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ABSTRACT

Deep Reinforcement Learning (DRL) has traditionally inherited activation func-
tions from supervised learning, despite fundamental differences in learning dy-
namics and objectives. We present EvolveAct, a novel framework that leverages
large language models and evolutionary search to automatically discover optimal
activation functions for specific RL tasks. Our method combines genetic pro-
gramming with code Large Language Models (LLMs) to explore a rich space of
mathematical functions, optimizing for stability and performance in DRL train-
ing. Experimental results across multiple environments show that the discovered
activation functions consistently outperform standard choices such as ReLU and
TanH, improving final performance on the Minatar suite by 37.25% and 28.3%
on the Brax suite on average. By jointly optimizing over multiple diverse envi-
ronments, we discover activation functions that demonstrate strong generalization
capabilities across different RL domains. This research provides a foundation for
automating fundamental architectural choices in deep reinforcement learning sys-
tems.

1 INTRODUCTION

Deep Reinforcement Learning has seen tremendous success in recent times, ranging from superhu-
man performance in Chess & Go Silver et al. (2017), to powering robotics, and now is even the
driving force behind emergent reasoning in LLMs Liu et al. (2024). Despite these advances, DRL
has largely inherited its fundamental building blocks from supervised learning, including crucial
components like activation functions. While this transfer of knowledge has provided a strong foun-
dation, these inherited design choices can lead to instability and brittle performance in RL settings,
where small changes in training setup can cause significant degradation Henderson et al. (2018);
Chan et al. (2019). The unique challenges of RL, such as non-stationarity and bootstrap-based train-
ing, suggest we should question these inherited design choices.

In this work, our aim is to further explore the choice of activation functions in DRL. Activations are
at the heart of neural networks, transforming simple linear models into powerful universal function
approximators. Therefore, the choice of activation function greatly influences learning dynamics-
shaping how gradients flow through the network. For instance, Bhatt et al. (2019) demonstrates
that bounded activations like tanh eliminate the need for target networks, dramatically improving
sample efficiency. Similarly, alternative activations like concatenated ReLU have shown significant
gains in addressing issues like dormancy Sokar et al. (2023) and saturation Kooi et al. (2024) in
non-stationary tasks like RL.

These findings hint at a vast unexplored space of activation functions, each potentially offering
unique benefits for different RL scenarios. However, discovering these functions remains a chal-
lenge. Unlike numerical hyperparameters that can be optimized through standard methods, acti-
vation functions represent complex mathematical mappings whose design space is infinitely rich.
This raises an intriguing question: Could there exist activation functions, yet undiscovered, that are
particularly well suited for specific RL tasks?

Our key contributions are as follows:
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• Expanding the search for activation functions: We show that the space of high-
performing activation functions remains largely unexplored. Simply changing the acti-
vation function can yield significant performance improvements over standard choices.

• Introducing EvolveAct: We present a novel method that combines evolutionary search
with large language models to discover activation functions optimized for different RL
tasks.

2 METHOD: EVOLUTIONARY DISCOVERY OF ACTIVATION FUNCTIONS

Our approach combines evolutionary search with LLMs to discover novel activation functions for re-
inforcement learning. Defining an evolutionary search process typically involves defining three key
components: population initialization, fitness evaluation, and an LLM-guided evolutionary process.

2.1 POPULATION INITIALIZATION

We initialize our population with foundational activation functions that are popularly used across
Deep Learning: ReLU, Tanh, Sigmoid, and Leaky-ReLU. While domain-specific activations like
Swish Ramachandran et al. (2017), PELU Godfrey (2019), C-ReLU Shang et al. (2016), etc. exist,
we exclude these from the initial population as they are typically compositions of simpler functions
and hence can be discovered from crossovers of the base population.

2.2 FITNESS EVALUATION

To evaluate the fitness of an activation function, we integrate it into both actor and critic networks
and conduct RL training across multiple random seeds. The fitness of an activation is defined as the
cumulative reward obtained throughout training, averaged across seeds. While alternative metrics
like final performance could be used (as in Goldie et al. (2024)), we find that cumulative reward
better captures both learning speed and training stability. Our empirical observations show that
activation functions that improve early training consistently maintain or improve final performance,
making this metric particularly suitable.

2.3 LLM-GUIDED EVOLUTION

The core innovation of our approach lies in using LLMs to perform intelligent crossovers between
activation functions. Traditional genetic programming requires careful design of crossover operators
to maintain syntactic validity while ensuring sufficient diversity in the search space Chen et al.
(2024); Nader & Azar (2021). We circumvent this design challenge by leveraging LLMs’ code
generation capabilities, providing pairs of parent activation functions along with their fitness scores,
prompting the model to generate novel combinations (detailed prompt in Appendix A). The complete
evolutionary process proceeds as follows:

1. Initialize the population with standard activation functions and evaluate their fitness

2. For each round of evolution:

(a) Sample M pairs of activation functions from the current population
(b) Generate N new activation functions per pair using LLM-guided crossover
(c) Evaluate the fitness of all M×N new functions.
(d) Select the top K performing functions to form the next generation.

3. Repeat step 2 for a fixed number of rounds.

This process combines the exploration capabilities of evolutionary algorithms with the structured
knowledge embedded in LLMs to efficiently search the space of activation functions. For a detailed
pseudocode of the algorithm, refer to Appendix F.
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3 MULTI ENVIRONMENT DISCOVERY

The optimal activation function for deep reinforcement learning is both algorithm and environment
specific, due to varied learning dynamics and environment properties. In our previous section we
detailed an algorithm to discover environment-specific activation functions, a key challenge is find-
ing activation functions that generalize well across multiple environments. This section presents
our approach to discovering activation functions that perform robustly across diverse reinforcement
learning tasks, even if they may not be optimal for any single environment.

3.1 FITNESS FUNCTION DESIGN

To evaluate activation functions across multiple environments, we need a carefully designed fitness
function that accounts for the varying scales of returns across different environments. A naive ap-
proach of summing individual environment fitness scores would be problematic, as environments
with larger return ranges would dominate the optimization process. Instead, we propose a normal-
ized fitness score that gives equal weight to relative improvements across all environments. Our
multi-environment fitness function is defined as:∑

env∈E

fnew(env)−maxbase∈B fbase(env)

|maxbase∈B fbase(env)|
(1)

Here, E represents the set of target environments and B represents the set of baseline activation
functions in the initial population. The terms fnew(env) and fbase(env) denote the performance of
the candidate activation function and baseline activation function on environment env, respectively.

This formulation normalizes the improvement of each new activation function relative to the best
performing baseline activation for that specific environment.

3.2 COMPOSITE REWARD

While our normalized fitness function helps prevent dominance by high-return environments, we ob-
served that it could still lead to optimization favoring environments where improvements are easier
to achieve, potentially neglecting more challenging environments where gains are harder to obtain.
To address this limitation, we introduce a composite reward structure that explicitly considers both
the breadth and magnitude of improvements across environments. We define the fitness of an acti-
vation function as an ordered pair, where the first component measures the number of environments
showing improvement, and the second component is the normalized score from Equation 1. More
formally, let Fi denote the normalized improvement for environment i, defined as:

Fi =
fnew(envi)−maxbase∈B fbase(envi)

|maxbase∈B fbase(envi)|
(2)

The composite fitness function is then defined as:(∑
i∈E

⊮(Fi > 0),
∑
i∈E

Fi

)
(3)

where ⊮Fi>0 is an indicator function that returns 1 if Fi is positive and 0 otherwise. We compare ac-
tivation functions using lexicographic ordering on these pairs. This approach ensures that our search
prioritizes activation functions that provide consistent improvements across many environments over
those that might achieve larger gains in just a few environments.

4 EXPERIMENTAL DETAILS AND RESULTS

We evaluate our approach on two distinct suites of environments: Brax Freeman et al. (2021);
Todorov et al. (2012), a widely used continuous control benchmark, and Minatar Young & Tian
(2019); Lange (2022). Both implementations leverage the computational efficiency of end-to-end
JAX pipelines in reinforcement learning Lu et al. (2022).

Consistent with established practices in meta-learning and algorithmic discovery research Goldie
et al. (2024); Bingham et al. (2020); Chen et al. (2023), we maintain fixed evolutionary strategy

3
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Figure 1: IQM of mean final return for different activations across different environment suites (a)
Minatar and (b) Brax with 95% confidence intervals.

parameters due to computational constraints. All experiments utilize the PPO algorithm Schulman
et al. (2017) with default hyperparameters from the PureJaxRL library Lu et al. (2022), and reported
performance metrics represent averages across 16 independent seeds. Detailed hyperparameters for
both evolutionary search and RL training are provided in Appendix D.

Our experimental evaluation consists of two primary investigations. First, we demonstrate the ef-
fectiveness of single-objective optimization on individual environments. Second, we evaluate our
multi-environment optimization approach (Section 3.2) by training collectively on all Brax environ-
ments and, separately, all Minatar environments. Results from both approaches are presented in
Figures 4a and 4b, with the specific discovered activation functions detailed in Appendix E.

Figure 2: Training curves for
PPO using various activations.
Our discovered activations
demonstrate better sample com-
plexity and stability.

While our optimization targets total return, we present Interquar-
tile Mean (IQM) plots of final returns for clearer visualization
of performance improvements. In the Brax suite, our approach
achieves average improvements over ReLU of 27.58% and
10.11% for single-objective and multi-objective optimization,
respectively. The Minatar environments demonstrate even more
substantial gains, with improvements of 37.21% and 28.3%.

It is worth noting that while some environments do not ex-
hibit substantial improvements in final performance, our ap-
proach demonstrates significant advantages in terms of sample
efficiency and training stability. This improvement is a natu-
ral consequence of optimizing for cumulative return across the
entire training trajectory, rather than solely emphasizing final re-
ward values. Figure 2 illustrates this phenomenon, where de-
spite similar final performance across methods, our approach
achieves notably faster convergence and higher cumulative re-
turn throughout training. Complete training curves for all envi-
ronments are provided in Appendix C.

5 CONCLUSION AND FUTURE WORK

In this work, we demonstrated that automatically discovering RL-optimized activation functions can
significantly improve performance across diverse environments. With increased computational re-
sources, our results suggest potential for discovering general-purpose activation functions for RL.
This work opens promising directions for future research, from quality diversity algorithmsNasir
et al. (2024); Pugh et al. (2016) to advanced evolutionary strategies and leveraging LLM capabil-
ities like in-context learning Lu et al. (2024). We believe automated discovery of neural network
components will become increasingly vital for optimizing RL systems.
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A PROMPT STRATEGY

The exact prompt that we use to generate a new activation is the following:

Context:
You are assisting in discovering novel activation functions for reinforcement learning. You
will be given examples of previous activation functions and their performance scores and
should propose new functions that could perform better.

Previous Functions and Scores: Function 1:

[FUNCTION_CODE_1]

Score: [SCORE 1]

Function 2:

[FUNCTION_CODE_2]

Score: [SCORE 2]

Requirements:

• First provide your reasoning for the proposed function design.
• Then provide the implementation in JAX with necessary imports.
• The function should:

– Take a single input parameter x.
– Return a corresponding output.
– Be differentiable.
– Be implemented using JAX operations.
– Ensure the function is named as jax activation.

• Keep the code clear and extractable.

Desired Response Format:
Reasoning: [Explain your approach and why it might perform better, based on the previous
examples’ scores and general principles of activation functions]

Implementation:

import jax.numpy as jnp
from jax import nn # Include any other necessary imports

def jax_activation(x):
return [your implementation]

7
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B RELATED WORK

B.1 ACTIVATIONS IN RL

The ReLU (Rectified Linear Unit) Maas et al. (2013) activation function dominates supervised learn-
ing, but it suffers from a significant drawback in non-stationary learning tasks like RL: the ”dead
neuron” problem Sokar et al. (2023) where neurons can become permanently inactive. While tanh
(hyperbolic tangent) has been used as an alternative, it too has limitations, particularly the saturation
effect that can slow down learning Kooi et al. (2024). These challenges have spurred research into
more effective activation functions to enhance neural plasticity and improve reinforcement learning
performance.
Recent advances in this area include several promising approaches. Kooi et al. (2024) proposed a
modification to the tanh activation that shows significant improvements. Among others, three no-
table innovations have also emerged: PELU (Parametric Exponential Linear Unit) Godfrey (2019), a
learnable variant of ELU Clevert (2015) that allows the network to adapt its activation characteristics
during training; CReLU (Concatenated ReLU) Shang et al. (2016), a technique that preserves infor-
mation by concatenating both positive and negative activations; and adaptive rational activations, an
approach that uses ratios of polynomials to create flexible, learnable activation functions Delfosse
et al. (2021).

B.1.1 ACTIVATION DISCOVERY

While the most widely used activation functions remain handcrafted, prior work has successfully dis-
covered novel activations for supervised learning. Notably, Swish activation was discovered through
reinforcement learning-based search and has found applications in computer vision Ramachandran
et al. (2017). Alternatively evolutionary approaches Bingham & Miikkulainen (2022); Nader &
Azar (2021) have also demonstrated the potential of automatically discovering activation functions
for supervised learning tasks.

B.2 EVOLUTIONARY DISCOVERY THROUGH LLMS

The integration of Large Language Models (LLMs) with evolutionary algorithms has sparked a re-
naissance in evolutionary computation Wu et al. (2024). By redefining crossover operations in more
intuitive ways, LLMs have made evolutionary methods more accessible and effective across diverse
applications. A landmark example is FunSearch Romera-Paredes et al. (2024), which successfully
leverages this combination to discover novel heuristics for computationally challenging NP-Hard
problems. This approach has also shown promise in neural architecture search, where researchers
have demonstrated that evolutionary strategies enhanced by LLMs can effectively optimize neural
network architectures Chen et al. (2023); Nasir et al. (2024). The success of these methods suggests
that LLMs can serve as powerful tools for guiding evolutionary search processes in complex solution
spaces.

C TRAINING CURVES

Figure 3: Training curves for PPO using various activation functions in the Brax Suite. Results are
averaged over 16 random seeds, with 95% confidence intervals shown.
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Figure 4: Training curves for PPO using various activation functions in the Minatar Suite. Results
are averaged over 16 random seeds, with 95% confidence intervals shown.

D HYPERPARAMETERS USED

D.1 HYPERPARAMETERS FOR RL TRAINING ON MINATAR

Learning Rate 0.005
Number of Environments 64
Number of Steps 128
Total Timesteps 10,000,000
Update Epochs 4
Number of Minibatches 8
Gamma 0.99
GAE Lambda 0.95
Clip Epsilon 0.2
Entropy Coefficient 0.01
Value Function Coefficient 0.5
Max Gradient Norm 0.5
Anneal Learning Rate True
Number of Seeds 16

D.2 HYPERPARAMETERS FOR RL TRAINING ON BRAX

Learning Rate 3.0e-4
Number of Environments 2048
Number of Steps 10
Total Timesteps 50,000,000
Update Epochs 4
Number of Minibatches 32
Gamma 0.99
GAE Lambda 0.95
Clip Epsilon 0.2
Entropy Coefficient 0.0
Value Function Coefficient 0.5
Max Gradient Norm 0.5
Anneal Learning Rate False
Normalize Environment True
Number of Seeds 16

9
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D.3 HYPERPARAMETERS FOR EVOLUTION

LLM Model Gemini-1.5-flash
Number of Phases 10
Number of Prompts 15
Number to Keep 15
Number of Samples 2

E DISCOVERED ACTIVATIONS

Suite Optimized Activation Function
Brax σ(x) tanh(x) + (1− σ(x))max(0, x)σ(x)
MinAtar softplus(x) + 0.1 tanh(2x)

Table 1: Activation functions optimized across entire suites using multi-objective optimization. σ(·)
denotes the sigmoid function.

Environment Activation Function

Ant
{
x if x ≥ 0

0.1 · softplus(x) · x otherwise
Asterix 0.1 ·max(0, x) + 0.4 · σ(x− 1.2) · x

Breakout
{
x if x ≥ 0

x · tanh(x) otherwise

Freeway
{

softplus(1.0x) if x ≥ 0

softplus(0.1(−x)) otherwise

HalfCheetah


1 + 0.01(x− 1) if x > 1

x+ 0.001x if x ≥ 0

0.1(xσ(x) + sin(2x)) + 0.01x otherwise
Hopper x · σ(x/α) where α = 0.1
Humanoid softplus(x)− ln(2) + 0.1 exp(−x2/8)
Humanoid Standup softplus(x) + 0.1 tanh(2x) + 0.01x3 + 0.001e−|x|

Space Invaders α(x · σ(x)) + (1− α)softplus(x)
Walker xsoftplus(x)σ(x)(x+0.1x3)

1+0.1|x| e−x2/2 + 0.0001x3σ(x)

Table 2: Environment-specific activation functions. σ(·) denotes the sigmoid function, and α is a
hyperparameter where not explicitly specified.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

F PSEUDOCODE OF ALGORITHM

Algorithm 1 EvolvAct: LLM-guided Evolution of Activation Functions
Require: Initial population size K, number of pairs M, variants per pair N, number of rounds R
Require: Large Language Model LLM, Fitness evaluation function F

1: P ← {ReLU,Tanh,Sigmoid,LeakyReLU} {Initialize population}
2: scores← {f 7→ F (f) | f ∈ P} {Evaluate initial population}
3: for round = 1 to R do
4: pairs← SamplePairs(P, scores,M) {Sample M pairs}
5: new functions← {}
6: for (f1, f2) in pairs do
7: for i = 1 to N do
8: fnew ← LLM.generate crossover(f1, f2, scores[f1], scores[f2])
9: new functions← new functions ∪ {fnew}

10: end for
11: end for
12: new scores← {f 7→ F (f) | f ∈ new functions}
13: P ← TopK(P ∪ new functions, scores ∪ new scores,K) {Keep top K}
14: scores← {f 7→ scores[f ] | f ∈ P}
15: end for
16:
17: return argmaxf∈P scores[f ] {Return best activation function}

11
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