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ABSTRACT

Multi-modal artificial neural networks (ANNs) have demonstrated strong perfor-
mance gains in object detection by leveraging complementary information from
diverse data modalities. However, these gains often come at the cost of substan-
tial increased computational demands due to dense operations and multi-branch
architectures. To address these challenges, we propose MMSNN, a novel Multi-
Modal Spiking Neural Network for efficient underwater object detection. MM-
SNN integrates RGB features with Local Binary Pattern (LBP) representation,
capturing both fine-grained visual details and illumination-robust texture cues
within a spike-driven architecture. At the core of MMSNN is the Spike-Driven
Multi-Modal Fusion (SMMF) module, a lightweight yet expressive component
designed to enable efficient cross-modal feature interaction. The SMMF uses
channel grouping and shuffling to promote localized feature interaction and en-
hance representational diversity, while its spike-driven attention mechanism re-
duces computational overhead without compromising discriminative power. Ex-
tensive experiments on the RUOD and DUO underwater datasets demonstrate that
MMSNN achieves state-of-the-art performance with an excellent balance between
robust accuracy and computational efficiency.

1 INTRODUCTION

Artificial neural network (ANN)-based multi-modal frameworks have been widely adopted in
generic object detection (Cao et al. (2023); Li et al. (2025)); however, their use in underwater object
detection remains limited, primarily due to high computational demands and the scarcity of publicly
available multi-modal datasets. Nonetheless, multi-modal frameworks hold significant promise for
underwater object detection, as fusing diverse modalities enables the capture of complementary in-
formation and improves robustness under challenging environmental conditions.

To date, only a few studies (Yu et al. (2025); Chen et al. (2024a)) have explored multi-modal de-
tection frameworks that fuse acoustic and optical images to enhance underwater object detection
performance. Nevertheless, the absence of publicly available multi-modal underwater datasets sig-
nificantly hinders further progress in this area. In contrast, generic object detection has benefited
from the availability of large-scale multi-modal datasets, such as FLIR (Zhang et al. (2020a)) and
LLVIP (Jia et al. (2021)), which has driven the rapid development of multi-modal frameworks. Many
studies (Chen et al. (2024b); Li et al. (2025)) employ backbone architectures with parallel branches
to extract features from infrared and RGB images, thereby enhancing detection performance. More-
over, several works (Guan et al. (2019); Li et al. (2019)) incorporate illumination-aware modules
that enable the detection model to dynamically adjust the weighting of different input modalities
based on light conditions, further improving the model’s robustness to illumination variations.

Even though multi-modal frameworks show potentials for boosting performance, they still face two
main challenges: (1) decreased computational efficiency due to their reliance on multi-branch back-
bone architectures; and (2) dependence on external data modalities, which require specialized hard-
ware, such as infrared cameras, that can be costly. In this work, we make the following three con-
tributions to address these limitations: First, we propose a Multi-Modal Spiking Neural Network
(MMSNN) for underwater object detection, leveraging the event-driven nature and sparse computa-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

tion of SNNs to enhance computational efficiency. Second, we utilize Local Binary Pattern (LBP)
features as a secondary modality, extracted directly from RGB images, thereby eliminating the need
for additional hardwares. LBP features encode local texture and edge patterns that are inherently ro-
bust to illumination variations, thereby contributing to the model’s robustness. Third, we introduce
a spike-driven multi-modal fusion module that is fully compatible with the SNN framework. This
module is designed to enhance cross-modal information exchange, minimize feature redundancy,
and encourage feature diversity.

2 RELATED WORK

Underwater Object Detection. Deep-learning research on underwater object detection (UOD)
has evolved along two main tracks. Early studies (Li et al. (2017); Chen & Fan (2020)) adapted
generic two-stage detectors such as Faster R-CNN (Ren et al. (2016)) and R-FCN (Dai et al. (2016)),
then shifted to real-time one-stage models like SSD (Liu et al. (2016)) and YOLO (Redmon et al.
(2016)). While these adaptions improved inference speed, they remained vulnerable to underwa-
ter image degradations. More recent efforts have focused on developing underwater-specific one-
stage architectures. These include SSD variants enhanced with multi-scale feature fusion (Pan et al.
(2021)), attention mechanisms (Zhang et al. (2020b)) and integrated image enhancement (Zhang
et al. (2020c)); YOLO derivatives augmented with domain transfer strategies (Liu et al. (2020)) and
image enhancement techniques (Alla et al. (2022)); and, most recently, Swin Transformer (Liu et al.
(2024)) and hybrid Transformer (Chen et al. (2023)) architectures have emerged, combining global
self-attention with CNN features to better handle blur, color cast and small object detection. Overall,
the field has shifted from direct model transfer towards designing specialized detectors that better
balance accuracy, speed, and robustness across diverse underwater conditions.

Multi-Modal Object Detection. Multi-modal object detection (Chen et al. (2024b); Li et al. (2025))
integrates complementary sensing modalities—typically RGB for capturing color and texture, and
infrared (IR) for contours and thermal cues—to enable robust perception under challenging condi-
tions such as low light or haze. Public benchmarks such as FLIR (Zhang et al. (2020a)) and LLVIP
(Jia et al. (2021)) have driven RGB-IR systems that extend single-stream backbones with paral-
lel IR encoders and employ cross-modal or illumination-aware attention mechanisms (Guan et al.
(2019); Li et al. (2019)) to prioritize the most informative modality. While these designs deliver
sizable accuracy gains, they incur extra cost in sensors, power and on-board compute—constraints
that are even harsher underwater. In the domain of underwater object detection, the pioneering AO-
UOD model (Yu et al. (2025)) introduces a dual-stream backbone that facilitates feature exchange
between optical images and sonar data, demonstrating the promise of acoustic-optical fusion. How-
ever, its dependence on a private paired dataset underscores the lack of a public benchmark, leaving
multi-modal underwater object detection a largely underexplored frontier.

Spiking Neural Network. Spiking neural networks (SNNs) encode information as discrete spikes
over time, offering a more biologically plausible alternative to ANNs. Early studies introduced
temporal coding in SNNs, with SpikeProp (Bohte et al. (2000)) employing gradient-based learning
and Tempotron (Gütig & Sompolinsky (2006)) proposing a biologically inspired rule for spike-
time-based classification. Subsequent approaches either convert trained ANNs into SNNs (Bu et al.
(2022); Qu et al. (2024)) or enable direct training through surrogate gradients (Neftci et al. (2019))
and three-factor learning rules (Frémaux & Gerstner (2016)). Recent work has integrated SNNs into
vision backbones (such as Spiking-YOLO (Kim et al. (2020)), EMS-YOLO (Su et al. (2023))), and
deployed them on neuromorphic hardware platforms like Intel Loihi and IBM TrueNorth. Due to
their sparse firing and event-driven nature, SNNs transmit and process information only when and
where neural activity occurs, achieving orders-of-magnitude reductions in computational cost and
latency on dedicated hardware. These efficiencies make SNNs particularly well-suited for always-
on, low-power applications in edge sensing and robotics.

3 METHOD

In this section, we first provide an overview of the proposed MMSNN framework, then describe the
spike-driven multi-modal fusion module in detail, and finally analyze the computational efficiency
advantages of our SNN compared to traditional ANNs.
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Figure 1: Comparison between (a) the ANN-based standard attention fusion (SAF) module and
(b) the proposed spike-driven multi-modal fusion (SMMF) module. The SMMF module leverages
a SNN architecture to reduce computational cost. Channel grouping and shuffling promote local
cross-modal feature interaction and enhance feature diversity. The spike-driven attention mechanism
introduces spiking neurons to lower computational consumption during dense attention computation.

3.1 OVERVIEW OF MMSNN ARCHITECTURE

The proposed MMSNN framework is adapted from the ANN-based YOLOX architecture (Ge et al.
(2021)), extending its original single-branch design into a spike-based dual-branch structure that in-
tegrates both RGB and LBP modalities. Unlike ANN-based frameworks, it employs signed spiking
neurons as the activation functions, which reduce computational cost and enhance compatibility with
spiking neural networks. The LBP modality offers two main advantages over the commonly used
infrared (IR) modality: (1) Richer texture representation–While IR captures object contours based
on thermal signals and works well in darkness, LBP focuses on local intensity patterns, making it
more effective for detecting textures under different lighting conditions. (2) Lower cost-IR requires
specialized, expensive sensors, whereas LBP can be computed directly from standard RGB images
without any extra hardware, making it a more cost-effective solution.

While multi-modal fusion typically increases computational complexity, we address this challenge
by converting the ANN-based framework into a spike-based, computationally efficient SNN archi-
tecture. As illustrated in Fig. 1, RGB and LBP inputs are processed through two parallel SNN
branches to extract deep RGB and LBP features, respectively. These features are then integrated by
a spike-driven fusion module, which combines the complementary information into a unified repre-
sentation. The fused features are subsequently forwarded to the detection head, which consists of
three sub-heads: a classification head for object class prediction, a regression head for bounding-
box localization, and an objectness head for distinguishing foreground objects from background
regions. The overall objective function (L) is composed of three components: Binary Cross Entropy
(BCE) loss (LBCE) for classification, Intersection over Union (IoU) loss (LIoU ) for bounding-box
regression, and objectness loss (Lobj) for suppressing irrelevant background regions:

L = LBCE + LIoU + Lobj (1)

3.2 THE SPIKE-DRIVEN MULTI-MODAL FUSION MODULE

As illustrated in Fig. 1, conventional multi-modal fusion modules typically extract features from
two modalities, denoted as FRGB ∈ RC×H×W and FLBP ∈ RC×H×W , using separate ANN-
based branches. These features are concatenated along the channel dimension to form Fconcat =
[FRGB ;FLBP ] ∈ R2C×H×W , and passed through an attention module to enhance cross-modal in-
teractions. However, this design presents two key limitations: (1) it increases computational costs
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due to the parallel processing of dense, high-dimensional features and attention computations; (2)
features from two modalities often reside far apart in feature space, making it difficult for the atten-
tion mechanism to learn effective long-range dependencies across modalities.

To overcome these challenges, we propose an efficient spike-driven module that incorporates chan-
nel grouping, channel shuffling, and a spike-driven attention mechanism. First, modality-specific
features are extracted using lightweight SNN-based sub-networks, which inherently reduce compu-
tational cost. Let FRGB and FLBP denote the features extracted via the SNN branches. These
features are divided into G groups along the channel dimension:

FRGB = [F1
RGB , . . . ,F

G
RGB ], FLBP = [F1

LBP , . . . ,F
G
LBP ] (2)

Next, channel shuffling is applied to mix corresponding groups from both modalities, forming short-
distance fused feature groups:

Fg
fused = Shuffle([Fg

RGB ;F
g
LBP ]), g = 1, . . . , G (3)

Each fused group Fg
fused is then passed through a spike-driven attention module Aspike to enhance

modality interaction and emphasize salient features. The module Aspike is adopted from the Squeeze-
and-Excitation block, with the ReLU activation replaced by signed spiking neurons to further reduce
computation. The attention-enhanced output for group g is given by:

Fg
attn = Aspike(F

g
fused) (4)

Finally, all attention-refined groups are concatenated to produce the final fused representation:

Ffinal = [F1
attn, . . . ,F

G
attn] (5)

This localized fusion strategy not only improves efficiency but also enhances cross-modal interac-
tions by operating in a short-distance feature space. Moreover, the use of grouping and shuffling
reduces redundant and overlapping information within each modality, leading to more discrimina-
tive and diverse feature representations.

3.3 COMPARISON OF COMPUTATIONAL COST BETWEEN ANNS AND SNNS

Computational Cost in Traditional ANNs. As illustrated in Fig. 1, a standard ANN neuron
performs the following computation:

y = φ

(
n∑

i=1

wixi + b

)
(6)

where xi ∈ R are continuous-valued inputs, wi ∈ R are weights, b ∈ R is a bias term, φ is a
nonlinear activation function (e.g., ReLU), and n is the number of inputs to the neuron.

According to Eq. 6, each neuron performs n multiplications and n additions (n − 1 additions for
the weighted sum and one for adding the bias). Therefore, the computational cost per neuron per
timestep in an ANN is approximately:

EANN ∝ n · Emul + n · Eadd (7)

where Emul and Eadd denote the computational costs of multiplication and addition, respectively.

Computational Cost in SNNs with Signed Spiking Neurons. In SNNs, neurons communicate
via discrete spikes rather than continuous signals. Each neuron maintains a membrane potential
V (t).In SNNs, neurons communicate via discrete spikes rather than continuous signals. Each neuron
maintains a membrane potential V (t). A signed spike S(t) is emitted when the membrane potential
crosses a positive threshold V +

th or negative threshold V −
th :

S(t) =


+1 if V (t) ≥ V +

th
−1 if V (t) ≤ V −

th
0 otherwise

(8)
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Here, S(t) ∈ {−1, 0,+1} is the signed spike output at time t. The neuron remains inactive (i.e., no
computation consumption) when V (t) ∈ (V +

th , V −
th ). Only when si(t) ̸= 0 does the postsynaptic

neuron update its membrane potential:

V (t) = V (t− 1) +

n∑
i=1

wi · si(t) (9)

The operation in Eq. 9 eliminates the need for floating-point multiplications, reducing the compu-
tational cost to simple additions and subtractions, since the values of si(t) are limited to ±1 or 0.
Therefore, instead of full multiplications, only addition is required if si(t) = +1, subtraction if
si(t) = −1, and no operation if si(t) = 0.

Let ρ denote the average spike rate (typically ρ ≪ 1, e.g., 0.1). Then, the computational cost per
neuron per timestep in an SNN is approximately:

ESNN ∝ ρ · n · Eacc (10)

where Eacc is the computational cost for a single accumulation operation (addition or subtraction).
In general, computation in SNNs is sparse, as it occurs only when spikes are generated, and it
eliminates the need for expensive multiplications.

In ANNs, computation occurs at every timestep, leading to continuous computational consumption.
In contrast, SNNs perform computations only when spikes are generated. The expected number of
operations per neuron per timestep in an SNN is proportional to the average firing rate ρ, and since
ρ ≪ 1 (e.g., 0.1) in most practical SNNs, the total computation consumed per neuron per timestep
is significantly lower than that of an ANN:

ρ · n · Eacc ≪ n · Emul + n · Eadd, ESNN ≪ EANN. (11)

This leads to a substantial reduction in computational cost compared to ANNs, primarily due to the
sparsity of neuronal activity and the simplicity of the operations involved.

4 EXPERIMENTS

Table 1: The quantitative performance of representative detection frameworks on the RUOD dataset.
The bold text represents the best performance, while the blue text indicates the second-best.

Methods Models Backbones Params FLOPs mAP AP0.50 AP0.75 APs APm APl

N
on

-S
pi

ki
ng

G
en

er
ic

RepPoints ResNet101 55.82M 256.00G 53.2 82.2 60.1 28.2 44.9 57.8
FoveaBox ResNet101 56.68M 268.29G 44.8 80.2 45.2 18.0 37.5 49.1
ATSS ResNet101 51.13M 267.26G 54.0 80.3 60.2 18.0 40.0 59.5
DetectoRS DResNet50 123.23M 90.05G 53.3 84.1 58.7 30.8 46.6 57.8
YOLOv10 CSPNet 24.40M 120.30G 55.5 84.7 62.5 21.9 47.0 60.5

U
nd

er
ew

at
er BoostRCNN ResNet50 45.95M 54.71G 53.9 80.6 59.5 11.6 39.0 59.3

RFTM ResNet50 75.58M 91.06G 53.3 80.2 57.7 11.8 39.2 59.3
ERLNet SiEdgeR50 45.95M 54.71G 54.8 83.1 60.9 14.7 41.4 59.8
GCCNet SwinFT 38.31M 78.93G 56.1 83.2 60.5 11.7 41.9 62.1
DJLNet ResNet50 58.48M 69.51G 57.5 83.7 62.5 15.5 41.8 63.1

Sp
ik

in
g SN

N Spiking-YOLO TinyYOLO 23.1M 136.9G 49.8 80.7 55.1 17.6 42.5 54.4
EMS-YOLO EMSResNet34 14.40M 37.00G 52.0 82.9 58.4 19.3 44.2 57.4
SpikingYOLOX SNNCSPNet 49.53M 151.69G 57.0 84.2 61.2 11.0 41.2 63.0

O
ur

s MMSNN-T MMSNN-T 4.40M 20.56G 55.7 83.9 59.8 11.2 40.7 61.6
MMSNN-S MMSNN-S 7.80M 33.62G 56.7 84.6 61.0 11.4 41.3 62.6
MMSNN-L MMSNN-L 49.61M 167.29G 59.0 85.3 64.0 14.1 43.4 65.0

4.1 IMPLEMENTATION DETAILS

The MMSNN frameworks are implemented using PyTorch and SpikingJelly (Fang et al. (2023)),
an open-source SNN library built on top of PyTorch. Following the YOLOX architecture (Ge et al.
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Table 2: The quantitative performance of representative detection frameworks on the DUO dataset.
The bold text represents the best performance, while the blue text indicates the second-best.

Methods Models Backbones Params FLOPs mAP AP0.50 AP0.75 APs APm APl

N
on

-S
pi

ki
ng

G
en

er
ic

RepPoints ResNet101 55.82M 256.00G 59.4 80.4 70.1 55.5 59.6 60.1
FoveaBox ResNet101 55.24M 286.72G 53.7 78.4 63.9 55.3 54.3 54.6
ATSS ResNet101 51.11M 286.72G 55.4 79.2 63.2 55.7 55.7 56.0
DetectoRS DResNet50 123.23M 90.05G 58.9 81.4 68.3 49.6 57.6 61.8
YOLOv10 CSPNet 24.40M 120.30G 62.3 84.7 70.9 48.5 63.9 61.6

U
nd

er
ew

at
er BoostRCNN ResNet50 45.95M 54.71G 53.9 80.6 59.5 11.6 39.0 59.3

RFTM ResNet50 75.58M 91.06G 60.1 79.4 68.1 49.0 61.1 59.5
ERLNet SiEdgeR50 45.95M 54.71G 61.2 81.4 69.5 55.2 62.2 60.8
GCCNet SwinFT 38.31M 78.93G 61.1 81.6 67.3 52.5 63.6 59.3
DJLNet ResNet50 58.48M 69.51G 65.6 84.2 73.0 55.6 67.4 64.1

Sp
ik

in
g SN

N Spiking-YOLO TinyYOLO 23.1M 136.9G 60.6 78.8 67.3 52.0 61.2 59.3
EMS-YOLO EMSResNet34 14.40M 37.00G 62.7 80.8 69.1 53.8 63.5 61.1
SpikingYOLOX SNNCSPNet 49.53M 151.69G 64.3 81.9 70.4 54.7 65.0 63.5

O
ur

s MMSNN-T MMSNN-T 4.40M 20.56G 65.1 83.8 72.0 55.6 66.0 64.0
MMSNN-S MMSNN-S 7.80M 33.62G 66.5 85.1 73.2 56.5 68.0 65.3
MMSNN-L MMSNN-L 49.61M 167.29G 67.1 86.3 73.5 56.2 68.9 66.6

(2021)), we design model variants at different scales: Tiny (MMSNN-T), Small (MMSNN-S), and
Large (MMSNN-L). The model is trained using the Adam optimizer with a StepLR scheduler, an
initial learning rate of 0.01, and a batch size of 16. The total number of training epochs are adjusted
based on the model size: 500 epochs for MMSNN-L, and 300 epochs for both MMSNN-T and
MMSNN-S. All the experiments are conducted on a server with an Intel(R) Xeon(R) Silver 4114
CPU @ 2.20GHz and a single Tesla V100 GPU with a 32GB memory.

4.2 EVALUATION DATASETS AND METRICS

Datasets. We evaluate the proposed MMSNN framework on the RUOD (Fu et al. (2023b)) and DUO
(Liu et al. (2021)) datasets. RUOD includes 9,800 training images and 4,200 testing images across
ten underwater object categories, covering diverse object types and challenging visual conditions.
DUO consists of 6,671 training images and 1,111 testing images.

Evaluation Metrics. Model performance is assessed using the COCO evaluation metrics, including
the mean Average Precision (mAP) across a range of IoU thresholds (mAP@[0.5 : 0.05 : 0.95]),
as well as average precision at fixed IoU thresholds (AP0.50 and AP0.75). To evaluate detection
performance across different object sizes, we report Average Precision for small (APS), medium
(APM ), and large (APL) objects. In addition to detection accuracy, we assess model efficiency
by reporting the computational cost in FLOPs (floating point operations) and model complexity in
terms of parameter count (Params).

4.3 COMPARISONS WITH STATE-OF-THE-ART METHODS

We compare our proposed MMSNN models against a range of state-of-the-art object detectors,
including five generic detectors (YOLOv10 (Wang et al. (2024a)), RepPoints (Yang et al. (2019)),
FoveaBox (Kong et al. (2020)), ATSS (Zhang et al. (2020d)), and DetectoRS (Qiao et al. (2021)),
five top-performing underwater detectors (DJLNet (Wang et al. (2024b), GCCNet (Dai et al. (2024),
ERLNet (Dai et al. (2023), RFTM (Fu et al. (2023a), and BoostRCNN (Song et al. (2023)), and three
leading SNN-based detectors (SpikingYOLOX (Miao et al. (2025), EMS-YOLO (Su et al. (2023),
and Spiking-YOLO (Kim et al. (2020)).

Precision Analysis: As shown in Tables 1 and 2, the proposed MMSNN-L achieves state-of-the-art
detection performance. DJLNet ranks second with 57.5% mAP, benefiting from its tailored design
for underwater object detection. It fuses appearance and edge features to enhance robustness in com-
plex environments, while its image decolorization module corrects color distortions caused by light

6
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Table 3: The performance comparison between MMSNNs variants with (w/) and without (w/o) the
Multi-Modal Architecture (MMA), as well as between models using the standard attention-based
fusion (SAF) module and those using the Spike-Driven Multi-Modal Fusion (SMMF) module.
Models MMSNN-T MMSNN-S MMSNN-L
MMA w/o MMA w/ MMA w/o MMA w/ MMA w/o MMA w/ MMA

mAP 53.2 55.7+2.5% 54.9 56.7+1.8% 57.6 59.0+1.4%
AP0.50 82.5 83.9+1.4% 83.6 84.6+1.0% 84.7 85.3+0.6%
AP0.75 57.5 59.8+2.3% 58.3 61.0+2.7% 62.0 64.0+2.0%

SMMF w/ SAF w/ SMMF w/ SAF w/ SMMF w/ SAF w/ SMMF

mAP 54.3 55.7+1.4% 55.5 56.7+1.2% 58.3 59.0+0.7%
AP0.50 83.1 83.9+0.8% 84.2 84.6+0.4% 85.0 85.3+0.3%
AP0.75 58.6 59.8+1.2% 59.4 61.0+1.6% 63.1 64.0+0.9%

Figure 2: Visualization of detection results comparing the proposed MMSNN-L model (with both
RGB and LBP modalities) to the baseline model (using only the RGB modality). The baseline
frequently fails to detect objects in low-light conditions, whereas MMSNN consistently achieves
accurate detection under varying illumination.

absorption and its edge enhancement branch refines object boundary localization. SpikingYOLOX, a
general-purpose SNN detector, ranks third, highlighting the potential of SNNs for underwater object
detection and motivating our adaptation of SNN for this domain. In contrast, MMSNN-L leverages
a multi-modal architecture that integrates complementary information from RGB and LBP features,
resulting in a significant improvement in detection accuracy.

Efficiency Analysis: Tables 1 and 2 also compare model efficiency using FLOPs and Params. On
RUOD, While our MMSNN-S ranks fourth in terms of mAP (56.7%), slightly behind DJNet (57.5%)
and SpikingYOLOX (57.0%), it offers significantly higher efficiency. Specifically, MMSNN-S re-
quires substantially fewer parameters (7.80M vs 58.48M vs 49.53M) and FLOPs (33.62G vs 69.51G
vs 151.69G) compared to the other two models. These results demonstrates that MMSNN-S strikes
an excellent balance between detection performance and computational cost, offering comparable
precision with markedly lower resource consumption.

4.4 ABLATION STUDY

To validate the effectiveness of the proposed MMSNN frameworks, we perform an ablation study
on the RUOD dataset, focusing on three key components: the Multi-Modal Architecture (MMA),
the Spike-Driven Multi-Modal Fusion (SMMF) module, and the use of signed spiking neurons.

Effectiveness of the Multi-Modal Architecture (MMA): We compare the full multi-modal
architecture–which includes both RGB and LBP branches–with a single-modal baseline that uses
only the RGB branch. As shown in Table 3, the MMSNN models with MMA consistently out-
perform their single-modal counterparts across all three model variants. This performance gain is
attributed to the complementary strengths of the RGB and LBP modalities: RGB images capture rich
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Table 4: The performance comparison between MMSNNs with IF and signed spiking neurons.
Models MMSNN-T MMSNN-S MMSNN-L
Neurons IF Signed IF Signed IF Signed

mAP 54.5 55.7+1.2% 55.6 56.7+1.1% 57.8 59.0+1.2%
AP0.50 83.1 83.9+0.8% 83.9 84.6+0.7% 84.7 85.3+0.6%
AP0.75 58.6 59.8+1.2% 59.3 61.0+1.7% 62.1 64.0+1.9%

Figure 3: The distribution of error types made by MMSNN-L for each category on the RUOD
dataset. The error types include localization error (Loc), confusion with similar categories (Sim),
confusion with other dissimilar categories (Oth), and misclassifications as background (BG).

visual and color information, while LBP features offer robust local texture and edge representations,
especially under varying illumination conditions.

Illumination variability significantly affects detection performance. As illustrated in Fig. 2, the base-
line model without MMA frequently fails to detect objects under low-light scenarios. In contrast,
the MMSNN-L model with MMA maintains reliable detection across diverse lighting environments.
This robustness is primarily attributed to the LBP modality, which provides illumination-invariant
features, thereby enhancing the model’s resilience to lighting changes.

Effectiveness of the Spike-Driven Multi-Modal Fusion (SMMF) Module: We evaluate the pro-
posed SMMF module (Fig. 1 (b)) against a standard attention-based fusion (SAF) module (Fig. 1
(a)). The SAF module fuses deep RGB and LBP features via simple concatenation, followed by
an ANN-based Squeeze-and-Excitation (SE) attention block. In contrast, the SMMF module in-
tegrates three key components: channel grouping, channel shuffling, and a spike-driven attention
mechanism. This attention module is adapted from the SE block by replacing ReLU activations
with signed spiking neurons, ensuring full compatibility with spiking neural networks.

Table 3 presents performance comparisons between the two fusion strategies across the MMSNN-T,
MMSNN-S, and MMSNN-L variants. In all cases, models equipped with the SMMF module out-
perform those using SAF, demonstrating the effectiveness of the proposed design. The performance
gains are primarily attributed to the channel grouping and shuffling strategies, which facilitate lo-
cal cross-modal feature interaction, reduce redundancy, and promote feature diversity—ultimately
enhancing the model’s representational capacity and detection performance.

Effectiveness of Signed Spiking Neurons: In this study, we evaluate two widely used spiking
neurons for ANN-to-SNN conversion: the Integrate-and-Fire (IF) neuron Jin et al. (2023) and the
signed spiking neuron Kim et al. (2020). Table 4 compares MMSNN frameworks using each neuron
type. The results consistently indicate that the models with signed spiking neurons outperform
those using IF neurons. This performance gap primarily arises from the limitations of binary spike
encoding in IF neurons, which can only represent the presence (1) or absence (0) of a signal. While
such binary encoding is adequate for event-based data, it lacks the capacity to capture the richer,
more complex feature representations required for visual data. In contrast, signed spiking neurons
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Figure 4: Visualization of false positives from MMSNN-T. Text labels indicate the error types: ”loc”
(localization error), ”bg” (background confusion), and ”oth” (confusion with other categories). ”ov”
represents the overlap ratio between the detected object and its ground truth.

introduce both positive and negative spikes (+1, –1), enabling bidirectional signaling. This enhanced
encoding capacity allows for more nuanced and discriminative feature representation, leading to
improved model expressiveness and better overall performance.

4.5 ERROR ANALYSIS OF MMSNN

To better understand the limitations of MMSNN and guide future improvements, we conduct a
detailed error analysis of MMSNN-L using the detection analysis tool Diagnosis Hoiem et al. (2012).
Errors are categorized into four types: localization errors (Loc), confusion with similar categories
(Sim), confusion with dissimilar categories (Oth), and misclassifications as background (BG). For
this analysis, all ten categories in the RUOD dataset are treated as dissimilar classes.

As shown in Fig. 3, different object categories tend to exhibit different dominant error types. For
instance, scallop and starfish categories show a high incidence of background errors, where back-
ground regions are mistakenly identified as objects. This is largely due to the blurry and color-
distorted visual characteristics of underwater imagery, which reduce the contrast between objects
between objects and their surroundings. Fig. 4 further illustrates that stones are frequently misclas-
sified as scallops due to their similar textures and colors under such conditions. Localization errors
are another major source of inaccuracy, particularly for categories such as diver and turtle, where
object occlusion or dense clustering make precise bounding box prediction more difficult. Addition-
ally, inter-class confusion is common between visually similar categories such as cuttlefish and fish,
which share overlapping appearance features. These observations underscore the need to address
both external visual challenges (e.g., blur, color distortion) and intrinsic category-level similarities
to further enhance detection accuracy in underwater environments.

5 CONCLUSIONS

In this paper, we presented MMSNN, a Multi-Modal Spiking Neural Network designed for compu-
tational efficient underwater object detection. By fusing RGB and LBP modalities within a spike-
driven architecture, MMSNN leverages both visual richness and texture robustness while main-
taining low computational overhead. Our fusion module—incorporating channel grouping, chan-
nel shuffling, and spike-driven attention—enables efficient and expressive multi-modal integration
without the complexity of traditional dense ANN-based approaches. Experiments on the RUOD and
DUO datasets show that MMSNN achieves strong detection performance while using less compu-
tation compared to traditional ANN-based methods. In future work, we plan to extend MMSNN
to include additional data modalities, such as sonar and thermal imagery, to make it applicable to a
wider range of underwater and low-visibility tasks.
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Heng Zhang, Elisa Fromont, Sébastien Lefevre, and Bruno Avignon. Multispectral fusion for object
detection with cyclic fuse-and-refine blocks. In 2020 IEEE International conference on image
processing (ICIP), pp. 276–280. IEEE, 2020a.

Jiashuo Zhang, Linlin Zhu, Liheng Xu, and Qian Xie. Mffssd: an enhanced ssd for underwater
object detection. In 2020 Chinese Automation Congress (CAC), pp. 5938–5943. IEEE, 2020b.

Jiashuo Zhang, Linlin Zhu, Liheng Xu, and Qian Xie. Research on the correlation between image
enhancement and underwater object detection. In 2020 chinese automation congress (CAC), pp.
5928–5933. IEEE, 2020c.

Shifeng Zhang, Cheng Chi, Yongqiang Yao, Zhen Lei, and Stan Z Li. Bridging the gap between
anchor-based and anchor-free detection via adaptive training sample selection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9759–9768, 2020d.

A APPENDIX

A.1 USE OF LLMS

Large Language Models (LLMs) were used solely to assist with writing and polishing the text.

A.2 CODE OF ETHICS AND ETHICS STATEMENT

The research conducted in the paper conform, in every respect, with the ICLR Code of Ethics
https://iclr.cc/public/CodeOfEthics.

A.3 REPRODUCIBILITY

This paper provides all necessary details to enable reproduction of the main experimental results,
including dataset descriptions, training procedures, training parameters, and evaluation protocols.
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