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Abstract

Classical adversarial attacks for Face Recognition (FR)
models typically generate discrete examples for target iden-
tity with a single state image. However, such paradigm of
point-wise attack exhibits poor generalization against nu-
merous unknown states of identity and can be easily de-
fended. In this paper, by rethinking the inherent relationship
between the face of target identity and its variants, we in-
troduce a new pipeline of Generalized Manifold Adversarial
Attack (GMAA)1 to achieve a better attack performance by
expanding the attack range. Specifically, this expansion lies
on two aspects – GMAA not only expands the target to be
attacked from one to many to encourage a good general-
ization ability for the generated adversarial examples, but
it also expands the latter from discrete points to manifold
by leveraging the domain knowledge that face expression
change can be continuous, which enhances the attack ef-
fect as a data augmentation mechanism did. Moreover, we
further design a dual supervision with local and global con-
straints as a minor contribution to improve the visual qual-
ity of the generated adversarial examples. We demonstrate
the effectiveness of our method based on extensive experi-
ments, and reveal that GMAA promises a semantic contin-
uous adversarial space with a higher generalization ability
and visual quality.

1. Introduction
Thanks to the rapid development of deep neural net-

works (DNNs), the face recognition (FR) networks [5, 27]
has been applied to identity security identification systems
in a variety of crucial applications, such as face unlocking
and face payment on smart devices. However, it has been
observed that DNNs are easily fooled by adversarial exam-
ples and offer incorrect assessments [9,23], which has risks

*Co-first author
†Corresponding author
1https://github.com/tokaka22/GMAA

of unauthorized access to FR systems and stealing personal
privacy through poisoned data. These ‘well-designed’ ad-
versarial examples reveal the aspects of FR models that are
vulnerable to be attacked, which makes the adversarial at-
tack a meaningful work to provide reference for improving
model robustness.

Following the point-wise paradigm, previous methods
typically tend to attack a single target identity sample with
discrete adversarial examples illustrated in Fig. 1. However,
these methods are not strong enough both in target domain
and adversarial domain. Concretely, for the target domain,
attacking a single identity image has a poor generalization
on those unseen faces (even if they belong to the same per-
son) in realistic scenarios. For example, Fig. 2 shows these
adversarial examples which were used to attack the target
(a girl) have a disappointingly lower success rate of attack-
ing the identity with other unseen states. We analyze that’s
because attacking a single image of target identity overfits
the generation of adversarial examples to some fixed factors
such as expression, makeup style, etc. In addition to the
target domain, we naturally consider the weakness of ad-
versarial domain in the existing methods. Most adversarial
attack methods optimize a Lp bounded perturbation [24,34]
based on the gradient, which limits the problem to search-
ing for discrete adversarial examples in a hypersphere of the
clean sample and ignores the continuity of the generated ad-
versarial domain. For example, the recently proposed meth-
ods based on makeup style transformation [16,35,37] focus
on generating finite adversarial examples that correspond
to discrete makeup references. Such methods all overem-
phasize on mining discrete adversarial examples within a
limited scope and ignore the importance of the continuity
in adversarial space. The weakness of current adversarial
attack tasks motivates us, on the one hand, to explore how
to generate adversarial examples that are more general to
various target identity’s states and, on the other hand, to up-
grade adversarial domain from discrete points to continuous
manifold for a stronger attack.

In this paper, we introduce a new paradigm dubbed Gen-
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Figure 1. The core idea comparison. Discrete point-wise attack methods leverage a single state of the target identity during training
and provide discrete adversarial examples. By attacking the target identity’s state set and employing domain knowledge, our core idea
aims to Generalized Manifold Adversarial Attack (GMAA), which promises a semantic continuous adversarial manifold with a higher
generalization ability on the target identity with unknown state.

Figure 2. The black-box attack success rate on the Mobileface of
attacking target * 1, 2 and 3 during the testing. The three methods
are exclusively trained on target *.

eralized Manifold Adversarial Attack (GMAA) depicted in
Fig. 1, which achieves a higher attack success rate by pro-
viding semantic continuous adversarial domains while ex-
panding the target to be attacked from an instance to a group
set. Specifically, we train adversarial examples to attack
a target identity set rather than a single image, which in-
creases the attack success rate on the target identity with
different states. The expansion of target domain naturally
prompts us to consider enhancing the adversarial domain.
Inspired by the success of some recent data and knowl-
edge dual driven methods [2, 18, 36], we explore a low-
dimensional manifold near the sample according to the do-
main knowledge, which is a simple yet highly-efficient con-
tinuous embedding scheme and can be used to augment the
data. For such manifold, the data in it share the visual iden-
tity same as the original sample and also lie in the decision

boundaries of target identity. More specifically, we employ
the Facial Action Coding System (FACS) [10] as prior do-
main knowledge (a kind of instantiation) to expand adver-
sarial domain from discrete points to manifold. Through
using FACS, the expressions can be encoded into a vec-
tor space, and by which the adversarial example generator
could produce an manifold that is homogeneous with the
expression vector space and possesses semantic continuity.
In addition, in order to build an adversarial space with high
visual quality, we employ four expression editors in GMAA
pipeline to supervise the adversarial example generation in
terms of global structure and local texture details. A trans-
ferability enhancement module is also introduced to drive
the model to mine robust and transferable adversarial fea-
tures. Extensive experiments have shown that these compo-
nents work well on a wide range of baselines and black-box
attack models.

Our contributions are summarized as follows.
• We first pinpoint that the popular adversarial at-

tack methods generally face generalization difficulty
caused by the limited point-wise attack mechanism.

• To enhance the performance of adversarial attack, a
new paradigm of Generalized Manifold Adversarial
Attack (GMAA) is proposed with an improved attack
success rate and better generalization ability.

• GMAA considers the enhancement in terms of both
target domain and adversarial domain. For the target
domain, it expands the target to be attacked from one
to many to encourage a good generalization. For the
adversarial domain, the domain knowledge is embed-
ded to strengthen the attack effect from discrete points
to continuous manifold.
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• We instantiate GMAA in the face expression state
space for a semantic continuous adversarial manifold
and use it to attack a state set of the target identity. As a
minor contribution, GMAA supervises the adversarial
example generator w.r.t global structure and local de-
tails with the pre-trained expression editors for a high
visual quality.

2. Related work
2.1. Adversarial Attacks on Face Recognition

Adversarial attacks can be divided into white-box attacks
and black-box attacks. White-box attacks [11, 24, 32] must
entail full information of the target neural networks, how-
ever, the parameters and architecture of a real-world face
recognition system are typically hard to access. Hence, it is
more practical to consider black-box adversarial attacks in
face recognition scenarios, which demand high transferabil-
ity for the unknown FR target models or commercial appli-
cation programming interfaces (APIs). Query-based adver-
sarial attacks [9,13], a form of black-box attack, is inappro-
priate for realistic applications since it optimizes adversar-
ial examples by repeatedly accessing the target model dur-
ing training. Adding transferable adversarial perturbation
is another effective black-box attack form [4, 7, 8, 34]. Un-
fortunately, the perturbation caused by this method always
makes images become unrealistic and unnatural. Besides,
limited by the way of pixel-to-pixel similarity computation,
the model of this branch could only look for a limited num-
ber of discrete adversarial examples around the clean sam-
ple. The patch-based adversarial attack [20,28,33] severely
degrades the visual quality of images, because the adversar-
ial patch does not blend well with the clean background due
to the abrupt shift in pixel values around the boundary. Nu-
merous recent works attempt to instantiate adversarial per-
turbations with different makeup styles [16, 35, 37]. How-
ever, such makeup attacks typically result in an unnatural vi-
sual appearance due to gender constraints – female images
have a higher attack success rate and visual quality than
male ones. Regardless of the previous methods (e.g. [26]
focuses on a target sample to obtain optimal feature-map
interpolation, and [16] generates adversarial examples with
various makeup styles to attack the target identity), they all
tend to generate discrete adversarial examples for a single
target identity sample and ignore the importance of continu-
ity of adversarial space, which might be crucial to the attack
performance.

2.2. Facial Expression Editing
As another challenging task in facial analysis, face ex-

pression editing is also related to our study, which aims at
modifying facial expressions in a reasonable manner while
preserving identity completeness. In recent years, genera-
tive adversarial networks (GANs) have achieved surprising
advances in facial expression editing: GCGAN [29] uses

the facial geometry as prior knowledge to guide the gener-
ation. ExprGAN [6] exploits a controller to adjust the in-
tensity of face expression editing. StarGAN [3] introduces
a cycle consistency loss to maintain the identity content in-
variant. However, these methods are all limited on the dis-
crete expressions generation. GANimation [25] utilizes Ac-
tion Units [10] to define an expression space and generate
continuous-change facial images. EF-GAN [31] achieves
progressive facial expression editing with a local-focused
cascade GAN structure, and produces fewer artifacts and
blurs in large-gap expression transformations. In this pa-
per, we borrow the idea of Action Units as domain prior
knowledge (from face expression editing) to re-define the
adversarial attack task on a continuous manifold, to finally
strengthen attack effect.

3. Generalized Manifold Adversarial Attack
3.1. Problem Definition

Adversarial face attack tasks can be separated into tar-
geted attacks (i.e. impersonation attacks) and non-targeted
attacks (i.e. dodging attacks). Targeted attacks force the
generated adversarial examples to have a predetermined
output towards the target FR model, while the non-targeted
attacks mislead the target FR model to provide incorrect
random classification for the adversarial examples. To cap-
ture the adversarial examples that can impersonate a specific
target identity under face authentication systems, we mainly
consider the targeted attack task.

Current methods always define the targeted attack task
as an optimization problem, which can be formalized as

minLadv = min
θ

Dist(C(x∗), C(x′)),

x′ = G(x;θ).
(1)

where x∗ is the pre-specified target image belonging to the
sample space Ω ⊂ R3×H×W , Dist(·) represents a metric
of difference, C represents the feature extractor of FR neu-
ral networks, and G maps the clean sample x ∈ Ω to the
adversarial version x′ with the parameter θ.

In this paper, we re-define the problem from a broader
standpoint. To obtain highly generalized adversarial exam-
ples that are more threatening to the target identity with un-
known state, the adversarial version x′ attacks the state set
S of the target identity during training. In order to capture
an adversarial manifold M instead of discrete adversarial
examples, we aim to construct a distribution on the M. The
new task can be formalized as Eq. 2.

minLadv = min
θ

Ex∗
i ∼S,x′∼MDist(C(x∗

i ), C(x′)),

M = G(x;θ).
(2)

In addition to the adversarial attack tasks, we force G
to map x to x′ according to the given expression AU vec-
tor. The Facial Action Coding System (FACS) is applied as
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Figure 3. Overview of GMAA. A face image and a random AU vector are sent to the generative adversarial module as inputs. Meanwhile,
the expression supervision module generates supervisory signals based on the AU vector and the input image (or detail patches cropped
by the landmarks). In the transferability enhancement module, aiming at white-box FR models, the transformed output attacks the target
identity’s state set, which is provided by the generalized attack module.

prior domain knowledge to establish a continuous expres-
sion state space. Specifically, every expression is encoded
by an n-element expression vector µ = (µ1, ..., µn) which
corresponds to N facial action units. Each µn ∈ µ repre-
sents the magnitude of muscle activity in the n-th region of
the face, which indicates that the AU vector is a continu-
ous embedding scheme for different expressions. Thus, for
the input image xµ0 ∈ R3×H×W with the expression en-
coded by µ0 ∈ RN and the given expression encoded by
µi ∈ RN , G is a binary mapping G : (xµ0 ,µi) → x′

µi ,
where x′

µi has the same visual label with xµ0 and wearing
the expression encoded by µi.

3.2. Generalized Manifold Adversarial Attack
We establish the adversarial examples’ distribution on a

manifold via WGAN-GP [12]. GMAA comprises a genera-
tive adversarial module, an expression supervision module,
a transferability enhancement module, and a generalized
attack module. In contrast, Manifold Adversarial Attack
(MAA) omits the generalized attack module, as it merely
extends the adversarial domain from a point to a manifold.
The structure of our proposed method is depicted in Fig. 3.
Generative adversarial module. The generative adversar-
ial module (red box in Fig. 3) includes a generator G, a
discriminator Dc and an AU predictor DAU , where Dc and
DAU both lie in D and share partial parameters.

As inputs, the generator G receives a clean sample xµ0

and a given expression AU label µi, which aims to produce
adversarial examples wearing the expression matching to
the supplied AU label and maintain the same visual identity
with xµ0 . The discriminator Dc learns to distinguish real

images from generated images. Meanwhile, generated im-
ages deceive the discriminator Dc to force the outputs of the
generator G match the real distribution. Our G and Dc are
trained using WGAN-GP [12], and the critic loss function
we employ is

LD
critic =λc(1−Dc(xµ0))2 + λc(Dc(G(xµ0 |µi))2

+ λgp(∥∇x̃Dc(x̃)∥2 − 1)2,
(3)

LG
critic = λc(1−Dc(G(xµ0 |µi)))2, (4)

where x̃ is the random interpolation distribution between
the real distribution and the generated images’ distribution.
To ensure that the generated image match the provided ex-
pression code µi, we employ AU regression loss to estab-
lish the consistency of the generated expression with µi.
Specifically, the AU predictor DAU learns the AU coding
rules by real images and their AU labels (can be obtained
by the open source framework Openface [1]), and the G re-
duces the AU error between the generated expression and
µi to satisfy the given expression. The loss function can be
formulated as:

LD
AU = λAU∥DAU (xµ0)− µ0∥22,

LG
AU = λAU∥DAU (G(xµ0 |µi))− µi∥22.

(5)

Expression supervision module. The expression supervi-
sion module (blue box in Fig. 3) protects the visual identity
of adversarial examples and guides G in expression editing
by generating global and local facial supervisory signals.
The global branch focuses on structural features of the face,
whereas the local branch protects important facial details
and reduces artifacts and blurs caused by the global branch.
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Specifically, a global editor and three local editors are
pre-trained to provide supervisory signals. For the local
editors, we crop the eyes, nose, and mouth pixel patches
based on face landmarks first. Then the input image and
three detail patches are fed into the corresponding gener-
ator Gglobal and Gj (j ∈ J ={eyes, nose, mouth}) with
the input AU vector µ, respectively. Each generator has the
network structure similar to [25], which provides the color
response Mµ

c and the attention response Mµ
a . Mµ

c and Mµ
a

force networks to pay attention to the expression change
region and protect the remainder regions from disturbance.
The ultimate supervisory signals can be obtained as follows,
where ⊗ denotes element-wise multiplication.

Gj(xin|µ) = Mµ
a ⊗Mµ

c + (1−Mµ
a )⊗ xin. (6)

The global editor focuses more on large scale features,
such as shape and position of the five senses, and tends to
produce artifacts and blurs in the detail region, while the
local editors concentrate on significant local features and
provide finer details. Therefore, we deploy the global editor
to supervise the structural information of adversarial exam-
ples and the local editors to supervise local specifics. The
loss of expression supervision module can be expressed as

LG
exp = λgSSIM[G(xµ0 |µi), Gglobal(xµ0 |µi)]

+ λl

∑
j∈J

MSE[Cropj(G(xµ0 |µi)), Gj(Cropj(xµ0)|µi)],

(7)
where Cropj denotes the crop operation of local region j
according to the face landmarks.
Transferability enhancement module. To improve the
transferability of adversarial examples and the black-box at-
tack success rate, we introduce the transferability enhance-
ment module (yellow box in Fig. 3) from [16]. The gener-
ated adversarial examples are transformed with probability
p by the function Tp (resize with padding or add noise),
and then attack K pre-trained high-precision FR models
{Ck}k=1,...K , which perform as white-box models during
the training of G. The adversarial attack loss function is
formulated as

LG
adv =

λadv

K

K∑
k=1

[1− cos(Ck(x∗), Ck(Tp(G(xµ0 |µi))))]

(8)
Generalized attack module. The generalized attack mod-
ule (green box in Fig. 3) intends to raise the attack suc-
cess rate on the unseen face belonging to the target iden-
tity, which can be introduced into other adversarial attack
approaches. The adversarial loss LG

adv in GMAA can be
further expressed as

Ex∗
i ∼S

λadv

K

K∑
k=1

[1− cos(Ck(x∗
i ), Ck(Tp(G(xµ0 |µi))))],

(9)

where x∗
i and S are defined in 2. However, numerous face

recognition datasets and realistic scenarios do not fit this
module since an identity only contain a few or single state
image. Fortunately, since our method can accomplish both
expression editing and adversarial attack, when we remove
the loss associated with adversarial attack, we can obtain
an expression editor, Gexp, by eliminating the adversarial
effect LG

adv , which can generate the expression state set S
by different AU vectors.
Total loss function. Let X denotes the dataset, and V is the
AU vector space. In particular, the given AU vector µi is
sampled randomly from V to train the generator G to learn
the distribution of adversarial expression manifold. For the
generator G, we have the loss function as follows,

LG = Exµ0∼X,µi∼V (L
G
critic + LG

AU + LG
exp + LG

adv).

(10)
As for D, the total loss fuction can be obtained as follows,

LD = Exµ0∼X,µi∼V (L
D
critic + LD

AU ). (11)

3.3. Continuity of the adversarial space
In this subsection, we illustrate more precisely the con-

tinuity of the adversarial space and provide a proof that our
method establishes a continuous adversarial manifold.

Firstly, the definition of continuous adversarial space is
shown in Def. 1.

Definition 1. Let x0 ∈ R3×H×W , then M0 = G(x0;θ) is
a continuous adversarial space if and only if
(1) M0 is a subspace of R3×H×W .
(2) ∀x0

i ∈ M, x0
i is an adversarial version of x0.

Then, we can prove that M0 is a continuous manifold.

Theorem 1. M0 generated by G0 is a continuous adver-
sarial manifold, where G0 : V → M is a map when fixed
the input x0 in G.

Proof. (1) If M0 homogeneous with the AU vector space
V , it is obviously that M0 is a subspace of R3×H×W .

(1.1) ∀ µ, ν ∈ V , if G0(µ) = G0(ν), then
DAU (G0(µ)) = DAU (G0(ν)), we have µ = ν and
G0 : V → M0 is a single shot. Besides, ∀x0 ∈ M0,
∃µ = DAU (x

0) ∈ V s.t. G0(DAU (x
0)) = x0, then G0 is

a surjection. Thus, G0 is a bijection.
(1.2) ∀x0

1, x0
2 ∈ M0, we define d(x0

1,x
0
2) =

∥DAU (x
0
1)−DAU (x

0
2)∥2 as the metric between x0

1 and x0
2

in M0. Since (V, ∥·∥2) is a metric space, and DAU (x
0
i ) ∈

V , ∀x0
i ∈ M0, we prove that d is a metric on M0.

(Positivity) d(x0
1,x

0
2) ≥ 0, and if d(x0

1,x
0
2) = 0,

according to the definition of d we have DAU (x
0
1) =

DAU (x
0
2). Since G0 is a bijection, we have x0

1 =
G0(DAU (x

0
1)) = G0(DAU (x

0
2)) = x0

2.
(Symmetry) d(x0

1,x
0
2) = ∥DAU (x

0
1) − DAU (x

0
2)∥2 =

∥DAU (x
0
2)−DAU (x

0
1)∥2 = d(x0

2,x
0
1).
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Table 1. Black-box attack success rate

CelebA-HQ LFW
IRSE50 IR152 Facenet Mobileface IRSE50 IR152 Facenet Mobileface

Clean 3.68 3.08 1.31 8.43 3.20 0.06 0.04 5.00

PGD [23] 24.20 13.37 5.86 28.72 31.30 10.20 7.40 33.50
MI-FGSM [7] 38.90 20.76 9.25 40.48 38.20 14.20 7.60 39.40

SemanticAdv [26] 26.53 10.24 7.80 55.32 33.60 10.40 8.80 37.40
TIP-IM [34] 44.20 16.09 14.46 65.36 32.80 15.20 13.00 79.00

AMT-GAN [16] 51.06 15.63 11.63 33.27 40.72 25.23 13.89 35.67

MAA 60.40 29.43 18.91 56.13 55.80 29.20 18.00 60.80

Table 2. The unbolded numbers are the black-box ASR of attacking the test target *, 1, 2, 3, and all the models are trained on target *. The
bolded numbers are the results of the models that train on the state set. For example, if we train the MAA to attack the state set without
target 1, the adversarial examples attack target 1 with an 11.43% success rate on Facenet during the testing period.

Target* Target 1 Target 2 Target 3
Facenet Mobileface Facenet Mobileface Facenet Mobileface Facenet Mobileface

TIP-IM [34] / G-TIP-IM 17.68 86.33 4.54 / 7.62 58.03 / 70.93 10.75 / 20.42 34.42 / 49.20 11.93 / 19.41 22.21 / 42.43
AMT-GAN [16] / G-AMT-GAN 16.12 55.95 8.22 / 13.23 26.99 / 47.14 9.78 / 17.12 27.67 / 43.93 10.91 / 16.16 24.69 / 42.37

MAA / GMAA 25.22 72.62 11.43 / 17.84 43.44 / 67.50 13.30 / 21.71 33.08 / 41.24 12.64 / 19.15 29.56 / 47.21

(Triangle inequality) ∀x0
3 ∈ M0, we have d(x0

1,x
0
3) +

d(x0
3,x

0
2) = ∥DAU (x

0
1) − DAU (x

0
3)∥2 + ∥DAU (x

0
3) −

DAU (x
0
2)∥2 ≥ ∥DAU (x

0
1)−DAU (x

0
2)∥2 = d(x0

1,x
0
2).

Thus, (M0, d) is a metric space. Then we need to prove
that G0 is a continuous mapping. ∀µ,ν ∈ V , ∀ϵ > 0, let
δ = ϵ, when ∥µ− ν∥2 < δ, we have d(G0(µ)−G0(ν)) =
∥DAU (G0(µ)) − DAU (G0(ν))∥2 = ∥µ − ν∥2 < δ = ϵ.
We get the continuity of G0.

(1.3) It is obviously that DAU |M0 : M0 → V is the
inverse mapping of G0. ∀x0

1,x
0
2 ∈ M0, ϵ > 0, let δ =

ϵ, when d(x0
1,x

0
2) = ∥DAU (x

0
1) − DAU (x

0
2)∥2 < δ, we

have ∥DAU |M0(x0
1) − DAU |M0(x0

2)∥2 = ∥DAU (x
0
1) −

DAU (x
0
2)∥2 < δ = ϵ. We get the continuity of the inverse

map of G0.
In conclusion, G0 is the homeomorphism of V to the

manifold M0, i.e. M0 homogeneous with the AU vector
space V . Since AU vector space is a finite dimensional vec-
tor space, M0 is a subspace of Rm×n×l.

(2) By the loss function 8, 7 and the back propagation,
x0
i is influenced by the 8. It is obviously that x0

i ∈ M0 is
an adversarial example when the model is well-trained.

Thus, the manifold M0 generated by G0 is a continuous
adversarial manifold.
Remark 1. Since the M0 generated by G0 is a continuous
adversarial manifold when fixed the x0, then we can assert
over the sample space Ω, the adversarial examples space
generated by G constitutes an adversarial fiber bundle.

Secondly, the definition of semantic continuous adver-
sarial space is shown in Def. 2.
Definition 2. M0 generated by x0 ∈ R3×H×W is a se-
mantic continuous adversarial space if and only if
(1) M0 is a continuous adversarial space.
(2) ∀x0

1,x
0
2 ∈ M0, if x0

1 is close to x0
2 on the M0, then x0

1

and x0
2 satisfy the semantic consistency.

We can state that M0 is a semantic continuous manifold.

Theorem 2. M0 generated by G0 is a semantic continuous
adversarial manifold, where G0 : V → M is a map when
fixed the input x0 in G.
Proof. Since we have proved that DAD is a continuous
mapping, we have DAU (x

0
1) is close to DAU (x

0
2) when x0

1

is close to x0
2, which means the AU vectors of x0

1 and x0
2

are very close. Thus, the semantic information of x0
1 and

x0
2 is close.

4. Experiments
4.1. Experimental setting
Implementation details. We set λc, λgp, λAU , λg , λl,
λadv to be 1, 10, 250, 20, 20, 25, respectively. Our
method is trained by an Adam optimizer with the learn-
ing rate 0.0001 and the exponential decay rates set to be
(β1, β2) = (0.5, 0.99). We evaluate the black-box at-
tack performance of the models utilizing the attack success
rate(ASR) at FAR@0.01 and the confidence scores returned
by commercial APIs.
Dataset. We train the model on two public datasets: 1)
CelebA-HQ [19] is a high-quality face dataset, which con-
tains 30,000 face images. 2) LFW [17] is a challenging
dataset that collects 13,233 images with complex environ-
mental factors and is a common dataset for face recognition
tasks. We remove the images whose AU confidence is be-
low 95% as extracted by Openface [1], then randomly select
10% of each dataset as the test set and the remaining images
as the training set. Four pairs of images from CelebA [22]
with the same identity are used as attack targets for training
and testing, respectively, since CelebA [22] contains mul-
tiple images of one identity. Besides, the real state set in
subsection 4.3 are obtained from the RaFD dataset [21].
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Table 3. The effect of the image quantity in state set on improving the generalizability of the adversarial example. The values ni in
n1/n2/n3 represents each expression state using i images.

Target 1 Target 2 Target 3
Facenet Mobileface Facenet Mobileface Facenet Mobileface

G-TIP-IM [34] 7.6 / 7.1 / 7.2 70.9 / 70.3 / 70.1 20.4 / 21.5 / 21.4 49.2 / 49.2 / 49.2 19.4 / 19.6 / 19.4 39.4 / 39.6 / 39.5
G-AMT-GAN [16] 13.2 / 14.4 / 13.9 47.1 / 44.8 / 45.3 17.1 / 16.9 / 18.9 43.9 / 45.4 / 43.8 16.2 / 15.4 / 15.7 42.4 / 44.6 / 45.4

GMAA 17.8 / 18.2 / 17.7 67.5 / 68.5 / 69.3 21.7 / 21.3 / 19.6 41.2 / 42.6 / 40.3 19.2 / 19.9 / 21.3 47.2 / 45.6 / 44.7

Figure 4. The confidence scores returned by Face++ and Tencent. The dashed line represents the average confidence level of clean samples.

Figure 5. The left side of the image depicts the five expression
states, while the right side of the image depicts the influence of
varied AU on the attack performance of Face++ and Tencent.

Table 4. This table shows the black-box ASR results of attacking
the test target, which is the same person as the train image high-
lighted by a green square in Fig. 3. The unbolded numbers repre-
sent the results of training on the single target image that is shown
in Fig. 3, while the bolded numbers are the results of training on
the generated state set.

Facenet Mobileface

TIP-IM [34] / G-TIP-IM 5.80 / 9.50 17.20 / 23.5
AMT-GAN [16] / G-AMT-GAN 4.04 / 8.27 9.82 / 12.45

MAA / GMAA 6.60 / 10.60 13.50 / 21.60

Competitors. We compare our approach to the baselines
PGD [23], MI-FGSM [7], SemanticAdv [26], TIP-IM [34]
and AMT-GAN [16]. Since our work belongs to the branch
of GAN based unrestricted adversarial attack [30], which
is budget-free. Similar to [30], we compare our method
MAA/GMAA to both restricted and unrestricted adversar-
ial methods w.r.t attack performance and visual naturalness.
All restricted methods are setted to the size of perturbation

ϵ = 12. And all baselines are equipped with the transfer-
ability enhancement module for a fair comparison.
Target models. Following [16], we choose IR152 [14],
IRSE50 [15], Facenet [27] and Mobileface [5] as the at-
tacked FR models, with three of them serving as white-box
models during training and the remaining as the black-box
model for testing.

4.2. Comparison Study
This subsection shows the comparison results of the

MAA method and competitors in terms of attack perfor-
mance and visual quality.
Comparison of attack performance on commercial API.
We evaluate the performance of each method against the
commercial APIs Face++2 and Tencent3. Fig. 4 exhibits
the average confidence score of Face++ and Tencent be-
tween the adversarial example and the test image of the tar-
get identity. Our method MAA achieves the highest score,
outperforming all competitors on both datasets, as shown
in Fig. 4. Furthermore, in Fig. 5, we display the confi-
dence scores for five typical expressions (happy, angry, sad,
surprised, and expressionless) to demonstrate that different
AU vectors have little effect on attack performance and are
more influenced by the dataset.
Comparison of black-box attack success rate. Since our
model can give us a semantic continuous adversarial man-
ifold and we want to make sure the comparison is fair, we
randomly sample the AU vector to get test adversarial ex-
amples for calculating the black-box ASR. Tab. 1 shows the

2https://www.faceplusplus.com/
3https://cloud.tencent.com/document/product/

867/44987
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Figure 6. The images with green frames are the clean samples, while the images with blue frames are the results of TIP-IM [34]. In the case
of the AMT-GAN [16], we chose 8 makeup styles at random, and the visualization results are shown as images with an orange frame. The
images highlighted by red frames are the results of MAA, which are generated by a set of AU vectors. Please refer to the supplementary
material for more high-definition magnified visualization results.

black-box ASR of each method under four FR models and
two datasets. Obviously, our method has good performance
for black-box attacks, i.e., it has strong transferability.
Comparison of visual quality. We choose TIP-IM and
AMT-GAN, two recent approaches with high black-box
ASR, as benchmarks for our assessment of visual quality.
Fig. 6 shows the adversarial examples of each method,
and the target image is shown in Fig. 3 highlighted by a
green square. In particular, to demonstrate that our method
can generate semantically continuous adversarial examples,
Fig. 6 displays the adversarial examples generated by MAA
that continuously transform on four expressions (expres-
sionless, disgusted, happy and surprised in succession).
Note that although only 20 adversarial examples are pre-
sented in Fig. 6, our method can generate an infinite num-
ber of adversarial examples by continuously interpolating
between AU vectors since MAA establishes a correspon-
dence with the AU vector space. Moreover, our method has
a natural visual quality and is gender-insensitive.

4.3. Attack state set
Attack real state set. To avoid serendipity, two FR mod-
els, three different test targets, and three adversarial at-
tack methods were employed to assess the effectiveness
of attacking state set on enhancing the adversarial exam-
ples’ generalizability. Particularly, one of the FR models
is Facenet with high accuracy, and the other is Mobileface
with a lightweight network. Targets *, 1, 2 and 3 are shown
in Fig. 2. The state set consists of several common expres-
sion states (angry, contemptuous, disgusted, fearful, happy,
sad and surprised), and each correlates to an image. By
comparing the results in Tab. 2, we can summarize that the
model trained to attack target * generalizes poorly to test
targets 1, 2, 3, whereas adversarial examples generated on
the state set generalize better to the test target, even though
the test target is not used to train the model.

We try to add more images in the state set to further
improve the performance. Tab. 3 shows the ASR results
that the target state set contains each expression state corre-
sponding to 1/ 2/ 3 image(s), respectively. We demonstrate
that the generalizability of the adversarial examples can be
effectively strengthened as long as the state set contains a

single image of each state, and additional images have min-
imal impact on the results.
Attack generated state set. For face image datasets that do
not contain rich states, we generate the target state set by the
pre-trained generator Gexp with AU vectors of common ex-
pressions. Tab. 4 shows the comparison results of training
on a single target and a generated state set, demonstrating
that training the model on the target state set enhances the
generalization ability of adversarial examples.

5. Future Work
Considering the ubiquitous applicability of expressions

in the facial adversarial attacks, the expression state space
was chosen to implement GMAA in this paper. We em-
ploy the FACS as the prior domain knowledge to imple-
ment GMAA, while the paradigm GMAA can be broadly
generalized by integrating other domain information, such
as illumination, posture, etc. By selecting different state
spaces, our work can be generalized to other adversarial at-
tacks with more general image categories.

6. Conclusion
In this paper, we provide a novel paradigm GMAA that

broadens both target domain and adversarial domain to en-
hance the performance of adversarial attack. For the tar-
get domain, GMAA optimizes generalization to the target
identity by attacking the state set instead of a single image.
Additionally, GMAA leverages the domain knowledge to
expand adversarial domain from discrete points to semantic
continuous manifold. Numerous comparative experiments
have verified that GMAA has a better attack performance
and a more natural visual quality than other competitors.
Moreover, the generalized attack module can be extended
to a wide of applications.
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