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Abstract

Data of general object images have two most com-
mon structures: (1) each object of a given shape
can be rendered in multiple different views, and
(2) shapes of objects can be categorized in such
a way that the diversity of shapes is much larger
across categories than within a category. Existing
deep generative models can typically capture either
structure, but not both. In this work, we introduce a
novel deep generative model, called CIGMO, that
can learn to represent category, shape, and view
factors from image data. The model is comprised
of multiple modules of shape representations that
are each specialized to a particular category and
disentangled from view representation, and can
be learned using a group-based weakly supervised
learning method. By empirical investigation, we
show that our model can effectively discover cat-
egories of object shapes despite large view vari-
ation and quantitatively supersede various previ-
ous methods including the state-of-the-art invariant
clustering algorithm. Further, we show that our ap-
proach using category-specialization can enhance
the learned shape representation to better perform
down-stream tasks such as one-shot object identifi-
cation as well as shape-view disentanglement.

1 INTRODUCTION

In everyday life, we see objects in a great variety. Cate-
gories of objects are numerous and their shape variations
are tremendously rich; different views make an object look
totally different (Figure 1). Recent neuroscientific studies
document how the primate visual system represents such
complex objects in a characteristic, modular architecture,
which is comprised of multiple cortical regions that each
encode invariant features specialized to a particular object
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Figure 1: Examples of general object images. These include
two categories (car and chair) each with three shape varia-
tions. The object of each shape is rendered in three different
views.

category, such as faces [Freiwald and Tsao, 2010], body
parts [Kumar et al., 2017], and other general categories
[Srihasam et al., 2014, Bao et al., 2020]. Our work here
takes inspiration from these biological findings for devel-
oping a novel learning model with “categorical invariant
representation.”

To be more specific, consider two most common domain
structures of general object images. First, each object has
a specific shape and can be rendered in multiple different
views (e.g., 3D orientation) independently of shape. Sec-
ond, the shapes of objects can be categorized in such a way
that the diversity of shapes is much larger across categories
than within a category. For example, Figure 1 illustrates
various object images of car and chair categories, in which
the shape of a particular car type is relatively similar to the
shape of another car type but is substantially different from
any chair type. Existing deep generative models typically
capture either structure. The first structure on view varia-
tion is often handled by disentangling deep models, i.e.,
representation learning of mutually invariant factors of vari-
ation in the input [Bengio et al., 2013, Higgins et al., 2016,
Chen et al., 2016, Bouchacourt et al., 2018, Hosoya, 2019,
Mathieu et al., 2016, etc.], while the second structure on
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Figure 2: Examples of invariant clustering from (A) CIGMO, (B) GVAE [Hosoya, 2019] with k-means, and (C) IIC [Ji
et al., 2019], for ShapeNet, in the case of 3 categories. Random 24 test images belonging to each estimated category are
shown in a box. Note that the categories almost perfectly correspond to the chair, table, car image classes in (A). Such
correspondence is much less clear in (B) and (C); in particular, cars are mixed with many other objects (category 3 in (B)
and category 1 in (C)).

categorization can be handled by deep clustering methods
[Jiang et al., 2017, Ji et al., 2019]. However, models that
capture both structures in a single generative framework
have rarely been studied.

In this work, to exploit both domain structures, we develop
a probabilistic deep generative model that learns to encode
three latent factors, namely, (1) category, (2) shape, and (3)
view, from a dataset of general object images. However,
this goal is generally difficult in a completely unsupervised
setting, thus requiring some kind of “inductive bias” to be
imposed [Locatello et al., 2020a]. To this end, we start with
recently emerging, group-based weakly supervised learning
[Mathieu et al., 2016, Bouchacourt et al., 2018, Chen et al.,
2018, Hosoya, 2019], which can learn separate representa-
tions of shape and view from object images using no explicit
labels, but only grouping information that links together dif-
ferent views of the same object. We extend this approach by
introducing multiple modules of shape representations and
then devising mechanisms to specialize each shape repre-
sentation to a particular object category while disentangling
it from view representation. We call the resulting model
CIGMO (Categorical Invariant Generative MOdel).

We have empirically investigated representational advan-
tages of our model. First, we found that our model allows for
effectively solving the invariant clustering problem, that is, it
can discover categories of object shapes in an unsupervised
manner despite significant variation of object views. Our
model can quantitatively outperform various previous meth-
ods including the state-of-the-art invariant clustering method
[Ji et al., 2019] as well as combination of existing disentan-
gling and clustering methods; Figure 2 shows demonstrat-

ing examples. Second, we found that our approach using
category-specialization can enhance the learned shape rep-
resentation to perform better multiple tasks, including one-
shot identification (object recognition given one example
per shape) as well as shape-view disentanglement in multi-
ple criteria. Thus, we propose CIGMO as a novel learning
approach to represent object images in a general manner
using category, shape, and view latent variables, which can
provide more precise information for down-stream tasks
than typical approaches to represent only part of those vari-
ables. The source code written in pytorch is available at
https://github.com/HaruoHosoya/cigmo.

2 RELATED WORK

A number of studies exist for disentangling deep generative
models. A particularly relevant technique is the group-based
disentangling approach that can learn to separate content
(shape) and view variables from grouped data [Mathieu
et al., 2016, Bouchacourt et al., 2018, Chen et al., 2018,
Hosoya, 2019, Locatello et al., 2020b]. However, these stud-
ies most often use image datasets of a single object category,
paying no attention to the large cross-category diversity of
object shapes mentioned in the introduction. Our model can
be seen as a generalization of this approach with catego-
rization, where our specific contribution is how to handle
grouped data in the presence of multiple categories (Sec-
tion 3.2); such issue would not arise in a non-group-based
setting, e.g., [Kingma et al., 2014].

Although our focus here is weak supervision, we should
mention that there are various approaches to use explicit



labels for enhancing disentangling performance, such as
semi-supervised learning [Kingma et al., 2014, Siddharth
et al., 2017] or adversarial learning to promote disentangle-
ment [Lample et al., 2017, Mathieu et al., 2016]. Also, as
group-based learning was originally inspired by temporal
coherence principle [Földiák, 1991] (i.e., the object identity
is often stable over time), some weakly supervised disentan-
gling approaches have explicitly used it [Yang et al., 2015].

Some studies have proposed unsupervised disentangling
algorithms that impose statistical constraints on the latent
representation such as information maximization [Higgins
et al., 2016, Chen et al., 2016, Dupont, 2018]. However, we
emphasize that the problem that they try to solve is very
different from ours. That is, their models can learn arbitrarily
many continuous variables that are each single-dimensional,
whereas our model (as well as all other disentangling models
cited so far) can learn exactly two continuous variables that
are each multi-dimensional (shape and view).

Our study is also related to recent deep clustering meth-
ods. In particular, a latest approach proposes group-based
learning for invariant clustering, which maximizes mutual
information between categorical posterior distributions for
paired images [Ji et al., 2019]. This method has exhibited
remarkable performance on natural images under various
view variation; Section 4 gives an empirical comparison
with our method. Although earlier work combines varia-
tional autoencoders (VAE) [Kingma and Welling, 2014]
with a conventional clustering method (e.g., Gaussian mix-
ture), such approach seems to be limited in capturing large
object view variation [Jiang et al., 2017]. In any case, these
methods are specialized to clustering and throw away all
information other than the category.

The group-based learning is loosely related to contrastive
learning [Jaiswal et al., 2020], which is a self-supervised
learning approach to make representations of “positive” data
pairs near (e.g., objects of the same shape) and those of “neg-
ative pairs” distant (e.g., objects of different shapes). Such
negative data (not used in our study) could help drastically
improve performance, though it incurs substantial technical
complication (large batch size, memory bank, etc.).

3 CIGMO: CATEGORICAL INVARIANT
GENERATIVE MODEL

3.1 MODEL

In our model construction, similarly to the previous group-
based disentangling approaches [Mathieu et al., 2016,
Bouchacourt et al., 2018, Hosoya, 2019, Chen et al., 2018,
Locatello et al., 2020b], we assume a dataset that groups
together multiple object images of the same shape but possi-
bly in different views. Here, shape refers to the property of
object that is invariant in view, where view is defined depend-
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Figure 3: (A) The graphical model. Each instance xk in a
data group is generated from a category c, a shape z, and
a view yk. Round boxes are discrete variables; circles are
continuous variables; shaded are visible variables. (B) The
inference flow. Each hidden variable is inferred from the set
of incoming variables.

ing on the dataset. For example, 3-dimensional viewpoints
are considered as views in the object images in Figure 1
(columns). Given such dataset, we can extract the shape
as a group-common factor and the view as an instance-
specific factor. In this study here, we generalize this idea
with category-modular representation. That is, we assume
multiple object categories each of which includes a distinct
and potentially infinite set of shapes. Since the variety of
shapes can be category-specific (e.g., shapes of chairs vary
in a different way from those of cars), we endow each cate-
gory with its own specialized representation (i.e., separate
encoders and decoders).

Formally, we assume a grouped dataset D =

{(x(n)
1 , . . . ,x

(n)
K ) | x

(n)
k ∈ RD, n = 1, . . . , N},

where each data point is a group (tuple) of K data instances
(e.g., images); we assume that the groups are i.i.d. For
a data group (x1, . . . ,xK), we consider three types of
hidden variables: category c ∈ {1, . . . , C}, shape z ∈ RM ,
and views y1, . . . ,yK ∈ RL (omitting the superscript (n)),
where the category and shape are common for the group
while the views are specific to each instance. We consider
the following generative model (Figure 3(A)):

p(c) = πc

p(z) = NM (0, I)

p(yk) = NL(0, I)
p(xk|yk, z, c) = ND(fc(yk, z), I)

for c = 1, . . . , C and k = 1, . . . ,K. Here, πc is a category
prior with

∑C
c=1 πc = 1 and fc is a decoder deep net de-

fined for category c corresponding to the category-specific
module of shape representation. In the generative process,
the category c is first drawn from the categorical distribution
(π1, . . . , πC), while the shape z and views yk are drawn
from standard Gaussian priors. Then, each data instance
xk is generated by the decoder fc for the selected category
c, which is applied to the group-common shape z and the
instance-specific view yk (added with Gaussian noise of
unit variance). In other words, different data instances for



a group are generated from the same shape and different
views.

3.2 LEARNING

Having defined a generative model as above, we expect
category, shape, and view representations to arise as latent
variables after fitting the model to a grouped dataset. To
derive a concrete algorithm, we use variational autoencoders
[Kingma and Welling, 2014] as a basic methodology, where
we develop a specific architecture to solve our particular
problem.

As the most important step, we specify inference models to
encode approximate posterior distributions (Figure 3(B)).
First, we estimate the posterior probability for category c as
follows:

q(c|x1, . . . ,xK) =
1

K

K∑
k=1

u(c)(xk) (1)

Here, u is a categorizer deep net that computes, for an indi-
vidual instance xk, a probability distribution over the cate-
gories (

∑C
c=1 u

(c)(xk) = 1) [Kingma et al., 2014]. Since
we have K such instances, we take the average over the
instance-specific distributions to obtain the group-common
distribution. The averaging operation is justified as estima-
tion of the expected probability of each category within the
given group.

Next, we infer the posterior for each instance-specific view
yk from the input xk as follows:

q(yk|xk) = NL (g(xk),diag(r(xk))) (2)

where g and r are encoder deep nets to specify the mean
and variance, respectively. Here, we use the view represen-
tation that does not depend on the category, assuming a
“universal” view space. Then, we estimate the posterior for
group-common shape z from inputs x1, . . . ,xK as follows:

q(z|x1, . . . ,xK , c) =

NM

(
1

K

K∑
k=1

hc(xk),
1

K

K∑
k=1

diag(sc(xk))

)
(3)

This time, shape representation does depend on the category,
unlike views. Thus, the encoder deep nets hc and sc are
defined for each category c, which compute the mean and
variance, respectively, for each individual shape for xk. We
then obtain the group-common shape z as the average over
all the individual shapes [Hosoya, 2019].

For training, we define the following variational lower
bound of the marginal log likelihood for a data point:

L(φ; ~x) = Lrecon + LKL with

Lrecon = Eq(~y,z,c|~x)

[
K∑
k=1

log p(xk|yk, z, c)

]
LKL = −DKL(q(~y, z, c|~x)‖p(~y, z, c))

where ~x stands for (x1, . . . ,xK), etc., and φ is the set of all
weight parameters in the categorizer, encoder, and decoder
deep nets. We compute the reconstruction term Lrecon as
follows:

Lrecon =

C∑
c=1

q(c|~x)Eq(~y,z|~x,c)

[
K∑
k=1

log p(xk|yk, z, c)

]

≈
C∑
c=1

q(c|~x)
K∑
k=1

log p(xk|yk, z, c)

where we approximate the expectation using one sample
z ∼ q(z|~x) and yk ∼ q(yk|xk, c) for each k, but directly
use the probability value q(c|~x) for c. The latter is crucial
for making the loss function differentiable. The KL term
LKL is computed as follows:

LKL =−DKL(q(c|~x)‖p(c))

−
K∑
k=1

DKL(q(yk|xk)‖p(yk))

−
C∑
c=1

q(c|~x)DKL(q(z|~x, c)‖p(z))

Finally, our training procedure is to maximize the lower
bound for the entire dataset with respect to the weight pa-
rameters: φ̂ = argmaxφ

1
N

∑N
n=1 L(φ;x

(n)
1 , . . . ,x

(n)
K ).

Figure 4 depicts the outline of our learning algorithm. We
emphasize here that, even though the architecture has rather
intertwined interaction between grouping and categoriza-
tion, our model can be formalized elegantly in a probabilistic
generative framework, can be trained in an end-to-end man-
ner only using a grouped dataset and no explicit label for
category and so on (nor any pre-trained model), and can
perform well for multiple down-stream tasks (Section 4).

3.3 MODEL VARIANTS

The above construction is only one approach to categorical
invariant generative models. There can indeed be a number
of variants. First, instead of combining categorical distri-
butions by averaging as in equation 1, we could take the
(normalized) product: q(c|x1, . . . ,xK) ∝

∏K
k=1 u

(c)(xk)
(which can be interpreted as evidence accumulation); or tak-
ing the softmax on the averaged logits: q(c|x1, . . . ,xK) ∝
exp

(
1
K

∑K
k=1 ũ

(c)(xk))
)

where ũ(c) is the logit of u(c)

(which estimates expectation at the level of neural network
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Figure 4: A diagrammatic outline of CIGMO learning al-
gorithm. The entire workflow consists of three kinds of net-
works corresponding to views (left-most), category (right-
most), and shapes in C modules. Given an input group
of instances xk (bottom), an instance-specific view yk is
computed by encoders g and r. In each module c, a group-
common shape z is computed by encoders hc and sc fol-
lowed by averaging. Then, new data instances generated by
decoder fc from each shape and view are compared with
the original data for obtaining the reconstruction error (loss).
This process is repeated for all modules. In parallel, the
posterior probability for category c is computed by the cat-
egorizer u followed by averaging and multiplied with the
reconstruction error for the corresponding module. Note
that other probabilistic mechanisms (e.g., priors) are omit-
ted here for brevity.

outputs). Second, instead of the “universal” view space as
in equation 2, we could consider a category-dependent view
representation: q(yk|xk, c) = NL (gc(xk),diag(rc(xk)))
using encoders gc and rc defined for each category c. This is
sensible since, e.g., frontal views for chairs could arguably
mean differently from frontal views for tables. For these
two, Supplementary Materials make empirical comparison,
showing that our original approach in Section 3.2 gives
slightly better performance than the variants.

In addition, we can think of a relatively different approach
that takes an existing group-based disentangling model
[Bouchacourt et al., 2018, Hosoya, 2019, Locatello et al.,
2020b], but adds Gaussian mixture prior on the shape vari-
able. Formally, assume

p(c) = πc

p(z′|c) = NM (bc,Ac)

p(yk) = NL(0, I)
p(xk|yk, z′) = ND(f(yk, z′), I)

where bc and Ac are a mean vector and covariance ma-

trix, respectively, corresponding to category c; f is a deep
net decoder (not depending on the category). However, the
following can be proved.

Theorem 1. Group-based disentangling models with Gaus-
sian mixture prior are a special case of CIGMO.

Proof. The result immediately follows by letting z =

A
− 1

2
c (z′ − bc) and fc(yk, z) = f(yk,A

1
2
c z + bc).

This corresponds to the specific architecture in CIGMO
that shares the part of decoder networks after the first fully
connected layer. In fact, we precisely use such architecture
in the experiments (Supplementary Materials).

4 EXPERIMENTS

We have applied CIGMO as described in Section 3 to two
image datasets: ShapeNet (general objects) and MVC Cloth
(cloth images). Below, we outline the experimental set-up
and show the results.

4.1 SHAPENET

For the first set of experiment, we derived a dataset of multi-
viewed object images from 3D models in ShapeNet database
[Chang et al., 2015]. The dataset consisted of 10 pre-defined
object classes: car, chair, table, airplane, lamp, boat, box,
display, truck, and vase. Within each class, we had a large
number of objects with specific shapes, which we distin-
guished by object identities. We rendered each object in
30 views (3-dimensional viewpoints) in a single lighting
condition. We split the training and test sets, which con-
sisted of 21888 and 6210 object identities, respectively. (See
Supplementary Materials for more details.) We also created
subset versions with 3 or 5 object classes. For training data,
we formed groups of images of the same object in random 3
views (K = 3), though our approach works for any choice
of group size of 2 or larger (Section 4.1.4) We used object
identity labels (not class labels) for grouping. Importantly,
however, after this step, we never used any label during
training.

To train a CIGMO model, we used the following setting.
We set the number of categories in the model either to the
number of classes in the data (C = 3, 5, or 10), or to a larger
number, depending on the task. We set the shape dimension
M = 100 and the view dimension L = 3 (where a very low
view dimension was used to avoid the view variable taking
over all the input information and thereby the shape variable
becoming degenerate). For the categorizer, encoder, and de-
coder deep nets, we adopted commonly used architectures
of convolutional or deconvolutional neural networks. Since
the model had so many deep nets, a large part of the net-
works was shared to save the memory space. For simplicity,



Table 1: Invariant clustering accuracy (%) for ShapeNet. The mean and SD over 10 model instances are shown; the best
method with the highest mean score is shown in the bold font; the ∗-mark indicates statistical significance relative to the best
method (t-test; p < 0.05); ditto for the remaining tables.

Methods 3 classes 5 classes 10 classes

chance level 33.33 20.00 10.00
IIC 85.25 ± 13.74 81.10 ± 7.33∗ 60.84 ± 1.45∗

IIC (overclust.) 79.86 ± 13.78∗ 81.87 ± 4.57∗ 59.73 ± 1.49∗

VAE + k-means 66.41 ± 5.69∗ 50.83 ± 3.85∗ 37.07 ± 1.00∗

Mixture of VAEs 82.35 ± 5.66∗ 65.73 ± 6.24∗ 40.86 ± 3.58∗

MLVAE + k-means 82.04 ± 7.78∗ 70.68 ± 5.04∗ 54.47 ± 1.92∗

GVAE + k-means 73.20 ± 10.93∗ 69.42 ± 3.47∗ 52.55 ± 2.74∗

CIGMO 94.83 ± 6.06 89.36 ± 4.53 68.53 ± 4.24

Table 2: One-shot identification accuracy (%) for ShapeNet.

Methods 3 classes (3705 objs.) 5 classes (4977 objs.) 10 classes (6210 objs.)

chance level 0.03 0.02 0.02
VAE 2.17 ± 0.03∗ 3.49 ± 0.04∗ 3.43 ± 0.02∗

Mixture of VAEs 2.31 ± 0.04∗ 3.71 ± 0.06∗ 3.55 ± 0.06∗

MLVAE 24.00 ± 0.43∗ 20.30 ± 0.26∗ 17.93 ± 0.29∗

GVAE 24.51 ± 0.44∗ 20.30 ± 0.24∗ 17.91 ± 0.20∗

CIGMO 27.33 ± 0.55 24.51 ± 0.68 21.79 ± 0.71

we fixed the category prior πc = 1/C. Supplementary Mate-
rials give more details on the architecture. For optimization,
we used Adam [Kingma and Ba, 2015] with mini-batches
of size 100 and ran 20 epochs.

We evaluated the trained models using test data, which were
ungrouped and contained objects of the same classes as
training data but of different identities. Below, we describe
the evaluation in three parts: (1) invariant clustering task,
(2) one-shot identification task, and (3) category-wise shape-
view disentangling. Supplementary Materials give compari-
son of the model variants discussed in Section 3.3.

4.1.1 Invariant clustering

The goal of this task is to perform clustering of input im-
ages regardless of the view. Since our learning method has
already estimated the latent category variable without using
labels, the rest is to simply infer the most probable category
from a given test image, ĉ = argmaxc q(c|x).

For comparison, we considered the following baseline mod-
els. First, we included two group-based disentangling meth-
ods, namely, Group-based VAE (GVAE) [Hosoya, 2019]
and Multi-Level VAE (MLVAE) [Bouchacourt et al., 2018].
These can learn to separately infer shape and view from
object images; we performed k-means clustering on the
learned shape variable. In addition, we incorporated In-

variant Information Clustering (IIC) [Ji et al., 2019], the
state-of-the-art, group-based method specialized to invari-
ant clustering. IIC came in two versions: with and without
regularization using 5-times overclustering. For all the base-
line methods above, we gave exactly the same grouped
dataset for training. In addition to these, we examined, as
an ablation study, two non-group-based methods: mixture
of VAEs and vanilla VAE with k-means.

Figure 2(A) shows an example result from a CIGMO model
with 3 categories applied to the 3-class dataset, where each
box shows random test images belonging to each estimated
category. This demonstrates a very precise clustering of
objects achieved by our model, which is quite remarkable
given the large view variation and no category label used
during training. Figures 2(B) and (C) show analogous ex-
amples from GVAE with k-means as well as IIC, clearly
indicating lower performance compared to CIGMO.

For quantitative comparison, we measured the performance
of invariant clustering in two standard criteria. The first is
classification accuracy. For this, since we needed to com-
pute the best category-to-class mapping by the Hungarian
algorithm [Munkres, 1957] and since this step requires the
number of categories in the model to equal the number of
classes in the data, we used only such models corresponding
to each dataset with 3, 5, or 10 classes. Table 1 summa-
rizes the results (for 10 model instances for each method).
Generally, CIGMO outperformed the other methods in all



Table 3: Degree of shape-view disentanglement for ShapeNet by three measures. Left: swapping error (lower is better);
middle: neural network classification accuracy (%) for object identity from the shape (higher is better); right: that for view
variable (lower is better); weighted average over categories.

swapping error shape→ id (%) view→ id (%)
Methods 5 classes 10 classes 5 classes 10 classes 5 classes 10 classes

MLVAE 0.497 ± 0.005∗ 0.554 ± 0.010∗ 47.30 ± 0.78∗ 42.96 ± 0.74∗ 0.60 ± 0.05 0.52 ± 0.08
GVAE 0.491 ± 0.004∗ 0.549 ± 0.005∗ 48.34 ± 0.55∗ 43.87 ± 0.30∗ 0.56 ± 0.05 0.48 ± 0.04
CIGMO 0.300 ± 0.025 0.340 ± 0.035 50.91 ± 0.97 46.28 ± 0.87 0.65 ± 0.05∗ 0.67 ± 0.07∗

cases with a large margin (mostly with statistical signifi-
cance). More specifically, first, CIGMO performed better
than GVAE or MLVAE with k-means, which shows that
category information can be more clearly represented with
multiple category-specific shape representations, compared
to a general shape representation with a conventional cluster-
ing method. Second, CIGMO superseded IIC, which shows
that general modeling of object images with category, shape,
and view latent variables can do better than directly solving
the specific task. This was the case both with and without
overclustering; in fact, we could not find a consistent im-
provement by overclustering in IIC, contrary to the claim
by Ji et al. [2019]. Third, CIGMO showed significantly
higher scores than mixture of VAEs, which confirms the
large impact of group-based learning. Taken together, these
results demonstrate the efficacy of the categorical invariant
representation in the invariant clustering task.

The second criterion is Adjusted Rand Index (ARI), which
provides a similarity measure between sample-to-category
and sample-to-class assignments [Hubert and Arabie, 1985].
Since this criterion allows any number of categories in the
model, we assessed the change of scores for different num-
bers of categories. Figure 5 shows the results for the 3-class
and 10-class datasets. Generally, all methods decreased per-
formance while the number of categories increased. How-
ever, CIGMO reasonably retained the score even for larger
numbers of categories, while the other methods exhibited
a sharp drop. This is because CIGMO tends to use just a
necessary number of categories and leave the remaining cat-
egories as degenerate (to which no input belongs), whereas
the other methods try to find out as many clusters as pos-
sible and thus always use all categories. This property of
CIGMO would be useful in a realistic setting where the
number of true categories is unknown a priori.

4.1.2 One-shot identification

The goal of this task is to perform object recognition given
only one example per identity. More precisely, we randomly
pick up a subset of the test images consisting of exactly
one image for each object identity and then identify the
objects of the remaining test images. Since the test objects
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Figure 5: Adjusted Rand Index for ShapeNet while increas-
ing the number of categories in the model (line: mean, shade:
SD).

are disjoint from the training objects, we deal with only
unseen objects for the model. This task can measure the
strength of view-invariance of shape representation: if shape
code is perfectly invariant in view, then all images of the
same object should be mapped to an identical point in the
shape space. Note that our purpose here is not to infer the
class but the object identity, unlike invariant clustering.

Thus, we compared overall accuracy of one-shot identifica-
tion for CIGMO and other models. For this, we performed
a nearest-neighbor method according to Euclidean distance
in the shape space. Here, the shape space was defined de-
pending on the method. For GVAE or MLVAE, the shape
variable z = h(x) directly defined the shape space. For
CIGMO, since the shape representation depended on the
category, we first defined zc = hc(x) for c = ĉ (where
ĉ is inferred from the input) and zc = 0 otherwise, and
then concatenated them together: [z1, . . . ,zC ]. This gave
us category-dependent shape vectors that could be directly
compared. For VAE or mixture of VAEs, we used the entire
latent variable in place of shape variable. For simplicity, we
again used models with the same number of categories as
the image classes.

Table 2 summarizes the results. Overall, CIGMO performed
the best among the compared methods in all cases (with sta-



tistical significance). In particular, it performed significantly
better than GVAE and MLVAE, which indicates that shapes
can be represented more precisely with category specializa-
tion than without. In addition, our model outperformed, by
far, mixture of VAEs, showing the successful disentangle-
ment of shape from view. These results, again, indicate the
advantage of the categorical and invariant representations in
the one-shot identification task. (Note also that the scores
were remarkably high even for up to 6210-way classification
by one shot.)

4.1.3 Category-wise shape-view disentanglement

CIGMO provides category-specific shape representations
that are disentangled from views. We quantified the degree
of disentanglement in two ways. First, we generated a num-
ber of “swapping” images by the decoder from the view
of one image and the shape of another, and calculated the
(normalized) mean squared error between the generated im-
ages and the ground truths (swapping error). Second, we
measured how much information the shape or view variable
contained on object identity, for which we trained two-layer
neural networks on either variable for classification (identity
inference) [Mathieu et al., 2016, Bouchacourt et al., 2018].
A better disentangled representation would give a higher
accuracy from the shape variable and a lower accuracy from
the view variable. For each analysis, we conducted the mea-
surement for each category using the belonging test images
and took the average weighted by the number of those im-
ages. Table 3 summarizes the results. Overall, CIGMO
tended to give better results than the baselines, except for
object information in the view variable (though the com-
pared accuracies were all negligibly low).

4.1.4 Group size variation

In Section 4.1, we have argued that our model works as
long as the group size is two or larger. This is because the
shape should be in principle the same no matter how many
instances are in each group. However, a larger group size
could more easily stabilize the model training, thus poten-
tially changing the result quantitatively. Figure 6 shows the
change of performance while the group size was varied. The
result indeed shows that increasing the group size tends to
slightly improve the performance (except for the saturation
in invariant clustering for fewer classes).

4.2 MVC CLOTH

For the second set of experiment, we used a dataset of multi-
viewed clothing images based on MVC Cloth dataset [Liu
et al., 2016]. The dataset contains a number of photos of
cloths worn by fashion models and taken in multiple view-
points (Supplementary Materials). Unlike ShapeNet, this
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Figure 6: Comparison of performance in invariant cluster-
ing, one-shot identification, swapping, and shape-to-identity
when the group size is varied.

dataset provides no class label. Therefore our focus here is
to demonstrate what kind of unknown but interesting cate-
gories can be discovered by our model. We split the dataset
into the training and test sets each consisting of ∼112K and
∼28K images with disjoint cloth types; the training images
were grouped for the same cloth types (group size 3). For
model training, we arbitrarily set the number of categories
to 7 in a CIGMO. Other training conditions were identical
as before.

Figure 7(A) illustrates an invariant clustering result, where
only 4 categories were shown as the other 3 categories were
degenerate. By inspection, category 1 represents whole-
body cloths like suits and dresses; category 2 represents
tops like sweaters, jackets, blouses, and shirts typically with
long sleeves; category 3 represents bottoms like trousers and
jeans; category 4 represents tops like shirts typically with
short sleeves. To characterize the categories more system-
atically, we used the attribute information provided by the
dataset (264 boolean attributes for each image; see Supple-
mentary Materials). For each estimated category and each
attribute label, we calculated F1-score to measure their rele-
vance [Fawcett, 2006]. Table 4 gives top 10 most relevant
attributes to each category; we can see good matching of
the result with the visual impression from Figure 7(A).

Figure 7(B) shows a swapping result from the same CIGMO
model, where each matrix corresponds to a category and
shows the images generated from the shape of one image
(left column) and the view of another (top row). We can see
that the shape and view representations are well disentangled
in each category, as the generated images are clearly aligned
for the shape in rows and for the view in columns.1

1Note that our goal here is not to generate sharp images. Gen-
erally, it is well known that, compared to VAE-based methods,
GAN-based methods tend to generate sharper but often more cor-
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Figure 7: Results from a CIGMO model trained for MVC Cloth dataset. (A) Invariant clustering. Random images belonging
to each estimated category are shown in a box. (B) Swapping. For each category, an image is generated from the view of one
image in the top row and the shape of another image in the left column.

Table 4: Top 10 most relevant attributes to each category in
the model in Figure 7. Each attribute name is shown with
the F1-score in parentheses.

Catg. Attributes (F1-scores)

1 Short (0.45); Sleeveless (0.33); hundred2O (0.32);
Polyester (0.32); AlineDresses (0.31); Sheath-
Dresses (0.31); Black (0.29); hundred2U (0.28);
KneeLength (0.24); Nylon (0.20);

2 hundred2U (0.65); LongSleeves (0.63); hundred1U
(0.57); Polyester (0.55); Pullover (0.47); Cotton
(0.47); TShirts (0.39); Black (0.38); fiftyU (0.31);
Nylon (0.28);

3 Denim (0.49); Cotton (0.38); hundred2U (0.34); hun-
dred1U (0.33); Polyester (0.27); Black (0.27); Pul-
lOn (0.27); Blue (0.27); ContrastStitching (0.26);
Leggings (0.26);

4 White (0.57); ShortSleeves (0.27); Pullover (0.25);
TShirts (0.24); fiftyU (0.19); hundred1U (0.19);
Crew (0.19); ButtonUpShirts (0.17); hundred2U
(0.17); Cotton (0.16);

5 CONCLUSION

In this paper, taking inspiration from the primate higher vi-
sion, we have proposed CIGMO as a deep generative model
that has category-modular shape representations in disentan-

rupted images especially when the number of training images is
not so large, e.g., [Chen et al., 2018, Figs. 7 and 12].

glement with views, which can learn to represent category,
shape, and view latent variables with group-based weak su-
pervision. We have shown empirical representational advan-
tages that allow our model to outperform previous methods
in multiple down-stream tasks such as invariant clustering
and one-shot identification. One drawback is scalability:
the per-step time complexity proportional to the number of
categories, due to the reparametrization trick incompatible
with category variables (Section 3.2). The Gumbel-Softmax
technique is well-known for this type of problem [Jang et al.,
2017], but did not work in our case for an unknown reason,
though not so surprising since it is only a heuristics.

Future investigation may include improvements in overall
task performance as well as image generation quality, possi-
bly with the aid of adversarial learning [Goodfellow et al.,
2014, Mathieu et al., 2016, Chen et al., 2018], and applica-
tion to more realistic settings. Lastly, back to our original
inspiration, we are keen to pursue the biological relationship
of CIGMO to the primate higher visual cortex, continuing
our previous investigations [Hosoya and Hyvärinen, 2017,
Raman and Hosoya, 2020].
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