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Abstract
Motivated by the analysis of longitudinal neuroimaging studies, we study the
longitudinal functional linear regressionmodel under asynchronous data setting
for modeling the association between clinical outcomes and functional (or imag-
ing) covariates. In the asynchronous data setting, both covariates and responses
may be measured at irregular and mismatched time points, posing methodolog-
ical challenges to existing statistical methods. We develop a kernel weighted
loss function with roughness penalty to obtain the functional estimator and
derive its representer theorem. The rate of convergence, a Bahadur representa-
tion, and the asymptotic pointwise distribution of the functional estimator are
obtained under the reproducing kernel Hilbert space framework. We propose
a penalized likelihood ratio test to test the nullity of the functional coefficient,
derive its asymptotic distribution under the null hypothesis, and investigate the
separation rate under the alternative hypotheses. Simulation studies are con-
ducted to examine the finite-sample performance of the proposed procedure. We
apply the proposed methods to the analysis of multitype data obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) study, which reveals sig-
nificant association between 21 regional brain volume density curves and the
cognitive function. Data used in preparation of this paper were obtained from
the ADNI database (adni.loni.usc.edu).

KEYWORDS
asynchronous longitudinal functional data, Bahadur representation, functional regression,
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1 INTRODUCTION

This paper is motivated by the analysis of a real neu-
roimaging data set collected by the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) study (http://www.adni-
info.org/). The ADNI has collected imaging, genetic, clin-
ical, and cognitive data at multiple time points from
three groups of subjects, including cognitive normal (CN),
mild cognitive impairment (MCI), and Alzheimer’s dis-
ease (AD). The mini-mental state examination (MMSE)

score is used to measure cognitive function over time with
lower scores indicating cognitive impairment. The mag-
netic resonance imaging (MRI) data set considered here
consists of 𝑛 = 770 subjects over a 5-year follow-up. For
each subject, we consider brain local volumetric mea-
sures in the 87 regions of interest (ROIs), abbreviated as
local volumetric curves from now on, for characterizing
regional atrophy (Zhao et al., 2019). The local volumet-
ric curves were observed at 1 to 6 time points, whereas
the MMSE scores were examined at 1 to 13 time points.

Biometrics. 2022;1–16. © 2022 The International Biometric Society. 1wileyonlinelibrary.com/journal/biom

 15410420, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13767 by Shanghai U
niversity O

f Finance, W
iley O

nline L
ibrary on [09/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-3530-1490
https://orcid.org/0000-0002-6781-2690
mailto:htzhu@email.unc.edu
http://www.adni-info.org/
http://www.adni-info.org/
https://wileyonlinelibrary.com/journal/biom
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fbiom.13767&domain=pdf&date_stamp=2022-10-17


2 LI et al.

F IGURE 1 Brain local volumetric curves along left inferior temporal and the MMSE scores at different time points for one subject over
time. The dotted vertical lines correspond to the observation times of Brain local volumetric curves. The solid line corresponds to the MMSE
scores observed over time.

As an illustration, Figure 1 presents brain local volumetric
curves along left inferior temporal and the MMSE scores
at different time points for one randomly selected subject
across time. The local volumetric curves and the MMSE
scores were observed at mismatched time points within
and across subjects, leading to asynchronous longitudinal
functional and scalar data. We are interested in identi-
fying risk factors (e.g., brain local volumetric curves) for
the cognitive function across time (Burhanullah et al.,
2020; Imtiaz et al., 2014; Reitz & Mayeux, 2014). However,
the combination of the longitudinal functional variable
and asynchronous measurement time points calls for new
methods for longitudinal functional regression models.
The aim of this paper is to develop estimation and

testing methods for functional linear regression models
based on sparsely asynchronous longitudinal functional
and scalar data. We consider the longitudinal functional
linear regression model

𝑌(𝑡) = 𝛼0 + ∫
1

0

𝑋(𝑡, 𝑢)𝛽0(𝑢)𝑑𝑢 + 𝜖(𝑡), (1)

where 𝑡 ∈ [0, 𝜏] denotes the observation time, 𝛼0 is the
common intercept, and 𝛽0(𝑢) is the functional coefficient

as a function of 𝑢 ∈ 𝕌 = [0, 1]. Without loss of general-
ity, we assume that 𝛼0 = 0. Given an observation time 𝑡,
𝑋(𝑡, 𝑢) is a square integrable random function recorded
on the interval 𝕌 = [0, 1], and 𝑌(𝑡) is a scalar variable at
time 𝑡. Similar to Yuan and Cai (2010), Shang and Cheng
(2015), and Li and Zhu (2020), the functional parameter 𝛽0
is assumed to reside in a reproducing kernel Hilbert space
(RKHS). We fit model (1) for the asynchronous data set,
in which the observation times for the response and those
for the functional covariate are different. Specifically, for
subject 𝑖 = 1, … , 𝑛, we observe {𝑌𝑖(𝑇𝑖𝑗) ∶ 𝑗 = 1,… , 𝐿𝑖} and
{𝑋𝑖(𝑆𝑖𝑘, 𝑢) ∶ 𝑘 = 1,… ,𝑀𝑖}, where 𝑆𝑖𝑘 and 𝑇𝑖𝑗 are obser-
vation time points, 𝐿𝑖 and 𝑀𝑖 are the number of time
points for the response and that for the functional covari-
ate, respectively, and 𝑋𝑖(𝑆𝑖𝑘, 𝑢)’s can be observed on a set
of dense grids for a given 𝑆𝑖𝑘. In practice, 𝑇𝑖𝑗 ’s may be
different from 𝑆𝑖𝑘’s, posing challenges to estimation and
inference for model (1).
Despite a rich literature on regression models for syn-

chronous data (Diggle, 2002; Jiang & Wang, 2011; Wang
et al., 2019), the study on asynchronous data is scarce.
It is often the case that synchronous data may not be
available and existing methods are not directly applicable.
To make traditional models applicable to asynchronous
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LI et al. 3

data, Xiong and Dubin (2010) proposed a binning method
to obtain equally spaced bins of time. Şentürk et al.
(2013) adopted functional data analysis to pool informa-
tion from all subjects. Cao et al. (2015, 2016) proposed
kernel-weighted estimating equations for generalized lin-
ear models with either time-invariant or time-dependent
coefficients. Chen and Cao (2017) extended the results
of Cao et al. (2015) to the partially linear models with
nonlinear time trend effects. Sun et al. (2021) consid-
ered the situation where asynchronous longitudinal data
were observed and the corresponding observation process
for response and covariate may depend on the covariate.
However, all the above methods have never considered
longitudinal functional data.
Model (1) can be regarded as an extension of the well-

known functional linear model (FLM). The literature on
FLM is too vast to summarize here. One may refer to the
well-knownmonographs by Ramsay and Silverman (2005)
for an extensive overview of FLM. There have been sev-
eral recent attempts to tackle with longitudinal functional
data. Goldsmith et al. (2012) proposed a longitudinal func-
tional regression outcome model, estimating parameters
through functional principal component analysis (FPCA)
and penalized splines. Gertheiss et al. (2013) extended
the study of Goldsmith et al. (2012) by using a longi-
tudinal FPCA. Although the previous studies provide a
convenient vehicle to analyze synchronous longitudinal
data with functional variables, they are not applicable to
asynchronous longitudinal data. Moreover, these meth-
ods rely heavily on the success of the FPCA approach,
and may not be appropriate if the functional parameter
cannot be represented effectively by the leading prin-
cipals of the functional covariates (Yuan & Cai, 2010).
Recently, Li et al. (2022) proposed generalized functional
partial-linear varying-coefficient (GFPV)models to handle
temporally asynchronous functional and scalar variables
through using B-spline basis functions and kernel weight-
ing methods.
In this paper, we propose estimation and testing meth-

ods for the longitudinal regression model (1) under the
asynchronous data setting by using the RKHS framework.
The major contributions of this paper are summarized as
follows. First, we construct a kernel-weighted loss func-
tion with a roughness penalty to obtain the functional
estimator. The kernel-weighted loss function downweights
observations that are distinct in time and makes use of all
functional covariate observations for each response under
the asynchronous data setting. The roughness penalty reg-
ularizes the model complexity in a continuous manner
(Shang & Cheng, 2015), while avoiding the drawbacks of
FPCA. Following the spirit of Theorem 1.3.1 of Wahba
(1990), a representer theorem is derived. It demonstrates

that the estimator can be found in a finite-dimensional
subspace of the infinite-dimensional space, enabling easy
and efficient computation. Second, we derive the rate
of convergence and pointwise distribution of our esti-
mator based on its Bahadur representation. The rate of
convergence derived here is slower than the optimal non-
parametric rate of convergence in Section 4.5 of Wahba
(1990) due to the loss of efficiency caused by the asyn-
chronous data setting. Third, a penalized likelihood ratio
test is proposed to test the nullity of the functional coef-
ficient. We show that the null limit distribution of the
proposed test statistic is a normal distribution and can be
approximated by a𝜒2 distribution.Moreover,we derive the
separation rate that the proposed test can detect under the
alternative hypotheses. To ensure easy implementation, a
bootstrap method is proposed to estimate the unknown
parameters in the limit distribution. Consistency of the
bootstrap procedure is also established. Finally, the pro-
posed estimation and testing methods are applied to the
ADNI data set in order to identify significant associations
between the local volumetric curves in 21 ROIs and the
MMSEcognitive score. Furthermore, theRpackage “Asyn-
chronousFLR” for this paper alongwith its documentation
is freely accessible from our lab’s GitHub website.
The rest of the paper is organized as follows.

Section 2 gives the representer theorem and an esti-
mation procedure. Section 3 presents the theoretical
properties of the obtained functional estimator. The
proposed test statistic and its null limit distribution are
investigated in Section 4. Section 5 demonstrates the
practicality of the proposed method through finite-sample
simulation studies. We apply our methods to a real data
set obtained from the ADNI study in Section 6. All the
proofs can be found in the Supporting Information.

2 RKHS-BASED ESTIMATION

In this section, we present some background informa-
tion regarding to RKHS and then propose our estima-
tion method.

2.1 RKHS

A symmetric bivariate function𝐷(𝑢1, 𝑢2) defined on𝕌 × 𝕌
is said to be nonnegative definite, denoted by 𝐷 ≥ 0, if
for all 𝑔 ∈ ℕ, 𝑎1, … , 𝑎𝑔 ∈ ℝ and 𝑢1, … , 𝑢𝑔 ∈ 𝕌, we have∑𝑔
𝑗,𝑗′=1 𝑎𝑗′𝑎𝑗𝐷(𝑢𝑗, 𝑢𝑗′ ) ≥ 0.

Definition 1. A Hilbert space  of functions 𝑓 ∶ 𝕌 → ℝ
is said to be an RKHS if the elements of RKHS of  are
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4 LI et al.

functions defined on some set 𝕌, and there is a bivariate
function𝐷 on𝕌 × 𝕌having the following two properties:

(1) For all 𝑢 ∈ 𝕌, 𝐷𝑢 = 𝐷(𝑢, ⋅) ∈ .

(2) For all 𝑢 ∈ 𝕌 and 𝑓 ∈ , 𝑓(𝑢) = ⟨𝑓,𝐷𝑢⟩ ,
where ⟨⋅, ⋅⟩ is the associated inner product of . In this
case, 𝐷 is a reproducing kernel of.

The kernel 𝐷(𝑢1, 𝑢2) defines an integral oper-
ator such that 𝐷𝑓(𝑢1) = ∫

𝕌
𝐷(𝑢1, 𝑢2)𝑓(𝑢2)𝑑𝑢2 for

𝑓 ∈ 𝐿2(𝕌). It follows from Mercer’s theorem that
𝐷(𝑢1, 𝑢2) =

∑∞
𝑘=1 𝜇𝑘𝜙𝑘(𝑢1)𝜙𝑘(𝑢2), where {(𝜇𝑘, 𝜙𝑘)}

∞
𝑘=1

are
eigenvalue–eigenfunction pairs with 𝜇1 ≥ 𝜇2 ≥ … ≥ 0.
Furthermore, we include Theorem 2.5 of Gu (2013) here
for better understanding the decomposition of RKHS.

Proposition 1. If the reproducing kernel 𝐷 of a space
 on domain 𝕌 can be decomposed into 𝐷 = 𝐷0 +
𝐷1, where both 𝐷0 and 𝐷1 are nonnegative definite,
𝐷0(𝑢, ⋅), 𝐷1(𝑢, ⋅) ∈ , ∀𝑢 ∈ 𝕌 and ⟨𝐷0(𝑢1, ⋅), 𝐷1(𝑢2, ⋅)⟩ =
0, ∀𝑢1, 𝑢2 ∈ , then the spaces0 and1 corresponding to
𝐷0 and 𝐷1, respectively, form a tensor sum decomposition of
. Conversely, if both 𝐷0 and 𝐷1 are nonnegative definite
and 0 ∩1 = {0}, then  = 0 +1 has a reproducing
kernel 𝐷 = 𝐷0 + 𝐷1.

2.2 Estimation

With the preparations given above, we present our esti-
mation method for the unknown functional coefficient in
model (1). Assume that 𝛽(⋅) resides in a Sobolev space of
order𝑚 defined as

𝐻𝑚(𝕌) = {𝛽 ∶ 𝕌 ↦ ℝ| 𝛽(𝑗) is absolutely continuous for
𝑗 = 0,… ,𝑚 − 1 and 𝛽(𝑚) ∈ 𝐿2(𝕌)}, (2)

where 𝛽(𝑗) denotes the 𝑗th order derivative of 𝛽(𝑢) with
respect to 𝑢. We also assume 𝑚 > 1∕2 so that 𝐻𝑚(𝕌) is
an RKHS.
Due to the infinite-dimensionality of 𝛽0, we adopt the

regularization method with roughness penalty to obtain
its estimate. To handle mismatched observation times
between the response and covariate within subjects, we
introduce a kernel function into the loss function to borrow
information from all possible pairs of responses and the
covariate observations. This technique has been demon-
strated to be an efficient way to manage asynchronous
data with scalar covariates as shown in Cao et al. (2015)
and Chen and Cao (2017). Hence, we consider a kernel-
weighted penalized loss function 𝓁𝑛,𝜆(𝛽) and calculate an

estimator of 𝛽, denoted as 𝛽𝑛,𝜆, by maximizing

𝓁𝑛,𝜆(𝛽) = −
1

2𝑛

𝑛∑
𝑖=1

𝐿𝑖∑
𝑗=1

𝑀𝑖∑
𝑘=1

𝐾𝑏(𝑡𝑖𝑗 − 𝑠𝑖𝑘)

{
𝑌𝑖(𝑡𝑖𝑗) − ∫ 𝑋𝑖(𝑠𝑖𝑘, 𝑢)𝛽(𝑢)𝑑𝑢

}2
−(𝜆∕2)𝐽(𝛽, 𝛽), (3)

where 𝐾𝑏(𝑡) = 𝐾(𝑡∕𝑏)∕𝑏, 𝐾(𝑡) is a symmetric kernel func-
tion, 𝑏 is the bandwidth for the kernel function, and
𝐽(𝛽1, 𝛽2) = ∫ 1

0
𝛽
(𝑚)
1 (𝑢)𝛽

(𝑚)
2 (𝑢)𝑑𝑢 for any 𝛽1, 𝛽2 ∈ 𝐻𝑚(𝕌)

is the roughness penalty. Among various kernel func-
tions, we use Epanechnikov kernel𝐾(𝑡) = 0.75(1 − 𝑡2)+ in
this paper.
Following Lin and Carroll (2001), the observation times

of𝑌𝑖(𝑡) and𝑋𝑖(𝑠, ⋅) can be viewed froma bivariate counting
process defined by 𝑁𝑖(𝑡, 𝑠) =

∑𝐿𝑖
𝑗=1

∑𝑀𝑖
𝑘=1 𝐼(𝑇𝑖𝑗 ≤ 𝑡, 𝑆𝑖𝑘 ≤ 𝑠)

for 𝑖 = 1, … , 𝑛. The 𝑁𝑖(𝑡, 𝑠) counts the number of obser-
vation times up to 𝑡 on the response and up to 𝑠 on
the covariates for subject 𝑖. We focus on the sparse asyn-
chronous functional data such that both 𝐿𝑖 and 𝑀𝑖 are
finite with probability 1. Although defined on the obser-
vation times, the counting process is a stochastic process
due to the randomness of the observation times. It can
be regarded as an extension of the representation of syn-
chronous data in Martinussen and Scheike (2006). Since
𝑑𝑁𝑖(𝑡, 𝑠) = 1 when 𝑡 = 𝑇𝑖𝑗 and 𝑠 = 𝑆𝑖𝑘 and 𝑑𝑁𝑖(𝑡, 𝑠) = 0
otherwise, 𝓁𝑛,𝜆(𝛽) can be rewritten as

−
1

2𝑛

𝑛∑
𝑖=1

∫ ∫ 𝐾𝑏(𝑡 − 𝑠)
{
𝑌𝑖(𝑡) − ∫ 𝑋𝑖(𝑠, 𝑢)𝛽(𝑢)𝑑𝑢

}2
𝑑𝑁𝑖(𝑡, 𝑠) − (𝜆∕2)𝐽(𝛽, 𝛽), (4)

greatly facilitating investigating the theoretical properties
of 𝛽𝑛,𝜆.
We derive a representer theorem in Theorem 1 to

show that the solution to (3) is in a finite-dimensional
space even though 𝛽 is in an infinite-dimensional space.
The penalty functional 𝐽(𝛽, 𝛽) is a squared seminorm on
𝐻𝑚(𝕌) such that the null space 0 = {𝛽 ∶ 𝐽(𝛽, 𝛽) = 0} is
a finite-dimensional linear subspace of 𝐻𝑚(𝕌) with its
orthonormal basis {𝜓1, … , 𝜓𝑁0}, where 𝑁0 = dim(0). Let1 be the orthogonal complement of 0 in 𝐻𝑚(𝕌) such
that 𝐻𝑚(𝕌) = 0 ⊕1. It follows from Proposition 1 that
for any function 𝛽 ∈ 𝐻𝑚(𝕌), there exists a unique decom-
position 𝛽 = 𝛽0 + 𝛽1 such that 𝛽0 ∈ 0 and 𝛽1 ∈ 1. Such
decomposition is popular in the smoothing spline litera-
ture (Gu, 2013; Wahba, 1990; Yuan & Cai, 2010). Let 𝐷1 be
the reproducing kernel of 1 such that 𝐽(𝛽, 𝛽) = ⟨𝛽, 𝛽⟩𝐷1
for 𝛽 ∈ 1. It follows from the properties of reproducing
kernel that for any 𝑢 ∈ 𝕌 and 𝛽1 ∈ 1, we have 𝐷1(𝑢, ⋅) ∈1 and ⟨𝛽1, 𝐷1(𝑢, ⋅)⟩𝐷1 = 𝛽1(𝑢).
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LI et al. 5

The dimension𝑁0 for the null space0 is determined by
the form of the penalty function 𝐽(𝛽, 𝛽). Specifically, when
𝐽(𝛽, 𝛽) = ∫ 1

0
𝛽(𝑚)(𝑢)𝛽(𝑚)(𝑢)𝑑𝑢 and 𝛽 ∈ 𝐻𝑚(𝕌), 0 is an

𝑚-dimensional linear subspace of 𝐻𝑚(𝕌) with 𝜓1(𝑢) =
1 and 𝜓𝑟(𝑢) = 𝐵𝑟−1(𝑢)∕(𝑟 − 1)! for 𝑟 ∈ {2, 3, … ,𝑚}, where
𝐵𝑟−1(𝑢) is the (𝑟 − 1)th Bernoulli polynomial. Moreover,
the reproducing kernel 𝐷1 of1 has the form𝐷1(𝑢1, 𝑢2) =
𝐵𝑚(𝑢1)𝐵𝑚(𝑢2) + (−1)

𝑚−1𝐵2𝑚(|𝑢1 − 𝑢2|). In this case, the
dimension𝑁0 = 𝑚. We refer to Chapter 1 of Wahba (1990)
for more details about RKHS.

Theorem 1. There exist 𝐝 = (𝑑1, … , 𝑑𝑁0)
⊤ and 𝐜𝑖 =

(𝑐𝑖1, … , 𝑐𝑖𝑀𝑖 )
⊤ such that the minimizer 𝛽𝑛,𝜆 of (3) resides in

the subspace of the functions of the form

𝛽𝑛,𝜆(𝑢) =

𝑁0∑
𝑙=1

𝑑𝑙𝜓𝑙(𝑢) +

𝑛∑
𝑖=1

𝑀𝑖∑
𝑘=1

𝑐𝑖𝑘 ∫ 𝑋𝑖(𝑠𝑖𝑘, 𝑢1)𝐷1(𝑢1, 𝑢)𝑑𝑢1

= 𝐝⊤𝝍(𝑢) +

𝑛∑
𝑖=1

𝐜⊤
𝑖
(𝐷1𝑋𝑖)(𝑢), (5)

where (𝐷1𝑋𝑖)(𝑢) = (∫ 𝐷1(𝑢1, 𝑢)𝑋𝑖(𝑠𝑖1, 𝑢1)𝑑𝑢1, … , ∫ 𝐷1(𝑢1,
𝑢)𝑋𝑖(𝑠𝑖𝑀𝑖 , 𝑢1)𝑑𝑢1)

⊤ and 𝝍(𝑢) = (𝜓1(𝑢), … , 𝜓𝑁0(𝑢))
⊤.

Theorem 1 states that 𝛽𝑛,𝜆 resides in a finite-dimensional
subspace of 𝐻𝑚(𝕌). Thus, by making use of the infor-
mation of observations at all the time points together,
we generalize the representer theorem in Yuan and Cai
(2010) to the functional linear regression model for asyn-
chronous longitudinal data. It is noteworthy that this result
reduces an infinite-dimensional optimization problem to
a finite-dimensional one, which enables easy implemen-
tation. The details of how the representer theorem in
Theorem 1 can be derived are included in Section S4 of the
Supporting Information.
Denote 𝐗𝑖(𝑢) = (𝑋𝑖(𝑠𝑖1, 𝑢), … , 𝑋𝑖(𝑠𝑖𝑀𝑖 , 𝑢))

⊤, 𝐗(𝑢) = (𝐗1
(𝑢)⊤, … ,𝐗𝑛(𝑢)

⊤)⊤, 𝐜 = (𝐜⊤1 , … , 𝐜
⊤
𝑛 )
⊤, and 𝝃𝑖(𝑠𝑖𝑘) = ∫ 𝑋𝑖

(𝑠𝑖𝑘, 𝑢)𝝍(𝑢)𝑑𝑢. By using the representation of 𝛽 in (5), we
can show that

∫ 𝑋𝑖(𝑠𝑖𝑘, 𝑢)𝛽(𝑢)𝑑𝑢 = 𝐝⊤ ∫ 𝑋𝑖(𝑠𝑖𝑘, 𝑢)𝝍(𝑢)𝑑𝑢 + 𝐜⊤

∫ 𝑋𝑖(𝑠𝑖𝑘, 𝑢)(𝐷1𝐗)(𝑢)𝑑𝑢 (6)

and 𝐽(𝛽) = 𝐜⊤[∬ 𝐗(𝑢1)𝐷1(𝑢1, 𝑢2)𝐗(𝑢2)⊤𝑑𝑢1𝑑𝑢2]𝐜. Then,
the estimation of 𝛽 becomes that of 𝐝 and 𝐜 through
maximizing

−(2𝑛)−1
𝑛∑
𝑖=1

𝐿𝑖∑
𝑗=1

𝑀𝑖∑
𝑘=1

𝐾𝑏(𝑡𝑖𝑗 − 𝑠𝑖𝑘)
{
𝑌𝑖(𝑡𝑖𝑗) − 𝐝

⊤𝝃𝑖(𝑠𝑖𝑘) − 𝐜
⊤

∫ 𝑋𝑖(𝑠𝑖𝑘, 𝑢)(𝐷1𝐗)(𝑢)𝑑𝑢
}2

−(𝜆∕2)𝐜⊤
[
∫ ∫ 𝐗(𝑢1)𝐷1(𝑢1, 𝑢2)𝐗(𝑢2)⊤𝑑𝑢1𝑑𝑢2

]
𝐜, (7)

which is quadratic in 𝐝 and 𝐜. Thus, there exists
a unique solution to the maximization prob-
lem (7) as follows. Denote 𝜽 = (𝐝⊤, 𝐜⊤)⊤ and
𝝃𝑖(𝑠𝑖𝑘) = (𝝃𝑖(𝑠𝑖𝑘)

⊤, ∫ 𝑋𝑖(𝑠𝑖𝑘, 𝑢)(𝐷1𝐗)(𝑢)𝑑𝑢⊤)⊤, 𝑊 is
a block-diagonal matrix with a zero matrix and
∫ ∫ 𝐗(𝑢1)𝐷1(𝑢1, 𝑢2)𝐗(𝑢2)⊤𝑑𝑢1𝑑𝑢2 lying along the
diagonal. Therefore, (7) can be rewritten as

−(2𝑛)−1
𝑛∑
𝑖=1

𝐿𝑖∑
𝑗=1

𝑀𝑖∑
𝑘=1

𝐾𝑏(𝑡𝑖𝑗 − 𝑠𝑖𝑘)
{
𝑌𝑖(𝑡𝑖𝑗) − 𝜽

⊤𝝃𝑖(𝑠𝑖𝑘)
}2

−(𝜆∕2)𝜽⊤𝑊𝜽⊤, (8)

leading to the solution 𝜽 given by

{
𝑛∑
𝑖=1

𝐿𝑖∑
𝑗=1

𝑀𝑖∑
𝑘=1

𝐾𝑏(𝑡𝑖𝑗 − 𝑠𝑖𝑘)𝝃𝑖(𝑠𝑖𝑘)𝝃𝑖(𝑠𝑖𝑘)
⊤
+ 𝑛𝜆𝑊

}−1

𝑛∑
𝑖=1

𝐿𝑖∑
𝑗=1

𝑀𝑖∑
𝑘=1

𝐾𝑏(𝑡𝑖𝑗 − 𝑠𝑖𝑘)𝑌𝑖(𝑡𝑖𝑗)𝝃𝑖(𝑠𝑖𝑘). (9)

Tuning parameter selection plays an important role in both
estimation and testing. Following Li et al. (2020), we adopt
K-fold cross-validation to simultaneously choose the tun-
ing parameters including the penalty 𝜆 and the bandwidth
𝑏. The cross-validation criterion is the summation of the
changes in the likelihood function after we leave onefold
out, smaller changes are better.

3 ASYMPTOTIC PROPERTIES

In this section,we introduce a new inner product in𝐻𝑚(𝕌)
and obtain the convergence rate and theBahadur represen-
tation of the functional estimator in terms of the new inner
product. We start with some notations. Let 𝑎 ≍ 𝑏 if there
exist positive constants 𝑐1, 𝑐2 > 0 such that 𝑐1 ≤ 𝑎∕𝑏 ≤ 𝑐2,
and let ‖ ⋅ ‖𝐿2 be the 𝐿2 norm. For any 𝛽1, 𝛽2 ∈ 𝐻𝑚(𝕌), we
define

⟨𝛽1, 𝛽2⟩ = 𝑉(𝛽1, 𝛽2) + 𝜆𝐽(𝛽1, 𝛽2) = ∫
1

0
∫
1

0

𝐶(𝑢1, 𝑢2)

𝛽1(𝑢1)𝛽2(𝑢2)𝑑𝑢1𝑑𝑢2 + 𝜆𝐽(𝛽1, 𝛽2), (10)
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6 LI et al.

F IGURE 2 𝑝-Values and adjusted 𝑝-values of the 87 ROIs in Scenario 2. ROIs in the inner blue sector are Bonferroni significant and
ROIs in the outer blue sector are FDR significant at the 0.05 level. This figure appears in color in the electronic version of this article, and any
mention of color refers to that version.

F IGURE 3 Functional estimates of the right inferior temporal, and right amygdala and middle temporal among the 21 FDR significant
ROIs
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LI et al. 7

where 𝐶(𝑢1, 𝑢2) = ∫ 𝐸{𝑋𝑖(𝑠, 𝑢1)𝑋𝑖(𝑠, 𝑢2)}𝜌(𝑠, 𝑠)𝑑𝑠, in
which 𝜌(𝑠, 𝑠) will be introduced in Assumption 1. Denote
the induced norm by ‖ ⋅ ‖. The operator 𝐶(𝑢1, 𝑢2) can
be viewed as a new type of covariance operator of 𝑋
under the asynchronous data setting, since it differs
from those operators proposed for functional data
under cross-sectional setting (Li & Zhu, 2020; Shang &
Cheng, 2015; Yuan & Cai, 2010), which take the form of
𝐶𝐵(𝑢1, 𝑢2) = 𝐸[𝐵(𝑋)𝑋𝑖(𝑢1)𝑋𝑖(𝑢2)], where 𝐵(𝑋) is a func-
tion of 𝑋. However, 𝐶𝐵(𝑢1, 𝑢2) is not directly applicable to
longitudinal functional data.
In the following, we present some assumptions that help

to derive the asymptotic results.

Assumption 1. The counting process 𝑁𝑖(𝑡, 𝑠) is indepen-
dent of (𝑋𝑖, 𝜖𝑖) and 𝑁𝑖(𝜏, 𝜏) is bounded with probability
1. There exists a twice-continuous differentiable func-
tion 𝜌(𝑡, 𝑠) such that 𝐸{𝑑𝑁𝑖(𝑡, 𝑠)} = 𝜌(𝑡, 𝑠)𝑑𝑡𝑑𝑠. The  =
{𝜌(𝑡, 𝑡) > 0, 𝑡 ∈ [0, 1]} has strictly positive Lebesgue mea-
sure. Also 𝑃{𝑑𝑁(𝑡1, 𝑡2) = 1|𝑁(𝑠1, 𝑠2) − 𝑁(𝑠1−, 𝑠2−) = 1} =
𝑓(𝑡1, 𝑡2, 𝑠1, 𝑠2)𝑑𝑡1𝑑𝑡2 holds for any 𝑡1 ≠ 𝑠1 and 𝑡2 ≠ 𝑠2,
where𝑓(𝑡1, 𝑡2, 𝑠1, 𝑠2) is continuous. The left and right limits
of 𝑓(𝑡1, 𝑡2, 𝑠1, 𝑠2) exist.

Assumption 2. The kernel function 𝐾(⋅) is a symmetric
density function satisfying ∫ 𝑧2𝐾(𝑧)𝑑𝑧 < ∞, ∫ 𝐾(𝑧)4𝑑𝑧 <
∞, ∫ 𝑧𝐾(𝑧)2𝑑𝑧 < ∞, and ∫ 𝑧𝐾(𝑧)4𝑑𝑧 < ∞.
Assumption 3. For 𝑠, 𝑡 ∈ [0, 𝜏], 𝐸{𝜖(𝑡)} = 0,
𝑣𝑎𝑟(𝜖(𝑡)) = 𝜎2(𝑡), and 𝑐𝑜𝑣(𝜖(𝑡), 𝜖(𝑠)) = 𝑟(𝑠, 𝑡). Assume
that sup𝑡 𝜎

2(𝑡) < ∞ and 𝑟(𝑠, 𝑡) is twice continuously
differentiable in [0, 𝜏]⊗2.

Following Cao et al. (2015) and Chen and Cao (2017),
the counting process is required to be independent of the
response and the functional covariate in Assumption 1.
The assumption of bounded 𝑁𝑖(𝑡, 𝑠) is conventional in
sparse longitudinal data (Diggle, 2002; Fan & Li, 2004;
Lin et al., 2000; Sun et al., 2022). This differs from the
dense setting where 𝐿𝑖 and 𝑀𝑖 → ∞ for all 𝑖. We require
that the intensity function 𝜌(𝑠, 𝑡) is positive when 𝑠 = 𝑡 at
some points, and 𝜌(𝑠, 𝑡) need not be greater than 0 when
𝑠 ≠ 𝑡. Similar assumptions have been widely used for syn-
chronous data (Lin & Ying, 2001; Martinussen & Scheike,
2006; Yao et al., 2005). The 𝑓(𝑡1, 𝑡2, 𝑠1, 𝑠2) can be viewed
as a marginal intensity function of (𝑡1, 𝑡2). Regular con-
ditions with respect to the kernel function are stated in
Assumption 2. We also require the differentiability of the
covariance of 𝜖(𝑡) in Assumption 3.

Assumption 4. The operator 𝐶(𝑢1, 𝑢2) is continuous
in [0, 1]⊗2, and for any 𝛽 ∈ 𝐿2([0, 1]) satisfying 𝐶𝛽 = 0,

where (𝐶𝛽)(𝑢1) = ∫ 𝐶(𝑢1, 𝑢2)𝛽(𝑢2)𝑑𝑢2, we have 𝛽 = 0.
Also, there exists 𝐶1 > 0 such that for any 𝑢1, 𝑢2 ∈ 𝕌, we
have | ∫ 𝐸(𝑋𝑖(𝑠, 𝑢1)𝑋𝑖(𝑠, 𝑢2)) 𝜕2𝜌(𝑡,𝑠)𝜕𝑡2

|𝑡=𝑠𝑑𝑠| < 𝐶1.
Assumption 5. There exists a sequence of functions
{𝜑𝜈}𝜈≥1 ⊂ 𝐻𝑚(𝕌) such that ‖𝜑𝜈‖𝐿2 ≤ 𝐶𝜑𝜈𝑎 for each 𝑣 ≥ 1,
some constant 𝑎 ≥ 0 and 𝐶𝜑 > 0 and 𝑉(𝜑𝜈, 𝜑𝜇) = 𝛿𝜈𝜇 and
𝐽(𝜑𝜈, 𝜑𝜇) = 𝜌𝜈𝛿𝜈𝜇 hold for any 𝜈, 𝜇 ≥ 1, where 𝛿𝜈𝜇 is the
Kronecker delta and 𝜌𝜈 is a nondecreasing nonnegative
sequence satisfying 𝜌𝜈 ≍ 𝜈2𝑘 for 𝑘 > 𝑎 + 1∕2.

Assumption 6. For any 𝜑𝜈, 𝜑𝜇 in Assumption 5, there
exists some constant 𝐶2 > 0 satisfying

|||∫ ∫
[
∫ 𝐸{𝑋𝑖(𝑠, 𝑢1)𝑋𝑖(𝑠, 𝑢2)}

𝜕2𝜌(𝑡, 𝑠)

𝜕𝑡2
|𝑡=𝑠𝑑𝑠]𝜑𝜈(𝑢1)𝜑𝜇(𝑢2)𝑑𝑢1𝑑𝑢2||| < 𝐶2.(11)

Assumption 4 imposes conditions on the covariance
operator. It enables (10) to be a well-defined inner prod-
uct so that under ⟨⋅, ⋅⟩, 𝐻𝑚(𝕌) is an RKHS. Assumption 5
indicates that any 𝛽 ∈ 𝐻𝑚(𝕌) admits the Fourier expan-
sion 𝛽 =

∑∞
𝜈=1 𝑉(𝛽, 𝜑𝜈)𝜑𝜈. This assumption is commonly

made in smoothing spline literature andplays a critical role
in controlling the local behaviors of the penalized estimate
(Gu, 2013). In particular, the eigensystem can be obtained
from the pseudo Sacks–Ylvisaker conditions in the Supple-
mentary Material of Shang and Cheng (2015), leading to
the explicit relations between 𝑚, 𝑎, and 𝑘 such that 𝑘 =
𝑚 + 𝑎. Moreover, our inner product is different from those
in Shang and Cheng (2015) and Li and Zhu (2020), leading
to different eigenfunctions and eigenvalues. Assumption 6
is used to control the effect of the kernel function on the
inner product (10). If the intensity function 𝜌(𝑡, 𝑠) is uni-
formly bounded, then (11) holds by the construction of the
eigenfunctions.

Assumption 7. There exists a 𝑤 ∈ (0, 1) such that
sup𝑠 𝐸(exp(𝑤(∫ 𝑋2(𝑠, 𝑢)𝑑𝑢)1∕2)) is bounded. Moreover,
for 𝑑 ∈ {4, 6, 8} and any 𝛽 ∈ 𝐻𝑚(𝕌), there exists a con-
stant 𝑀𝑑 > 0 satisfying ∫ 𝐸(∫ 𝑋𝑖(𝑠, 𝑢)𝛽(𝑢)𝑑𝑢)𝑑𝜌(𝑠, 𝑠)𝑑𝑠 ≤
𝑀𝑑[∫ 𝐸(∫ 𝑋𝑖(𝑠, 𝑢)𝛽(𝑢)𝑑𝑢)2𝜌(𝑠, 𝑠)𝑑𝑠]𝑑∕2.
Assumption 8. The expectation 𝐸[𝑋(𝑡, 𝑢1)𝑋(𝑠, 𝑢2)] is
twice continuously differentiable in [0, 𝜏]⊗2 for all 𝑢1, 𝑢2,
and there exist positive constants 𝐶3 and 𝐶4 such that

|||∫ 𝜕𝐸(𝑋(𝑡, 𝑢)𝑋(𝑠, 𝑢))

𝜕𝑡
|𝑡=𝑠 𝜕𝜌(𝑡, 𝑠)𝜕𝑡

|𝑡=𝑠𝑑𝑠||| < 𝐶3, |||
∫
𝜕2𝐸(𝑋(𝑡, 𝑢)𝑋(𝑠, 𝑢))

𝜕𝑡2
|𝑡=𝑠𝜌(𝑠, 𝑠)𝑑𝑠||| < 𝐶4. (12)

Assumption 7 concerns the moments of a linear func-
tional of 𝑋, which is similar to Assumption (b) in Yuan
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8 LI et al.

and Cai (2010). Assumption 8 is similar to Condition 3 in
Cao et al. (2015), which posits smoothness assumptions on
𝐸[𝑋(𝑡, 𝑢1)𝑋(𝑠, 𝑢2)] and 𝜌(𝑡, 𝑠). Assumptions 7 and 8 hold
for bounded intensity function and bounded covariance
function. In clinical settings, it is common that each sub-
ject has a finite number of visits and many neuroimaging
measures are uniformly bounded.
Wederive the asymptotic convergence rate of the estima-

tor 𝛽𝑛,𝜆 under some mild conditions detailed above. Recall
that 𝑏 is the bandwidth for the kernel function and denote
ℎ = 𝜆1∕(2𝑘), where 𝑘 is defined in Assumption 5.

Theorem 2. Suppose that Assumptions 1–8 are sat-
isfied, as 𝑛 → ∞, if ℎ = 𝑜(1), 𝑏 = 𝑜(1), 𝑏4ℎ−1 = 𝑜(1),
and 𝑛−1∕2𝑏−1∕2ℎ−(𝑎+1)−(2𝑘−2𝑎−1)∕4𝑚(log 𝑛)(log log 𝑛)1∕2 =
𝑜(1) hold, then we have

‖𝛽𝑛,𝜆 − 𝛽0‖ = 𝑂𝑝((𝑛𝑏ℎ)−1∕2 + ℎ𝑘 + 𝑏2ℎ−1∕2). (13)

Theorem 2 show that the convergence rate in (13) is
slower than the standard nonparametric rate (𝑛ℎ)−1∕2 +
ℎ𝑘 for the smoothing spline in the literature (Gu, 2013). We
achieve an optimal convergence estimation rate by mini-
mizing (𝑛𝑏ℎ)−1∕2 + ℎ𝑘 + 𝑏2ℎ−1∕2, leading to 𝑏 = 𝑂(𝑛−1∕5)
and ℎ = 𝑂(𝑛−4∕{5(2𝑘+1)}). From Proposition 2.2 of Shang
and Cheng (2015), which states that 𝑘 = 𝑚 + 𝑎 under
some conditions, it follows that the optimal rate of con-
vergence can be obtained for𝑚 > 1∕2. With this choice of
the bandwidth and the smoothing parameter, we achieve
a rate of convergence 𝑂(𝑛−4𝑘∕{5(2𝑘+1)}), which is slightly
slower than the optimal nonparametric rate of conver-
gence 𝑂(𝑛−𝑘∕(2𝑘+1)) shown in Section 4.5 of Wahba (1990).
The loss of efficiency is primarily caused by the asyn-
chronous data setting.
We are able to establish the Bahadur representa-

tion for the functional estimator. We need to derive
the Fréchet derivatives of the loss function. It fol-
lows from the definition of reproducing kernel that we
have 𝐷𝑢 =

∑
𝜈≥1 𝜑𝜈(𝑢)𝜑𝜈∕(1 + 𝜆𝜌𝜈). Define 𝜏(𝑥𝑠) satisfy-

ing ⟨𝜏(𝑥𝑠), 𝜑𝜈⟩ = ∫ 1
0
𝑥(𝑠, 𝑢)𝜑𝜈(𝑢)𝑑𝑢 ≡ 𝑥𝑠𝜈 for any 𝜈 ≥ 1.

Thus, we have 𝜏(𝑥𝑠) =
∑
𝜈≥1 𝑥𝑠𝜈𝜑𝜈∕(1 + 𝜆𝜌𝜈). We also

define two linear operators 𝑅𝑥(𝑠) for time point 𝑠 and 𝑃𝜆
as ⟨𝑅𝑥(𝑠), 𝛽⟩ = ∫ 1

0
𝑥(𝑠, 𝑢)𝛽(𝑢)𝑑𝑢 for any time point 𝑠 and⟨𝑃𝜆𝛽, 𝛽⟩ = 𝜆𝐽(𝛽, 𝛽), respectively. Direct calculations give

𝑅𝑥(𝑠) = 𝜏(𝑥𝑠) for any time point𝑠and (𝑃𝜆𝜑𝜈)(⋅) =
𝜆𝜌𝜈
1 + 𝜆𝜌𝜈

𝜑𝜈(⋅). (14)

Then, 𝓁𝑛,𝜆(𝛽) can be rewritten as

𝓁𝑛,𝜆(𝛽) = −
1

2𝑛

𝑛∑
𝑖=1

∫ ∫ 𝐾𝑏(𝑡 − 𝑠)
{
𝑌𝑖(𝑡) − ⟨𝑅𝑋𝑖 (𝑠), 𝛽⟩}2𝑑𝑁𝑖(𝑡, 𝑠) − 𝜆∕2⟨𝑃𝜆𝛽, 𝛽⟩.(15)

The first-order Fréchet derivative of 𝓁𝑛,𝜆(𝛽)with respect to
𝛽 is given by

𝑆𝑛,𝜆(𝛽) =
1

𝑛

𝑛∑
𝑖=1

∫ ∫ 𝐾𝑏(𝑡 − 𝑠)
{
𝑌𝑖(𝑡) − ⟨𝑅𝑋𝑖 (𝑠), 𝛽⟩}𝑅𝑋𝑖 (𝑠)𝑑𝑁𝑖(𝑡, 𝑠) − 𝑃𝜆𝛽.(16)

The following theorem establishes the Bahadur represen-
tation of the functional estimator.

Theorem 3. If the conditions of Theorem 2 hold, then we
have as 𝑛 → ∞,

‖𝛽𝑛,𝜆 − 𝛽0 − 𝑆𝑛,𝜆(𝛽0)‖ = 𝑂𝑝(𝑎𝑛), (17)

where 𝑎𝑛 = (𝑛−1∕2𝑏−1∕2ℎ−(𝑎+1)−(2𝑘−2𝑎−1)∕4𝑚(log 𝑛)(log log
𝑛)1∕2 + 𝑏2)𝜁𝑛, in which 𝜁𝑛 = ((𝑛𝑏ℎ)−1∕2 + ℎ𝑘 + ℎ−1∕2𝑏2),

Theorem 3 establishes the Bahadur representation of
𝛽𝑛,𝜆 for model (1) based on asynchronous longitudinal
data. However, compared with the results in Shang and
Cheng (2015), the mismatched time points between the
response and the covariate and longitudinal functional
data bring additional challenges to the theoretical inves-
tigation, leading to a different rate of convergence.

4 HYPOTHESIS TESTING

In this section, we propose a test statistic to test the nullity
of the functional parameter. Consider the null and alterna-
tive hypotheses given by 𝐻0 ∶ 𝛽 = 𝛽0 versus 𝐻1 ∶ 𝛽 ≠
𝛽0. Without loss of generality, we set 𝛽0 = 0. We propose a
penalized likelihood ratio test statistic as follows:

𝑇𝑛,𝑏,𝜆 = −2(𝑛𝑏){𝓁𝑛,𝜆(𝛽0) − 𝓁𝑛,𝜆(𝛽𝑛,𝜆)}. (18)

Let �̃�𝑙 = ℎ
∑
𝜈[∫ 𝐾(𝑧)2𝑑𝑧 ∫ 𝜎2(𝑠)𝐸(∫ 𝑋𝑖(𝑠, 𝑢)𝜑𝜈(𝑢))2𝜌(𝑠, 𝑠)

𝑑𝑠]𝑙∕(1 + 𝜆𝜌𝜈)
𝑙. The next theorem states the null limit

distribution of 𝑇𝑛,𝑏,𝜆.

Theorem 4. Suppose the conditions of Theorem 3 and the
null hypothesis𝐻0 hold, (𝑛𝑏)𝑎𝑛𝜁𝑛 = 𝑜(ℎ−1∕2) , (𝑛𝑏)1∕2𝑎𝑛 =
𝑜(1), (𝑛𝑏)ℎ2𝑘+1 = 𝑂(1), 𝑏ℎ−1 = 𝑜(1), and 𝑛1∕2𝑏ℎ → ∞.
Furthermore, if sup𝑡 𝐸(𝜖

4(𝑡)) < ∞, thenas𝑛 → ∞, we have

𝑇𝑛,𝑏,𝜆 − ℎ
−1�̃�1 − (𝑛𝑏)‖𝑃𝜆𝛽0‖2√
2�̃�2ℎ−1

𝑑
⟶ 𝑁(0, 1). (19)

Denote 𝑢𝑛 = ℎ−1�̃�21∕�̃�2 and �̃� = �̃�1∕�̃�2. It can be shown
that (𝑛𝑏)�̃�‖𝑃𝜆𝛽0‖2 = 𝑜(𝑢𝑛) holds and

(�̃�𝑇𝑛,𝑏,𝜆 − 𝑢𝑛)∕
√
2𝑢𝑛

𝑑
⟶ 𝑁(0, 1), (20)
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LI et al. 9

implying that �̃�𝑇𝑛,𝑏,𝜆 is approximately 𝜒2𝑢𝑛 .
To derive the separation rate of the proposed test, we

consider a local alternative𝐻1 ∶ 𝛽 = 𝛽𝑛, where 𝛽𝑛 ∈ Θ𝑙 =
{‖𝛽‖𝐿2 ≤ 𝑙, 𝐽(𝛽, 𝛽) < 𝑙} for some fixed constant 𝑙 > 0.
Theorem 5. If the conditions of Theorem 4 and 𝐻1 ∶ 𝛽 =
𝛽𝑛 hold, then for any sequence 𝑐𝑛 → ∞, the power function
of the proposed test is asymptotically one such that

inf
𝛽𝑛∈Θ𝑙∶‖𝛽𝑛‖≥𝑐𝑛𝜂𝑛 𝑃𝛽𝑛

(
�̃�𝑇𝑛,𝑏,𝜆 − 𝑢𝑛 − (𝑛𝑏)�̃�‖𝑃𝜆𝛽0‖2√

2𝑢𝑛
> 𝑧𝛼

)
→ 1, (21)

where 𝜂𝑛 ≍
√
(𝑛𝑏ℎ1∕2)−1 + ℎ2𝑘 + 𝑏2 and 𝑧𝛼 is the upper 𝛼

quantile of𝑁(0, 1).

From Theorem 5, it follows that the proposed test can
detect any local alternative with the separation rate no
faster than 𝜂𝑛. Specifically, the minimal separation rate,
𝑛−2𝑘∕(6𝑘+1), is attained when 𝑏 = 𝑂(𝑛−2𝑘∕(6𝑘+1)) and ℎ =
𝑂(𝑛−2∕(6𝑘+1)), which are different from the choice of (𝑏, ℎ)
for the optimal convergence rate in Theorem 2.
To circumvent the difficulty of approximating the mean

and variance in Theorem 4, we develop a random-
weighting bootstrap procedure to approximate the asymp-
totic distribution of 𝑇𝑛,𝑏,𝜆. According to (20), under the
null hypothesis, 𝑇𝑛,𝑏,𝜆 converges in distribution to a nor-
mal distribution with 𝐸(𝑇𝑛,𝑏,𝜆) = 𝑢𝑛∕�̃� and var(𝑇𝑛,𝑏,𝜆) =
2𝑢𝑛∕�̃�

2, leading to �̃� = 2𝐸(𝑇𝑛,𝑏,𝜆)∕var(𝑇𝑛,𝑏,𝜆) and 𝑢𝑛 =
2𝐸2(𝑇𝑛,𝑏,𝜆)∕ var(𝑇𝑛,𝑏,𝜆). Let 𝓁𝑖𝑛,𝜆(𝛽) =

∑𝐿𝑖
𝑗=1

∑𝑀𝑖
𝑘=1 𝐾𝑏(𝑡𝑖𝑗 −

𝑠𝑖𝑘){𝑌𝑖(𝑡𝑖𝑗) − ∫ 𝑋𝑖(𝑠𝑖𝑘, 𝑢)𝛽(𝑢)𝑑𝑢}2 + 𝜆𝐽(𝛽, 𝛽) for each 𝑖, we
have to 𝓁𝑛,𝜆(𝛽) = −

∑𝑛
𝑖=1 𝓁

𝑖
𝑛,𝜆
(𝛽)∕(2𝑛). Our bootstrap pro-

cedure consists of the following three steps:

∙ Step 1: Compute the estimator 𝛽𝑛,𝜆 by maximizing (3)
and then calculate the statistic 𝑇𝑛,𝑏,𝜆.

∙ Step 2: For each bootstrapping replication
𝑎 = 1,… ,𝐴, generate 𝑛 i.i.d. random variables
Π
(𝑎)
𝑛 = (Π

(𝑎)
𝑛1 , … ,Π

(𝑎)
𝑛𝑛 ) with both mean and vari-

ance being 1 and max𝑖 𝐸(Π
(𝑎)
𝑛𝑖
)4 < ∞. Then, we

calculate 𝛽(𝑎) = arg sup𝛽 𝓁
(𝑎)
𝑛,𝜆
(𝛽) and compute

𝑇
(𝑎)
𝑛,𝑏,𝜆

= −2(𝑛𝑏)[𝓁
(𝑎)
𝑛,𝜆
(𝛽𝑛,𝜆) − 𝓁

(𝑎)
𝑛,𝜆
(𝛽(𝑎))], where

𝓁
(𝑎)
𝑛,𝜆
(𝛽) = −

∑𝑛
𝑖=1 Π

(𝑎)
𝑛𝑖
𝓁𝑖
𝑛,𝜆
(𝛽)∕(2𝑛), in which the

tuning parameters are the same as those selected in
Step 1.

∙ Step 3: Calculate the sample mean and variance of 𝑇(𝑎)
𝑛,𝑏,𝜆

by 𝐸 = 𝐴−1
∑𝐴
𝑎=1 𝑇

(𝑎)
𝑛,𝑏,𝜆

and 𝑉 = 𝐴−1
∑𝐴
𝑎=1(𝑇

(𝑎)
𝑛,𝑏,𝜆
− 𝐸)2

and estimate �̃� and 𝑢𝑛 by using ̂̃𝜎 = 2𝐸∕𝑉 and �̂�𝑛 =
2𝐸2∕𝑉. Then, calculate the 𝑝-value of 𝑇𝑛,𝑏,𝜆 according
to the null limit distribution in (20) by replacing the
unknownparameterswith their estimates. If the𝑝-value

is smaller than a prespecified significance level, say 0.05,
then one rejects the null hypothesis.

The above bootstrap procedure benefits from the time
efficiency of sample averaging. Compared to the stan-
dard bootstrap method that uses the bootstrap samples,
we only need to reestimate the unknown parameters. The
following theorem shows that the bootstrap distribution,
conditional on the observations, asymptotically imitates
the null limit distribution.

Theorem 6. Under the conditions of Theorem 4, and for
𝑖 = 1, … , 𝑛 and 𝑎 = 1,… ,𝐴, if the bootstrap weights sat-
isfy 𝐸(Π(𝑎)

𝑛𝑖
) = 1, 𝐸(Π

(𝑎)
𝑛𝑖
− 1)2 = 1, and max𝑖 𝐸(Π

(𝑎)
𝑛𝑖
)4 <

∞, then 𝑇(𝑎)
𝑛,𝑏,𝜆

converges weakly to the null limit distribution
of 𝑇𝑛,𝑏,𝜆 conditioning on the data.

Theorem 6 validates the proposed bootstrap procedure.
Because 𝑇(𝑎)

𝑛,𝑏,𝜆
and 𝑇𝑛,𝑏,𝜆 share the same limit distribution

under the null hypothesis, it is reasonable to estimate the
unknown �̃� and 𝑢𝑛 by using the moments of 𝑇

(𝑎)
𝑛,𝑏,𝜆

.

5 SIMULATION STUDIES

This section contains three simulation experiments for
evaluating the finite-sample performance of the proposed
testing procedure. Estimation and prediction errors are
examined in Example 1. The size and power of the
proposed test are approximated in Examples 2 and 3.
To obtain different observation times for the response

and the covariate, the number of observation times of
𝑌(𝑡) and 𝑋(𝑡, ⋅) comes from a Poisson distribution with
the intensity rate 10. Once we have the two numbers of
observation times, the observation times for the response
and the covariates are independently generated from the
uniform distribution 𝑈(0, 1).

Example 1. The 𝑋𝑖(𝑡, 𝑢) is of the form 𝑋𝑖(𝑡, 𝑢) =∑100
𝑘=1 𝜁𝑘𝑀𝑘(𝑡)𝜗(𝑢, 𝑘),

where 𝜁𝑘 = (−1)𝑘+1𝑘−𝜔∕2 with 𝜔 ∈ {1.1, 1.5, 2, 4}. The
term 𝜔 controls the smoothness of the functional vari-
ables and they are expected to be less smooth for smaller
𝜔. Moreover, 𝑀𝑘(𝑡) is generated from a Gaussian pro-
cess with values at fixed time points being multivari-
ate normal distribution with mean 0, variance 1, and
correlation structure exp(−|𝑡𝑖𝑗 − 𝑡𝑖𝑘|), where 𝑡𝑖𝑗 and 𝑡𝑖𝑘
are, respectively, the 𝑗th and 𝑘th observation times for
the 𝑖th subject. Then, 100 observation times are gener-
ated from the uniform distribution in the 𝑢- direction
throughout the simulation. Moreover, we set 𝜗(𝑢, 𝑘) =
1 if 𝑘 = 1 and 𝜗(𝑢, 𝑘) =

√
2 cos((𝑘 − 1)𝜋𝑢) otherwise.
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10 LI et al.

Instead of observing the functional process completely,
we observe 𝑊𝑖(𝑡, 𝑢) = 𝑋𝑖(𝑡, 𝑢) + 𝑒𝑖(𝑡, 𝑢), where the mea-
surement error 𝑒𝑖(𝑡, 𝑢) is independently generated from a
normal distribution 𝑁(0, 𝜎2𝑋). We set 𝜎

2
𝑋 ∈ {0, 0.25}. Sim-

ilar to Yuan and Cai (2010), the functional coefficient
𝛽0(𝑢) is chosen as 𝛽0(𝑢) = 4

∑100
𝑘=1(−1)

𝑘+1𝑘−1𝜗(𝑢, 𝑘). The
error term 𝜖𝑖(𝑡) is from a Gaussian process with mean
0 and cov{𝜖(𝑠), 𝜖(𝑡)} = 𝜎2𝑌 ⋅ 4

−|𝑡−𝑠|, in which we set 𝜎2𝑌 ∈
{1, 2}. We use fivefold cross-validation to select the penalty
parameter and the bandwidth. For the purpose of illus-
tration, we take 𝐽(𝛽, 𝛽) = ∫ 1

0
𝛽(2)(𝑢)𝛽(2)(𝑢)𝑑𝑢 and hence

𝑁0 = 2 for the proposed estimation method. All simula-
tion results are based on 200 replicates with sample size
𝑛 ∈ {100, 200} by using R (version 3.6.0) on a Linux server
(equipped with Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40
GHz, 125 GB RAM).
To the best of our knowledge, there is no existing work

on the development of FLM for asynchronous data. We
modify three ad hoc methods to ensure fair comparison.
The first method, denoted as FPCA𝑠, is to find the pairs
(𝑌𝑖(𝑡), 𝑋𝑖(𝑠, 𝑢)) that have the minimal distance between
the time points of the response and those of the covari-
ate, treat such pairs as “synchronous data,” and apply the
standard FLM based on FPCA (Hall & Horowitz, 2007).
The number of FPCA components is selected such that
the cumulative percentage of variance explained is above
95%. The second method, denoted as RKHS𝑠, is almost the
same as the first one except that we consider FLM based
on RKHS (Yuan & Cai, 2010). The third method, denoted
as Raw, is to treat the data as “synchronous data” and apply
the proposed method by taking the kernel function to be 1
for (𝑡𝑖𝑗, 𝑠𝑖𝑘) pairs that have the minimal distance and 0 for
other pairs.
To evaluate the finite-sample performance of the pro-

posed estimation procedure, we compute the empirical
mean squared error (MSE) and empirical relatively MSE
(RMSE) of 𝛽𝑛,𝜆. The prediction mean squared error
(PMSE) is also reported based on 200 new test sam-
ples. Furthermore, we calculate the computation time (in
seconds). Table 1 presents the estimation accuracy and pre-
diction results and their computation time in Example 1.
Ourmethod outperforms the other threemethods in terms
of MSEs and RMSEs of 𝛽 and PMSE. As expected, MSEs
and PMSEs decrease as the sample size increases. For our
method, it costs more time to match all covariates with
response and search grid points of the tuning parameters.
Furthermore, for our method and RKHS𝑠, one can find
that at the same sample size, the estimation error tends
to be smaller for smaller 𝜔, whereas the prediction error
tends to be smaller for larger 𝜔. For the raw method, the
estimation error also becomes smaller and the prediction
error becomes larger as 𝜔 decreases. Similar phenomenon

has also been reported in Yuan and Cai (2010). In con-
trast, it is the opposite for FPCA𝑠 since it becomes harder to
accurately estimate the functional scores when𝑋 becomes
less smooth.

Example 2. Samples are generated in the same
way as that in Example 1 except that we set 𝛽0(𝑢) =
𝐵
∑100
𝑘=1(−1)

𝑘+1𝑘−1𝜗(𝑢, 𝑘), where 𝐵 ∈ {0, 0.1, 0.25, 0.5}

and 𝜁𝑘’s are normalized such that 𝜁𝑘 = 𝜁𝑘∕
√∑100

𝑘 𝜁
2
𝑘
. We

choose 𝑛 ∈ {100, 200} and the significance level to be 5%.
For the null hypothesis, 𝐻0 ∶ 𝛽 = 0, the sizes and pow-

ers of the proposed test procedure are summarized based
on 1000 simulation runs with 500 bootstrap samples in
Table 2. Inspecting Table 2 reveals that the empirical sizes
are reasonably controlled around the nominal level, and
the empirical power increases with the sample size 𝑛 as
well as the signal strength. Note that the decay rate of the
eigenvalues for the covariance operator of the functional
covariate is influenced by 𝜈. We find that the proposed test
becomes more powerful for larger 𝜈s’.

Example 3. The functional process is generated
as 𝑋𝑖(𝑡, 𝑢) =

∑100
𝑗=1

√
𝜆𝑗𝑀𝑗(𝑡)𝑉(𝑢, 𝑗), where 𝑀𝑗(𝑡)

is generated in the same way as that in Example 1,
𝑉(𝑢, 𝑗) =

√
2 sin((𝑗 − 0.5)𝜋𝑢), and 𝜆𝑗 = (𝑗 − 0.5)−2𝜋−2.

The true functional parameter is chosen in the
same way as that in Hilgert et al. (2013) such that

𝛽
𝐵,𝜉
0 (𝑡) = 𝐵

∑100
𝑗=1 𝑗

−𝜉−0.5𝑉𝑗(𝑡)∕
√∑∞

𝑘=1 𝑘
−2𝜉−1, where 𝐵

controls the signal strength and 𝜉 reflects the smoothness
of 𝛽0. We choose 𝐵 ∈ {0, 0.1, 0.5, 1} and 𝜉 ∈ {0.1, 0.5, 1}.
The percentage of rejecting 𝐻0 ∶ 𝛽 = 0 is based on
1000 simulation runs with 500 bootstrap samples for
𝑛 ∈ {100, 400}. Table 3 summaries empirical rejection
rates under the settings of Example 3. The proposed test
procedure controls the empirical sizes at the nominal level
5%, and the power approaches to 1 as the sample size,
the signal strength, and the smoothness of the functional
parameter increase.

6 APPLICATION TO THE ADNI DATA

AD, the most prevalent form of dementia among elderly
people, is an irreversible, progressive brain disorder that
slowly destroys memory and thinking skills, and, even-
tually, the ability to carry out the simplest tasks. The
causes of dementia can vary, depending on the types of
brain changes that may be taking place. A characteristic
macroscopic consequence of AD pathology is brain atro-
phy, but most of the existing studies focused on restricted
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TABLE 2 Sizes and powers (multiplied by 100) when testing𝐻0 ∶ 𝛽0 = 0 in Example 2

𝝈𝟐
𝑿
= 𝟎 𝝈𝟐

𝑿
= 𝟎.𝟐𝟓

n 𝝎 𝑩 = 𝟎 𝑩 = 𝟎.𝟏 𝑩 = 𝟎.𝟐𝟓 𝑩 = 𝟎.𝟓 𝑩 = 𝟎 𝑩 = 𝟎.𝟏 𝑩 = 𝟎.𝟐𝟓 𝑩 = 𝟎.𝟓

100 𝜎2𝑌 = 1 1.1 5.2 7.2 17.6 57.0 5.6 8.0 18.2 54.0
1.5 5.4 8.6 27.4 78.8 6.2 8.4 28.4 79.6
2 5.6 9.0 40.0 91.8 6.2 10.4 40.2 91.2
4 6.0 13.2 55.8 97.4 5.4 13.0 53.2 97.8

𝜎2𝑌 = 2 1.1 5.6 6.8 9.6 30.2 6.2 6.6 12.2 31.0
1.5 5.4 7.0 14.4 49.8 5.6 7.4 16.8 49.0
2 5.6 6.8 19.6 67.2 5.4 7.8 21.4 65.8
4 5.8 7.2 29.4 83.2 4.8 9.0 32.0 84.8

200 𝜎2𝑌 = 1 1.1 5.0 7.4 30.2 88.2 5.2 7.6 28.0 84.8
1.5 4.6 10.2 50.6 98.4 5.2 11.4 48.8 96.4
2 4.8 14.4 69.2 99.6 5.4 13.6 67.8 99.2
4 5.4 19.4 86.4 100.0 6.4 18.2 84.2 100

𝜎2𝑌 = 2 1.1 4.6 5.8 16.6 56.0 5.4 6.0 15.6 53.2
1.5 4.6 7.0 27.0 81.2 5.2 6.8 25.4 81.2
2 4.4 8.8 37.6 94.6 5.2 9.0 35.4 92.6
4 4.4 10.8 56.6 99.0 6.2 11.4 54.8 98.6

TABLE 3 Sizes and powers (multiplied by 100) when testing𝐻0 ∶ 𝛽0 = 0 in Example 3

𝝈𝟐
𝑿
= 𝟎 𝝈𝟐

𝑿
= 𝟎.𝟐𝟓

n 𝝃 𝑩 = 𝟎 𝑩 = 𝟎.𝟏 𝑩 = 𝟎.𝟓 𝑩 = 𝟏 𝑩 = 𝟎 𝑩 = 𝟎.𝟏 𝑩 = 𝟎.𝟓 𝑩 = 𝟏

100 𝜎2𝑌 = 1 0.1 6.0 6.2 13.2 33.2 5.6 6.0 14.6 40.0
0.5 6.0 6.4 29.8 83.0 5.6 7.2 35.6 81.4
1 6.0 6.6 38.6 92.2 5.0 7.6 43.0 90.8

𝜎2𝑌 = 2 0.1 5.4 6.6 7.0 16.4 5.4 5.0 8.4 20.4
0.5 5.4 6.6 13.6 49.8 5.4 5.6 17.4 55.6
1 5.4 8.0 21.6 65.6 5.4 5.8 22.6 67.8

400 𝜎2𝑌 = 1 0.1 5.6 5.6 31.80 86.0 4.8 6.6 37.0 92.4
0.5 5.6 8.0 81.20 100.0 4.8 9.4 87.2 99.8
1 5.6 8.8 91.20 100.0 4.8 12.0 94.8 100

𝜎2𝑌 = 2 0.1 5.0 5.0 15.6 56.0 4.6 6.0 22.8 63.4
0.5 5.0 5.2 50.0 98.6 4.6 8.4 57.8 99.4
1 5.0 5.8 64.4 100.0 4.6 9.2 71.4 100

regions (Fjell et al., 2009). Hence, it is of great interest (i)
to investigate the relationship between brain volumes of
different brain regions and cognitive performance and (ii)
to examine whether brain volumes in some specific ROIs
have a significant impact on cognitive performance.
We apply model (1) to the MRI data set collected by the

ADNI study. The MRI data are preprocessed using stan-
dard procedures via advanced normalization tools (Avants
et al., 2011). The procedure consists of the N4 bias correc-
tion, registration-based brain extraction, and a prior-based
N4-Atropos 6 tissue segmentation (oasis template). By
performing multiatlas cortical parcellation, we obtain
brain volumes of 101 ROIs defined by the manually edited

labels of the publicly available MindBoggle-101 data set
(Klein & Tourville, 2012). We exclude subjects for whom
the imaging data do not pass the standard imaging quality
controls, and remove 14 ROIs with many missing values.
The log-Jacobian transformation map for each subject at
the standard space is parceled into 87 ROIs. Finally, we
obtain the brain volume density values within the 87 ROIs,
which provide an intuitive and comprehensive represen-
tation of brain volume values for each region and contain
potentially valuable information such as themode, spread,
and shape of these densities. To deal with the restrictions
that density functions do not live in a linear space,
and which are not convenient for functional regression
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14 LI et al.

modeling, we adopt the log quantile density transfor-
mation proposed in Petersen and Müller (2016) and
take the log quantile density function of brain volume
density curves (abbreviated as brain local volumetric
curves) along the 87 brain regions as functional vari-
ables. Specifically, the density 𝑓 can equivalently be
represented as the cumulative distribution function 𝐹
and quantile functions 𝑄 = 𝐹−1 with support [0, 1].
The log quantile density transformation is given by
log(

𝑑𝑄(𝑡)

𝑑𝑡
) = log(

𝑑𝐹−1(𝑡)

𝑑𝑡
) = log(𝑓−1(𝑄(𝑡))), 𝑡 ∈ [0, 1].

MMSE scores are treated as the response because it has
been widely used to assess cognitive mental status with
lower scores indicating impairment.
The aim of this data analysis is to establish the associa-

tions between theMMSE scores and brain local volumetric
curves across the 87 brain regions measured at different
ages,while investigating the statistical significance of these
associations and identifying the significant brain regions.
We consider two scenarios. In the first scenario (Scenario
1), we utilize model (1) to examine the significance of the
functional coefficient for each brain region. In the sec-
ond scenario (Scenario 2), we consider the same functional
covariate in eachmodel, while adding the clinical informa-
tion, such as diagnostic status at baseline, age, education
level, and the number of APOE4 gene copies. The first sce-
nario plays the role of the most parsimonious approach,
whereas the second one excludes the impacts of the clini-
cal covariates on the response when examining the effects
of the functional covariates.
Similar to Xie and Kang (2017), we study the effects of

brain local volumetric curves region by region and uti-
lize a multiple testing procedure to identify the significant
brain regions. In Scenario 1, we explore the significance of
the functional coefficient using the proposed test for each
brain region and calculate its associated 𝑝-value based on
5000 bootstrap samples. In Scenario 2, we add all clini-
cal variables of interest into model (1) and then explore
the significance of the functional coefficient. The average
computation time of the proposed method applied to the
87 ROIs is 19.62 min with the standard error 0.13 min.
Hence, we obtain 87 𝑝-values of testing the nullity of the
functional coefficients across the 87 ROIs in each scenario.
The Bonferroni correction method and the false discov-
ery rate (FDR) method with the commonly used level 0.05
are adopted to identify important ROIs from the 87 ROIs
tested. We provide the 𝑝-values and the corresponding
adjusted 𝑝-values based on the FDRmethod of the 87 ROIs
for Scenario 2 in Figure 2, and provide that for Scenario 1 in
Figure S1 to save space. Inspecting Figures S1 and 2 reveals
that the functional estimate in Scenario 1 has a stronger
effect on the MMSE scores than that in Scenario 2, fewer
functional covariates are detected to be significant in Sce-

nario 2. Hereafter, we focus on the estimation results for
Scenario 2.
There are 21 ROIs declared to be FDR significant and

17 ROIs declared to be Bonferroni significant after adjust-
ing for the clinical covariates. Specifically, the top 10 ROIs
with small 𝑝-values include left amygdala (9.81e−9), left
lateral ventricle (4.32e−8), left putamen (5.76e−7), right
putamen (7.73e−7), right middle temporal (2.09e−6), left
caudate (4.66e−6), right lateral ventricle (2.65e−5), right
amygdala (3.95e−5), left hippocampus (9.43e−5), and right
hippocampus (1e−4). Preliminary queries indicate that
the top 10 ROIs do indeed have clinical significance in
cognitive functional and memory processes. For exam-
ple, hippocampus plays a vital role in regulating learning,
memory encoding,memory consolidation, and spatial nav-
igation. Strong evidence of symmetry in the functional
estimates of brain volumetric curves is observed in many
brain regions. In Figure 2, many left/right pairs of regions
are identified to be FDR significant, such as amygdala,
lateral ventricle, putamen, hippocampus, middle tempo-
ral, ventral diencephalon (DC), and inferior temporal. It
may suggest similar importance of these ROIs in both
left and right brain hemispheres to the progression of
Alzheimer disease. Besides the well-known crucial fac-
tors, such as hippocampus and amygdala (Du et al., 2001;
Evans et al., 2010; Frisoni et al., 2010), the proposed
model sheds new insight on AD study by successfully
identifying brain regions, such as putamen and caudate,
which receive less attention in the literature (de Jong
et al., 2008).
Furthermore, we depict all the functional estimates of

the 21 FDR significant ROIs in Figures S2–S4. In Figure 3,
we give three examples of the functional estimates. Specif-
ically, functional estimate of the right inferior temporal is
positive, functional estimate of right amygdala has both
positive and negative values, while functional estimate of
right middle temporal is negative.
In summary, 21 ROIs are found to be FDR significant for

the MMSE score with 11 ROIs in the left brain hemisphere
and 10 ROIs in the right brain hemisphere. The estimated
functional effects of the brain local volumetric curves of
the 21 ROIs vary across the brain, and they may have dif-
ferent trends for symmetric brain regions in the left and
right brain hemispheres. These findingsmayprovide anew
perspective for understanding the progression of AD and
the 21 ROIs may be considered as risk factors for the onset
of dementia.

7 DISCUSSION

Many issues still merit further research. Taking multiple
functional covariates into the model is an interesting and
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LI et al. 15

important problem, which requires more comprehensive
investigation. Another interesting problem is to consider
functional quantile regression under the asynchronous
data setting. We can also extend the results to a panel data
setting with the large number of time points. We expect
that the obtained rate of convergence would become faster
for a panel data setting (Fan & Li, 2004; Hu et al., 2014).
These extensions will be pursued in the future study.
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