
Published as a conference paper at ICLR 2024

A UNIQUE M-PATTERN FOR MICRO-EXPRESSION SPOT-
TING IN LONG VIDEOS

Jinxuan Wang1, Shiting Xu1,2, Tong Zhang1,2∗
1South China University of Technology & Engineering Research Center of the Ministry of
Education on Health Intelligent Perception and Paralleled Digital-Human
2Pazhou Lab, Guangzhou, China
{202221043813,csxst}@mail.scut.edu.cn, tony@scut.edu.cn

ABSTRACT

Micro-expression spotting (MES) is challenging since the small magnitude of
micro-expression (ME) makes them susceptible to global movements like head ro-
tation. However, the unique movement pattern and inherent characteristics of ME
allow them to be distinguished from other movements. Existing MES methods
based on fixed reference frame degrade optical flow accuracy and are overly de-
pendent on facial alignment. In this paper, we propose a skip-k-frame block-wise
main directional mean optical flow (MDMO) feature for MES based on unfixed
reference frame. By employing skip-k-frame strategy, we substantiate the exis-
tence of a distinct and exclusive movement pattern in ME, called M-pattern due to
its feature curve resembling the letter ‘M’. Based on M-pattern and characteristics
of ME, we then provide a novel spotting rules to precisely locate ME intervals.
Block-wise MDMO feature is capable of removing global movements without
compromising complete ME movements in the early feature extraction stage. Be-
sides, A novel pixelmatch-based facial alignment algorithm with dynamic update
of reference frame is proposed to better align facial images and reduce jitter be-
tween frames. Experimental results on CAS(ME)2, SAMM-LV and CASME II
validate the proposed methods are superior to the state-of-the-art methods.

1 INTRODUCTION

Spontaneous micro-expression (ME) is unintentionally leaked when people attempt to conceal or
restrain their expressions in an intensely emotional situation (Li et al., 2023a). These expressions
are of low intensity and usually last less than 0.5 second (Ben et al., 2022), making them difficult
to be detected. Unlike macro-expression (MaE), once ME appears, it can reflect the most genuine
emotion, which is why ME plays an indispensable role in the fields of psychology, business negoti-
ation, and criminal investigation (Xu et al., 2022). Micro-expression spotting (MES) refers to locate
segments (i.e., the onset and offset frame) of micro expressions in a long video. Global movements,
including head movements, zooming in and out are almost inevitable and numerous over a extended
time span. The brief and subtle nature of ME makes it almost imperceptible to the naked eye. Under
such circumstances, ME is easily eclipsed by prolonged and large global movements.

With the advancement of computer vision (Zhang et al., 2024; Xu et al., 2023; Zhang et al., 2023),
MES research has evolved mainly into traditional and deep learning methods. The latter primarily
draws inspiration from the fields of temporal action localization (Yang et al., 2020), object detec-
tion (Tan et al., 2020) and visual recognition (Wang et al., 2021; Liu et al., 2024). Considering the
enormous variety of expression scales, feature pyramid network (FPN) is widely employed in MES
(He et al., 2022; Yu et al., 2021). However, deep learning methods are limited in various aspects,
e.g., inadequate ME samples, disturbance from global movements and limitations of unimodal data.
Recent developments in self-supervision and generative modeling can mitigate these flaws. Tradi-
tional methods resort to a prior knowledge of the ME field (Ekman & Friesen, 2019; Bhushan, 2015)
and mainly include three steps: (1) facial alignment, (2) feature extraction, and (3) spotting. Facial
alignment is essential (Yap et al., 2022) as it aims to remove head movements. Mainstream optical
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flow (OF) based alignment methods (Yuhong, 2021; Zhao et al., 2022) align all frames with a fixed
reference frame (RF). However, due to massive global movements, OF cannot characterize subtle
displacements properly. Dominate feature extraction approaches similarly based on fixed RF, which
compute the OF between each frame and the RF to describe the changes between them (Yuhong,
2021; Zhang et al., 2020). These methods overly rely on the performance of facial alignment, as head
posture and facial appearance differences between subsequent frames and RF are too significant to
satisfy OF assumptions. Another problem is that these methods prefer to extract feature within
the regions of interest(RoIs) to capture subtle movements selectively and reduce computation time,
causing the inability to observe global movements. Thus many false micro movements are wrongly
detected as ME. Spotting is designed to locate ME intervals. Zhang et al. (2020) utilize the property
that ME moves in opposite directions during the occurrence and restoration phases to reduce false
positives (FP). Li et al. (2023b) exploit the localization character of ME for spotting. But they all
fail to fully utilize the characteristics of ME to distinguish them from other micro movements.

Based on the limitations above, we adopt an unfixed RF strategy for both facial alignment and
feature extraction. We first propose a pixelmatch-based facial alignment algorithm with dynamic
update of reference frame to improve alignment performance and reduce jitter. In order to minimize
the disturbance of global movements, we propose a skip-k-frame block-wise main directional mean
optical flow (MDMO) feature based on unfixed RF. Block-wise MDMO is capable of simultane-
ously extracting features and eliminating global movements. By using a skip-k-frame strategy, we
substantiate a unique movement pattern of ME, called M-pattern. M-pattern is capable of precisely
describing the complete ME movement from occurrence to restoration, and it is targeted and accu-
rate for spotting ME intervals even without facial alignment. Then we provide a novel spotting rules
based on M-pattern and three characteristics of ME to spot ME intervals.

2 RELATED WORKS

Facial alignment is widely used for its significance in eliminating global movements. Yan et al.
(2014) utilize Local Weighted Mean(LWM) transformation to align the facial landmarks of each
frame with a manually selected RF, but this can cause severe facial deformation. Yap et al. (2020)
apply the online toolbox OpenFace (Baltrusaitis et al., 2018) for facial alignment. Zhao et al. (2022)
and He et al. (2020) utilize OF as a displacement measure, and align each frame with the RF (nor-
mally the first frame) according to the displacement in the nose region. The above methods all adopt
a fixed RF strategy, with better alignment for nearby frames but worse for distant ones.

Common feature descriptors include MDMO (Liu et al., 2016), LBP-TOP (Tran et al., 2019), HOOF
(Verburg & Menkovski, 2019), etc. Main directional mean optical flow (MDMO) (Liu et al., 2016)
is one of the most representative features in MES. It divides the OF field into 8 equally sized and
disjoint bins and averages the OF vectors in main direction, hence obtains a more robust and rep-
resentative feature to describe movement. Zhang et al. (2020) divide the OF field into 4 unequally
sized and disjoint bins, which is more in line with the directions of ME movement. ME reveals itself
in specific facial regions (Ma et al., 2019), so it is redundant to analyze the whole face. Existing
methods mainly focus on features around eyebrows and mouth. Yuhong (2021) extracts 14 RoIs to
analyze MDMO in each RoI. Zhang et al. (2020) extract feature in 12 RoIs to generate a 3D matrix
to analyze spatio-temporal information. However, these localized extraction methods prevents them
from observing the global movement, leading to many of them being recognized as ME.

Two solutions are available for addressing the disadvantages of fixed RF strategy: clip-based and
unfixed-RF-based. Clip-based methods divide a whole video into multiple clips and perform MES
on each clip individually. Wang et al. (2021) propose a clip proposal network to filter negative
samples. Yang et al. (2021) and Tran et al. (2021) employ a sliding window strategy to scan across
the video sequence. Li et al. (2023b) extract temporal feature over 300 ms (based on ME duration),
and they discover a S-pattern in feature curve when ME occurs. However, the S-pattern can only
describe half of the ME movement from onset to apex. Unfixed-RF-based methods implement a
fixed interval to calculate the difference between two frames. Han et al. (2018) and Li et al. (2018)
compute the difference between current frame fi and the average feature frame (i.e., the average
feature of fi−k and fi+k) to spot apex frame. Liong et al. (2021) extract OF feature between fi
and fi+k instead of fi and RF. Due to the short time span between fi and fi+k, it ensures the OF
can correctly depict the movement between them. However, they ignore the fact that during the ME
restoration phase, computing OF in this way leads to an additional peak in feature curve.
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Figure 1: Overall framework. The proposed methods consist of three parts focusing on MES and
global movements elimination. First, we introduce a pixelmatch-based facial alignment algorithm
with dynamic update of reference frame to align facial images. Second, we propose skip-k-frame
block-wise MDMO to extract features with subtle changes and eliminate global movements simul-
taneously. Under skip-k-frame strategy, we verify a unique movement pattern of ME, called M-
pattern. Third, based on M-pattern and ME characteristics, we provide novel ME spotting rules.

3 PROPOSED METHOD

3.1 FACIAL ALIGNMENT

Aligning all frames with a fixed RF in long videos is not recommended and the OF-based method
is significantly influenced by head displacement. Thus we propose a pixelmatch-based facial align-
ment algorithm with dynamic update of reference frame. Pixelmatch(Mapbox, 2022) is a Python
package used for fast pixel-level image comparison. It is based on the RGB difference and re-
turns the number of changed pixels between two images, denoted by m. As shown in Fig. 2, the
positions of the matching and cutting box are defined on the basis of center coordinate c(x, y).

cutting box

matching box

�

Figure 2: Cutting box and matching box.

The sizes of boxes are defined on the basis
of two measures of the human face: horizon-
tal distance between the inner eye corners and
vertical distance between the nasal spine point
and the line connecting the inner eye corners(Li
et al., 2018). The nose is chosen as the match-
ing box due to its stability and rigidity. The
algorithm consists of alignment and reference
frame update (pseudo-code and details in Ap-
pendix A.1). Alignment is the process of ad-
justing the center coordinate until m between

the current matching box and the reference matching box is minimized. Mmin is set to reduce the
jitter between images, which means no adjustment will be made if the mismatch pixels is less than
Mmin. Since the head posture changes over time, it is necessary to adjust the RF dynamically. But
we must ensure that the updated RF is well-aligned to prevent subsequent frames from aligning with
a misaligned frame. If m is equal to 0 or greater than Mmax, the RF is updated as the current frame.
m = 0 means perfectly aligned. m > Mmax implies a significant change in head pose or facial
appearance, making subsequent frames difficult to align if the RF is fixed. If 0 < m ≤ Mmax, the
RF will not be updated temporarily, until the frame with a more satisfactory alignment appears.

3.2 M-PATTERN

With a short time span, skip-k-frame strategy (k = (N + 1)/2, N is the average ME duration)
ensures that the two frames involved in computation satisfy the assumptions of OF (minor displace-
ment and constant apparent brightness) even without facial alignment. We denote the jth RoI of the
ith frame as f j

i and the OF magnitude between f j
i−k and f j

i as ρji . The calculation details will be
discussed in Section 3.3. As shown in Fig. 3, we define a complete ME movement from fi to fi+2k,
with fi+k being the apex frame. Theoretically, two neutral states fi and fi+2k are identical with
lower magnitude (i.e., lower muscle deformation intensity). The intensity starts to increase mono-
tonically as the expression develop from a neutral state (fi) to a peak state (fi+k). Then it decreases
as the expression restores from apex back to another neutral state(fi+2k). Under skip-k-frame ap-
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proach, the feature curve of such ME exhibits a particular pattern, called M-pattern, as shown in Fig.
4. The details(➊∼➎) are described below.
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Figure 3: The muscle deformation inten-
sity curve of a complete ME.
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Figure 4: Skip-k-frame OF magnitude
of a complete ME.

Point ➊ denotes the OF magnitude between fi−k and fi. The expression is in the initial stage of
occurrence and the facial state is relatively stable before fi. Therefore ρ is nearly 0.

Point ➋ is the first peak in feature curve. ρ begins to increase as the ME develops from fi to fi+k,
where fi is in a neutral appearance, and fi+k is in the highest intensity of the facial motion.

Point ➌ is the local minimum in this feature curve. The onset-apex and apex-offset phases of ME
are actually opposite and symmetrical movements. Therefore, ρ begins to fall until it reaches a local
minimum value in the vicinity of fi+3k/2. For example, consider a frowning expression, where the
halfway-furrowed appearance in lowering eyebrows phase closely resembles the halfway-furrowed
appearance in raising eyebrows phase.

Point ➍ is the second peak in feature curve. ρ starts to increase again because one of the frames
is progressing towards the apex(fi+k/2 → fi+k), while the other is recovering towards neutral
(fi+3k/2 → fi+2k). In fact, ➊∼➌ and ➌∼➎ are y-axis-symmetric as the ME curve in Fig. 3 is also
y-axis-symmetric.

Point ➎ is almost analogous to ➊. The facial appearance has fully restored to a neutral state, thus
little difference can be found between fi+2k and fi+3k.

Eventually, we get a trajectory shaped like ‘M’, with a span from fi to fi+3k. But notice that
although we get a feature curve with two waves, it is obtained by one single ME, and the final
predicted interval is the start of the first wave to the peak of the second wave, not the entire ‘M’.

CASME II(Yan et al., 2014), CAS(ME)2(Qu et al., 2018) and SAMM-LV(Yap et al., 2020) are
applied to the validation of the M-pattern. Appendix A.2 illustrates the feature curves of ME on
three datasets. We can find that they all display the same pattern similar to letter ‘M’. Thus we can
utilize the M-pattern for MES.

3.3 SPOTTING RULES

We aim to exploit the unique properties of M-pattern to differentiate ME from other movements.
Thus, we propose spotting rules based on M-pattern and ME characteristics(Subtlety, Localization,
Transience). It is divided into 6 steps specifically.

Step 1. Peak detection and interval generation. These are applied to locate the peaks with potential
rapid facial movements. The threshold is calculated as:

T = Cmean + p× Cstd, (1)
where Cmean and Cstd are the average and standard deviation of all local maxima in a video. p is a
parameter to determine the threshold level. The set CT comprises local maxima greater than T . As
shown in Fig. 5, For each peak in CT , we extend the left and right of pi to the relatively flat part of
feature curve(or extend to trough like the middle of ‘M’, if there is an adjacent wave next to pi), to
generate an interval wi = [ws

i , w
e
i ].

Step 2. Potential ME spotting based on M-pattern. According to the inference of M-pattern, if two
intervals (waves) are close enough to each other, i.e., satisfying Eq. (2):

ws
i+1 − k/2 < we

i , (2)
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Figure 5: Symbolic markers of feature curve.

we can combine them into one interval from the start
of the first wave to the peak of the second wave. This
is the combination rule when the ME is at an average
length. Practically, the duration of some MEs is too
short/long, and the duration of apex-offset phase of
most MEs is longer than the onset-apex phase (Yan
et al., 2013). In these cases the combination rules
will be slightly different. For example, if a ME is
from fi to fi+k, the predicted interval of this ME is
from the start to the end of the first wave since the
second wave of ‘M’ is actually a replica of the first
one. We use la,b to denote the distance from a to b.
The specific combination rules can be determined by
the lengths of two adjacent waves:

[ws
i , w

e
i ], if lws

i ,w
e
i
≤ k,

[ws
i , w

s
i + 2lws

i ,pi ], if k < lws
i ,w

e
i
≤ 2k, lwis,pi ≤ k,

[ws
i , pi+1], if k < lws

i ,w
e
i
≤ 2k, lws

i ,pi
> k,

[ws
i , pi+1], if lws

i ,w
e
i
> 2k.

(3)

Based on M-pattern, a complete ME consists of two waves, thus wi+2 is the next to be analyzed
after wi, not wi+1. In fact, not all MEs have a restoration phase. There is a circumstance when the
expression reaches the peak state and then continues to remain in that state until the next expression
occurs. The latter half of the curve in Fig. 3 will remain at the peak level. The feature curve of this
type of ME has only one wave, instead of two waves like the M-pattern. Thus, if wi does not satisfy
Eq. (2), we determine whether wi is a single wave according to Eq. (4).

we
(i−1) + k < ws

i and ws
(i+1) − k > we

i . (4)

In this case, it is easy to deduce the predicted interval is the ascending part of the wave, i.e., [ws
i , pi].

And wi+1 is the next to be analyzed, not wi+2.

Step 3. First selection based on subtle and localized nature of ME. Ej = {eji |i = 0, 1, ...} denotes
the set of ME intervals of jth RoI after step 2, and cji is the peak value of each ME interval. If eji
is generated by a double wave, cji is the larger one of two peaks. Subtlety means that the intensity
of ME is much gentler than MaE and other movements. So we set a maximum threshold Tmax to
exclude intervals with large cji . Existing spotting rules treat each RoI individually, but the expression
are the result of coordinated movements across multiple RoIs. For a MaE consisting of multiple
RoIs, some of which have intensity greater than Tmax and some less than Tmax, it is impossible
to exclude such MaE if each RoI is treated separately. Thus, we reduce FP at the expression level,
not at the RoI level. Specifically, intervals with IoU greater than 0.5 belong to the same movement.
We introduce ddeg to describe the overall facial muscle deformation degree for an expression, and
ddegji is the deformation degree for jth RoI, ith interval:

ddegji = cji/avg
j
i , (5)

where avgji is the average of 3∗fps frames preceding the start frame of eji . ddeg is the sum of ddegji
belonging to the same movement. If ddeg > Tddeg or the largest ddegji in the same movement is
greater than Tmax, all eji belonging to this movement will be excluded simultaneously. The second
feature is localization, which is reflected in the fact that ME involves fewer RoIs. If a movement
engages more than half of the RoIs, then all eji constitute this movement are excluded.

Step 4. Second selection based on global movements. The movement of nose tip region is approx-
imated as global movement because of its rigidity. Steps 1-2 are applied to the nose tip region to
detect possible global movements, and eji will be excluded if it intersects with global movements.

Step 5. Merging. The merging involves fusing intersecting intervals, i.e., intervals belonging to the
same expression, from different RoIs. Suppose there are two intervals a = [as, ae] and b = [bs, be]
from different RoIs with IoU iouab. If iouab > IoUmerge, the two intervals are merged into one
[a, b], where

a = max(as, bs)− 0.5× (max(as, bs)−min(as, bs)),

b = min(ae, be) + 0.5× (max(ae, be)−min(ae, be)).
(6)
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This is an extension to the left and right with the intersecting intervals as the center. It ensures the
length of merged interval is almost equal to the average length of intervals involved in merging.

Step 6. Last selection based on transient nature of ME. Transience refers to the short duration of the
ME (<0.5s) (Yan et al., 2013), which allows us to exclude intervals with duration longer than 0.5s.

Hence, we have obtained all the predicted expression intervals that both satisfy the M-pattern and
all the characteristics of ME.

3.4 FEATURE EXTRACTION

Since global movements are unidirectional, i.e., no restoration phase, the feature curves will be
single-wave, the same as the feature curve of ME without a restoration phase. Thus, we propose
the block-wise MDMO to extract features within RoIs and eliminate global movements in the early
feature extraction stage.

Specifically, as shown in Fig. 6(a), we divide the facial area into 9 blocks to analyze
the global movement and extract 15 RoIs, including 2 eye regions to detect ME move-
ments and blink. Original MDMO(Liu et al., 2016) divides the OF field into 8 disjoint
bins on average in Fig. 7. However, if the direction of movement falls between two ad-
jacent bins, MDMO will only average the vectors within the bin with maximum count(i.e.,
the main direction), resulting in deviation in both magnitude and orientation of MDMO.

0 1 2

3 4 5

6 7 8

(a) Blocks and RoIs divi-
sion.

(b) Mask.
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Figure 6: Block-wise MDMO.

For this reason, we divide the OF field into
8 intersecting bins as illustrated in Fig. 6(c).
Each pixel will belong to two different bins,
and directions that were between two adja-
cent bins can now fall into one bin. Each
bin in conjunction with its two intersecting
bins constitutes a direction group. For each
block Rk(k = 0, 1, ..., 8), we classify all the
OF vectors into 8 bins according to their ori-
entation and compute MDMO. Denote the
pixel counts distribution in Rk as Bk =
(bk0 , b

k
1 , ..., b

k
7). θ

k = argmax(bk0 , b
k
1 , ..., b

k
7)

is the main direction. The MDMO of Rk is
compute as:

uk =
1

|Bk
max|

∑
uk(p)∈Bk

max

uk(p), (7)

where |Bk
max| = max(bk0 , b

k
1 , ..., b

k
7), and

Bk
max is the set of OF vectors in main di-

rection. B = (B0, B1, ..., B8) and Θ =
(θ0, θ1, ..., θ8) provide a very clear descrip-
tion of the global movement. Similarly, MD-
MOs of 15 RoIs, denoted as uj , are computed
following Eq. (7). Subsequently, it is com-
mon(Zhang et al., 2020) to remove the global
movement using the displacement in nose tip

region. However, The OF vectors distribution in Fig. 8 illustrates that this turns out to be limited
to the translational head movements. For circumstances such as head rotation, brightness change,
zooming in and out, etc., it can only lead to worse results. Therefore, we define five states (or-
der, disorder, rotation, adjustment, blink) to categorize each frame according to B and Θ with the
purpose of eliminating global movements without disrupting the complete ME movements.

Order. Order means all θk point at the same direction group and 8 elements in Bk for each block
should be ordered and consistent with θk, i.e., 3 bins in the direction group should contain all the
OF vectors in Rk and the remaining 5 bins should be close to 0. Normally, frames with translation
and other minimal head movements will be classified as order. The MDMO of the nose tip region is
basically in line with the global movement. Therefore we still subtract unose to remove the global
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Figure 7: 8 disjoint bins in orig-
inal MDMO.

(a) Translation. (b) Rotation. (c) Image blurring.

Figure 8: Optical flow images of different circumstances.

movement. The final OF feature for f j
i is computed as:

ũj
i = uj

i − unose
i . (8)

Disorder. Disorder means that the OF vectors are chaotic and random. Using B alone is sufficient
for determining whether a frame is disorder. Sometimes all θk points in the same direction group,
but the OF vectors within each block are very disorganized. For Rk, if min(Bk) > Tdisorder, then
Rk is disorder. In other words, each bin (direction) has a significant portion of vectors belonging to
it. Brightness change and image blurring are most likely to cause disorder. In this case, MDMO of
neither the blocks nor the nose tip can accurately represent their movement, but the MDMO of RoIs
happen to have a moderate magnitude to generate a fake ME movement. Therefore, for all RoIs, we
set their final OF as the average OF in a video:

ũj
i =

1

N − k

N∑
i=k+1

uj
i . (9)

Rotation. After facial alignment, the head rotation is almost centered on the nose tip. Excluding
center block 4, the main directions of the other 8 blocks are mostly different. If we visualize 8
MDMOs with arrows, they should overall conform to a clockwise or counterclockwise circle or
oval(See Fig. 8(b)). Head rotation is most likely to generate a fake ME movement as its magnitude
is very close to ME. So the final OF feature is the same as Eq. (9).

Adjustment. When 9 θk do not all belong to the same direction group and the global movement is
not rotation or disorder, simply following Eq. (8) doesn’t really help. We use uk to represent the
local movement of Rk, and uj should minus the MDMO of the block RoI j belongs to, not unose

i ,
to eliminate the global movement.

ũj
i = uj

i − uk
i , (f

j
i ∈ Rk

i ). (10)

Blink. Neutral blinking sometimes causes a slight vibration in eyebrows with other RoIs beyond the
eyebrows being not affected. It is easy to detect blink using the left and right eye region since there
are only upward and downward movements of the upper eyelid. If blink happens under an ordered
state, the final OF of RoIs in eyebrow area should follow Eq. (9), and other RoIs should follow Eq.
(8).

If frames within a ME span are classified as one of the other four states except for ‘order’, the
M-pattern probably will be compromised since their OF vectors are altered. If there is a chance
that fi is during a ME movement, the feature of this frame should be calculated according to Eq.
(8), regardless of the state it is categorized into. The subtle nature of ME is reflected in the fact
that muscle changes are largely confined to the RoIs, with no noticeable changes occurring in other
facial region. This is why pixels within 15 RoIs are not involved in the calculation of the MDMO
for 9 blocks, i.e., only the black area in Fig. 6(b) participates in the calculation of uk. uk is used to
describe the local movement of k-th block. Excluding pixels within the RoIs does not affect the final
result since uk is averaged, but including pixels within the RoIs when a ME occurs makes uk closer
to describing the movement of the RoI rather than the local movement of the block. Therefore, if
the magnitude of |uj

i −uk
i |, (f

j
i ∈ Rk

i ) is larger than Tdiff , which means a possible ME movement
may occur, then ũj

i must be computed according to Eq. (8) no matter what state fi is classified as.
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4 EXPERIMENTS

Table 1: Comparison with the state-of-the-art methods.

Methods CAS(ME)2 SAMM-LV CASME II
ME MaE All ME MaE All ME

MDMO(He et al., 2020) 0.0082 0.1196 0.0376 0.0364 0.0629 0.0445 -
SP-FD(Zhang et al., 2020) 0.0547 0.2131 0.1403 0.1331 0.0725 0.0999 -
OF-FD(Yuhong, 2021) 0.1965 0.3782 0.3436 0.2162 0.4149 0.3638 -
SOFTNet(Liong et al., 2021) 0.1173 0.2410 0.2022 0.1520 0.2169 0.1881 -
TSMSNet(Xue et al., 2021) 0.1969 0.2395 0.2275 0.0878 0.2515 0.2466 -
ABPN(Leng et al., 2022) 0.1590 0.3357 0.3117 0.1689 0.3349 0.2908 -
AUW-GCN(Yin et al., 2023) 0.1538 0.4235 0.3834 0.1984 0.4293 0.3728 -
S-pattern(Li et al., 2023b) - - - - - - 0.4700
Ours 0.2614 0.5061 0.4558 0.2866 0.3724 0.3419 0.8571

We conduct the experiments on CASME II(Yan et al., 2014), CAS(ME)2(Qu et al., 2018) and
SAMM-LV(Yap et al., 2020) and follow the performance metrics proposed in MESNet (Wang et al.,
2021). Appendix A.3 and A.4 introduce the details of datasets, metrics and experiment settings.

Table 1 reports our spotting results on three datasets together with the state-of-the-art(SOTA) meth-
ods. Our proposed MES algorithm outperforms the others on all three datasets. Each video in
CASME II contains only one or zero ME and little head movement. We only perform step 1, 2,
and 5 for MES in CASME II. The F1-score of 0.8571 and the recall of 0.8823 sufficiently demon-
strate that the feature curve of ME conforms to the M-pattern under skip-k-frame calculation and
M-pattern is more suitable for describing the ME movement in comparison to S-pattern (Li et al.,
2023b). Except for MaE spotting results in SAMM-LV, the significant improvement in F1-score on
CAS(ME)2 and SAMM-LV is mainly attributed to the global movements elimination by block-wise
MDMO in the feature extraction phase and the robustness and distinctiveness of M-pattern. The
overall results indicate that the M-pattern applies to both macro and micro-expression spotting in
long videos and our spotting rules are capable of distinguishing ME/ MaE from other movements.
The main reason why our MaE spotting results in SAMM-LV is roughly 5% lower than the SOTA
is that we have not extracted the RoIs below the eyes as proposed by He et al.Yuhong (2021), and
these RoIs contain a considerable portion of MaEs related to blinking and eye movement.

We find that FP in ME spotting results are composed of three types of movements: habitual move-
ments(with the highest proportion, such as eyebrow raising, pursing lips and pouting), MaE move-
ments, and ME movements that do not satisfy Eq. (11). Habitual movements are almost identical
with labeled ME in both magnitude and direction of movement. Thus, it is impossible to distin-
guish such habitual movements from ME using the unimodal data only. No global movements are
detected in our results, which again demonstrates the superiority of our proposed methods in elimi-
nating and distinguishing global movements. The detailed spotting results of our proposed methods
are displayed in Appendix A.5.

Parameter Analysis. We focus on analyzing the effect of Tdiff on spotting results. Tdiff is the
difference between the RoI MDMO uj

i and block MDMO uk
i . It is designed to not compromise

the possible ME movement when removing global movements based on the state of each frame.
Fig. 9 illustrates the impact of varying Tdiff from 0 to 0.6 on the spotting results. Tdiff = 0
means all the frames are treated as the order state. Hence no ME is compromised. In general, When
Tdiff > 0, we observe a large decrease in the number of FP for all spotting results in comparison to
Tdiff = 0 and the F1 scores have also improved. This is a solid evidence that block-wise MDMO
can effectively eliminate global movements in the feature extraction phase. The number of TP
(True Positives) at Tdiff = 0 is almost equal to the number at Tdiff > 0, which proves that by
setting Tdiff , we successfully preserve the possible micro-movements while eliminating the global
movements. Tdiff is set to 0.4, 0.6, 0.2, 0.3, in the same order as the legend in Fig. 9. Setting a larger
Tdiff might be able to eliminate more global movements, since most expressions have a magnitude
exceeds 1.0. However, the larger Tdiff is, the more likely it is to disrupt the complete expression
movements, especially for MaE, where the large magnitude of movement can easily cause the frame
to be categorized as disorder state.
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(a) F1-score (b) FP (c) TP

Figure 9: Spotting results for different Tdiff .

(a) F1-score (b) FP (c) Recall

Figure 10: Progressive spotting results across
four spotting steps.

Efficacy of spotting rules. Fig. 10 illustrates the results from spotting step 2 to 6. Step 1 is de-
signed to generate waves hence no spotting results are expected. We present the results after step
5(merging) for better analysis and visualization. As can be seen in Fig. 10 (a) and (b), each step
is capable of eliminating FP according to a specific rule, leading to a gradual increase in F1-score.
Step 3 and 6, spotting based on the characteristics of ME, contributes the most. It eliminates a
considerable amount of FP that do not meet the ME characteristics, but at the same time, it also
leaves TP with small magnitude out. The reason why step 6 is executed after merging is because
we want to perform it from the perspective of a complete merged expression interval. The improve-
ment by step 6 is more significant in ME than in MaE, because ME in CAS(ME)2 and SAMM-LV
have a distinct duration boundary, whereas MaE do not. The recall of SAMMLV MaE spotting
at step 2 is the lowest as in Fig. 10 (c) and the overall performance is not as superior as the
other three. The first reason has been explained above. The second reason is probably because
larger k(130) are less suitable for the proposed spotting algorithm than smaller k (7, 18, 37, 34).

Table 2: Ablation experiments.

CAS(ME)2 SAMM-LV
ME MaE ME MaE

bwMDMO 0.261 0.506 0.287 0.372
bwMDMO, RoI-level 0.233 0.486 0.278 0.363
bwMDMO, w/o step3, 6 0.159 0.455 0.204 0.358
bwMDMO, w/o step4 0.224 0.498 0.279 0.367
bwMDMO, w/o FA 0.200 0.430 0.231 0.353
bwMDMO, w/o [FA, step4] 0.190 0.449 0.229 0.348
Fixed RF, w/o FA
(Yuhong, 2021) 0.117 0.291 0.153 0.279

bwMDMO: Block-wise MDMO. RoI-level: spotting at RoI-level.
FA: Pixelmatch-based facial alignment.

Since facial expressions are the result
of coordinated movements across multi-
ple RoIs, the proposed spotting rules are
based on the expression level. We conduct
experiments at RoI-level with the same
spotting rules and the results are shown in
Table 2. Expression-level is more superior
than RoI-level in all spotting results. For
ME, spotting at expression-level can elim-
inate intervals with small magnitude that
are likely to be generated by MaE or other
movements. However, these interval are
inclined to be kept if we spot at the RoI-

level, for their magnitude are closely similar to ME.

Efficacy of facial alignment. We conduct experiments on the raw video to verify the performance
of the proposed facial alignment algorithm. The results reflect the effectiveness of our alignment
method. We also verify the advantage of the skip-k-frame strategy over the fixed RF strategy in the
absence of facial alignment. Due to short time span, the Skip-k-frame strategy has already reduced
global movements to a great extent at the very beginning, whereas the fixed RF strategy heavily
relies on facial alignment to eliminate global movements.

5 CONCLUSION

In this paper, we propose a skip-k-frame block-wise MDMO feature for MES. Under skip-k-frame
strategy, we substantiate a novel unique M-pattern for describing complete ME/ MaE movements.
The spotting rules are designed based on M-pattern and ME traits. Block-wise MDMO can simulta-
neously extract features within RoIs and eliminate global movements. Dynamic updating of the RF
method enables the proposed pixelmatch-based facial alignment algorithm to reduce jitter between
frames and enhance alignment performance. Experimental results demonstrate the efficacy of the
proposed methods.
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A APPENDIX

A.1 PSEUDO-CODE FOR FACIAL ALIGNMENT

The proposed facial alignment algorithm consists of Alignment and Reference Frame Update.
Python package Pixelmatch (Mapbox, 2022) provides a function pixelmatch to calculate the pixel
difference between two images and return mismatched pixel number m. We choose the nose re-
gion as the matching box, and it is cropped according to the center coordinate, which is why there
are 4 inputs in function pixelmatch. The alignment is adjusting the center coordinate ci of cur-
rent frame, until the difference between the current matching box and the reference match box is
minimal. The process of adjustment is based on the ideology of greedy algorithm, selecting the
direction in which m decreases the most as the current adjustment direction until m is minimized.

Algorithm 1 Alignment
Input: current frame and center fi, ci,reference frame and center fR, cR
Output: center coordinate cai after alignment, mismatch m

directions = [[0, 0], [1, 0], [0, 1], [−1, 0], [0,−1]]
fR = f0, ci = cR, update = 1, listm = [0] ∗ 5
m = mismatch(fi, fR, ci, cR)
if m < Mmin then

return ci,m
end if
while update ̸= 0 do

for i = 0 to len(directions) do
listm[i] = pixelmatch(fi, fR, ci + directions[i], cR)

end for
update = argmin(listm)
ci = ci + directions[update]

end while
return ci, listm[0]

The head posture or facial appearance is prone to change over a prolonged period of time, which
is why we update the RF dynamically. However, it is critical to guarantee that the updated RF is
perfectly aligned to ensure subsequent frames do not deviate. The cases of immediate update in-
clude m = 0 and m > Mmax, indicating perfect alignment and large posture change respectively.
Tdu is set for delayed update, and it can be adjusted according to the FPS (Frames per second) of
the dateset. To reduce jitter, count increases only when the center coordinate of current cutting box
differs from the center coordinate of previous cutting box.

Algorithm 2 Reference Frame Update
Input: current frame and center fi, ci,reference frame and center fR, cR
Output: updated reference frame and center fR, cR

fR = f0, cR = c0, count = 0,ms = inf, ftmp, ctmp

ci,mi = Alignment(fi, fR, ci, cR)
if mi == 0 or mi > Mmax then

fR = fi, cR = ci, count = 0,ms = inf
else

if count < Tdu then
if mi ≤ ms then

ftmp = fi, ctmp = ci,ms = mi

end if
if ci ̸= ci−1 then

count = count+ 1
end if

else
fR = ftmp, cR = ctmp, count = 0,ms = inf

end if
end if
return fR, cR
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A.2 VALIDATION OF M-PATTERN

CASME II(Yan et al., 2014), CAS(ME)2(Qu et al., 2018) and SAMM-LV(Yap et al., 2020) are
applied to the validation of M-pattern. For CASME II, there is only one or zero ME with little head
movements in each video. Thus it is a perfect dataset for validation of M-pattern. In contrast, the
videos in CAS(ME)2 and SAMM-LV consist of mutiple type of movements, so we use these two
datasets to verify the robustness and distinctiveness of M-pattern. Fig. 11 illustrates the feature
curves of MEs on the above three datasets, with the ground-truth between the red lines. It can be
observed that the feature curves for MEs of various lengths all conform to M-pattern.

Figure 11: Feature curves of MEs in three datasets.

A.3 DATASETS AND METRICS

CAS(ME)2 consists of 22 participants and 98 long videos, including 300 macro-expressions and 57
micro-expressions.

SAMM-LV consists of 32 participants and 147 long videos, including 343 macro-expressions and
159 micro-expressions in the long videos.

CASME II comprises of 246 micro-expressions out of 26 participants. Compared to the two datasets
above, each video is shorter in duration and contains only one or zero micro-movement.

Table 3 summarizes the three databases.

We follow the performance metrics proposed in MESNet(Wang et al., 2021). For a spotted interval
Wspotted, the prediction is considered as a true positive (TP) when there is a ground truth interval
WgroundTruth fitting the following condition:

Wspotted

⋂
WgroundTruth

Wspotted

⋃
WgroundTruth

≥ 0.5. (11)

Otherwise, it is false positive(FP). Specifically, if there are m ground-truth intervals in dataset and a
ground-truth intervals are spotted; and if there are n predicted intervals with b TPs. Then the recall,
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precision and F1-score are computed as follows:

Recall =
a

m
,Precision =

b

n
, F1− score =

2×Recall × Precision

Recall + Precision
. (12)

The final evaluation is performed on the entire dataset, based on the overall F1-score of MaE and
ME spotting performance.

Table 3: Details of CAS(ME)2, SAMM-LV and CASME II

CAS(ME)2 SAMM-LV CASME II
ME MaE ME MaE ME

Frames per second 30 200 200
Num of samples 57 300 159 343 255
Max duration 17 118 101 5175 141
Min duration 9 4 30 102 24
N 14 36 74 259* 67
k 7 18 37 130* 34

∗: For N , k of SAMM-LV, samples over 800 frames are omitted.

A.4 EXPERIMENT SETTINGS

We spot ME and MaE respectively using the proposed methods. TV-L1(Zach et al., 2007) is used
for basic OF calculation. p is set to 3 for peak detection. For MES, Tmax = {23, 51}, Tddeg =
{45, 250}, IoUmerge = {0.3, 0.3}({·, ·}for CAS(ME)2 and SAMM-LV respectively). The MaE
in datasets do not have discriminatory features like ME, thus we only set a minimum threshold
{15, 9} to exclude movements with lower ddeg for MaE spotting. In feature extraction phase,
Tdisorder = block area

8×8 , where two 8s refer to 8 bins in total and the scaling factor respectively.
Savitzky-Golay filter(Savitzky & Golay, 1964) is used to smooth the feature curve, where window
length and polyorder is set to k and 3. For facial alignment algorithm, frame with mi lower than
Mmin will not execute Alignment in order to reduce jitter between frames; frame with mi larger
than Mmax is likely to have a significant change in head posture or facial appearance. Mmin and
Mmax is set to 0.1% and 8% of the matching box area respectively.

A.5 EXPERIMENTAL RESULTS IN DETAIL.

Detailed spotting results. Table 4 shows the detailed spotting results. ‘Find’ refers to the number
of spotted ME/MaE, while ‘TP’ refers to the number of predicted intervals that satisfy Eq. (11). Our
approach drastically reduces the number of FP to about half of the total number of expressions (ME
and MaE). Moreover, almost all FP were generated by habitual movements and no global movement
is wrongly detected as ME/ MaE.

Table 4: Details of the spotting results.

CAS(ME)2 SAMM-LV CASME II
ME MaE All ME MaE All ME

Total 57 300 357 159 343 502 255
Find 20 140 160 47 110 157 225
TP 20 152 172 47 111 158 225
FP 76 123 199 122 139 261 45

Precision 0.2083 0.5527 0.4636 0.2781 0.4440 0.3771 0.8333
Recall 0.3509 0.4667 0.4482 0.2956 0.3207 0.3127 0.8823

F1-score 0.2614 0.5061 0.4558 0.2866 0.3724 0.3419 0.8571

Table 5 provides the progressive results of spotting rules. Since the number of TP before merging far
exceeds the number of ME, we adopt a new metric for better comparison. Compared to Eq. (12), the
formula for Precision is modified to a

n . Practically, the occurrence and restoration phases of ME
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are not strictly symmetrical, hence two peaks in M-pattern are not equal in most cases. To prevent
the smaller peak in M-pattern from being omitted, we set a lower threshold in step 1. Thus the initial
number of FP is large. Leveraging the properties of ME (step 3, 6) helps us filter out a large number
of FP. The merging (step 5) ensures that the merged interval is not shifted to the left or right and
the length of merged interval is almost equal to the average length of intervals involved in merging.
Only 2 MEs in SAMM-LV are excluded after merging for they no longer satisfy Eq.(11).

Table 5: Progressive MES results in detail.

Step CAS(ME)2 ME SAMM-LV ME
Find TP FP F1-score Find TP FP F1-score

1, 2 32 74 2259 0.0600 88 319 3938 0.0399
1, 2, 3 22 35 293 0.1672 51 178 934 0.0803
1, 2, 3, 4 22 31 240 0.1765 50 175 838 0.0853
1, 2, 3, 4, 5 22 22 150 0.1921 48 48 239 0.2152
1, 2, 3, 4, 5, 6 20 20 76 0.2614 47 47 122 0.2866

In the absence of block-wise MDMO, the global movements can only be removed by spotting step 4.
But the magnitude of some global movements are too small to be detected under skip-k-frame strat-
egy. Therefore, as shown in Table 6, the experimental results using MDMO as a feature descriptor
are worse than block-wise MDMO, mainly due to lower precision compared to the latter. We com-
pare two different divisions of the OF field: intersecting division in Fig. 6(c) and disjoint division
in Fig.7. For MDMO that only require magnitude feature, the difference between two divisions is
not significant. Whereas for block-wise MDMO, which require directional information, the division
proposed in this paper is noticeably superior to the disjoint division. Because both divisions average
the OF vectors in the main direction, they are close in magnitude and differ more in direction. The
proposed intersecting division method has a more accurate description in direction, as movement in
any direction can ultimately be assigned to one bin.

Table 6: Ablation experiments.

CAS(ME)2 SAMMLV
ME MaE ME MaE

MDMO 0.212 0.456 0.250 0.354
MDMO* 0.194 0.473 0.245 0.351
MDMO, w/o step3, 6 0.155 0.431 0.197 0.345
MDMO, w/o step4 0.180 0.455 0.249 0.352
MDMO, w/o FA 0.189 0.433 0.224 0.346
MDMO, w/o [FA, step4] 0.180 0.439 0.222 0.343
bwMDMO 0.261 0.506 0.287 0.372
bwMDMO* 0.200 0.486 0.241 0.345

MDMO: All frames are treated as order state, i.e., Tdiff is set to 0.
bwMDMO: Block-wise MDMO. FA: Pixelmatch-based facial align-
ment. *: Original partition of 8 bins(Fig. 7).
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