
used tailored supervision specifically designed for
knowledge-based queries and relied on surface sim-
ilarity between formal queries. Furthermore, Shin
et al. (2021) employed GPT-3 to select examples
for the prompt in few-shot semantic parsing. They
demonstrated the effectiveness of this approach by
using GPT-3 to identify relevant examples for the
prompt, which in turn improved the overall perfor-
mance of the system.

7.3 Models

CodeT5: CodeT5 (Wang et al., 2021) is a pre-
trained encoder-decoder transformer model based
on TS5 (Raffel et al., 2019) for programming lan-
guages. It uses a unified framework to support
code understanding and generation tasks seam-

Languages Keywords

javascript await, break, case, catch, class, const, continue, debugger, default, delete, do, else, enum,
export, extends, false, finally, for, function, if, implements, import, in, instanceof, interface, let,
new, null, package, private, protected, public, return, super, switch, static, this, throw, try, true,

typeof, var, void, while, with, yield

Table 5: Keywords used for CodeBLEU evaluation

lessly. To improve the model’s ability to handle the
unique characteristics of programming languages,
CodeTS5 is trained on an identifier-aware pretrain-
ing task. Additionally, the model is trained to ex-
ploit user-written code comments with a bimodal
dual-generation task for better alignment between
natural language and programming languages. This
makes this model suitable for the applications that
we consider. For both of our applications, we used
the CodeT5-large model (Le et al., 2022) without
making any changes to the model architecture.

Codex Codex (Chen et al., 2021) is the language
model for code released by OpenAl. It is a GPT
language model finetuned on 54 million public soft-
ware repositories hosted on GitHub, containing 179
GB of unique Python files under 1 MB. VLLMs
are capable of zero-shot generalization to unseen
tasks, which is achieved by providing them with
an instruction of what the model is expected to
do. This allowed us to successfully evaluate Codex
for both code generation and code summarization
without any need for training.

8 Hyperparameters and training details

For full finetuning of CodeT5, we updated the
model for 500 steps using batch size of 8, the best
model was identified by the performance on the
Tdev portion. For LORA, we use a rank of 4 with
an initialization scale of 0.01 and update all the at-
tention and feedforward layers. We train for 1000
steps with a batch size of 8.

For multitask learning (MTL) of CodeT5, we
update the model for 150K steps on 80% of the
Xirain data, using a batch size of 4. The best check-
point is selected by evaluating the model on the
remaining 20% of X};.q;,, Which was held-out from
training. For dual-gen MTL, we followed the same
train/dev division strategy as for MTL for code gen-
eration, and updated the model for 150K steps with
batch size of 4. The best checkpoints were again
decided by evaluating the model on the created
development set. In particular, we selected two
checkpoints - one according to CodeBLEU metric,

13

and another according to BLEU metric for code
generation and code summarization respectively.
For Model-agnostic meta-learning, we updated the
model from the pretrained CodeT5 checkpoint for
10K steps and used the last checkpoint in our ex-
periments.

9 Additional experimental results

Besides the experiments presented in the main pa-
per, in this section, we report some additional ex-
periments, such as the results for code generation
as measured using chrF and rougeL metrics, or
comparison of LoORA parameter efficient finetuning
method with the full model finetuning for CodeTS5.

. folder repo org
Code generation

8-shot 16-shot 32-shot 8-shot 16-shot 32-shot 8-shot 16-shot 32-shot
CodeT5 FT ID 19.36 20.92 2195 2042 22.44 24.47 19.29 20.73 22.6
CodeT5 LoRA ID 20.05 21.66 22.56 20.81 23.12 24.52 20.08 21.28 22.99
CodeT5 FT random 17.61 18.03 17.94 16.92 17.50 17.59 16.47 17.46 17.85
CodeT5 LoRA random 17.87 18.02 17.81 17.45 17.15 17.63 17.24 17.13 17.29
Codex ICL ID 28.78 - - 31.05 - - 29.19 - -
Codex ICL random 20.62 - - 20.87 - - 21.10 - -
Codex instr. only (0-shot) (10.24) - - (10.6) - - (10.25) - -

Table 6: Comparison of model performance for code generation on in-domain (ID) vs out-of-domain (random) test
data. Reported metric is ChrF (higher is better).

. folder repo org
Code generation

8-shot 16-shot 32-shot 8-shot 16-shot 32-shot 8-shot 16-shot 32-shot
CodeT5 FT ID 14.15 15.84 16.73 14.93 16.98 19.19 13.75 14.93 16.94
CodeT5 LoRA ID 14.49 16.58 17.87 1547 17.69 19.60 14.10 15.48 17.61
CodeT5 FT random 11.34 11.62 11.73 9.91 10.10 10.32 9.49 10.20 10.68
CodeT5 LoRA random 11.45 12.05 12.58 10.09 10.04 11.08 10.15 10.3 11.15
Codex ICL ID 23.70 - - 2462 - - 2258 - -
Codex ICL random 15.76 - - 15.67 - - 1581 - -
Codex instr. only (0-shot) (6.44) - - (6.5) - - (6.18) - -

Table 7: Comparison of model performance for code generation on in-domain (ID) vs out-of-domain (random) test
data. Reported metric is RougeL (higher is better).

=3 FT

Code Summarization

[LoRA
==
[Dual-gen MTL folder
= MaML
P o]
25 -
4 ~po o
200 oN_[o o
B bo
a 175 o o
o bo
2 & o
B
125 o
o
100 o
o
o
8-shot ID 16-shot ID 32-shot ID
repo
250
(b o]
25 s A .
B 5 o4 \bo
200 e o [o
D175 o >
o oN_[o
o o bo
@ 150 B oK [o
o bo
125 o oK [o
o bo
100 o BND
o bo
75 o o
8-shot ID 16-shot ID 32-shot ID
org
250
N5
o OND
N o \po
200 -
o o b
@ 175 % °°
@ 150 &
o
125 &5
100 Y
B
5 &

o
8-shot ID

o
16-shot ID

o
32-shot |

D

CodeBLEU
8oOR

CodeBLEU

Code Generation

folder

8-shot ID

16-shot ID
repo

32-shot |

32-shot ID

°
8-shot ID

o
16-shot ID

o
32-shot ID

Figure 6: Performance for CodeT5 model finetuned with LoRA compared to regular finetuning.

14

