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ABSTRACT

Saddle point optimization is a critical problem employed in numerous real-world
applications, including portfolio optimization, generative adversarial networks, and
robotics. It has been extensively studied in cases where the objective function is
known and differentiable. Existing work in black-box settings with unknown objec-
tives that can only be sampled either assumes convexity-concavity in the objective
to simplify the problem or operates with noisy gradient estimators. In contrast, we
introduce a framework inspired by Bayesian optimization which utilizes Gaussian
processes to model the unknown (potentially nonconvex-nonconcave) objective
and requires only zeroth-order samples. Our approach frames the saddle point
optimization problem as a two-level process which can flexibly integrate existing
and novel approaches to this problem. The upper level of our framework produces
a model of the objective function by sampling in promising locations, and the lower
level of our framework uses the existing model to frame and solve a general-sum
game to identify locations to sample. This lower level procedure can be designed
in complementary ways, and we demonstrate the flexibility of our approach by
introducing variants which appropriately trade off between factors like runtime,
the cost of function evaluations, and the number of available initial samples. We
experimentally demonstrate these algorithms on synthetic and realistic datasets,
showcasing their ability to efficiently locate local saddle points in these contexts.

1 INTRODUCTION

We consider the problem of finding saddle points for smooth two-player zero-sum games of the form
PLAYER 1: min

x
f(x, y) PLAYER 2: min

y
−f(x, y) x ∈ Rnx , y ∈ Rny (1)

with an unknown, nonconvex-nonconcave objective f . We assume that we can draw noisy zeroth-order
samples of f via a possibly expensive process given coordinates (x, y), where x ∈ Rnx , y ∈ Rny .

Saddle points are points at which the function f is simultaneously a minimum along the x-coordinate
and a maximum along the y-coordinate. Such points specialize the well-known Nash equilibrium
concept to the setting of two-player, zero-sum games. Saddle point optimization (Tind, 2009) is
widely used in real-world applications like economics (Luxenberg et al., 2022), machine learning
(Goodfellow et al., 2020), robotics (Agarwal et al., 2023), communications (Moura & Hutchison,
2019), chemistry (Henkelman et al., 2000), and more.

Zero-sum games have been widely studied for known and differentiable objective functions. However,
this assumption does not encompass numerous real-world situations with nonconvex-nonconcave
objectives which may be unknown and can only be sampled. Such objectives are often referred
to as “black-box.” For example, in robust portfolio optimization, the goal is to create portfolios
resistant to stock market fluctuations (Nyikosa, 2018), which are inherently random and difficult
to model but can be sampled in a black-box fashion through trial and error. Similar problems arise
in various physical settings, such as robotics (Lizotte et al., 2007) and communication networks
(Qureshi & Khan, 2023). Motivated by these real-world examples in nonconvex-nonconcave black-
box settings, we present a flexible framework that seeks to identify a saddle point, (x∗, y∗), such that
f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗), for all x, y in its neighborhood.

Most previous research in this area has focused on solving minimax problems (Bogunovic et al., 2018;
Fröhlich et al., 2020; Wang et al., 2022), which take the form minx maxy f(x, y). The difference
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between minimax and saddle points is subtle: a minimax point achieves the best worst-case outcome
for the minimizer (i.e., a Stackelberg equilibrium). In contrast, at a saddle point, the best worst-case
and worst best-case outcomes coincide (i.e., a Nash equilibrium). Solutions to minimax problems
in general nonconvex-nonconcave settings are not necessarily Nash, and encode an leader-follower
hierarchy which is not present for the saddle point concept. In settings like racing, chess, and resource
allocation, where rational, adversarial actors make decisions simultaneously, equilibria are best
described as saddle points.

Many previous works in saddle point optimization assume convex-concave objectives (v. Neumann,
1928; Korpelevich, 1976; Tseng, 1995; Nemirovski, 2004), for which every minimax point is a
saddle and vice versa because the best worst-case and worst best-case always coincide. However,
this equivalence does not hold in general nonconvex-nonconcave settings. Notably, some prior
works addressing black-box convex-concave settings use zeroth-order samples (Maheshwari et al.,
2022). Lastly, finding global saddle points remains an open problem in general settings, so our work
specifically focuses on discovering local saddle points, as detailed in Remark 3.5.

In contrast to previous works, we approach this problem in the spirit of bilevel Bayesian optimization:
at a high-level, we use Gaussian processes to build a surrogate model for the black-box function
f(x, y) by sampling points (x, y) at promising locations, and at a low-level, we identify these sample
points by solving general-sum games defined on the surrogate model. Specifically, the low-level
game selects these samples by seeking local Nash points (Defn. 3.2) of these two-player general-sum
games. The high-level optimizer then aims to ensure that in the limit, these samples converge to local
saddle points of the black-box problem. We present our contributions as follows.
1. We present the first black-box technique for saddle point optimization on nonconvex-nonconcave

objectives based on zeroth-order information. While prior works exist that find saddle points in
black-box settings or on nonconvex-nonconcave objectives or with zeroth-order information, our
work is the first, to our knowledge, that achieves all three simultaneously.

2. We use our framework to propose a set of algorithms for the lower-level game, with each vari-
ant catering to a different real-world case based on uncertainty and sampling cost. Thus, our
approach allows for versatility in trading off between factors like ease of sampling, exploration
and exploitation, and provides a template for future work in this area.

3. We experimentally demonstrate our algorithms’ effectiveness on a variety of challenging synthetic
and realistic datasets. As with prior work in black-box optimization, a key limitation of our
method is that it is appropriate for only relatively low-dimensional spaces.

2 RELATED WORK AND PRELIMINARIES

Saddle Point Optimization: Saddle point problems are widely studied in the game theory (Başar &
Olsder, 1998; Cherukuri et al., 2017), optimization (Dauphin et al., 2014; Pascanu et al., 2014), and
machine learning communities (Benzi et al., 2005; Jin et al., 2021). We note three previous varieties
of algorithms in the area of nonconvex-nonconcave saddle point optimization which guarantee
convergence to local saddle points rather than stationary points. Of these, Adolphs et al. (2019) and
Gupta et al. (2024) introduce algorithms which solve for saddle points in deterministic settings and
neither approach handles unknown objectives. Mazumdar et al. (2019) introduces local symplectic
surgery (LSS), a method that, when it converges, provably does so to a local saddle point given
access to first-order and second-order derivative measurements by the sampler. However, derivative
information is not always available in systems of interest. Moreover, while zeroth-order samplers
can estimate noisy first-order (and second-order) derivatives via finite differencing, the extensive
sampling requirements for such an approach is prohibitive when sampling is expensive. By contrast,
our work proposes an extensible zeroth-order framework for black-box saddle point optimization,
and we provide extensive experimental evaluation of several variants tailored to distinct settings.

Gaussian Process (GP): A GP (Rasmussen, 2003), denoted by GP(µ(·),Σ(·, ·)), is a set of random
variables, such that any finite sub-collection {f(xi)}ni=1 is jointly Gaussian with mean µ(xi) =
E[f(xi)], and covariance Σ = E[(f(xi)− µ(xi))(f(xj)− µ(xj))],∀i, j ∈ {1, . . . , n}.

GPs are primarily used for regression tasks, where they predict an underlying function, f : Rn → R,
given some previously observed noisy measurements. That is, for any inputs x1, . . . , xn ∈ X ⊆ Rk,
and the corresponding noisy measurements, r1, . . . , rn ∈ R, the vector r = [r1, r2, . . . , rn]

⊤

is modeled as multivariate Gaussian distribution with mean vector µ (typically assumed to be

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

zero), and covariance matrix Σ ∈ Rn×n. The covariance matrix, Σ, is calculated as follows:
Σi,j = K(xi, xj),∀i, j ∈ {1, . . . , n}, where K(·, ·) is the kernel function. Typically, it is assumed
that errors zi = ri−f(xi) are normally, independently, and identically distributed, i.e. zi ∈ N (0, σ2

z).
At a given test point x∗, we may compute the marginal distribution of f(x∗) given r via

f (x∗) | r ∼ N (k⊤∗ (Σ + σ2
zI)

−1r︸ ︷︷ ︸
µt(x∗)

,K (x∗, x∗)− k⊤∗ (Σ + σ2
zI)

−1k∗︸ ︷︷ ︸
σt(x∗)

), (2)

where k∗ = [K (x1, x∗) , · · · ,K (xn, x∗)]
⊤. A more detailed description of (2) can be found in

Rasmussen (2003). We note that GP estimates are smooth and thus standard gradient-based algorithms
can be deployed on them to estimate solutions to optimization problems. For typical (e.g., squared
exponential) kernels, the number of samples required for GP regression increases exponentially in
the number of dimensions; thus, GPs are appropriate for only relatively low dimensional spaces.

Bayesian Optimization (BO) with Gaussian Processes: Močkus (1975); Brochu et al. (2010b);
Shahriari et al. (2016), is a sequential search method for maximizing an unknown objective function
f : Rk → R with as few evaluations as possible. It starts with initializing a prior over f and uses an
acquisition function to select the next point xt given the history of observations, f(x1), . . . , f(xt−1).
The unknown objective, f , is sampled at xt, and its observed value f(xt) is used to update the
current estimate of f . Typically, f is modeled as a GP, and the GP prior is updated with new
samples. One common acquisition function, used in the GP-UCB algorithm, is the Upper Confidence
Bound UCBt(x) = µt (x) + βtσt (x). GP-UCB (Srinivas et al., 2010) has been used in a variety of
settings including robotics (Deisenroth et al., 2013), chemistry (Westermayr & Marquetand, 2021),
user modeling (Brochu et al., 2010a), and reinforcement learning (Cheung et al., 2020). A high βt

parameter in UCBt implies a more optimistic maximizer (i.e. favoring exploration) in the presence
of uncertainty. The UCB acquisition function combines the estimated mean, µt(x), and the estimated
standard deviation, σt(x), of the unknown objective function f at point x at iteration t. Analogously,
we can also define the Lower Confidence Bound (LCBt(x) = µt (x)− βtσt (x)).

3 PROBLEM FORMULATION

Problem Setup: We consider the two-player, zero-sum game in (1), and focus on the case in
which the objective f is an unknown function defined on the domain Rnx× Rny , and can only be
realized through (possibly expensive, noisy) evaluations. That is, we query the objective at a point
(x, y) ∈ Rnx× Rny and observe a noisy sample r = f(x, y) + z, where z ∼ N

(
0, σ2

z

)
. Although f

itself is unknown, we will assume that it is smooth and can be differentiated twice. Our goal is to find
Local Saddle Points (LSPs) of f .

Our proposed framework will consist of two stages: at the lower level, we will solve a general-sum
game defined on a GP surrogate model to identify (local) Nash points, and at the high level we will
sample f at those points and refine the GP surrogate model. To frame this problem formally, we
must discuss the relationship between Nash points which solve general-sum games and saddle points
which solve zero-sum games. For a two-player general-sum game, where player 1 is minimizing
function f1, and player 2 is minimizing function f2, a Nash point, (x∗, y∗), is defined as:
Definition 3.1 (Global Nash Point (GNP) for Two-Player General-Sum Game). (Başar & Olsder,
1998, Defn. 2.1) Point (x∗, y∗) is a global Nash point of objectives f1, f2 if, for all x, y ∈ Rnx×Rny ,

f1(x
∗, y∗) ≤ f1(x, y

∗), f2(x
∗, y∗) ≤ f2(x

∗, y). (3)

At a GNP, variables x and y cannot change their respective values without achieving a less favorable
outcome. Finding a GNP is computationally intractable in nonconvex settings (as in global nonconvex
optimization), so we seek a Local Nash Point (LNP), where this property need only hold within a
small neighborhood. A LNP is characterized by first- and second-order conditions.
Definition 3.2 (LNP for Two-Player General-Sum Game). (Ratliff et al., 2016, Defn. 1) Let ∥ · ∥
denote a vector norm. A point, (x∗, y∗), is a local Nash point of cost functions f1 and f2 if there
exists a τ > 0 such that for any x and y satisfying ∥x− x∗∥ ≤ τ and ∥y − y∗∥ ≤ τ , we have (3).
Proposition 3.3 (First-order Necessary Condition). (Ratliff et al., 2016, Prop. 1) For differentiable
f1 and f2, a local Nash point (x∗, y∗) satisfies ∇xf1(x

∗, y∗) = 0 and ∇yf2(x
∗, y∗) = 0.

Proposition 3.4 (Second-order Sufficient Condition). (Ratliff et al., 2016, Defn. 3) For twice-
differentiable f1 and f2, if (x, y) satisfies the conditions in Prop. 3.3, ∇2

xxf1(x, y) ≻ 0, and
∇2

yyf2(x, y) ≻ 0, then it is a strict local Nash point.

3
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Remark 3.5 (Nash Point is a Saddle Point when f1 = −f2). If f = f1 = −f2, then the point (x∗, y∗)
is a global saddle point of f when Defn. 3.1 holds and a local saddle point when Defn. 3.2 holds. A
local saddle point is characterized by the same first- and second-order conditions defined in Prop. 3.3
and Prop. 3.4, respectively. Henceforth, we use the term saddle point to refer to Nash points in
zero-sum games and refer to Defns. 3.1 and 3.2 and Props. 3.3 and 3.4 for Nash and saddle points.

4 BLACK-BOX ALGORITHMS FOR FINDING LOCAL SADDLE POINTS

We summarize our Bayesian Optimization (BO)-inspired bilevel framework for identifying local
saddle points in the black-box setting. Let µt and Σt, respectively, define mean and covariance
functions that estimate the unknown objective f as a Gaussian process based on a dataset St =
{(xi, yi, ri)}ti=1 where ri ∈ R is a (potentially noisy) sample of f at point (xi, yi). We define a
zero-sum game, which we refer to as the high-level game,

PLAYER 1: x∗ = argmin
x

µt(x, y) PLAYER 2: y∗ = argmin
y

−µt(x, y) (4)

This game has two purposes: primarily, it seeks to solve for a LSP of the original problem (1). Doing
so requires solving the secondary problem of refining the GP estimate by strategically sampling f
to form St+1 = St ∪ {xt+1, yt+1, rt+1} at iteration t+ 1. To identify promising points, we solve a
low-level general-sum game

PLAYER 1: x̄∗ = argmin
x

LCBt(x, y) PLAYER 2: ȳ∗ = argmin
y

−UCBt(x, y) (5)

for a local Nash point. As µt and Σt are smooth functions, we can solve (5) by deploying standard
gradient-based algorithms on them to solve the lower-level game for first-order stationary points.

Critically, our method relies on an observation about the relationship between this general-sum LNP
and the zero-sum LSP (x∗, y∗) we wish to find. In the limit of infinite samples in the neighborhood of
(x∗, y∗), when the GP surrogate converges to f , then the uncertainty σ converges to zero and LCBt

and UCBt converge to the mean µt, which converges to f and leads problems (4) and (5) to coincide.
These games optimize µt, which is an estimate of f , so note that any solutions will be approximate.

4.1 DEFINING AND SOLVING THE LOW-LEVEL GAME FOR LOCAL NASH POINTS

Extending the familiar “optimization in the face of uncertainty” principle from BO (Snoek et al.,
2012) and active learning (Yang et al., 2015), we construct the low-level game in (5) so that each
player minimizes a lower bound on its nominal performance index. As in active learning, this design
is intended to encourage “exploration” of promising regions of the optimization landscape early on,
before “exploiting” the estimated GP model. These bounds, LCBt and UCBt, are constructed at
each iteration t of the high-level game.

Finding LNPs is computationally intractable in general; therefore, in practice we seek only points
which satisfy the first-order conditions of Prop. 3.3. To find this solution, we introduce a new
function, GCB

t (x, y) : Rnx×Rny → Rk, whose roots coincide with these first-order Nash points. The
superscript CB and subscript t signify that we are finding the roots with confidence bounds (CB) at
iteration t. Specifically, we seek the roots of the following nonlinear system of (algebraic) equations:

GCB
t (x, y) =

[
∇xLCBt(x, y)
−∇yUCBt(x, y)

]
= 0. (6)

The LLGAME Algorithm: In Alg. 1, we present our approach to solving the low-level game,
which we refer to as LLGAME. LLGAME utilizes the current confidence bounds, (LCBt,UCBt),
to determine the local Nash points by finding roots of GCB

t using Newton’s method. The LLGAME
function does not make any new queries of f ; instead, it uses the most up-to-date confidence bounds
to identify the local Nash points. LLGAME takes an initial point, (x, y), and current confidence
bounds, (LCBt,UCBt), as inputs. Starting from line 2, the algorithm iteratively updates the point,
(x̄t, ȳt), using (7)—discussed below—and halts when a merit function, MCB

t (x̄t, ȳt), and therefore
the gradients ∇x̄t

LCBt(x̄t, ȳt) and ∇ȳt
UCBt(x̄t, ȳt), are sufficiently small. Ultimately in line 4,

the function returns the final point, (x̄∗, ȳ∗), once it discovers a local Nash point.

Defining Convergence (line 2): To gauge the progress towards a root of GCB
t (x, y), we employ a

merit function, a scalar-valued function of (x, y), which equals zero at a root and grows unbounded far

4
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Function
LLGAME((x, y,LCB,UCB)):

1: x̄0, ȳ0 = x, y.
2: while MCB

t (x̄t, ȳt) ≥ ϵ do
3: Get next iterate (x̄t+1, ȳt+1)

using LCB,UCB as
shown in (7).

end
4: Return x̄∗, ȳ∗.

End Function

Algorithm 1: LLGAME

Input: S0, GP prior (µ0, σ0), ϵ.
1: Start with initial point

(x0, y0) = argmin(x,y)∈S0
Mµ

t (x, y).
2: while Mµ

t (xt, yt) ≥ ϵ do
3: (xt+1, yt+1) = LLGAME(xt, yt,LCBt,UCBt).
4: Sample f(xt+1, yt+1) and add to St+1.
5: Update µt+1, σt+1,LCBt+1,UCBt+1.
6: (xt, yt) = (xt+1, yt+1).

end
7: Return Saddle point x∗, y∗.

Algorithm 2: Bayesian Saddle Point (BSP) Algorithm

away from a root. Specifically, we use the squared ℓ2 norm as the merit function, i.e., MCB
t (x, y) =

1
2 ||G

CB
t (x, y)||22; each LNP of (5) is a global minimizer of M .

Nonlinear Root-finding with Newton’s Method (line 3): To find the roots of GCB
t (x, y), our work

employs Newton’s method, which is an iterative method that is widely utilized for solving nonlinear
systems. The Newton step, pt(x, y), is obtained by linearly approximating the function, GCB

t , with its
Jacobian matrix Jt(x, y) at the current estimate (x, y) and identifying the root of that approximation.
The step pt(x, y) therefore satisfies:

Jt(x, y)pt(x, y) = −GCB
t (x, y), with Jt(x, y) =

[
∇2

x,xLCBt ∇2
x,yLCBt

−∇2
y,xUCBt −∇2

y,yUCBt

]
. (7)

Consequently, we update the current point, (x, y), by taking the step pt to reach the next point. In
our experiments, we employ Newton’s method with a Wolfe linesearch, which is known to converge
rapidly when initialized near a root, as shown in (Nocedal & Wright, 2006, Ch. 11). Note that the
Jacobian Jt requires minimal effort to compute in the lower-dimensional spaces that are classically
amenable to black-box optimization. We provide exact implementation details in Appendix B.

Adapting LLGAME: We note that other optimizers can be used to solve for (first-order) LNPs of (5).
One prevalent example is the gradient ascent-descent method (discussed by Mescheder et al. (2017)
and Balduzzi et al. (2018), among others), which uses gradient steps instead of Newton steps as in
our method. Our framework is flexible and LLGAME can readily be adapted to use these methods to
identify local Nash points.

4.2 SOLVING THE HIGH-LEVEL GAME: FINDING LOCAL SADDLE POINTS WITH BSP

In the high-level game, we seek to solve zero-sum game (4) to identify the saddle points of µt. Upon
extracting a solution to (5) in LLGAME, we sample the objective f around the low-level Nash point
(x̄∗, ȳ∗). The result of this sampling is used to update the mean µt and uncertainty estimate σt for the
GP surrogate of f . Following the design of Sec. 4.1, we seek to identify first-order LSPs of (4) with
roots of the function Gf

t and global minima of the corresponding merit function Mf
t :

Gf (x, y) =

[
∇xf(x, y)
−∇yf(x, y)

]
, Mf (x, y) =

1

2
∥Gf (x, y)∥22. (8)

However, as f is unknown, we instead define function Gµ
t and corresponding merit function Mµ

t
using the GP surrogate model of f by replacing f in (8) with µt. Thus, our method identifies saddle
points of f by finding the roots of Gµ

t and global minima of Mµ
t .

The Bayesian Saddle Point Algorithm: We now present our overall algorithm BSP (Alg. 2), which
searches for the local saddle points. As stated earlier, this distinction between the two games allows
us to confirm if a local Nash point is a local saddle point. In Alg. 2, we start by optimizing the
hyperparameters of our GP kernel using the initial dataset, S0, a standard procedure in BO (Snoek
et al., 2012). Upon learning the hyperparameters, an initial GP prior, (µ0, σ0), is obtained. Then
in line 1, we select a starting point, (x0, y0), from the initial dataset, S0, based on the lowest merit
value. From this point, an iterative search for the local saddle point is conducted in the outer while
loop (lines 2-6). The LLGAME function is utilized in line 3 to determine the subsequent point
(xt+1, yt+1), which is a local Nash point of the general-sum game (5). The point, (xt+1, yt+1), is
only a local Nash point for the given LCBt and UCBt; we will not be sure if it is a local saddle point
of f until we sample f at that point and calculate Mµ

t to validate the conditions in Prop. 3.3.

5
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Consequently, in line 4, the point returned by LLGAME is sampled and added to the current dataset.
In line 5, new hyperparameters are learned from dataset St+1, and µt+1, σt+1,LCBt+1,UCBt+1 are
updated accordingly. 1 After sampling at the point (xt+1, yt+1), we have decreased the variance at
that point, and thus the mean, µt(xt+1, yt+1), and its gradient ∇µt are better representations of f
and its gradient ∇f . After each update to the GP surrogate, we check if the merit function value is
sufficiently small, i.e. Mµ

t (xt, yt) ≤ ϵ, where ϵ > 0 is a user-specified tolerance. Ultimately in line
7, the local first-order saddle point (x∗, y∗) is returned after the completion of the outer loop.

4.3 CONVERGENCE

In Lemma 4.1, we demonstrate that Alg. 1 will terminate and converge to a point which satisfies
Prop. 3.3 under standard technical assumptions for Newton steps to be descent directions on the merit
function. Our experiments in Sec. 5 include cases that both satisfy and violate these assumptions,
showcasing the performance of our algorithm under various circumstances.

Lemma 4.1 (Convergence to Local Nash Point in LLGAME). (Nocedal & Wright, 2006, Thm. 11.6)
Let J(x, y) be Lipschitz continuous in a neighborhood Rnx× Rny ⊂ Rk×k surrounding the sublevel
set L =

{
x, y : MCB

t (x, y) ≤ MCB
t (x0, y0)

}
. Assume that both ∥J(x, y)∥ and ∥GCB

t (x, y)∥ have
upper bounds in Rnx× Rny . Let step lengths αk satisfy the Wolfe conditions (Nocedal & Wright,
2006, Sec. 3.1). If ||J(x, y)−1|| has an upper bound, then Alg. 1 will converge and return a root of
GCB

t (x, y) which satisifes Prop. 3.3.

In Alg. 2, we sample f at the LNP returned by Alg. 1 to reduce the variance, σt, in the confidence
bounds. This improves the accuracy of the mean function µt and its gradient ∇µt as estimators for
f and its gradient ∇f around the sampled point. Consequently, the merit function, Mµ

t , closely
approximates Mf and thus effectively validates convergence to the local (first-order) saddle point. As
estimates improve with iterations, the loop in Alg. 2 is expected to terminate at a local saddle point.

Next, we provide an intuitive explanation of why sampling at local Nash points of confidence bounds
in (5) will lead to local saddle points of f in (1). As we sample local Nash points, the variance in
the confidence bounds at those points will decrease, and LCB/UCB will get closer to each other, as
shown by Lemma A.1 and Remark A.2. As we keep sampling, the variance will eventually become
the noise variance, σz . As such, ∇σ → 0 and therefore ∇LCB,∇UCB → ∇µ → ∇f , and therefore
finding local Nash points of the confidence bounds will eventually lead to first-order saddle points
of µ and consequently of f . To confirm that we find a saddle, we verify the second-order condition
(Prop. 3.4) for the final saddle point returned by Alg. 2. If this point does not satisfy the second-order
conditions, we reinitialize our algorithm from a new initial point. We find that, in practice, our
algorithms find LSPs on the first initialization more frequently than baseline methods.

4.4 VARIANTS OF BSP

BSP Expensive: Our BSP method in Alg. 2 aims to minimize queries of the function f by taking
multiple Newton steps per query of f . However, the algorithm may become unstable if the confidence
bounds UCBt+1,LCBt+1 do not accurately approximate f . Additionally, it is possible that querying
f can often be inexpensive, for example, in the case of Reinforcement Learning in simulated
environments (Sutton & Barto, 2018). In this case, we query f during each iteration of Alg. 2 after
taking a single Newton step, in contrast to the multiple steps taken in Alg. 1 (lines 2-3). This approach
is referred to as BSP-expensive since we make more queries of f , while our original algorithm
in Alg. 2 is referred to as BSP-efficient. We demonstrate in our results that this variant can more
effectively and efficiently solve complex scenarios than baseline methods under these conditions.

Exploration and Exploitation: In Alg. 2, we encourage more exploration by using LCB for
minimization and UCB for maximization. Since the value of unexplored regions has high variance
and thus a lower LCB value, the minimization procedure will explore those regions first (vice-versa
for UCB and maximization). As such, we refer to our original proposed method, as BSP-explore.
Alternatively, we can use LCB for maximization and UCB for minimization, thus promoting more
exploitation by our algorithm. We will refer to this variant as BSP-exploit. In real-world scenarios,
this approach might be suitable when optimizing a well-understood process, fine-tuning known
models, or when domain knowledge allows for confidently focusing on exploitation.

1This is a standard procedure in black-box optimization, explained in further detail in Appendix B.7.
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5 EXPERIMENTS

In this section, we evaluate the BSP algorithms presented in Alg. 2 and Sec. 4.4 across various test
environments. We consider four versions: 1) BSP-efficient-explore (EF-XPLORE), 2) BSP-efficient-
exploit (EF-XPLOIT), 3) BSP-expensive-explore (EXP-XPLORE), and 4) BSP-expensive-exploit
(EXP-XPLOIT). Our experiments, which prior work accepts as challenging baseline problems,
demonstrate that each algorithm excels in specific settings. We consider the following three test cases.

1. Decaying Polynomial: In our first experiment, we examine the performance of our algorithms for
a nonconvex-nonconcave objective taken from (Mazumdar et al., 2020; Gupta et al., 2024):

fexp(x, y) = exp
(
−0.01

(
x2 + y2

)) ((
0.3x2 + y

)2
+

(
0.5y2 + x

)2)
. (9)

This example is particularly difficult for three reasons: first, multiple LSPs exist. Second, the origin is
a spurious saddle point which satisfies first-order conditions but not second-order conditions. Third,
the function gradients decay to zero further from the origin, meaning that an iterative algorithm strays
too far may “stall,” taking smaller and smaller step sizes, but never converging to a fixed point.

2. High-dimension Polynomial: We consider a high-order polynomial from Bertsimas et al. (2010):

fbertsimas(x, y) = −2x6 + 12.2x5 − 21.2x4 − 6.2x+ 6.4x3 + 4.7x2 − y6 + 11y5

−43.3y4 + 10y + 74.8y3 − 56.9y2 + 4.1xy + 0.1y2x2 − 0.4y2x− 0.4x2y.
(10)

The decision space is within [xmin = −0.95, xmax = 3.2]× [ymin = −0.45, ymax = 4.4]. The ob-
jective, fpoly(x, y), is nonconvex-nonconcave and has multiple LSPs (Defn. 3.2). We form a high-
dimension (2n)-D polynomial by letting, for x⃗ ∈ Rn, y⃗ ∈ Rn,

fpoly(x⃗, y⃗) =

n∑
i=1

fbertsimas(xi, yi). (11)

We set n = 5 to evaluate our proposed algorithms ability to identify LSPs in higher dimensions.

3. ARIMA Tracking Model Predictive Controller (MPC): Finally, we test our algorithms on
a more realistic zero-sum game involving an ARIMA process that synthesizes a discrete time 1D
time series of length F , denoted by sF ∈ RF , for a model predictive controller to track. This
setup mirrors real-world systems like that of Stent et al. (2024), in which an autonomous system
corrects for distracted human driving. We represent the ARIMA process for initial state s0 ∈ R
and model parameters α ∈ R, β ∈ R: sF = ARIMA(s0, α, β). The MPC takes the ARIMA
time series, sF , as input and returns a controller cost fMPC ∈ R incurred while tracking the given
time series. The MPC solves an optimization problem with quadratic costs and linear constraints,
encapsulating vehicle dynamics and control limits. The optimization problem is represented as
fMPC = MPC(A,B, s0, sF ), returning the final overall cost of tracking the ARIMA-generated time
series sF , initial state, s0 and model dynamics A,B. Further details can be found in Appendix B.5.

Zero-Sum Game Formulation: We formulate the interaction between the ARIMA forecaster and
the MPC as a zero-sum game. The antagonist selects the ARIMA parameters α, β to generate
difficult-to-track time series forecasts, sF , resulting in a higher MPC cost fMPC. In many scenarios,
we want to find model dynamics that are robust and can effectively handle various tracking signals.
As such, the protagonist chooses the MPC model dynamics parameters A,B to accurately track sF
and minimize the controller cost. This competitive scenario is formulated as follows:

fMPC = MPC( A,B︸︷︷︸
protagonist

, ŝ0, sF = ARIMA(s0, α, β︸︷︷︸
antagonist

)). (12)

This game is motivated by real-world scenarios requiring robust controllers for adversarial and
out-of-distribution inputs, and it has multiple LSPs (Defn. 3.2).

Experimental Setup: We compare our algorithms in two settings. In the first, we initialize our
algorithms with a large number of sample points, modeling a scenario where the objective is well
understood. In the second, we initialize algorithms with a small number of sample points, modeling a
scenario where obtaining samples is expensive. In all our experiments, we use a squared exponential
kernel, where the kernel value of two data points xi and xj is given by:

k (xi, xj) = σ2
f exp

[
−1

2

(xi − xj)
T
(xi − xj)

σ2
l

]
, (13)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 1: Comparisons of selected algorithm variants with baselines: We compare variants
of our proposed algorithms with baseline methods across two domains (rows), the decaying and
high-dimension polynomials, landscapes of which are shown in the first column. The middle column
considers test cases with a large number of initially sampled points, while the right column examines
test cases with a limited number of initially sampled points. In each case, we report the value of (real)
merit function Mf vs. the number of underlying function evaluations. Key takeaway: Generally,
EF-XPLORE converges faster with a large number of initial samples by taking multiple Newton steps
at each step in order to exploit the accurate prior while EXP-XPLOIT exhibits quicker convergence
with limited samples by taking single Newton steps to avoid unfavorable regions amid uncertainty.
Finally, we find that EF-XPLORE and EXP-XPLOIT converge faster than all three baseline methods,
indicating the benefit of the GP surrogate in improving convergence compared to baselines which are
often unable to converge.

where σf (signal variance) and σl (signal length scale) are hyperparameters. We learn these hyperpa-
rameters via maximum likelihood to initialize our algorithms. In all experiments, we assume that
we observe noisy measurements of the underlying function. To ensure that algorithms are initial-
ized at points with a non-zero gradient in the decaying polynomial example (top row), we ensure
these are selected from the non-flat regions of the function. All experiments are performed with 20
seeds for each algorithm. For the scenario with a limited number of initially sampled points, we
sampled 50 points for the decaying and high-dimension polynomial objectives, and 10 points for the
ARIMA-MPC objective. We present the exact experimental setup for each test case in Appendix B.

5.1 EXPERIMENTAL RESULTS

Fig. 1 summarizes the performance of the EF-XPLORE and EXP-XPLOIT variants of our algorithms
for the first two scenarios mentioned above; for results related to EF-XPLOIT and EXP-XPLORE,
we refer the reader to Fig. 4 in Appendix C, where we report similar results to EF-XPLORE and
EXP-XPLOIT, respectively. The middle column of Fig. 1 considers test cases with a large number of
initially sampled points, while the right column considers test cases with a limited number of initially
sampled points. We sample 1000 initial points for the decaying polynomial and 500 initial points for
the high-dimensional polynomial and for ARIMA-MPC (for which we report results in Fig. 2).

We assess the performance of our algorithms using the merit function from (8), Mf , which is
calculated based on the true gradients of the underlying function, rather than the confidence bounds
employed in the actual algorithm. As previously mentioned, Mf will attain a global minimum (of
0) when the first-order conditions in Prop. 3.3 are satisfied. This evaluation metric offers a direct
measure of the algorithms’ effectiveness in identifying local saddle points of the underlying function.

Baselines: We consider three baseline algorithms: naive random sampling (Random), gradient
descent-ascent with finite differencing (GDA with FD), and local symplectic surgery (LSS), a state-
of-the-art baseline from Mazumdar et al. (2019). These methods assume access to zeroth-, first-, and
second-order derivatives, respectively. In the random sampling baseline, we uniformly sample a fixed
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number of points (x, y) from the hyperbox {x, y : xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax}, and retain
the point with the lowest real merit function value (Mf ). In the gradient descent-ascent baseline, we
employ finite differencing to estimate each player’s gradient and use a Wolfe linesearch to select step
sizes. This approach allows for a more directed search compared to random sampling. Approximating
the gradient with finite differencing provides a fair comparison between our method and a first-order
approach using zeroth-order samples. For the decaying and high-dimension polynomial examples, we
compare with LSS. LSS requires access to function gradients and Hessians; rather than provide finite
differenced estimates (which can be extremely noisy and require excessive function evaluations), we
provide oracle access to the true function derivatives and corrupt with standard Gaussian noise.

Analysis of a Large Number of Initially Sampled Points: In this setting, we observed that
the exploit variants of our proposed algorithms, EF-XPLOIT (blue) and EXP-XPLOIT (orange),
demonstrated the fastest convergence. This outcome is expected since the accuracy of the confidence
bounds was higher, reducing the need for exploration. Overall, EF-XPLOIT (blue) achieved the fastest
convergence in these experiments due to its ability to take multiple accurate Newton steps. In the
decaying polynomial example from Fig. 1, EF-XPLORE converges quickly as well as taking single
Newton steps helps the algorithm converge in this particularly complicated landscape. In contrast,
the explore algorithms had slower convergence, as they prioritize exploration. This general pattern
continues to hold in Fig. 2, for the ARIMA-MPC scenario.

Analysis of Limited Number of Initially Sampled Points: In this setting, we observed that the
explore variants of our proposed algorithms, EF-XPLORE (green) and EXP-XPLORE (red), achieved
the best performance. Notably, the algorithm variant EXP-XPLORE (red) demonstrated fast conver-
gence, which can be attributed to its exploration approach and avoiding multiple incorrect Newton
steps in the face of uncertainty. The exploit variants, EF-XPLOIT (blue) and EXP-XPLOIT (orange)
exhibited slower convergence, as they relied too heavily on prior information and consequently took
incorrect steps. Specifically, the EF-XPLOIT (blue) variant failed to converge for some seeds since it
took incorrect Newton steps and was unable to explore. Finally, the expensive variants, in general,
are more stable in this setting, as they only take single Newton steps and are less likely to reach
unfavorable regions. EXP-XPLOIT (orange), for example, converges to a real merit vaue Mf = 0
for both experiments. We note that for the decaying polynomial example, we still see the efficient
variants converge faster, and this result reflects the complexity of the objective landscape.

Comparisons with Baselines: Random sampling and GDA with FD never converge, though random
sampling reduces the merit function value. The noise introduced by finite differencing renders GDA
with FD ineffective in this problem setting. Despite reaching a low merit function value, we note that
LSS fails to converge in many of these scenarios. In the decaying polynomial example, we see LSS
iterate outward far from the origin where ∇f becomes very small and no saddle points exist. Note
that this behavior is consistent with Mazumdar et al. (2019), which claims only that if LSS converges,
it finds a saddle. In Appendix C, our experiments on the decaying and high-dimension polynomials
indicate that LSS fails to converge to a saddle point far more often than BSP (Table 2).

Runtime and Success Rate: Neglecting the time to query the underlying function, the efficient
variants require 400-500% more time compared to the expensive variants, as they take multiple
Newton steps between each iteration or underlying function sample. Additionally, the EF-XPLOIT
(blue) variant did not achieve a 100% success rate in cases with a limited number of initial samples,
as it relied on exploitation and took incorrect Newton steps due to high uncertainty. We note that LSS
often fails to converge to a LSP due to algorithmic assumptions (which only guarantee that when
LSS converges, it finds a saddle) or domain-specific factors (iterating towards low-gradient regions of
the objective landscape). We find that EXP-XPLOIT, EXP-XPLORE, and EF-XPLORE find saddle
points strictly more often than LSS, and that EF-XPLOIT performs similarly or better depending on
the experiment. We provide a detailed comparison of convergence and success rates in Appendix C.

Key takeaways from our experimental results: Our experimental results highlight several important
insights about our algorithms variants. 1) The efficient variants require fewer underlying function
evaluations and will work best when the prior is accurate. 2) The expensive variants offer faster
runtimes and will provide more stable convergence when the prior is inaccurate. 3) The explore
variants provide a higher success rate when the number of initial samples is limited. 4) The exploit
variants exhibit faster convergence in the setting with a large number of initial samples. These
findings suggest that the choice of an algorithm variant should depend on the specific characteristics
of the problem at hand, such as the number of available initial samples, runtime requirements, and
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Figure 2: Saddle Point Optimization with BSP leads to Robust MPC on Out-of-Distribution
(OoD) data: On the left, we display the MPC tracking of the timeseries generated by the ARIMA
model at various iterations for the EF-XPLORE variant. The ARIMA target trajectory is depicted in
purple, while the corresponding MPC tracking is illustrated in orange. Initially, MPC performs poorly
(iteration 0), but gradually improves its tracking (iteration 17). Consequently, the ARIMA makes
tracking more challenging for the MPC (iteration 31), until they both reach equilibrium (iteration 50).
On the right, we compare the final robust MPC parameters (orange), obtained through our algorithm,
to the nominal MPC parameters (blue) on in-distribution data (left column) and OoD data (right
column). Key takeaway: significantly, the robust MPC successfully identifies robust MPC parameters
and achieves 27.6% lower mean MPC cost on OoD data compared to nominal MPC without reducing
performance on in-distribution data.
domain knowledge of the underlying objective. Moreover, we find that our methods converge faster
than simple baselines based on random sampling and finite differencing, and that they converge faster
(and more reliably) than the state-of-the-art LSS algorithm when it is adapted to the black-box setting.

Performance of BSP Variants in ARIMA-MPC Example: In Fig. 2, we evaluate the performance
of the MPC parameters found by our algorithms. Specifically, we compare the performance of the
MPC parameters obtained at the end of the EF-XPLORE variant on both the in-distribution and Out-
of-Distribution (OoD) ARIMA forecasting timeseries datasets. When MPC operates at a LSP, we can
expect it to be robust to perturbations in ARIMA parameters and therefore to OoD time series. Indeed,
controller parameters found by our algorithm achieve 27.6% lower mean MPC cost, thus showcasing
our algorithm’s ability to locate saddle points which correspond to robust performance on OoD data
without reducing performance on in-distribution data. We provide the exact details of this experiment
in Appendix B, and present full convergence results on the ARIMA-MPC example in Fig. 4. These
results mirror those of previous experiments, and we find that the exploit variants converge faster
with many initial samples while the efficient variants do so with limited initial samples.

Summary: Our experimental results conclusively indicate that our proposed BSP algorithms converge
faster, sample more efficiently, and produce more robust solutions than existing methods in a variety
of black-box saddle point optimization problems.

6 CONCLUSION

We present a BO-inspired framework for identifying local saddle points for an unknown objective
function, f , with zeroth-order samples. We frame the problem of finding local saddle points for an
unknown objective function as a two-level procedure. A low-level algorithm constructs a general-sum
game from a Gaussian process which approximates the unknown function f , and solves for the local
Nash points of this game by finding the roots of a system of nonlinear algebraic equations. A high-
level algorithm queries the points returned by the low-level algorithm to refine the GP estimate and
monitor convergence toward local saddle points of the original problem. We validate the effectiveness
of our algorithm through extensive Monte Carlo testing on multiple examples.

Limitations and Future Work: While our proposed framework shows promising results, we plan
to address certain limitations in future work. First, we intend to directly incorporate second-order
sufficient conditions (Prop. 3.4) to enhance the performance of our approach within the general-sum
low-level game. Second, to further demonstrate our framework’s adaptability, we will test our
algorithm with other acquisition functions, such as knowledge gradient (Ryzhov et al., 2012) and
entropy search (Hennig & Schuler, 2012).
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Reproducibility Statement. The pseudo-code and hyper-parameter details have been provided to
help reproduce the results reported in the paper. The source code will be released post publication.

REFERENCES

Leonard Adolphs, Hadi Daneshmand, Aurelien Lucchi, and Thomas Hofmann. Local saddle point
optimization: A curvature exploitation approach. In Kamalika Chaudhuri and Masashi Sugiyama
(eds.), Proceedings of the Twenty-Second International Conference on Artificial Intelligence and
Statistics, volume 89 of Proceedings of Machine Learning Research, pp. 486–495. PMLR, 16–18
Apr 2019. URL https://proceedings.mlr.press/v89/adolphs19a.html.

Shubhankar Agarwal, David Fridovich-Keil, and Sandeep P Chinchali. Robust forecasting for robotic
control: A game-theoretic approach. In 2023 IEEE International Conference on Robotics and
Automation (ICRA), 2023.

A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter. Differentiable convex
optimization layers. In Advances in Neural Information Processing Systems, 2019.

David Balduzzi, Sebastien Racaniere, James Martens, Jakob Foerster, Karl Tuyls, and Thore Graepel.
The mechanics of n-player differentiable games. In International Conference on Machine Learning,
pp. 354–363. PMLR, 2018.
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A TECHNICAL INSIGHTS

In this section, we delve into the convergence properties of our proposed algorithms. As mentioned
in Sec. 4.3, when we sample local Nash points obtained by Alg. 1, the variance in the confidence
bounds at that local Nash point decreases, and LCB/UCB converge towards each other eventually at
the local Nash point. In Lemma A.1, we demonstrate that with zero observation noise, the confidence
bounds at a sampled point are equal, i.e., LCB = UCB. Subsequently, in Remark A.2, we explore
the more general case involving non-zero observation noise, positing that as we repeatedly sample
in close proximity to the same point, the variance of the sampled point becomes predominantly
dependent on the observation noise, resulting in LCB ≈ UCB. Lastly, in Appendix A.2, we provide
experimental evidence to corroborate the decrease in the variance of the sampled point during our
algorithm’s execution.

Consequently, these results attest that as we sample the local Nash point, the variance in the GP at
that point will decrease, and eventually becomes a observation noise variance. As such, the gradient
of the variance, ∇σ → 0, and therefore ∇LCB,∇UCB → ∇µ. As stated in Sec. 4.3, since ∇µ will
become a reliable estimator of the true gradients of the unknown function, ∇f , finding local Nash
points of the confidence bounds will eventually lead to local saddle points of µ and consequently of
f . This convergence property is a key feature of our proposed algorithms, ensuring that the method
converges to a solution that represents a local saddle point of the underlying unknown function.

A.1 UCB AND LCB WILL APPROACH ONE ANOTHER AT SAMPLED POINTS

For the ease of the proofs, we will focus on the case when r = f(x) + z, where z ∼ N
(
0, σ2

z

)
. The

proof can easily be generalized for r = f(x, y) + z.

We denote the set of observed points as X = {x1, x2, . . . , xn} and r = {r1, r2, . . . , rn}. Consider
that the point, x∗, has already been sampled, as such x∗ = xi for some i ∈ {1 . . . N}. Now, recall
the predictive variance of the point x∗ is:

σ(x∗|X, r, x∗) = K (x∗, x∗)− k⊤∗ (Σ(X,X) + σ2
zI)

−1k∗, (14)
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where k∗ = [K(x1, x∗),K(x2, x∗), . . . ,K(xn, x∗)]
⊤, and Σ(X,X) ∈ Rn×n given by K (x1, x1) K (x1, x2) · · · K (x1, xn)

...
...

. . .
...

K (xn, x1) K (xn, x2) · · · K (xn, xn)

 . (15)

Lemma A.1 (Equality of UCBt and LCBt at sampled points under zero observation noise). Consider
the upper confidence bound, UCBt, and the lower confidence bound, LCBt, for a given time step
t. In the case of zero observation noise, i.e., zt = 0, the confidence bounds become equal for any
sampled point x such that UCBt(x) = LCBt(x).

Proof. Since, zt = 0, the predictive variance at the point x∗ is:

σ(x∗|X, r, x∗) = K (x∗, x∗)− k⊤∗ Σ
−1k∗. (16)

Let the point x∗ be some point xi ∈ X, i.e., x∗ = xi for some 1 ≤ i ≤ n. Then, the corresponding
kernel vector is given by the i-th column of the covariance matrix Σ(X,X), so k∗ = k⊤∗ = Σ:,i and
the kernel value is K(x∗, x∗) = K(xi, xi). The variance at the new point x∗ becomes:

σ(x∗|X, r, x∗) = K(xi, xi)− Σ⊤
:,iΣ

−1Σ:,i. (17)

Next, we have:

Σ−1Σ:,i = ei, (18)
where ei is the i-th standard basis vector. This can be seen from the property of the inverse matrix,
i.e., Σ(X,X)−1Σ(X,X) = I , where I is the identity matrix.

Thus, the variance at the new point x∗ simplifies to:

σ(x∗|X, r, x∗) = K(xi, xi)− Σ⊤
:,iei = K(xi, xi)− Σi,i. (19)

Since x∗ is a previously sampled point, the kernel function K(xi, xi) and Σi,i are equal to 1. Thus,
the variance at x∗ is:

σ(x∗|X, r, x∗) = 1− 1 = 0. (20)

This shows that the variance at a previously sampled point x∗ is zero in the no observation noise case,
for any kernel function.

UCB and LCB at the point x∗ are given by:

UCBt(x∗) = µt (x∗) + βtσt (x∗) , LCBt(x∗) = µt (x∗)− βtσt (x∗) . (21)

Since we just showed the sampled point, x∗, the variance σt (x∗) = 0. Then:

UCBt(x∗) = LCBt(x∗) = µt (x∗) (22)

Remark A.2 (Approximate equality of UCB and LCB at sampled points under observation noise).
Consider the upper confidence bound, UCBt, and the lower confidence bound, LCBt, for a given
time step t. In the presence of observation noise, i.e., zt ∼ N

(
0, σ2

z

)
, when the same point is

sampled repeatedly, or nearby points are sampled, the predictive variance σ(x) approaches the
observation noise σ2

z . This is based on the fact after repeated sampling, the only uncertainty left
about the sampling point will be due to the observation noise. As such, as the predictive variance
becomes smaller due to repeated sampling, the confidence bounds at the sampled point x will have
UCBt(x) ≈ LCBt(x).
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Figure 3: The variance at the sampled points decreases over time.

A.2 VARIANCE OF THE SAMPLED POINT

In Fig. 3, we demonstrate the reduction in the variance of the sampled points as we approach the
saddle point during the execution of our algorithms. We compare cases with and without observation
noise for a convex-concave objective function of the form ax2 + bxy − cy2, where coefficients
a, b, c > 0, scenario using 10 seeds. We note that LSPs will be locally convex-concave in their
neighborhoods and so these results will apply locally in those scenarios. The blue line represents the
distance between two consecutive points for each function evaluation, while the orange line indicates
the variance in the GP prior at the sampled points. The primary observation is that as we take smaller
Newton steps and sample points close to each other, the variance at those points decreases, thus
increasing the accuracy of the mean function µt and its gradient ∇µt as estimators for the objective
function f and its gradient ∇f around the sampled points.

B EXPERIMENTAL DETAILS

We provide the exact implementation details of all the experiments. Starting with compute, all
experiments were conducted on a desktop computer equipped with an AMD Ryzen 9 5900X CPU
and 32 GB RAM. No GPUs were required for these experiments.

B.1 NEWTON’S METHOD IMPLEMENTATION DETAILS

1. Invertibility of Jacobian: To solve for the Newton step p(xt, yt) in (7), the Jacobian matrix
J(xt, yt) must be non-singular. Therefore, at each new iterate, we need to verify the invertibility
of J(xt, yt). A common way to ensure Hessian invertibility is by adding a constant factor λI to
the diagonal. Gill & King (2004) offers a concise overview of alternative methods for inverting the
Hessian matrix.

2. Line-search: Newton’s method alone (with a unit step length) does not guarantee convergence
to the root unless the starting point is sufficiently close to the solution. To enhance robustness, we
employ line-search, using the merit function M as the criterion for sufficient decrease. The use of
line search is standard practice, as discussed and explained in (Nocedal & Wright, 2006, Ch.3).

B.2 LOCAL SYMPLECTIC SURGERY IMPLEMENTATION DETAILS

For LSS, we utilize the same regularization and parameters described by (Mazumdar et al., 2019, Sec.
5.1). We use ForwardDiff.jl (Revels et al., 2016) for computing gradients for LSS.

B.3 DECAYING POLYNOMIAL IMPLEMENTATION DETAILS

The objective function of the decaying polynomial problem is depicted in the top left plot of Fig. 1.
The decision variables were x, y ∈ R2. To ensure that algorithms are initialized at points with a
non-zero gradient in the decaying polynomial example (top row), we ensure these are selected from
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the non-flat regions of the function (a distance between 9 and 18 from the origin). The Hessian
regularization constant was λ = 0.01. The strong Wolfe parameters, according to (Nocedal & Wright,
2006, Ch.3), were c1 = 0.01 and c2 = 0.7. We added observation noise zt ∼ N

(
0, σ2

z = 1
)

to each
underlying objective function sample. We utilize JAX (Bradbury et al., 2018) to compute gradients
for this example.

B.4 HIGH-DIMENSION POLYNOMIAL IMPLEMENTATION DETAILS

The objective function of the high-dimension polynomial problem is depicted in the bottom left
plot of Fig. 1. The decision variables were x, y ∈ R5, resulting in a combined decision variable of
10 dimensions. The Hessian regularization constant was λ = 0.01. The strong Wolfe parameters,
according to (Nocedal & Wright, 2006, Ch.3), were c1 = 0.01 and c2 = 0.7. We added observation
noise zt ∼ N

(
0, σ2

z = 0.003
)

to each underlying objective function sample. We utilize JAX
(Bradbury et al., 2018) to compute gradients for this example.

B.5 ARIMA TRACKING MODEL PREDICTIVE CONTROLLER (MPC)

In this experiment, an ARIMA process synthesizes a discrete time 1D time series of length F ,
denoted by sF ∈ RF , for an MPC controller to track. Specifically, the ARIMA process generates
the time series as: st+1 = µ+ αst + βwt−1 + wt, where µ ∈ R is the mean, w = N (0, σ) ∈ R is
noise, and α ∈ R, β ∈ R are model parameters. Consequently, we represent the ARIMA process for
initial state s0 and model parameters α, β: sF = ARIMA(s0, α, β).

The MPC controller takes the ARIMA time series, sF , as input and returns a controller cost fMPC ∈ R
to track the given time series. The MPC controller solves the following optimization problem:

min
û

MPC(A,B, ŝ0, sF ) =

F∑
t=0

(ŝt − st)
⊤
Q (ŝt − st) + û⊤

t Rût. (23a)

subject to: ŝt = Aŝt−1 +Bût−1 (23b)
umin ≤ ut ≤ umax. (23c)

The optimization problem has quadratic costs and linear constraints. The quadratic costs in (23a),
measure how well the controller tracks the timeseries sF , and how much controller effort was used.
The linear constraints in (23b) encapsulate the system dynamics, and A,B ∈ R are controller
parameters that describe the dynamics. The MPC has additional control constraints in (23c), which
describe the control limits of the controller. As such, we represent the optimization problem of the
MPC controller as follows: fMPC = MPC(A,B, ŝ0, sF ), which returns the final overall cost of
tracking the ARIMA-generated time series sF , and initial state, ŝ0.

In our experiment, the decision variables were x, y ∈ R2, which resulted in a combined decision
variable of four dimensions. We set the Hessian regularization constant to λ = 0.001. Following the
recommendations in (Nocedal & Wright, 2006, Ch.3), we chose strong Wolfe parameters c1 = 0.01
and c2 = 0.8. Both the parameters of the ARIMA process (α, β) and the MPC parameters (A,B)
were constrained to lie within the range [−1, 1]. By incorporating these constraints and parameters,
we ensured a consistent framework for the optimization problem while providing sufficient flexibility
for the ARIMA process and the MPC to interact in the zero-sum game. We utilized CVXPYLAYERS
(Agrawal et al., 2019) for computing gradients.

B.6 ROBUST MPC EXPERIMENTAL DETAILS

In this section, we provide the details of the Robust MPC experiments. In this experiment, we
demonstrated that the MPC parameters found at the end of our zero-sum game between the ARIMA
antagonist player and the MPC protagonist player will be more robust to out-of-distribution data. Our
algorithm will converge to a local saddle point of this zero-sum game, where both players will be in
equilibrium. The ARIMA antagonist player cannot find more adversarial parameters for MPC, while
MPC cannot get better at tracking ARIMA generated forecasts.

Specifically, for the experiment, we compared a nominal MPC with a robust MPC (found using our
method) on in-distribution data and out-of-distribution data. To generate in-distribution data, we
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sampled 500 ARIMA time series forecasts, sF , with α, β ∈ [−1, 1]. We chose out-of-distribution
ARIMA parameters similar to the final ARIMA antagonist player parameters. Although the parame-
ters were constrained to be within [−1, 1] during the actual algorithm, we selected out-of-distribution
parameters α = −0.1 and β = −1.2 and sampled 500 ARIMA time series forecasts for these
parameters. This choice enabled us to evaluate the robustness of the MPC against data that deviates
from its original training distribution. Finally, we picked nominal MPC parameters, A,B, by fitting
the MPC parameters to in-distribution data using supervised learning, i.e., the best A,B to minimize
the MPC tracking cost for the in-distribution data. We chose robust MPC parameters as the final
MPC protagonist player at the convergence of the zero-sum game. By comparing the performance
of the nominal and robust MPCs on both in-distribution and out-of-distribution data, we aimed
to demonstrate the effectiveness of our method in finding robust MPC parameters that can handle
deviations from the original training data distribution better than the nominal MPC.

In Fig. 2, we compared the MPC tracking costs of both the MPCs on in-distribution data and out-
of-distribution data. As expected, the nominal MPC performs better on in-distribution data since
it is trained on this data. However, the robust MPC significantly outperforms the nominal MPC
on out-of-distribution data by achieving a 27.6% lower mean MPC cost. Additionally, the poor
performance of the nominal MPC indicates that the final ARIMA antagonist player parameters are
indeed challenging. These results suggest that our algorithm has successfully identified robust MPC
parameters and adversarial ARIMA parameters.

B.7 UPDATING HYPERPARAMETERS

Steps for updating µt+1, σt+1, UCBt+1, and LCBt+1:

1. Learn hyperparameters of the kernel function using maximum likelihood estimation, as
explained in Section 2.3 of Rasmussen (2003).

2. Using the learned hyperparameter and updated kernel function, construct the µt, σt using
the current dataset, as explained in Eq 2.25 and 2.26 in Rasmussen (2003).

3. Construct new UCBt and LCBt. This is straightforward since:

UCBt = µt + β ∗ σt,LCBt = µt − β ∗ σt.

4. Collect new samples and repeat the process.

C ABLATION STUDIES

We generate full runtime, success rate, and convergence rate results for all of our algorithm variants
across the decaying polynomial, high-dimension polynomial, and ARIMA-MPC examples. For a full
discussion on our variants, we refer the reader to Sec. 5.

C.1 RUNTIME COMPARISON

We can compare the runtimes of each algorithm variant in terms of the total number of Newton steps
taken. In Table 1, we present the total number of Newton steps taken by each algorithm variant over
10 seeds for scenarios with a limited number of initially sampled points. The results demonstrate that
the expensive variants require significantly fewer steps to converge compared to the efficient variants.
This outcome is expected, as expensive variants only take one Newton step between each sample of
the underlying function evaluation. Furthermore, as anticipated, the explore variants require more
Newton steps due to their exploration approach, but the difference is not substantial.

C.2 SUCCESS RATE COMPARISON

In Table 2, we display the percentage of successful seeds out of 20 seeds for each algorithm variant
in scenarios with a limited number of initially sampled points. The results reveal that the explore
variants exhibit more reliable convergence compared to the exploit variants. This outcome is expected,
as explore variants emphasize exploration and, therefore, are more likely to converge. Additionally,
the expensive variants demonstrate greater stability in this setting, as they only take single Newton
steps and are less prone to reaching unfavorable regions. The EF-XPLOIT variant exhibits the lowest
success rate in convergence, as it relies on exploitation and may take incorrect Newton steps. We
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Figure 4: Comparisons of our proposed algorithm variants: We compare all four variants of our
proposed algorithms across the three experiments (each column) described in Sec. 5. The horizontal
axis denotes the number of underlying function evaluations, while the vertical axis represents the
value of the real merit function, Mf . The top row considers test cases with a large number of initially
sampled points, while the bottom row examines test cases with a limited number of initially sampled
points. The key takeaway is that generally, exploit variants converge faster with a large number of
initial samples due to effective utilization of accurate priors, while explore variants exhibit quicker
convergence with limited samples by prioritizing exploration amid uncertainty. Efficient variants
converge faster with many initial samples by taking multiple accurate Newton steps, while expensive
variants show stable though often slower convergence with limited samples, taking single Newton
steps to avoid unfavorable regions.
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Domain Type of steps Efficient Expensive
High-Dimension Polynomial Explore 2858 1464

Exploit 2613 1381

Decaying Polynomial Explore 2690 1893

Exploit 3000 3000

ARIMA-MPC Explore 1053 353

Exploit 815 229

Table 1: Runtime Comparison: In this table, we show the number of Newton steps taken by each
algorithm variant for the limited number of initially sampled points scenarios over 10 seeds.

include a run as a success if the BSP solution satisfies second-order sufficient conditions according
to the ground truth derivatives ∇f and ∇2f . Lastly, we include success rates for when LSS, adapted
to the black box setting, converges.

Domain Type of steps Efficient Expensive Baseline
Explore 60% 60% –

Decaying Polynomial Exploit 30% 50% –
LSS – – 15%

Explore 95% 100% –
High-Dimension Polynomial Exploit 65% 80% –

LSS – – 70%

ARIMA-MPC Explore 90% 95% –
Exploit 75% 85% –

Table 2: Success Rate: In this table, we show the percent of successful seeds out of 20 seeds for each
algorithm variant for the limited number of initially sampled points scenarios. We show results on the
LSS algorithm for two of the experiments, where we adapt LSS to the black box setting by providing
an oracle to sample derivative information. To avoid including spurious saddle points as successes,
we report the success rate according to the true second order conditions, defined in Prop. 3.4, at the
first solution BSP finds (i.e., without reinitialization).
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