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ABSTRACT

Micro-expression spotting (MES) is challenging since the small magnitude of
micro-expression (ME) makes them susceptible to global movements like head ro-
tation. However, the unique movement pattern and inherent characteristics of ME
allow them to be distinguished from other movements. Existing MES methods
based on fixed reference frame degrade optical flow accuracy and are overly de-
pendent on facial alignment. In this paper, we propose a skip-k-frame block-wise
main directional mean optical flow (MDMO) feature for MES based on unfixed
reference frame. By employing skip-k-frame strategy, we substantiate the exis-
tence of a distinct and exclusive movement pattern in ME, called M-pattern due to
its feature curve resembling the letter ‘M’. Based on M-pattern and characteristics
of ME, we then provide a novel spotting rules to precisely locate ME intervals.
Block-wise MDMO feature is capable of removing global movements without
compromising complete ME movements in the early feature extraction stage. Be-
sides, A novel pixelmatch-based facial alignment algorithm with dynamic update
of reference frame is proposed to better align facial images and reduce jitter be-
tween frames. Experimental results on CAS(ME)2, SAMM-LV and CASME II
validate the proposed methods are superior to the state-of-the-art methods.

1 INTRODUCTION

Spontaneous micro-expression (ME) is unintentionally leaked when people attempt to conceal or
restrain their expressions in an intensely emotional situation (Li et al., 2023a). These expressions
are of low intensity and usually last less than 0.5 second (Ben et al., 2022), making them difficult
to be detected. Unlike macro-expression (MaE), once ME appears, it can reflect the most genuine
emotion, which is why ME plays an indispensable role in the fields of psychology, business negoti-
ation, and criminal investigation (Xu et al., 2022). Micro-expression spotting (MES) refers to locate
segments (i.e., the onset and offset frame) of micro expressions in a long video. Global movements,
including head movements, zooming in and out are almost inevitable and numerous over a extended
time span. The brief and subtle nature of ME makes it almost imperceptible to the naked eye. Under
such circumstances, ME is easily eclipsed by prolonged and large global movements.

With the advancement of computer vision (Zhang et al., 2024; Xu et al., 2023; Zhang et al., 2023),
MES research has evolved mainly into traditional and deep learning methods. The latter primarily
draws inspiration from the fields of temporal action localization (Yang et al., 2020), object detec-
tion (Tan et al., 2020) and visual recognition (Wang et al., 2021; Liu et al., 2024). Considering the
enormous variety of expression scales, feature pyramid network (FPN) is widely employed in MES
(He et al., 2022; Yu et al., 2021). However, deep learning methods are limited in various aspects,
e.g., inadequate ME samples, disturbance from global movements and limitations of unimodal data.
Recent developments in self-supervision and generative modeling can mitigate these flaws. Tradi-
tional methods resort to a prior knowledge of the ME field (Ekman & Friesen, 2019; Bhushan, 2015)
and mainly include three steps: (1) facial alignment, (2) feature extraction, and (3) spotting. Facial
alignment is essential (Yap et al., 2022) as it aims to remove head movements. Mainstream optical

∗Corresponding Author

1



Published as a conference paper at ICLR 2024

�ow (OF) based alignment methods (Yuhong, 2021; Zhao et al., 2022) align all frames with a �xed
reference frame (RF). However, due to massive global movements, OF cannot characterize subtle
displacements properly. Dominate feature extraction approaches similarly based on �xed RF, which
compute the OF between each frame and the RF to describe the changes between them (Yuhong,
2021; Zhang et al., 2020). These methods overly rely on the performance of facial alignment, as head
posture and facial appearance differences between subsequent frames and RF are too signi�cant to
satisfy OF assumptions. Another problem is that these methods prefer to extract feature within
the regions of interest(RoIs) to capture subtle movements selectively and reduce computation time,
causing the inability to observe global movements. Thus many false micro movements are wrongly
detected as ME. Spotting is designed to locate ME intervals. Zhang et al. (2020) utilize the property
that ME moves in opposite directions during the occurrence and restoration phases to reduce false
positives (FP). Li et al. (2023b) exploit the localization character of ME for spotting. But they all
fail to fully utilize the characteristics of ME to distinguish them from other micro movements.

Based on the limitations above, we adopt an un�xed RF strategy for both facial alignment and
feature extraction. We �rst propose a pixelmatch-based facial alignment algorithm with dynamic
update of reference frame to improve alignment performance and reduce jitter. In order to minimize
the disturbance of global movements, we propose a skip-k-frame block-wise main directional mean
optical �ow (MDMO) feature based on un�xed RF. Block-wise MDMO is capable of simultane-
ously extracting features and eliminating global movements. By using a skip-k-frame strategy, we
substantiate a unique movement pattern of ME, called M-pattern. M-pattern is capable of precisely
describing the complete ME movement from occurrence to restoration, and it is targeted and accu-
rate for spotting ME intervals even without facial alignment. Then we provide a novel spotting rules
based on M-pattern and three characteristics of ME to spot ME intervals.

2 RELATED WORKS

Facial alignment is widely used for its signi�cance in eliminating global movements. Yan et al.
(2014) utilize Local Weighted Mean(LWM) transformation to align the facial landmarks of each
frame with a manually selected RF, but this can cause severe facial deformation. Yap et al. (2020)
apply the online toolbox OpenFace (Baltrusaitis et al., 2018) for facial alignment. Zhao et al. (2022)
and He et al. (2020) utilize OF as a displacement measure, and align each frame with the RF (nor-
mally the �rst frame) according to the displacement in the nose region. The above methods all adopt
a �xed RF strategy, with better alignment for nearby frames but worse for distant ones.

Common feature descriptors include MDMO (Liu et al., 2016), LBP-TOP (Tran et al., 2019), HOOF
(Verburg & Menkovski, 2019), etc. Main directional mean optical �ow (MDMO) (Liu et al., 2016)
is one of the most representative features in MES. It divides the OF �eld into 8 equally sized and
disjoint bins and averages the OF vectors in main direction, hence obtains a more robust and rep-
resentative feature to describe movement. Zhang et al. (2020) divide the OF �eld into 4 unequally
sized and disjoint bins, which is more in line with the directions of ME movement. ME reveals itself
in speci�c facial regions (Ma et al., 2019), so it is redundant to analyze the whole face. Existing
methods mainly focus on features around eyebrows and mouth. Yuhong (2021) extracts 14 RoIs to
analyze MDMO in each RoI. Zhang et al. (2020) extract feature in 12 RoIs to generate a 3D matrix
to analyze spatio-temporal information. However, these localized extraction methods prevents them
from observing the global movement, leading to many of them being recognized as ME.

Two solutions are available for addressing the disadvantages of �xed RF strategy: clip-based and
un�xed-RF-based. Clip-based methods divide a whole video into multiple clips and perform MES
on each clip individually. Wang et al. (2021) propose a clip proposal network to �lter negative
samples. Yang et al. (2021) and Tran et al. (2021) employ a sliding window strategy to scan across
the video sequence. Li et al. (2023b) extract temporal feature over 300 ms (based on ME duration),
and they discover a S-pattern in feature curve when ME occurs. However, the S-pattern can only
describe half of the ME movement from onset to apex. Un�xed-RF-based methods implement a
�xed interval to calculate the difference between two frames. Han et al. (2018) and Li et al. (2018)
compute the difference between current framef i and the average feature frame (i.e., the average
feature off i � k andf i + k ) to spot apex frame. Liong et al. (2021) extract OF feature betweenf i
andf i + k instead off i and RF. Due to the short time span betweenf i andf i + k , it ensures the OF
can correctly depict the movement between them. However, they ignore the fact that during the ME
restoration phase, computing OF in this way leads to an additional peak in feature curve.
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Figure 1: Overall framework. The proposed methods consist of three parts focusing on MES and
global movements elimination. First, we introduce a pixelmatch-based facial alignment algorithm
with dynamic update of reference frame to align facial images. Second, we propose skip-k-frame
block-wise MDMO to extract features with subtle changes and eliminate global movements simul-
taneously. Under skip-k-frame strategy, we verify a unique movement pattern of ME, called M-
pattern. Third, based on M-pattern and ME characteristics, we provide novel ME spotting rules.

3 PROPOSEDMETHOD

3.1 FACIAL ALIGNMENT

Aligning all frames with a �xed RF in long videos is not recommended and the OF-based method
is signi�cantly in�uenced by head displacement. Thus we propose a pixelmatch-based facial align-
ment algorithm with dynamic update of reference frame. Pixelmatch(Mapbox, 2022) is a Python
package used for fast pixel-level image comparison. It is based on the RGB difference and re-
turns the number of changed pixels between two images, denoted bym. As shown in Fig. 2, the
positions of the matching and cutting box are de�ned on the basis of center coordinatec(x; y).

Figure 2: Cutting box and matching box.

The sizes of boxes are de�ned on the basis
of two measures of the human face: horizon-
tal distance between the inner eye corners and
vertical distance between the nasal spine point
and the line connecting the inner eye corners(Li
et al., 2018). The nose is chosen as the match-
ing box due to its stability and rigidity. The
algorithm consists of alignment and reference
frame update (pseudo-code and details in Ap-
pendix A.1). Alignment is the process of ad-
justing the center coordinate untilm between

the current matching box and the reference matching box is minimized.M min is set to reduce the
jitter between images, which means no adjustment will be made if the mismatch pixels is less than
M min . Since the head posture changes over time, it is necessary to adjust the RF dynamically. But
we must ensure that the updated RF is well-aligned to prevent subsequent frames from aligning with
a misaligned frame. Ifm is equal to 0 or greater thanM max , the RF is updated as the current frame.
m = 0 means perfectly aligned.m > M max implies a signi�cant change in head pose or facial
appearance, making subsequent frames dif�cult to align if the RF is �xed. If0 < m � M max , the
RF will not be updated temporarily, until the frame with a more satisfactory alignment appears.

3.2 M-PATTERN

With a short time span, skip-k-frame strategy (k = ( N + 1) =2, N is the average ME duration)
ensures that the two frames involved in computation satisfy the assumptions of OF (minor displace-
ment and constant apparent brightness) even without facial alignment. We denote thej th RoI of the
i th frame asf j

i and the OF magnitude betweenf j
i � k andf j

i as� j
i . The calculation details will be

discussed in Section 3.3. As shown in Fig. 3, we de�ne a complete ME movement fromf i to f i +2 k ,
with f i + k being the apex frame. Theoretically, two neutral statesf i andf i +2 k are identical with
lower magnitude (i.e., lower muscle deformation intensity). The intensity starts to increase mono-
tonically as the expression develop from a neutral state (f i ) to a peak state (f i + k ). Then it decreases
as the expression restores from apex back to another neutral state(f i +2 k ). Under skip-k-frame ap-
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proach, the feature curve of such ME exhibits a particular pattern, called M-pattern, as shown in Fig.
4. The details(Ê � Î ) are described below.

Figure 3: The muscle deformation inten-
sity curve of a complete ME.

Figure 4: Skip-k-frame OF magnitude
of a complete ME.

Point Ê denotes the OF magnitude betweenf i � k andf i . The expression is in the initial stage of
occurrence and the facial state is relatively stable beforef i . Therefore� is nearly 0.

PointË is the �rst peak in feature curve.� begins to increase as the ME develops fromf i to f i + k ,
wheref i is in a neutral appearance, andf i + k is in the highest intensity of the facial motion.

Point Ì is the local minimum in this feature curve. The onset-apex and apex-offset phases of ME
are actually opposite and symmetrical movements. Therefore,� begins to fall until it reaches a local
minimum value in the vicinity off i +3 k=2. For example, consider a frowning expression, where the
halfway-furrowed appearance in lowering eyebrows phase closely resembles the halfway-furrowed
appearance in raising eyebrows phase.

Point Í is the second peak in feature curve.� starts to increase again because one of the frames
is progressing towards the apex(f i + k=2 ! f i + k ), while the other is recovering towards neutral
(f i +3 k=2 ! f i +2 k ). In fact,Ê � Ì andÌ � Î are y-axis-symmetric as the ME curve in Fig. 3 is also
y-axis-symmetric.

Point Î is almost analogous toÊ. The facial appearance has fully restored to a neutral state, thus
little difference can be found betweenf i +2 k andf i +3 k .

Eventually, we get a trajectory shaped like `M', with a span fromf i to f i +3 k . But notice that
although we get a feature curve with two waves, it is obtained by one single ME, and the �nal
predicted interval is the start of the �rst wave to the peak of the second wave, not the entire `M'.

CASME II(Yan et al., 2014), CAS(ME)2(Qu et al., 2018) and SAMM-LV(Yap et al., 2020) are
applied to the validation of the M-pattern. Appendix A.2 illustrates the feature curves of ME on
three datasets. We can �nd that they all display the same pattern similar to letter `M'. Thus we can
utilize the M-pattern for MES.

3.3 SPOTTING RULES

We aim to exploit the unique properties of M-pattern to differentiate ME from other movements.
Thus, we propose spotting rules based on M-pattern and ME characteristics(Subtlety, Localization,
Transience). It is divided into 6 steps speci�cally.

Step 1. Peak detection and interval generation. These are applied to locate the peaks with potential
rapid facial movements. The threshold is calculated as:

T = Cmean + p � Cstd ; (1)
whereCmean andCstd are the average and standard deviation of all local maxima in a video.p is a
parameter to determine the threshold level. The setCT comprises local maxima greater thanT. As
shown in Fig. 5, For each peak inCT , we extend the left and right ofpi to the relatively �at part of
feature curve(or extend to trough like the middle of `M', if there is an adjacent wave next topi ), to
generate an intervalwi = [ ws

i ; we
i ].

Step 2. Potential ME spotting based on M-pattern. According to the inference of M-pattern, if two
intervals (waves) are close enough to each other, i.e., satisfying Eq. (2):

ws
i +1 � k=2 < w e

i ; (2)
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Figure 5: Symbolic markers of feature curve.

we can combine them into one interval from the start
of the �rst wave to the peak of the second wave. This
is the combination rule when the ME is at an average
length. Practically, the duration of some MEs is too
short/long, and the duration of apex-offset phase of
most MEs is longer than the onset-apex phase (Yan
et al., 2013). In these cases the combination rules
will be slightly different. For example, if a ME is
from f i to f i + k , the predicted interval of this ME is
from the start to the end of the �rst wave since the
second wave of `M' is actually a replica of the �rst
one. We usela;b to denote the distance from a to b.
The speci�c combination rules can be determined by
the lengths of two adjacent waves:

8
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>>:

[ws
i ; we

i ]; if lw s
i ;w e

i
� k;

[ws
i ; ws
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� 2k; lw is ;p i � k;
[ws

i ; pi +1 ]; if k < l w s
i ;w e

i
� 2k; lw s

i ;p i > k;
[ws

i ; pi +1 ]; if lw s
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> 2k:

(3)

Based on M-pattern, a complete ME consists of two waves, thuswi +2 is the next to be analyzed
afterwi , notwi +1 . In fact, not all MEs have a restoration phase. There is a circumstance when the
expression reaches the peak state and then continues to remain in that state until the next expression
occurs. The latter half of the curve in Fig. 3 will remain at the peak level. The feature curve of this
type of ME has only one wave, instead of two waves like the M-pattern. Thus, ifwi does not satisfy
Eq. (2), we determine whetherwi is a single wave according to Eq. (4).

we
( i � 1) + k < w s

i andws
( i +1) � k > w e

i : (4)

In this case, it is easy to deduce the predicted interval is the ascending part of the wave, i.e.,[ws
i ; pi ].

And wi +1 is the next to be analyzed, notwi +2 .

Step 3. First selection based on subtle and localized nature of ME.E j = f ej
i ji = 0 ; 1; :::g denotes

the set of ME intervals ofj th RoI after step 2, andcj
i is the peak value of each ME interval. Ifej

i

is generated by a double wave,cj
i is the larger one of two peaks. Subtlety means that the intensity

of ME is much gentler than MaE and other movements. So we set a maximum thresholdTmax to
exclude intervals with largecj

i . Existing spotting rules treat each RoI individually, but the expression
are the result of coordinated movements across multiple RoIs. For a MaE consisting of multiple
RoIs, some of which have intensity greater thanTmax and some less thanTmax , it is impossible
to exclude such MaE if each RoI is treated separately. Thus, we reduce FP at the expression level,
not at the RoI level. Speci�cally, intervals with IoU greater than 0.5 belong to the same movement.
We introduceddegto describe the overall facial muscle deformation degree for an expression, and
ddegj

i is the deformation degree forj th RoI, i th interval:

ddegj
i = cj

i =avgj
i ; (5)

whereavgj
i is the average of3� fps frames preceding the start frame ofej

i . ddegis the sum ofddegj
i

belonging to the same movement. Ifddeg > Tddeg or the largestddegj
i in the same movement is

greater thanTmax , all ej
i belonging to this movement will be excluded simultaneously. The second

feature is localization, which is re�ected in the fact that ME involves fewer RoIs. If a movement
engages more than half of the RoIs, then allej

i constitute this movement are excluded.

Step 4. Second selection based on global movements. The movement of nose tip region is approx-
imated as global movement because of its rigidity. Steps 1-2 are applied to the nose tip region to
detect possible global movements, andej

i will be excluded if it intersects with global movements.

Step 5. Merging. The merging involves fusing intersecting intervals, i.e., intervals belonging to the
same expression, from different RoIs. Suppose there are two intervalsa = [ as; ae] andb = [ bs; be]
from different RoIs with IoUiouab . If iouab > IoU merge , the two intervals are merged into one
[a; b], where

a = max(as; bs) � 0:5 � (max(as; bs) � min (as; bs)) ;
b = min (ae; be) + 0 :5 � (max(ae; be) � min (ae; be)) :

(6)
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