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Abstract
Exploratory subgroup identification can be a valuable tool for psychological network science, e.g., to
identify patient subgroups with distinct symptom constellations in mental disorders. Gaussian mixture
modeling (GMM) – a popular method for investigating heterogeneity in multivariate data – offers a
promising avenue to achieve this. GMM approaches allow participants to be clustered into subgroups
based on their subgroup-specific network structures, rather than symptom profiles or sumscores. Recent
advancements in graphical GMM approaches were extended to explicitly consider the structure of associa-
tions among variables within each cluster (e.g., Fop et al., 2019). By introducing a graph structure search
step into the expectation–maximization (EM) algorithm, it allows for not only optimizing parameters but
also graph edge sets. However, this approach assumes continuous, normally distributed data, whereas real-
world psychological data is often ordinal and/or skewed in nature. In this study, we seek to explore how
effectively the structural EM algorithm is able to recover underlying subgroups in data under conditions
frequently encountered in psychological data. To this end, we generate cross-sectional data stemming
from 3 subgroups with different degrees of network sparsity, echoing findings from previous network
analyses of psychological disorders. By varying the cluster proportions, the number of ordinal answer
categories, and variable skewness in the simulated datasets, we evaluate the performance of graphical
GMM in terms of clustering and structure recovery. Classification goodness, as well as recovery of the
true cluster proportions, edge sets, and weight estimates are used as performance indicators.
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1. Introduction
An intriguing question in network psychometrics is whether networks of psychological variables
can be used to detect subgroups in an exploratory, data-driven manner. Model-based clustering,
or Gaussian mixture modeling (GMM), is a popular method to uncover subgroups, which assumes
that observations arise from a mixture of distributions, each representing one cluster or subgroup
(Fraley, 1998). It is common in fields handling high-dimensional data like bioinformatics (Gao et al.,
2016; McNicholas, 2010), though its use in psychology remains relatively scarce (i.e. Paul et al.,
2019). For continuous, normally distributed data, GMMs reliably identify the correct number of
clusters (Keribin, 2000; Scrucca et al., 2016). However, this performance is only guaranteed if the
data-generating mechanism is correctly specified, with a common specification error occurring when
ordinal data are treated as continuous (Haslbeck et al., 2023). The present simulation study explores
the impact of ordinal and skewed data on a clustering method for mixtures of Gaussian graphical
models (mixggm, Fop et al., 2019) – which is of particular interest for psychological applications.
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1.1 Sample heterogeneity in network psychometrics
Sample heterogeneity refers to the possibility that observed data arise from several latent subgroups
(Fried & Nesse, 2015; Hoekstra et al., 2022). For instance, Fried and Nesse (2015) demonstrated
marked heterogeneity using questionnaire data from patients with depression, in which they identified
1,030 unique symptom profiles. Indeed, a number of psychological hypotheses suggest the existence
of subpopulations characterized by different network structures. For example, network connectivity
or density has been proposed to vary between groups with and without psychological disorders, with
more severe symptomatology being associated with more densely connected symptom networks
(Cramer et al., 2016; van Borkulo et al., 2015). While such hypotheses have been predominantly
investigated by comparing a priori-defined groups, exploratory, data-driven approaches to identify
possible subgroups based on within-cluster associations could be particularly valuable.

Untangling sample heterogeneity based on empirical network structure has proven challenging,
as existing GMM frameworks rarely incorporate within-cluster associations as the guiding property
for clustering (Fop et al., 2019). Some either assume local independence, i.e. diagonal within-cluster
matrices (e.g. pgmm, McNicholas, 2010) or are computationally expensive and risk overparameteri-
zation (e.g. mclust, Haslbeck et al., 2023; Scrucca et al., 2016). While methods have been proposed to
model within-cluster associations for continuous data (Gao et al., 2016; Ren et al., 2022), preliminary
work showed a variety of convergence and estimation issues (Kvetnaya et al., 2023).

1.2 Ordinal and skewed data in psychology
A further challenge is that psychological data are frequently ordinal (Liddell & Kruschke, 2018) and/or
not normally distributed in the population (e.g., suicidality scores), necessitating either robustness
checks or dedicated modeling approaches. For example, many established diagnostic instruments
(e.g., Beck et al., 1996; Zigmond & Snaith, 1983) use ordinal scales with four response categories,
and Likert-type scales with 5 to 7 points are common (Liddell & Kruschke, 2018). This raises
the longstanding question: When is it appropriate to treat ordinal data as continuous? Previous
simulation research found that network estimation performance improved when ordinal categories
exceed c > 5 and sample size N is sufficiently large (N > 3,000), even under moderate to strong
skewness (Johal & Rhemtulla, 2021). Similarly, Haslbeck et al. (2023) found that high clustering
accuracy with mclust (Scrucca et al., 2016) can be achieved for c > 5 categories when N ≥ 1,000 and
clusters are well-separated. However, especially with freely estimated covariance matrices, accuracy
decreased as parameters grew with rising number of variables p, making model recovery difficult
without a very large N (≥ 10,000).

While existing approaches like clustMD (McParland & Gormley, 2016) can accommodate ordinal
data, they too assume local independence, as does latent class analysis (LCA, Visser & Depaoli,
2022). Another promising method for ordinal graphical models (Lee et al., 2022) was not readily
available at the time of this study. We therefore proceed with the method by Fop et al. (2019), which
explicitly considers within-cluster associations by optimizing for sparse precision matrices, thus
avoiding overparameterization problems. In the presence of within-cluster associations, this method
outperformed mclust (Fop et al., 2019). Therefore, the key question is whether existing findings
about treating ordinal data as continuous apply to this method, which we will now introduce.

1.3 Model-based clustering for sparse precision matrices (Fop et al., 2019)
The present method assumes that observations xi are generated by a mixture of K distributions. The
probability density function for each xi is given by:

f (xi | Θ,G) =
K∑

k=1

τk ϕ (xi | µk,Ωk,Gk) (1)
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where the parameter vector Θ comprises cluster proportions τk, means µk, and precision matrices
Ωk, with ϕ as the multivariate Gaussian density. G denotes the collection of graph structures Gk,
encoded by adjacency matrices Ak.

Typically, for a fixed number of K, the classical EM algorithm (Dempster et al., 1977) alternates
between the expectation (E) and the maximization (M) steps. Crucially, Fop et al. (2019) supplement
the M step with a structure search (S) step, which determines the optimal Gk.

In the E step, the conditional expectation of the log-likelihood ℓ is computed given the observed
data and Θ from the previous iteration. In the M step, the algorithm maximizes the regularized ℓR
with respect to Θ and G, adding a penalty term Q to introduce sparsity in Ak:

ℓR =
N∑
i=1

log


K∑

k=1

τk ϕ (xi | µk,Ωk,Gk)

 +
K∑

k=1

log p(Ωk) –
K∑

k=1

Q(Ak). (2)

Here, the term log p(Ωk) introduces Bayesian regularization to prevent singularity in Ωk. In
this work, we set the penalty Q to correspond to the Bayesian Information Criterion (BIC):

QBIC(Ak) =
1
2

Ek log N, (3)

where Ek denotes the number of edges in the candidate graph Gk. In the S step, to efficiently
explore the space of possible graph configurations, a stepwise search or a probabilistic genetic
algorithm are available. Once an optimal G is identified, the method estimates a positive-definite Ωk
with fixed zero entries given Gk. BIC is then used to select the model with the optimal number of
clusters Kopt. Finally, individual observations are assigned to clusters.

1.4 Research question
While mixggm offers a promising way to tackle the first challenge and identify underlying subgroups
in psychological data based on their cluster-specific associations, the second challenge of handling
ordinality and skew remains unresolved. Our central question therefore is how tolerant mixggm
is to violations of distributional assumptions. We conducted a simulation to evaluate the method’s
performance under different degrees of assumption violations. The outcome measures we focus on
here are the recovery rate of the correct number of clusters K, the classification quality, and the
recovery of edge structures within the clusters.

2. Method
All analyses were conducted in R (Version 4.3.3, R Core Team, 2024). Model-based clustering
was implemented using the mixggm package (Version 1.0, Fop et al., 2019). All code used in the
simulation study is available on OSF.io: https://osf.io/6n9tq.

2.1 Population networks
First, we generated cross-sectional partial correlation matrices for K = 3 clusters and p = 10
variables each to serve as true population networks for data generation in the simulation study.
To reflect hypotheses about differential network density in psychological research (Cramer et al.,
2016), we varied the proportion of non-zero edges across population networks (90%, 50%, and 10%,
respectively). To define edge weights for each population network, we first randomly sampled values
from an exponential distribution, with smaller values occurring more frequently. This choice was
informed by characteristics reported in recent network analysis studies of psychological disorders
(Wysocki & Rhemtulla, 2021). The sampled values were randomly assigned to the off-diagonal
entries of each 10 × 10 matrix according to the predefined density level. Diagonal entries were

https://osf.io/6n9tq
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Figure 1. Partial correlation matrices representing the true population networks used to generate data in each simulation
replication. Network density and edge weight placement vary by matrix, representing distinct correlational structures for
each subgroup. Numbers on the main diagonal refer to variable indices.

iteratively increased by a small constant until positive definiteness was achieved, while preserving the
original association structure. After this adjustment, the final partial correlation values ranged from
0.04 to 0.56. All three population matrices are illustrated in Figure 1.

2.2 Data generation
Multivariate normal data were generated based on the specified population matrices in each simulation
replication using the MASS package, (Version 7.3-60.0.1., Venables & Ripley, 2002), preserving
the correlational structure within each cluster. Cluster proportions τ were manipulated to be either
balanced (1 : 1 : 1) or unbalanced (1 : 2 : 3). In the balanced condition, each cluster comprised
33.3% of the sample. In the unbalanced condition, the clusters contained n1 = 16.7%, n2 = 33.3%,
and n3 = 50% of the total sample, respectively. Importantly, in this condition, the smallest cluster (n1)
had the highest network density, while the largest cluster (n3) had the lowest. This design reflects
hypotheses such as the connectivity hypothesis of mental disorders, which suggests that a smaller
subset of the population may exhibit higher symptom connectivity (Cramer et al., 2016).

Ordinal datasets were obtained by thresholding the generated continuous data following Rhem-
tulla et al. (2012). We applied symmetric, moderately, and heavily asymmetric thresholds to discretize
data into 4, 5, or 7 ordinal categories with varied skews. Symmetric thresholds were evenly spaced
around 0, covering –2.5 to 2.5 standard deviations (e.g., in four categories: –1.25, 0, 1.25). For
moderate asymmetry, the peak shifted left of center, while for heavy asymmetry, the lowest category
contained the most observations, with progressively fewer observations in higher categories.

2.3 Simulation settings
In total, the resulting the simulation conditions were as follows:

• Number of ordinal categories c: 4, 5, 7, continuous
• Skewness of ordinal data: symmetric, moderate, heavy
• Cluster proportions τ: balanced (1 : 1 : 1), unbalanced (1 : 2 : 3)
• Sample size N: 600, 1200, 2400, 4800, 9400

This resulted in 100 unique conditions. Conditions were fully crossed, with the exception that
no condition involved continuous, skewed data due to the selected ordinalization method. For
each condition, 150 datasets were simulated, on which clustering with mixggm was performed for
K = [1, 5]. A forward stepwise search algorithm was chosen for the S step.
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Figure 2. Probability to detect the correct number of clusters K (a) and classification quality (b) measured by ARI, as a
function of skewness (symmetric, moderate, heavy), number of ordinal categories (4 - continuous), N, and balanced (solid
line) vs. unbalanced (dashed line) cluster-size proportions in the population. Results for continuous data are presented only for
the symmetric condition, as no skewed continuous data was generated in this study. Error bars indicate SE.

2.4 Evaluation criteria
We evaluated the performance of the model using the following metrics:

• Clustering performance: Probability of correctly identifying the number of clusters K
• Classification performance: Adjusted Rand Index (ARI, Hubert & Arabie, 1985), measuring the

similarity between two data clustering assignments
• Sensitivity: True positive rate of edge recovery
• Specificity: True negative rate of edge recovery

Sensitivity and specificity were calculated only for replications in which estimated clusters could
be matched to population clusters, which was achieved by minimizing SRMR between estimated
and true covariance matrices.
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Figure 3. Sensitivity (a) and specificity (b) as a function of skewness (symmetric, moderate, heavy), number of categories (4 -
continuous), N, and balanced (solid line) vs. unbalanced (dashed line) cluster-size proportions in the population. Results for
continuous data are presented only for the symmetric condition, as no skewed continuous data was generated in this study.
Error bars indicate SE.

3. Results
3.1 Clustering performance
Figure 2, Panel a, summarizes the proportion of simulations P(K = 3) in which the correct number
of K was identified. Notably, performance was superior in the unbalanced condition for almost all
data settings. For symmetric, continuous data, P(K = 3) increased steadily with sample size. For
unbalanced clusters, it approached 1 with increasing N, while P(Kcorrect) stabilized at around 0.75 in
the balanced case. However, this pattern did not hold for ordinal conditions, where performance
decreased with c and dropped to 0 in the least favorable, skewed scenarios. This might be due to the
method often overestimating clusters when Kopt is chosen incorrectly. For example, mean Kopt was
3.10 (SD = 0.45) clusters for continuous data, but rose up to M = 4.71 (SD = 0.51) clusters for c = 4.
Larger sample sizes did not mitigate this effect. Only for non-skewed data with c = 7 categories,
the method markedly outperformed other ordinal categories in the unbalanced condition, but even
moderate skew led to a drop in performance, such that P(Kcorrect) did not exceed 0.23 in any ordinal,
skewed condition.
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3.2 Classification performance
As illustrated by Figure 2, Panel b, ARI consistently exceeded 0.80 for continuous, symmetric
data (except for N = 600) and showed slight improvement with increasing N, indicating good
classification performance. By contrast, it remained below 0.50 for ordinal conditions, with the
exception of c = 7 symmetric data in the unbalanced cluster-size condition.

3.3 Cluster network recovery
Sensitivity grew with higher N in all conditions (Figure 3, Panel a). It was highest for continuous
data, and was negatively impacted by the extent of skew and ordinality. By contrast, specificity
(Panel b) mostly decreased with rising sample size except in the continuous, symmetric condition,
which remained above 0.88 throughout. However, these findings warrant cautious interpretation, as
both metrics could only be calculated for replications in which estimated and true clusters could be
matched: While for for continuous data, 95.5% of replicates could be matched, this number dropped
to 45.3% for c = 7, 41.6% for c = 4, and only 7.4% for c = 5.

4. Discussion
The results indicate that both clustering performance and edge recovery are substantially affected by
the presence of ordinality and skewness in the data. While mixggm performed well for continuous,
symmetric and sparse network data – particularly when underlying networks were sparse – its
effectiveness diminished markedly in all ordinal and skewed conditions. This performance decrease
could not be compensated for by a larger N, as seen for ARI, and for the probability of detecting
the correct K, an increasing N was actually detrimental. Edge recovery was impaired compared
to continuous data, especially considering these metrics could only be calculated for the small
subset of replications. Consistently, unbalanced cluster-size conditions yielded better performance
than balanced conditions, aligning with mixggm’s optimization for sparse structures: When sparse
subgroups represent a larger share of the sample, the method benefits. This indicates that classification
performance is constrained not by power alone, but also the characteristics of the data.

Taken together, these findings suggest that prior results from the network estimation (Johal &
Rhemtulla, 2021) and model-based clustering literature (Haslbeck et al., 2023) do not generalize to
the approach evaluated here. A possible explanation is the compounded complexity of combining
clustering and network recovery within a single framework. However, alternative reasons due to
choices made in this study and limitations may also contribute.

4.1 Limitations and Future Directions
Firstly, we fixed key parameters including population structure, K, p, and penalty parameter Q,
making it difficult to determine whether reduced performance stems from modeling deficiencies, or
unsuitable properties of the population data structure.

The selection of appropriate data generation methods represents another critical decision point.
Following Rhemtulla et al. (2012), we simulated multivariate normal data first and subsequently
introduced skew to ordinal data through asymmetric thresholds. Due to this, a continuous skewed
condition was absent in our study, posing a significant limitation. While prior research indicates it
may be impossible to distinguish between a normally distributed latent variable with asymmetric
thresholds and a skewed latent distribution with symmetric thresholds (Grønneberg & Foldnes, 2019),
alternative ordinalizing approached might yield different results.

Alternative methods designed specifically for ordinal data may hold promise. For example, while
this method was not publicly accessible during this study, Lee et al. (2022) proposed an approach
for clustering ordinal graphical models without assuming local independence, leveraging probit
models to represent ordinal variables as discretizations of latent continuous variables. Tree-based
methods such as SEM Trees and Network Trees (Grassi & Tarantino, 2023; Jones et al., 2020), which
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recursively partition data based on directed or undirected edges, offer another avenue for settings
where the structure of subgroups is complex or hierarchically organized.

5. Conclusion
In summary, this study demonstrates that violations of normality and sparsity assumptions substantially
impact performance of mixggm. While we replicated its viability for network-based exploratory
subgroup detection when assumptions hold, this study established that findings on treating ordinal
data as continuous from previous literature do not directly carry over to this joint modeling approach.
Careful consideration of data characteristics therefore remains essential when applying model-based
clustering in psychological research.
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