
Exploring Distributional Shifts in Large Language Models for Code
Analysis

Anonymous ACL submission

Abstract

We systematically study the capacity of two001
large language models for code - CodeT5 and002
Codex - to generalize to out-of-domain data. In003
this study, we consider two fundamental appli-004
cations - code summarization, and code gener-005
ation. We split data into domains following its006
natural boundaries - by an organization, by a007
project, and by a module within the software008
project. This makes recognition of in-domain009
vs out-of-domain data at the time of deploy-010
ment trivial. We establish that samples from011
each new domain present both models with a012
significant challenge of distribution shift. We013
study how well different established methods014
can adapt models to better generalize to new015
domains. Our experiments show that while mul-016
titask learning alone is a reasonable baseline,017
combining it with few-shot finetuning on exam-018
ples retrieved from training data can achieve019
very strong performance. In fact, according to020
our experiments, this solution can outperform021
direct finetuning for very low-data scenarios.022
Finally, we consider variations of this approach023
to create a more broadly applicable method to024
adapt to multiple domains at once. We find that025
in the case of code generation, a model adapted026
to multiple domains simultaneously performs027
on par with those adapted to a single domain.028

1 Introduction029

Since the late 2000s, researchers have been re-030

porting poor generalization of statistical learning031

models to new software systems (Turhan, 2012;032

Zimmermann et al., 2009), a phenomenon that033

has become increasingly important with the rise034

of large language models (LLMs) for code, such as035

GitHub Copilot, Amazon CodeWhisperer, Replit,036

etc. Thus, it is crucial to understand when pre-037

trained large language model performance on a038

private software system will differ from the perfor-039

mance obtained on a benchmark. Prior work has040

studied some aspects of this problem, among others041

studying generalization from older to newer code,042

large software projects, and small competition prob- 043

lems, authors, and code representations (Nie et al., 044

2022; Li et al., 2021; Hu et al., 2022). 045

However, the challenges of distribution shifts 046

stemming from the hierarchical nature of software 047

data, as depicted in Figure 1, have not been sys- 048

tematically studied with regard to large language 049

models for code. Motivated by that, in this work we 050

probe the generalization capacity of large language 051

models for code, specifically Codex (Chen et al., 052

2021) and CodeT5 (Wang et al., 2021), in code 053

generation and summarization tasks, examining 054

three scenarios: generalization across companies, 055

projects, and project components. These scenar- 056

ios are routinely considered for analyzing software 057

systems (Ma et al., 2012; Li et al., 2009; Mair et al., 058

2000) due to the careful consideration that goes 059

into combining or separating such entities.

Figure 1: Organization of a software system by the
granularity of its components

060
First, we want to understand how models per- 061

form on new domains - if models struggle with 062

out-of-domain generalization, they should be used 063

with caution. At the same time, we empirically 064

establish the legitimacy of our definitions for out- 065

of-domain scenarios by demonstrating that these 066

examples present a distributional shift. To answer 067

this question we compare the performance of the 068

models without any additional adaptation, with that 069

of the models that have been adapted on limited 070

data from a random domain, or from the test do- 071

main. Adaptation with labeled examples from the 072

test domain is the proxy for model performance if 073

there were no distributional shift. We find that both 074

models suffer from a drop in performance when 075

1

applied out-of-domain. In this experiment, the dif-076

ference is more pronounced for code summariza-077

tion, where adapting models with few in-domain078

examples, on average, leads to an improvement of079

over 10 BLEU (Papineni et al., 2002) score points.080

Next, we explore ways to improve the out-of-081

domain generalization of large language models082

for code, recognizing that relying on labeled in-083

domain data for every new domain is impractical.084

Instead, we investigate the use of labeled out-of-085

domain data and small amounts of unlabelled in-086

domain data to enhance generalization. We test087

methods known to be successful in other transfer088

learning scenarios, such as meta-learning (Thrun089

and Pratt, 1998; Vilalta and Drissi, 2002) and mul-090

titask learning (Caruana, 1996; Silver, 1996). We091

also leverage unlabeled in-domain data to retrieve092

similar labeled examples from an out-of-domain093

corpus for adapting to the new domain. We find094

that while meta-learning and multitask learning do095

not solve the out-of-domain generalization prob-096

lem, domain adaptation with retrieved examples is097

a good technique for low-data domains. Models098

using retrieved examples perform on par, or better,099

than models that have been adapted using a few100

samples (e.g., 8 or 16) of in-domain labeled data.101

Lastly, can we make the code models more102

broadly applicable and retain their generalization103

capacities, rather than having to adapt them to ev-104

ery new domain? Depending on the approach to105

model adaptation (e.g. weight update vs in-context106

demonstrations) we varied the set of retrieved ex-107

amples for each new domain, or for each test input108

individually. We compare performance obtained109

this way with that of the models that are adapted110

simultaneously to multiple domains (or instances,111

correspondingly). We find that Codex is very sensi-112

tive to these changes, so it is best to retrieve similar113

instances for each test data point. On the other114

hand, CodeT5 has a minor drop in code summariza-115

tion and a negligible drop in code generation. This116

makes it feasible to adapt and apply CodeT5 to mul-117

tiple domains simultaneously with minimal trade-118

off, eliminating the need to store separate copies of119

the model for each domain.120

2 Background121

Distribution shifts, the shifts in underlying seman-122

tics between the training and evaluation data, can123

be one of the most impacting factors for deteriorat-124

ing performance at test time. Prior work in code125

analysis has mainly focused on cross-project dis-126

tribution shifts, training the model on one set of 127

code projects and evaluating them on unseen code 128

projects. Additionally, the studies were mainly 129

conducted in the context of traditional machine 130

learning methods, such as linear classifiers, support 131

vector machines, and later, LSTMs (Zimmermann 132

et al., 2009; Turhan, 2012; Angioni et al., 2022). 133

Recently, there has been a resurgence of inter- 134

est in studying distribution shifts in code analy- 135

sis, with newer works considering shifts caused 136

by different authors of the code, the timeline of 137

the project, distributions of code tokens, etc (Li 138

et al., 2021; Hu et al., 2022; Nie et al., 2022). Ad- 139

ditionally, large language models trained on code 140

have demonstrated remarkable capabilities in code 141

analysis tasks, however, their abilities under do- 142

main shift are still under-explored. In this work, 143

we conduct a comprehensive empirical analysis to 144

probe the large language models’ capabilities in 145

handling three different granularity of distribution 146

shifts (company, domain, module) when different 147

training and adaptation methods are used. In addi- 148

tion to directly fine-tuning vanilla LLMs, we exper- 149

iment with enhancing pretrained models using the 150

methods described below. 151

Meta-Learning and Multi-task Learning. In 152

our work, we experimented with both Meta- 153

Learning and Multi-task learning to get better ini- 154

tialization for few-shot performance on the down- 155

stream task. For meta-learning, we have cho- 156

sen Model-agnostic Meta-Learning(MaML) (Finn 157

et al., 2017) which is a gradient-based method. It 158

is a conceptually simple and model-agnostic algo- 159

rithm that has been shown to outperform existing 160

approaches in several tasks. Multi-task Learning 161

aims to learn a shared and generalized represen- 162

tation by jointly training on several tasks. We 163

adopted the simplest approach to multi-task learn- 164

ing by jointly finetuning a shared language model 165

on multiple tasks. 166

Parameter Efficient Methods. Parameter- 167

efficient methods have been shown to obtain 168

performance comparable to finetuning all model 169

parameters with only a tiny fraction of model 170

parameters. In our work, we have experimented 171

with Low-Rank Adaptation (LoRA) (Hu et al., 172

2021), which is a low-rank update method. 173

In-context learning. GPT-3 (Brown et al., 2020) 174

demonstrated the ability of large language models 175

to perform few-shot predictions, where the model is 176

given a description of the task in natural language 177

2

with few examples. In our work, we conducted178

experiments on in-context learning on Codex.179

Retrieval Based Example Selection. It has been180

shown in Liu et al. (2021) that in-context exam-181

ples selected following a strategy may serve as182

more informative input to unleash GPT3’s exten-183

sive knowledge. Inspired by this, we leveraged184

a simple similarity-based retrieval module to aug-185

ment Codex for in-context learning example selec-186

tion. Also, for the few-shot training of CodeT5,187

we experimented with a retrieval-based stratified188

few-shot example selection approach.189

3 Problem setting190

Figure 2: We divide and group the functions from Code-
SearchNet by the repositories, organizations, and folders
that they belong to.

We are considering the scenario where a user191

is looking to use a large language model, such as192

Codex or CodeT5, in their software project. We193

want to understand how these models will perform194

particularly considering that the code may be com-195

ing from an unseen organization, an unseen project,196

or a previously unseen part of the project.197

Let us have two mutually exclusive sets of code198

data points: Xtrain and Xtest. Assuming that the199

code in the data is extracted from some software200

projects, we can identify the organization, project,201

and the module within the project that the data point202

came from. Based on each of those characteristics203

we can group the data points into sets, and end up204

with three sets of sets, as illustrated in Figure 2.205

For example, the middle set in the figure contains206

multiple sets of data points. Each of those sets cor-207

responds to a unique organization which all data208

points within it originated from. In other words,209

according to our prior definitions, all data points210

within a set belong to the same domain. For sim-211

plicity, we will refer to a set of examples from the212

same domain as τi. We also will refer to splits of213

such a set into train/development or test portions214

τ ⊂ Xtrain (total) τ ⊂ Xtrain(|τ | ≥ 96) τ ⊂ Xtest(|τ | ≥ 96)

org. 9737 195 8
repos. 15858 147 15
fold. 25268 100 10

Table 1: CodeSearchNet dataset, split according to the
domain definitions. The left column shows the set used
for training. The middle column shows the number of
domains of each kind from Xtrain that have at least
96 samples. The right column shows the number of
domains in the Xtest after filtering all domains with
less than 96 samples.

as τtrain, τdev, and τtest. 215

3.1 Data 216
For our experimentation, we use CodeSearch- 217

Net (Husain et al., 2019) dataset1, in particular, 218

the partition containing JavaScript language. In our 219

setup, the train section of the dataset corresponds to 220

Xtrain, and development and test sections to Xtest. 221

We wanted to keep all of the domains in Xtest 222

unseen, and for that reason, we removed any do- 223

main from Xtest that has also appeared in Xtrain. 224

This can happen because CodeSearchNet dataset 225

was split into partitions by projects, so the same 226

organizations can appear in differents splits. This 227

way, any domain coming from Xtest will be, by our 228

definition, out-of-domain for the model trained on 229

Xtrain. We further split each domain τi ⊂ Xtest 230

into τtrain, τdev and τtest. The evaluation is per- 231

formed on τtest. τtrain and τdev are used to obtain 232

a proxy for the upper-bound performance of the 233

model if the domain τi was seen during training, 234

i.e. if there was no distribution shift for τtest. 235

Preprocessing We used the “path” field of the 236

CodeSearchNet dataset to determine each code 237

snippet’s belonging to an organization, repository, 238

and lowest-level folder. We use 5 different random 239

seeds to divide a domain into τtrain, τdev, and τtest. 240

We aim to have at least 32 samples each in τtest and 241

τdev, and up to 32 samples for τtrain. Thus, from 242

Xtest we filtered any domain that had less than 96 243

samples in total. The final dataset statistics that we 244

ended up with are presented in Table 1. 245

3.2 Applications and Metrics 246
We evaluated our method on two generation ap- 247

plications: code summarization and code genera- 248

tion. Code summarization aims to summarize a 249

code snippet into a natural language description. 250

1Since the exact training data of Codex models is undis-
closed, we cannot be sure that it did not include CodeSearch-
Net dataset. However, as seen later in the experiments, we see
a performance difference for in-domain and out-of-domain
experiments regardless of this.

3

The code snippet in CodeSearchNet dataset is a251

function, and the natural language description con-252

sists of the docstring of that function. The eval-253

uation metric for this task is BLEU-4 (Papineni254

et al., 2002). Code generation performs the re-255

verse operation - given a natural language descrip-256

tion of code, the model is asked to generate the257

corresponding function. We follow prior work and258

use CodeBLEU (Ren et al., 2020) for evaluating259

generated code. We modified an existing Code-260

BLEU implementation by adding our own set of261

JavaScript keywords, the full list can be found in262

Appendix 7.1. However, recent research has estab-263

lished that CodeBLEU scores can disagree with hu-264

man judgment scores (Evtikhiev et al., 2022), and265

motivated by these findings we additionally eval-266

uate code generation models with chrF (Popovic,267

2015) and RougeL (Lin, 2004) metrics. These met-268

rics agree according to our results, so we report269

results for chrF and RougeL in Appendix 9.270

3.3 Models271

We have experimented with two large language272

models for code: (1) CodeT5 (Wang et al., 2021),273

which is an encoder-decoder model based on274

T5 (Raffel et al., 2019) and (2) Codex (Chen et al.,275

2021), which is a decoder only model based on276

GPT-3 (Brown et al., 2020). Both T5 and GPT-3277

have strong zero-shot learning (Wei et al., 2022;278

Sanh et al., 2022) and transfer learning capabili-279

ties, and their versions for programming languages280

exhibit strong performance across multiple bench-281

marks. The two models are of different sizes -282

the CodeT5 is using 700M parameters T5-large283

architecture, and the Codex model uses GPT-3 ar-284

chitecture with more than 100B parameters. We285

have provided a more detailed discussion of these286

models in the Appendix, Section 7.3.287

4 Analysis288

In this section, we formulate the research ques-289

tions that we aim to answer, and give more detailed290

description of the setups that we have used for ana-291

lyzing and answering each question.292

RQ 1 How do code models perform on new do-
mains?

293

We test models’ capacity for generalization to294

new domains by comparing the performance of295

the models that have been adapted to the new do-296

main using few-shot instances of in-domain data297

(ID) vs those that only encountered out-of-domain298

data. For CodeT5 few-shot domain adaptation299

data is used to update the model weights, whereas 300

for Codex it is included as demonstrations in the 301

prompt to the model. 302

CodeT5 303

Next, we discuss the adaptation techniques for the 304

CodeT5 model. For these methods, we have exper- 305

imented with using a different number of supervi- 306

sion examples - 8, 16, or 32. 307

The first adaptation method we used is full model 308

fine-tuning (FT). Information on the hyperparam- 309

eters for this and all other methods is available in 310

Appendix 8. Besides FT, we also experiment with 311

a parameter-efficient fine-tuning method - Low- 312

Rank Adaptation (LoRA) (Hu et al., 2021). This 313

method adds trainable pairs of rank decomposi- 314

tion matrices in parallel to existing weight matrices 315

thus enabling parameter-efficient adaptation to new 316

domains without forgetting. We used the imple- 317

mentation from T-Few (Liu et al., 2022) library. 318

319
Codex 320

For Codex, we do not perform weight updates. In- 321

stead, very large models, such as Codex, have been 322

shown to be capable to generalize to unseen tasks 323

using only the instruction for the task. In the sim- 324

plest case, we evaluated Codex by directly present- 325

ing it with the instruction, for example "Summarize 326

following JavaScript code", and input (i.e. instruc- 327

tion only). It has been established that Codex can 328

be sensitive to the wording of the instructions, so 329

we used a number of different instruction variations 330

for each application and averaged the results. 331

Besides that, larger models have been shown to 332

be able to “learn” from demonstration examples 333

that are provided as part of their input, even though 334

this process does not involve any weight updates. 335

This phenomenon is known as in-context learning 336

(ICL) technique, which is what we use for domain 337

adaptation for Codex. Due to the limit on the size 338

of the input to the Codex model (4096 tokens), we 339

used as many demonstrations as would fit, includ- 340

ing up to 8 demonstrations with each test example. 341

And since the model can also be sensitive to the 342

order of examples, we shuffled the order of the 343

demonstrations 5 times and averaged the results. 344

Finding: Both models struggle on new domains 345

Tables 2 and 3 demonstrate the performance ob- 346

tained by CodeT5 and Codex (additional results 347

for code generation metrics chrF and rougeL are 348

available in Appendix Section 9). We see that both 349

models for code struggle with OOD generalization 350

4

Code summarization folder repo org

8-shot 16-shot 32-shot 8-shot 16-shot 32-shot 8-shot 16-shot 32-shot

CodeT5 FT ID 14.39 16.06 18.31 12.68 14.73 16.82 13.14 16.35 17.65
CodeT5 LoRA ID 16.57 19.07 20.93 15.22 17.14 21.20 15.61 18.56 20.87
CodeT5 FT random 3.58 4.30 5.02 4.35 4.70 5.79 4.53 5.47 6.27
CodeT5 LoRA random 3.69 4.37 4.92 4.70 5.56 5.92 5.27 5.53 6.26

Codex ICL ID 20.72 - - 20.34 - - 19.00 - -
Codex ICL random 6.73 - - 7.17 - - 6.84 - -
Codex instr. only (0-shot) (1.61) - - (1.55) - - (1.52) - -

Table 2: Comparison of model performance for code summarization on in-domain (ID) vs out-of-domain (random)
test data. Reported metric is BLEU (higher is better).

Code generation folder repo org

8-shot 16-shot 32-shot 8-shot 16-shot 32-shot 8-shot 16-shot 32-shot

CodeT5 FT ID 14.67 15.22 16.13 16.15 17.42 18.62 14.54 15.34 16.43
CodeT5 LoRA ID 14.14 15.06 16.36 16.23 17.45 18.96 14.17 15.30 16.62
CodeT5 FT random 15.23 14.94 15.15 14.19 14.14 14.67 13.39 13.43 14.44
CodeT5 LoRA random 14.45 14.29 15.37 14.29 13.74 15.04 13.76 13.85 14.81

Codex ICL ID 23.87 - - 25.73 - - 24.64 - -
Codex ICL random 16.82 - - 16.82 - - 17.47 - -
Codex instr. only (0-shot) (5.77) - - (5.49) - - (5.72) - -

Table 3: Comparison of model performance for code generation on in-domain (ID) vs out-of-domain (random) test
data. Reported metric is CodeBLEU (higher is better).

as demonstrated by the performance difference for351

models that have encountered in-domain examples352

vs those that have not. For example, CodeT5 model353

on code summarization in most scenarios gains354

about 200% relative improvement after updating355

the model with few-shot in-domain data.356

It is worth noting that while there is still differ-357

ence in performance for CodeT5 model on code358

generation ID and OOD, the performance differ-359

ence is next to negligible. We hypothesize that this360

can be due to the fact that code generation is a more361

challenging task for a large language model, and362

so the effect of distribution shift is less noticeable.363

This way, for CodeT5, which is a smaller model364

and is evaluated lower on OOD code generation,365

the gain is smaller. On the other side, Codex is366

evaluated higher on OOD code generation, and for367

it the addition of the in-domain data results in up368

to 50% of relative improvement.369

RQ 2 How to get better out-of-domain general-
ization?

370

We saw that models for code performed signifi-371

cantly better after being adapted for new domains372

using in-domain data. However, there are many373

reasons why adapting to every new domain with374

the help of labeled examples might be impractical.375

Thus, we consider some alternative approaches, 376

that would not require labeled data but can hope- 377

fully close the performance gap partially or fully. 378

A high-level overview is illustrated in Figure 3. 379

CodeT5 380
In the previous setup, we started from a pre-trained 381

checkpoint of the model and experimented with 382

different approaches for domain adaptation. To an- 383

swer the current question, we additionally consider 384

different methods to use before the domain adap- 385

tation stage, particularly, multi-task learning and 386

meta-learning. The resulting experimental setups 387

are illustrated in Figure 3a. 388

Multitask learning (MTL) MTL is the sim- 389

ple method of combining data from different do- 390

mains and training the model on all the domains 391

simultaneously. For code summarization, we used 392

the model checkpoint provided by the authors of 393

CodeT5, which was fine-tuned on the training 394

portion of CodeSearchNet. For code generation, 395

we performed our own training since the original 396

model was not trained to generate JavaScript code. 397

Dual-gen MTL In the setup described above, the 398

model is trained to perform either code generation 399

or summarization. In addition to that, we experi- 400

ment with a multitask model that has been trained 401

5

(a) CodeT5

(b) Codex

Figure 3: For the CodeT5 model we perform evaluation
of different methods for training and domain adaptation
techniques, as well as using different data sources dur-
ing the domain adaptation stage. For Codex we perform
evaluation of scenarios with different data sources dur-
ing the domain adaptation stage.

on both code generation and code summarization402

simultaneously. We refer to this model as “dual-403

gen” MTL, following the authors of CodeT5. We404

prepended the inputs to the model with a generation405

or summarization instruction for each instance.406

Model-Agnostic Meta Learning For model-407

agnostic meta-learning or MaML (Finn et al.,408

2017), we filtered the domains in Xtrain set, only409

leaving those that have at least 96 samples (see the410

middle column of Table 1). This was to ensure that411

each domain contains disjoint sets of adequate size412

for both training and meta-training. We used the413

library Higher (Grefenstette et al., 2019) for our414

implementation.415

Stratified example retrieval for supervision In416

addition to the strategies above, we experiment417

with a domain adaptation method that does not re-418

quire in-domain labeled data for supervision. We419

used cosine similarity on embeddings obtained420

from the pre-trained CodeT5 model checkpoint to421

retrieve k most similar examples for every exam-422

ple in τtest from Xtrain. We set k to 4, 8, or 32,423

and since |τtest| = 32 the combined size of the set424

would be 128, 256, or 1024. Finally, we removed425

any duplicates. We will refer to this set as τret.426

Codex427
Stratified example retrieval for demonstrations428

Similarly to the strategy for CodeT5, for Codex we429

employed in-context learning with retrieved demon-430

stration examples. For each test query, instead of 431

using random sets of in-domain or out-of-domain 432

demonstrations, we used 4 or 8 of the query’s most 433

similar samples from Xtrain as demonstrations. 434

This case will be referred to as ICL ret. 435

Finding: Strategic adaptation has best 436

out-of-domain performance in low data 437

scenarios 438

Figure 4a and 4b demonstrate the performance of 439

the CodeT5 and Codex models. For CodeT5, it con- 440

tains the performance obtained without adaptation 441

(0-shot), as well as after in-domain few-shot fine- 442

tuning (additional results for LoRA are presented 443

in Appendix 9). None of the evaluated methods 444

perform comparably in zero-shot setting to those 445

with few-shot domain adaptation - whether on ex- 446

amples retrieved from training data or obtained 447

from test domains. So these training methods do 448

not result in a general-purpose model that handles 449

out-of-domain generalization well. 450

Adapting the MTL model to test domains with 451

the help of stratified supervision provides a con- 452

siderable boost to the performance of CodeT5 and 453

Codex. Results for CodeT5 are shown in Figure 5 454

with bars marked “ret k”, where k refers to the 455

number of examples included in τret per test exam- 456

ple. For Codex, Figure 4b reports the performance 457

using 4 or 8 retrieved demonstrations, signified as 458

“ICL ret 4” and “ICL ret 8” respectively. 459

First of all, we notice that there is a saturation in 460

terms of gained performance vs the number of strat- 461

ified supervision or demonstration examples used. 462

For CodeT5 using 32 examples per test instance 463

is almost always worse than using 4 or 8 exam- 464

ples. For Codex, using 4 or 8 examples results in 465

approximately the same performance. 466

Next, for code summarization, retrieving 4 or 8 467

examples from out-of-domain train data leads to 468

performance comparable, or even better, than that 469

of the model adapted using 8 examples from the test 470

domain. This trend is observed for both Codex and 471

CodeT5, particularly strongly when generalizing to 472

new repositories and new organizations. A similar 473

trend can be observed for code generation, and 474

to a much stronger degree for CodeT5 - stratified 475

supervision models can even outperform models 476

trained with 32 examples from the test domain. 477

However, while the performance of the stratified 478

supervision models plateau after a certain number 479

of examples, supervision on in-domain samples 480

does not demonstrate such a trend. 481

6

(a) CodeT5

(b) Codex

Figure 4: Performance for models with downstream adaptations on ID and retrieved data.

RQ 3 Can we have more generic solutions for
out-of-domain generalization?

482

In the previous experiment, we saw that models can483

generalize better to new domains without relying484

on labeled data from that domain. Unfortunately,485

this still requires adapting to every test domain486

individually for CodeT5, and even more strictly487

- to every test sample individually - for Codex.488

For example, for CodeT5, this means maintaining489

multiple copies of the model, performing the490

training for the adaptation stage multiple times,491

and storing a large amount of out-of-domain data492

to retrieve examples from.493

In this experiment, we try to create more general494

models. Our interpretation of such a model for495

CodeT5 is generalizing to multiple domains with-496

out needing to train on them separately. For Codex,497

since previously we were obtaining demonstrations498

for each individual example, we consider sampling499

from demonstrations collected for the entire do-500

main - in other words, sampling demonstrations501

from τret. For CodeT5, we finetune it on the com-502

bined set of τret for all domains. For Codex, for503

a query from τtest, we consider sampling 4 or 8504

demonstration examples from τret.505

Finding: We can build more generic models for 506

code generation with finetuning without 507

sacrificing the performance 508

The results for both models are presented in Table 4. 509

Results for CodeT5 for this experiment are referred 510

to as “FT: combined k”, where k is the number of 511

retrieved examples per test example. For each cell 512

in the table, the first number is the raw score ob- 513

tained by the “combined FT” model. It is followed 514

by the difference between the score of the com- 515

bined model and the score that we had previously 516

obtained with domain-specific models. As can be 517

seen, training a single model on combined retrieved 518

samples results in a moderate drop in performance 519

for code summarization, and a negligible drop for 520

code generation. In other words, a model finetuned 521

on stratified supervision data for new domains can 522

be a viable solution for the out-of-domain general- 523

ization problem for code generation. Interestingly, 524

this also indicates that for code generation, good 525

performance on one domain does not hinder the 526

performance on another domain, i.e. there is little 527

to no negative transfer between different domains. 528

For Codex, the results of the experiment are re- 529

ferred to as “ICL: k from τret” in Table 4, where k 530

7

Figure 5: Performance for CodeT5 model finetuned with retrieved supervision, with different number of retrieved
examples per test sample. Scores reported are BLEU for code summarization (left-most three plots), and CodeBLEU
for code generation (right-most three plots). The performances of the CodeT5 MTL model evaluated in zero-shot,
and 8-shot (ID) scenarios are illustrated with dotted lines for reference.

Code Summarization
BLEU / ∆ BLEU

Code Generation
CodeBLEU / ∆ CodeBLEU

org repo folder org repo folder

FT: combined 4 18.74 / -4.74 18.59 / -4.47 18.06 / -1.06 29.46 / -0.19 29.41 / -0.01 26.60 / -1.53
FT: combined 8 18.46 / -5.07 18.58 / -3.03 17.57 / -3.48 29.13 / -0.73 28.83 / -0.22 27.23 / -0.92
FT: combined 32 17.35 / -2.31 17.63 / -0.94 15.57 / -2.56 26.28 / -3.63 25.01 / -4.02 25.14 / -2.88

ICL: 4 from τret 14.66 / -7.04 12.68 / -7.95 12.10 / -6.96 20.52 / -6.73 20.06 / -7.78 19.39 / -6.21
ICL: 8 from τret 13.77 / -8.53 12.96 / -8.52 12.26 / -7.17 20.81 / -7.05 20.23 / -8.16 19.48 / -7.00

Table 4: Results for models using retrieved supervision examples in modified scenarios.

is the number of sampled demonstrations. The first531

number in each cell is the raw score obtained for532

Codex with sampling from similar examples for the533

domain, and the second number is the difference534

between that score, and the score obtained with sim-535

ilar demonstrations for each individual test exam-536

ple. It appears that for Codex replacing demonstra-537

tions selected for individual examples with those538

selected for a domain introduce too much noise,539

and degrade the performance a lot.540

5 Limitations and Threats to Validity541

As can be seen from Table 1, as a result of the542

process of filtering, we skew the data towards543

larger projects and eliminate from the dataset many544

samples that could potentially come from smaller545

projects. We believe that this step is necessary to546

make the results more reliable, due to the high vari-547

ance that can be observed in datasets with very548

small test sets. However, we wanted to draw atten-549

tion to this circumstance once more, to make sure550

that our findings are interpreted correctly.551

Additionally, while we do evaluate distribution552

shift and out-of-domain generalization, we believe553

it is important to highlight again that the out-of-554

domain data in our analysis still originated from555

the same dataset. Thus its distribution is likely556

closer to the original training set distribution than 557

it will be the case in the wild. 558

6 Conclusion 559

In this work, we systematically evaluated two large 560

language models for code - CodeT5 and Codex 561

(code-cushman-001) - on two fundamental code 562

applications - code generation and code summa- 563

rization. We studied how the models perform under 564

distribution shifts that can commonly occur due to 565

the nature of the software. We experimented with 566

three granularities for defining domains in applica- 567

tions for code - organization, project, and module, 568

or folder, level. Our experiments showed that both 569

CodeT5 and Codex are susceptible to reduced per- 570

formance due to domain shifts. We experimented 571

with a number of training and domain adaptation 572

techniques for achieving better out-of-domain gen- 573

eralization. We discovered that retrieving similar 574

out-of-domain examples from training data is the 575

most effective approach for adapting to a new, low- 576

resource domain. In addition, we experimented 577

with adapting models to multiple new domains si- 578

multaneously and found that such models can per- 579

form very well for code generation. However, we 580

found the generality of the model to be a tradeoff 581

for its performance for code summarization. 582

8

References583

Daniele Angioni, Luca Demetrio, Maura Pintor, and584
Battista Biggio. 2022. Robust machine learning for585
malware detection over time. In Proceedings of586
the Italian Conference on Cybersecurity (ITASEC587
2022), Rome, Italy, June 20-23, 2022, volume 3260588
of CEUR Workshop Proceedings, pages 169–180.589
CEUR-WS.org.590

Antreas Antoniou, Harrison Edwards, and Amos J.591
Storkey. 2018. How to train your maml. ArXiv,592
abs/1810.09502.593

Ankur Bapna, N. Arivazhagan, and Orhan Firat. 2019.594
Simple, scalable adaptation for neural machine trans-595
lation. In Conference on Empirical Methods in Natu-596
ral Language Processing.597

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie598
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind599
Neelakantan, Pranav Shyam, Girish Sastry, Amanda600
Askell, Sandhini Agarwal, Ariel Herbert-Voss,601
Gretchen Krueger, T. J. Henighan, Rewon Child,602
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens603
Winter, Christopher Hesse, Mark Chen, Eric Sigler,604
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack605
Clark, Christopher Berner, Sam McCandlish, Alec606
Radford, Ilya Sutskever, and Dario Amodei. 2020.607
Language models are few-shot learners. ArXiv,608
abs/2005.14165.609

Rich Caruana. 1996. Algorithms and applications610
for multitask learning. In Machine Learning, Pro-611
ceedings of the Thirteenth International Conference612
(ICML ’96), Bari, Italy, July 3-6, 1996, pages 87–95.613
Morgan Kaufmann.614

Rich Caruana. 1997. Multitask learning. Machine615
Learning, 28:41–75.616

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming617
Yuan, Henrique Ponde, Jared Kaplan, Harrison Ed-618
wards, Yura Burda, Nicholas Joseph, Greg Brockman,619
Alex Ray, Raul Puri, Gretchen Krueger, Michael620
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,621
Brooke Chan, Scott Gray, Nick Ryder, Mikhail622
Pavlov, Alethea Power, Lukasz Kaiser, Moham-623
mad Bavarian, Clemens Winter, Philippe Tillet, Fe-624
lipe Petroski Such, David W. Cummings, Matthias625
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel626
Herbert-Voss, William H. Guss, Alex Nichol, Igor627
Babuschkin, S. Arun Balaji, Shantanu Jain, Andrew628
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan629
Morikawa, Alec Radford, Matthew M. Knight, Miles630
Brundage, Mira Murati, Katie Mayer, Peter Welinder,631
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya632
Sutskever, and Wojciech Zaremba. 2021. Evaluat-633
ing large language models trained on code. ArXiv,634
abs/2107.03374.635

Rajarshi Das, Manzil Zaheer, Dung Ngoc Thai, Ameya636
Godbole, Ethan Perez, Jay Yoon Lee, Lizhen Tan,637
Lazaros Polymenakos, and Andrew McCallum. 2021.638
Case-based reasoning for natural language queries639

over knowledge bases. In Conference on Empirical 640
Methods in Natural Language Processing. 641

Mikhail Evtikhiev, Egor Bogomolov, Yaroslav Sokolov, 642
and Timofey Bryksin. 2022. Out of the BLEU: how 643
should we assess quality of the code generation mod- 644
els? CoRR, abs/2208.03133. 645

Chelsea Finn, P. Abbeel, and Sergey Levine. 2017. 646
Model-agnostic meta-learning for fast adaptation of 647
deep networks. In International Conference on Ma- 648
chine Learning. 649

Chelsea Finn, Kelvin Xu, and Sergey Levine. 2018. 650
Probabilistic model-agnostic meta-learning. In Neu- 651
ral Information Processing Systems. 652

Edward Grefenstette, Brandon Amos, Denis Yarats, 653
Phu Mon Htut, Artem Molchanov, Franziska Meier, 654
Douwe Kiela, Kyunghyun Cho, and Soumith Chin- 655
tala. 2019. Generalized inner loop meta-learning. 656
arXiv preprint arXiv:1910.01727. 657

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 658
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges- 659
mundo, Mona Attariyan, and Sylvain Gelly. 2019. 660
Parameter-efficient transfer learning for nlp. In Inter- 661
national Conference on Machine Learning. 662

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan 663
Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu 664
Chen. 2021. Lora: Low-rank adaptation of large 665
language models. ArXiv, abs/2106.09685. 666

Qiang Hu, Yuejun Guo, Xiaofei Xie, Maxime Cordy, 667
Lei Ma, Mike Papadakis, and Yves Le Traon. 668
2022. Codes: A distribution shift benchmark 669
dataset for source code learning. arXiv preprint 670
arXiv:2206.05480. 671

Hamel Husain, Hongqi Wu, Tiferet Gazit, Miltiadis 672
Allamanis, and Marc Brockschmidt. 2019. Code- 673
searchnet challenge: Evaluating the state of semantic 674
code search. ArXiv, abs/1909.09436. 675

Gregory R. Koch. 2015. Siamese neural networks for 676
one-shot image recognition. 677

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio 678
Savarese, and Steven C. H. Hoi. 2022. Coderl: Mas- 679
tering code generation through pretrained models and 680
deep reinforcement learning. CoRR, abs/2207.01780. 681

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. 682
The power of scale for parameter-efficient prompt 683
tuning. ArXiv, abs/2104.08691. 684

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: 685
Optimizing continuous prompts for generation. Pro- 686
ceedings of the 59th Annual Meeting of the Associa- 687
tion for Computational Linguistics and the 11th Inter- 688
national Joint Conference on Natural Language Pro- 689
cessing (Volume 1: Long Papers), abs/2101.00190. 690

9

http://ceur-ws.org/Vol-3260/paper12.pdf
http://ceur-ws.org/Vol-3260/paper12.pdf
http://ceur-ws.org/Vol-3260/paper12.pdf
https://doi.org/10.48550/arXiv.2208.03133
https://doi.org/10.48550/arXiv.2208.03133
https://doi.org/10.48550/arXiv.2208.03133
https://doi.org/10.48550/arXiv.2208.03133
https://doi.org/10.48550/arXiv.2208.03133
https://doi.org/10.48550/arXiv.2207.01780
https://doi.org/10.48550/arXiv.2207.01780
https://doi.org/10.48550/arXiv.2207.01780
https://doi.org/10.48550/arXiv.2207.01780
https://doi.org/10.48550/arXiv.2207.01780

Yan-Fu Li, Min Xie, and T. N. Goh. 2009. A study of691
mutual information based feature selection for case692
based reasoning in software cost estimation. Expert693
Syst. Appl., 36(3):5921–5931.694

Yufei Li, Simin Chen, and Wei Yang. 2021. Estimating695
predictive uncertainty under program data distribu-696
tion shift. CoRR, abs/2107.10989.697

Chin-Yew Lin. 2004. Rouge: A package for automatic698
evaluation of summaries. In Text summarization699
branches out, pages 74–81.700

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-701
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.702
2022. Few-shot parameter-efficient fine-tuning is703
better and cheaper than in-context learning. arXiv704
preprint arXiv:2205.05638.705

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,706
Lawrence Carin, and Weizhu Chen. 2021. What707
makes good in-context examples for gpt-3? In Work-708
shop on Knowledge Extraction and Integration for709
Deep Learning Architectures; Deep Learning Inside710
Out.711

Ying Ma, Guangchun Luo, Xue Zeng, and Aiguo Chen.712
2012. Transfer learning for cross-company software713
defect prediction. Inf. Softw. Technol., 54(3):248–714
256.715

Carolyn Mair, Gada F. Kadoda, Martin Lefley, Keith716
Phalp, Chris Schofield, Martin J. Shepperd, and Steve717
Webster. 2000. An investigation of machine learning718
based prediction systems. J. Syst. Softw., 53(1):23–719
29.720

Elliot Meyerson and Risto Miikkulainen. 2019. Mod-721
ular universal reparameterization: Deep multi-722
task learning across diverse domains. ArXiv,723
abs/1906.00097.724

Pengyu Nie, Jiyang Zhang, Junyi Jessy Li, Raymond J.725
Mooney, and Milos Gligoric. 2022. Impact of eval-726
uation methodologies on code summarization. In727
Proceedings of the 60th Annual Meeting of the As-728
sociation for Computational Linguistics (Volume 1:729
Long Papers), ACL 2022, Dublin, Ireland, May 22-27,730
2022, pages 4936–4960. Association for Computa-731
tional Linguistics.732

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-733
Jing Zhu. 2002. Bleu: a method for automatic evalu-734
ation of machine translation. In Proceedings of the735
40th Annual Meeting of the Association for Compu-736
tational Linguistics, pages 311–318, Philadelphia,737
Pennsylvania, USA. Association for Computational738
Linguistics.739

Maja Popovic. 2015. chrf: character n-gram f-score740
for automatic MT evaluation. In Proceedings of the741
Tenth Workshop on Statistical Machine Translation,742
WMT@EMNLP 2015, 17-18 September 2015, Lis-743
bon, Portugal, pages 392–395. The Association for744
Computer Linguistics.745

Colin Raffel, Noam M. Shazeer, Adam Roberts, Kather- 746
ine Lee, Sharan Narang, Michael Matena, Yanqi 747
Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the 748
limits of transfer learning with a unified text-to-text 749
transformer. ArXiv, abs/1910.10683. 750

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie 751
Liu, Duyu Tang, M. Zhou, Ambrosio Blanco, and 752
Shuai Ma. 2020. Codebleu: a method for automatic 753
evaluation of code synthesis. ArXiv, abs/2009.10297. 754

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. 755
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine 756
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, 757
M Saiful Bari, Canwen Xu, Urmish Thakker, 758
Shanya Sharma Sharma, Eliza Szczechla, Taewoon 759
Kim, Gunjan Chhablani, Nihal V. Nayak, Debajyoti 760
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han 761
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong, 762
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr- 763
ishala Neeraj, Jos Rozen, Abheesht Sharma, An- 764
drea Santilli, Thibault Févry, Jason Alan Fries, Ryan 765
Teehan, Teven Le Scao, Stella Biderman, Leo Gao, 766
Thomas Wolf, and Alexander M. Rush. 2022. Multi- 767
task prompted training enables zero-shot task gener- 768
alization. In The Tenth International Conference on 769
Learning Representations, ICLR 2022, Virtual Event, 770
April 25-29, 2022. OpenReview.net. 771

Adam Santoro, Sergey Bartunov, Matthew M. 772
Botvinick, Daan Wierstra, and Timothy P. Lillicrap. 773
2016. Meta-learning with memory-augmented neural 774
networks. In International Conference on Machine 775
Learning. 776

Richard Shin, C. H. Lin, Sam Thomson, Charles C. 777
Chen, Subhro Roy, Emmanouil Antonios Platan- 778
ios, Adam Pauls, Dan Klein, Jas’ Eisner, and Ben- 779
jamin Van Durme. 2021. Constrained language 780
models yield few-shot semantic parsers. ArXiv, 781
abs/2104.08768. 782

Daniel L. Silver. 1996. The parallel transfer of task 783
knowledge using dynamic learning rates based on a 784
measure of relatedness. Connect. Sci., 8(2):277–294. 785

Jake Snell, Kevin Swersky, and Richard S. Zemel. 2017. 786
Prototypical networks for few-shot learning. ArXiv, 787
abs/1703.05175. 788

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip 789
H. S. Torr, and Timothy M. Hospedales. 2017. Learn- 790
ing to compare: Relation network for few-shot learn- 791
ing. 2018 IEEE/CVF Conference on Computer Vi- 792
sion and Pattern Recognition, pages 1199–1208. 793

Sebastian Thrun and Lorien Y. Pratt. 1998. Learning to 794
learn: Introduction and overview. In Sebastian Thrun 795
and Lorien Y. Pratt, editors, Learning to Learn, pages 796
3–17. Springer. 797

Burak Turhan. 2012. On the dataset shift problem 798
in software engineering prediction models. Empir. 799
Softw. Eng., 17(1-2):62–74. 800

10

https://doi.org/10.1016/j.eswa.2008.07.062
https://doi.org/10.1016/j.eswa.2008.07.062
https://doi.org/10.1016/j.eswa.2008.07.062
https://doi.org/10.1016/j.eswa.2008.07.062
https://doi.org/10.1016/j.eswa.2008.07.062
http://arxiv.org/abs/2107.10989
http://arxiv.org/abs/2107.10989
http://arxiv.org/abs/2107.10989
http://arxiv.org/abs/2107.10989
http://arxiv.org/abs/2107.10989
https://doi.org/10.1016/j.infsof.2011.09.007
https://doi.org/10.1016/j.infsof.2011.09.007
https://doi.org/10.1016/j.infsof.2011.09.007
https://doi.org/10.1016/S0164-1212(00)00005-4
https://doi.org/10.1016/S0164-1212(00)00005-4
https://doi.org/10.1016/S0164-1212(00)00005-4
https://aclanthology.org/2022.acl-long.339
https://aclanthology.org/2022.acl-long.339
https://aclanthology.org/2022.acl-long.339
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/w15-3049
https://doi.org/10.18653/v1/w15-3049
https://doi.org/10.18653/v1/w15-3049
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://doi.org/10.1080/095400996116929
https://doi.org/10.1080/095400996116929
https://doi.org/10.1080/095400996116929
https://doi.org/10.1080/095400996116929
https://doi.org/10.1080/095400996116929
https://doi.org/10.1007/978-1-4615-5529-2_1
https://doi.org/10.1007/978-1-4615-5529-2_1
https://doi.org/10.1007/978-1-4615-5529-2_1
https://doi.org/10.1007/s10664-011-9182-8
https://doi.org/10.1007/s10664-011-9182-8
https://doi.org/10.1007/s10664-011-9182-8

Ricardo Vilalta and Youssef Drissi. 2002. A perspective801
view and survey of meta-learning. Artif. Intell. Rev.,802
18(2):77–95.803

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Ko-804
ray Kavukcuoglu, and Daan Wierstra. 2017. Match-805
ing networks for one shot learning.806

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven807
C. H. Hoi. 2021. Codet5: Identifier-aware unified808
pre-trained encoder-decoder models for code under-809
standing and generation. ArXiv, abs/2109.00859.810

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin811
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-812
drew M. Dai, and Quoc V. Le. 2022. Finetuned813
language models are zero-shot learners. In The Tenth814
International Conference on Learning Representa-815
tions, ICLR 2022, Virtual Event, April 25-29, 2022.816
OpenReview.net.817

Yongxin Yang and Timothy M. Hospedales. 2016. Deep818
multi-task representation learning: A tensor factori-819
sation approach. ArXiv, abs/1605.06391.820

Thomas Zimmermann, Nachiappan Nagappan, Har-821
ald C. Gall, Emanuel Giger, and Brendan Murphy.822
2009. Cross-project defect prediction: a large scale823
experiment on data vs. domain vs. process. In Pro-824
ceedings of the 7th joint meeting of the European825
Software Engineering Conference and the ACM SIG-826
SOFT International Symposium on Foundations of827
Software Engineering, 2009, Amsterdam, The Nether-828
lands, August 24-28, 2009, pages 91–100. ACM.829

11

https://doi.org/10.1023/A:1019956318069
https://doi.org/10.1023/A:1019956318069
https://doi.org/10.1023/A:1019956318069
http://arxiv.org/abs/1606.04080
http://arxiv.org/abs/1606.04080
http://arxiv.org/abs/1606.04080
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://doi.org/10.1145/1595696.1595713
https://doi.org/10.1145/1595696.1595713
https://doi.org/10.1145/1595696.1595713

7 Appendix830

7.1 Javascript Keywords831

The Javascript keywords that we included in the832

CodeBleu implementation for evaluation is listed833

in table 7.1.834

7.2 Extended Background835

7.2.1 Meta-learning and Multi-task-learning836

Meta-learning focuses on adapting knowledge837

gained from previous tasks to be applied to838

new tasks with limited training examples. Most839

meta-learning algorithms can be categorized into840

three groups: 1) Black-box meta-learning ap-841

proaches (Santoro et al., 2016) train a black-box842

model to take in training data of a target task to843

output parameters for the neural network used for844

making prediction for that task; 2) Optimization-845

based methods (Finn et al., 2017, 2018; Antoniou846

et al., 2018) uses gradient descent to learn model847

parameters which can be adapted to a future target848

task with few gradient steps on a few-shot training849

dataset; 3) Non-parametric methods (Vinyals et al.,850

2017; Snell et al., 2017; Sung et al., 2017; Koch,851

2015) learns a metric space in which predictions852

can be performed by computing some similarity853

metric, like distance and cosine similarity, to repre-854

sentations of each class. In our work, we are using855

the MAML (Finn et al., 2017) approach, which is856

a gradient-based method and learns model initial-857

ization (i.e., initial parameters) that is amenable to858

fast fine-tuning with few instances. This method859

is a conceptually simple and model-agnostic algo-860

rithm that has been shown to outperform existing861

approaches in several tasks.862

Multi-task Learning aims to jointly learn sev-863

eral related tasks providing a generalized represen-864

tation with the added benefit of compute and mem-865

ory in terms of shared model parameters (Yang and866

Hospedales, 2016; Caruana, 1997; Meyerson and867

Miikkulainen, 2019). MTL also has a regulariza-868

tion effect on the model parameters. By definition,869

MTL aims to solve a fixed number of known tasks,870

whereas the point of meta-learning is often to solve871

unseen future tasks. But both methods capture a872

good prior from the training tasks, which can be873

used for getting model parameters for future target874

tasks.875

In our work, we have experimented with both876

MAML and multi-task learning to check which877

of the method gives us a better prior for few-shot 878

performance in our setting. 879

7.2.2 Few-shot Methods 880

Parameter-efficient finetuning: Conventional 881

fine-tuning methods retrains all the model parame- 882

ters for every new task, which becomes infeasible 883

as the model size increases to the level of GPT-3. 884

In recent times, parameter-efficient methods have 885

been studied and it has been demonstrated that 886

state-of-the-art PEFT methods can match the per- 887

formance of finetuning all the model’s parameters 888

while updating only a tiny fraction of the model 889

parameters. Initially adapters (Raffel et al., 2019; 890

Houlsby et al., 2019; Bapna et al., 2019) were intro- 891

duced, which are new feed-forward modules added 892

between the layers of the fixed pre-trained model. 893

Since then, various sophisticated PEFT methods 894

have been proposed, including methods like LoRA 895

that produce low-rank updates (Hu et al., 2021) 896

and prompt tuning (Lester et al., 2021) and prefix- 897

tuning (Li and Liang, 2021) concatenate learned 898

continuous embeddings to the model’s input or ac- 899

tivations to induce it to perform a task. 900

Retrieval-based Example selection: In a study 901

conducted by Liu et al. (2021) , they explored how 902

different prompts can impact the performance of 903

GPT-3 and found that the use of in-context exam- 904

ples has a significant influence on the downstream 905

results. To achieve this, they utilized an unsuper- 906

vised sentence encoder to encode training examples 907

and then retrieved the nearest neighbors for each 908

test instance. On a similar note, Das et al. (2021) 909

developed a supervised prompt retriever for an- 910

swering knowledge-based questions. Their method 911

used tailored supervision specifically designed for 912

knowledge-based queries and relied on surface sim- 913

ilarity between formal queries. Furthermore, Shin 914

et al. (2021) employed GPT-3 to select examples 915

for the prompt in few-shot semantic parsing. They 916

demonstrated the effectiveness of this approach by 917

using GPT-3 to identify relevant examples for the 918

prompt, which in turn improved the overall perfor- 919

mance of the system. 920

7.3 Models 921

CodeT5: CodeT5 (Wang et al., 2021) is a pre- 922

trained encoder-decoder transformer model based 923

on T5 (Raffel et al., 2019) for programming lan- 924

guages. It uses a unified framework to support 925

code understanding and generation tasks seam- 926

12

Languages Keywords
javascript await, break, case, catch, class, const, continue, debugger, default, delete, do, else, enum,

export, extends, false, finally, for, function, if, implements, import, in, instanceof, interface, let,
new, null, package, private, protected, public, return, super, switch, static, this, throw, try, true,
typeof, var, void, while, with, yield

Table 5: Keywords used for CodeBLEU evaluation

lessly. To improve the model’s ability to handle the927

unique characteristics of programming languages,928

CodeT5 is trained on an identifier-aware pretrain-929

ing task. Additionally, the model is trained to ex-930

ploit user-written code comments with a bimodal931

dual-generation task for better alignment between932

natural language and programming languages. This933

makes this model suitable for the applications that934

we consider. For both of our applications, we used935

the CodeT5-large model (Le et al., 2022) without936

making any changes to the model architecture.937

Codex Codex (Chen et al., 2021) is the language938

model for code released by OpenAI. It is a GPT939

language model finetuned on 54 million public soft-940

ware repositories hosted on GitHub, containing 179941

GB of unique Python files under 1 MB. VLLMs942

are capable of zero-shot generalization to unseen943

tasks, which is achieved by providing them with944

an instruction of what the model is expected to945

do. This allowed us to successfully evaluate Codex946

for both code generation and code summarization947

without any need for training.948

8 Hyperparameters and training details949

For full finetuning of CodeT5, we updated the950

model for 500 steps using batch size of 8, the best951

model was identified by the performance on the952

τdev portion. For LoRA, we use a rank of 4 with953

an initialization scale of 0.01 and update all the at-954

tention and feedforward layers. We train for 1000955

steps with a batch size of 8.956

For multitask learning (MTL) of CodeT5, we957

update the model for 150K steps on 80% of the958

Xtrain data, using a batch size of 4. The best check-959

point is selected by evaluating the model on the960

remaining 20% of Xtrain which was held-out from961

training. For dual-gen MTL, we followed the same962

train/dev division strategy as for MTL for code gen-963

eration, and updated the model for 150K steps with964

batch size of 4. The best checkpoints were again965

decided by evaluating the model on the created966

development set. In particular, we selected two967

checkpoints - one according to CodeBLEU metric,968

and another according to BLEU metric for code 969

generation and code summarization respectively. 970

For Model-agnostic meta-learning, we updated the 971

model from the pretrained CodeT5 checkpoint for 972

10K steps and used the last checkpoint in our ex- 973

periments. 974

9 Additional experimental results 975

Besides the experiments presented in the main pa- 976

per, in this section, we report some additional ex- 977

periments, such as the results for code generation 978

as measured using chrF and rougeL metrics, or 979

comparison of LoRA parameter efficient finetuning 980

method with the full model finetuning for CodeT5. 981

982

13

Code generation folder repo org

8-shot 16-shot 32-shot 8-shot 16-shot 32-shot 8-shot 16-shot 32-shot

CodeT5 FT ID 19.36 20.92 21.95 20.42 22.44 24.47 19.29 20.73 22.6
CodeT5 LoRA ID 20.05 21.66 22.56 20.81 23.12 24.52 20.08 21.28 22.99
CodeT5 FT random 17.61 18.03 17.94 16.92 17.50 17.59 16.47 17.46 17.85
CodeT5 LoRA random 17.87 18.02 17.81 17.45 17.15 17.63 17.24 17.13 17.29

Codex ICL ID 28.78 - - 31.05 - - 29.19 - -
Codex ICL random 20.62 - - 20.87 - - 21.10 - -
Codex instr. only (0-shot) (10.24) - - (10.6) - - (10.25) - -

Table 6: Comparison of model performance for code generation on in-domain (ID) vs out-of-domain (random) test
data. Reported metric is ChrF (higher is better).

Code generation folder repo org

8-shot 16-shot 32-shot 8-shot 16-shot 32-shot 8-shot 16-shot 32-shot

CodeT5 FT ID 14.15 15.84 16.73 14.93 16.98 19.19 13.75 14.93 16.94
CodeT5 LoRA ID 14.49 16.58 17.87 15.47 17.69 19.60 14.10 15.48 17.61
CodeT5 FT random 11.34 11.62 11.73 9.91 10.10 10.32 9.49 10.20 10.68
CodeT5 LoRA random 11.45 12.05 12.58 10.09 10.04 11.08 10.15 10.3 11.15

Codex ICL ID 23.70 - - 24.62 - - 22.58 - -
Codex ICL random 15.76 - - 15.67 - - 15.81 - -
Codex instr. only (0-shot) (6.44) - - (6.5) - - (6.18) - -

Table 7: Comparison of model performance for code generation on in-domain (ID) vs out-of-domain (random) test
data. Reported metric is RougeL (higher is better).

Figure 6: Performance for CodeT5 model finetuned with LoRA compared to regular finetuning.

14

