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Abstract

We consider reinforcement learning (RL) in episodic Markov decision processes (MDPs)
with linear function approximation under drifting environment. Specifically, both the re-
ward and state transition functions can evolve over time but their total variations do not
exceed a variation budget. We first develop LSVI-UCB-Restart algorithm, an optimistic
modification of least-squares value iteration with periodic restart, and bound its dynamic
regret when variation budgets are known. Then we propose a parameter-free algorithm
Ada-LSVI-UCB-Restart that extends to unknown variation budgets. We also derive the
first minimax dynamic regret lower bound for nonstationary linear MDPs and as a byprod-
uct establish a minimax regret lower bound for linear MDPs unsolved by Jin et al. (2020).
Finally, we provide numerical experiments to demonstrate the effectiveness of our proposed
algorithms.

1 Introduction

Reinforcement learning (RL) is a core control problem in which an agent sequentially interacts with an
unknown environment to maximize its cumulative reward (Sutton & Barto, 2018). RL finds enormous
applications in real-time bidding in advertisement auctions (Cai et al., 2017), autonomous driving (Shalev-
Shwartz et al., 2016), gaming-AI (Silver et al., 2018), and inventory control (Agrawal & Jia, 2019), among
others. Due to the large dimension of sequential decision-making problems that are of growing interest,
classical RL algorithms designed for finite state space such as tabular Q-learning (Watkins & Dayan,
1992) no longer yield satisfactory performance. Recent advances in RL rely on function approximators such
as deep neural nets to overcome the curse of dimensionality, i.e., the value function is approximated by
a function which is able to predict the value function for unseen state-action pairs given a few training
samples. This function approximation technique has achieved remarkable success in various large-scale
decision-making problems such as playing video games (Mnih et al., 2015), the game of Go (Silver et al.,
2017), and robot control (Akkaya et al., 2019). Motivated by the empirical success of RL algorithms with
function approximation, there is growing interest in developing RL algorithms with function approximation
that are statistically efficient (Yang & Wang, 2019; Cai et al., 2020; Jin et al., 2020; Modi et al., 2020; Wang
et al., 2020; Wei et al., 2021; Neu & Olkhovskaya, 2021; Jiang et al., 2017; Wang et al., 2020; Jin et al., 2021;
Du et al., 2021). The focus of this line of work is to develop statistically efficient algorithms with function
approximation for RL in terms of either regret or sample complexity. Such efficiency is especially crucial in
data-sparse applications such as medical trials (Zhao et al., 2009).

However, all of the aforementioned empirical and theoretical works on RL with function approximation
assume the environment is stationary, which is insufficient to model problems with time-varying dynamics.
For example, consider online advertising. The instantaneous reward is the payoff when viewers are redirected
to an advertiser, and the state is defined as the the details of the advertisement and user contexts. If the
target users’ preferences are time-varying, time-invariant reward and transition function are unable to capture
the dynamics. In general nonstationary random processes naturally occur in many settings and are able to
characterize larger classes of problems of interest (Cover & Pombra, 1989). Can one design a theoretically
sound algorithm for large-scale nonstationary MDPs? In general it is impossible to design algorithm to
achieve sublinear regret for MDPs with non-oblivious adversarial reward and transition functions in the
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worst case (Yu et al., 2009). Then what is the maximum nonstationarity a learner can tolerate to adapt
to the time-varying dynamics of an MDP with potentially infinite number of states? This paper addresses
these two questions.

We consider the setting of episodic RL with nonstationary reward and transition functions. To measure the
performance of an algorithm, we use the notion of dynamic regret, the performance difference between an
algorithm and the set of policies optimal for individual episodes in hindsight. For nonstationary RL, dynamic
regret is a stronger and more appropriate notion of performance measure than static regret, but is also more
challenging for algorithm design and analysis. To incorporate function approximation, we focus on a subclass
of MDPs in which the reward and transition dynamics are linear in a known feature map (Melo & Ribeiro,
2007), termed linear MDP. For any linear MDP, the value function of any policy is linear in the known
feature map since the Bellman equation is linear in reward and transition dynamics (Jin et al., 2020). Since
the optimal policy is greedy with respect to the optimal value function, linear function approximation suffices
to learn the optimal policy. For nonstationary linear MDPs, we show that one can design a near-optimal
statistically-efficient algorithm to achieve sublinear dynamic regret as long as the total variation of reward
and transition dynamics is sublinear. Let T be the total number of time steps, B be the total variation of
reward and transition function, d be the ambient dimension of the features, and H be the planning horizon.

The contribution of our work is summarized as follows.

• We prove a Ω(B1/3d2/3H1/3T 2/3) minimax regret lower bound for nonstationary linear MDP, which shows
that it is impossible for any algorithm to achieve sublinear regret on any nonstationary linear MDP with
total variation linear in T . As a byproduct, we also derive the minimax regret lower bound for stationary
linear MDP on the order of Ω(d

√
HT ), which is unsolved in Jin et al. (2020).

• We develop the LSVI-UCB-Restart algorithm and analyze the dynamic regret bound for both cases that
local variations are known or unknown, assuming the total variations are known. When local variations
are known, LSVI-UCB-Restart achieves Õ(B1/3d4/3H4/3T 2/3) dynamic regret, which matches the lower
bound in B and T , up to polylogarithmic factors. When local variations are unknown, LSVI-UCB-Restart
achieves Õ(B1/4d5/4H5/4T 3/4) dynamic regret.

• We propose a parameter-free algorithm called Ada-LSVI-UCB-Restart, an adaptive version of
LSVI-UCB-Restart, and prove that it can achieve Õ(B1/4d5/4H5/4T 3/4) dynamic regret without knowing
the total variations.

• We conduct numerical experiments on synthetic nonstationary linear MDPs to demonstrate the effective-
ness of our proposed algorithms.

1.1 Related Works

Nonstationary bandits Bandit problems can be viewed as a special case of MDP problems with unit
planning horizon. It is the simplest model that captures the exploration-exploitation tradeoff, a unique
feature of sequential decision-making problems. There are several ways to define nonstationarity in the
bandit literature. The first one is piecewise-stationary (Garivier & Moulines, 2011), which assumes the
expected rewards of arms change in a piecewise manner, i.e., stay fixed for a time period and abruptly
change at unknown time steps. The second one is to quantify the total variations of expected rewards of
arms (Besbes et al., 2014). The general strategy to adapt to nonstationarity for bandit problems is the
forgetting principle: run the algorithm designed for stationary bandits either on a sliding window or in small
epochs. This seemingly simple strategy is successful in developing near-optimal algorithms for many variants
of nonstationary bandits, such as cascading bandits (Wang et al., 2019), combinatorial semi-bandits (Zhou
et al., 2020) and linear contextual bandits (Cheung et al., 2019; Zhao et al., 2020; Russac et al., 2019). Other
nonstationary bandit models include the nonstationary rested bandit, where the reward of each arm changes
only when that arm is pulled (Cortes et al., 2017), and online learning with expert advice (Mohri & Yang,
2017a;b), where the qualities of experts are time-varying. However, reinforcement learning is much more
intricate than bandits. Note that naïvely adapting existing nonstationary bandit algorithms to nonstationary
RL leads to regret bounds with exponential dependence on the planing horizon H.
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RL with function approximation Motivated by empirical success of deep RL, there is a recent line of
work analyzing the theoretical performance of RL algorithms with function approximation (Yang & Wang,
2019; Cai et al., 2020; Jin et al., 2020; Modi et al., 2020; Ayoub et al., 2020; Wang et al., 2020; Zhou et al.,
2021; Wei et al., 2021; Neu & Olkhovskaya, 2021; Huang et al., 2021; Modi et al., 2021; Jiang et al., 2017;
Agarwal et al., 2020; Dong et al., 2020; Jin et al., 2021; Du et al., 2021; Foster et al., 2021a; Chen et al.,
2022). Recent work also studies the instance-dependent sample complexity bound for RL with function
approximation, which adapts to the complexity of the specific MDP instance (Foster et al., 2021b; Dong &
Ma, 2022). All of these works assume that the learner is interacting with a stationary environment. In sharp
contrast, this paper considers learning in a nonstationary environment. As we will show later, if we do not
properly adapt to the nonstationarity, linear regret is incurred.

Nonstationary RL The last relevant line of work is on dynamic regret analysis of nonstationary MDPs
mostly without function approximation (Auer et al., 2010; Ortner et al., 2020; Cheung et al., 2019; Fei
et al., 2020; Cheung et al., 2020). The work of Auer et al. (2010) considers the setting in which the MDP
is piecewise-stationary and allowed to change in l times for the reward and transition functions. They
show that UCRL2 with restart achieves Õ(l1/3T 2/3) dynamic regret, where T is the time horizon. Later
works (Ortner et al., 2020; Cheung et al., 2020; Fei et al., 2020) generalize the nonstationary setting to allow
reward and transition functions vary for any number of time steps, as long as the total variation is bounded.
Specifically, the work of (Ortner et al., 2020) proves that UCRL with restart achieves Õ((Br + Bp)1/3T 2/3)
dynamic regret (when the variation in each epoch is known), where Br and Bp denote the total variation
of reward and transition functions over all time steps. Cheung et al. (2020) proposes an algorithm based
on UCRL2 by combining sliding windows and a confidence widening technique. Their algorithm has slightly
worse dynamic regret bound Õ((Br + Bp)1/4T 3/4) without knowing the local variations. Further, Fei et al.
(2020) develops an algorithm which directly optimizes the policy and enjoys near-optimal regret in the low-
variation regime. A different model of nonstationary MDP is proposed by Lykouris et al. (2021), which
smoothly interpolates between stationary and adversarial environments, by assuming that most episodes are
stationary except for a small number of adversarial episodes. Note that Lykouris et al. (2021) considers
linear function approximation, but their nonstationarity assumption is different from ours. In this paper, we
assume the variation budget for reward and transition function is bounded, which is similar to the settings
in Ortner et al. (2020); Cheung et al. (2020); Mao et al. (2021). Concurrently to our work, Touati &
Vincent (2020) proposes an algorithm with weighted least-squares value iteration and optimistic principle,
achieving the same regret as ours. Another concurrent work by Wei & Luo (2021) follows a substantially
different approach to achieve the optimal T 2/3 regret. The key idea of their algorithm is to run multiple base
algorithms for stationary instances with different duration simultaneously, under a carefully designed random
schedule. Compared with them, our algorithm has a slightly worse rate, but a much better computational
complexity, since we only require to maintain one instance of the base algorithm. We are also the first one
to conduct numerical experiments on online exploration for non-stationary MDPs (Section 6). Other related
and concurrent works investigate online exploration in different classes of non-stationary MDPs, including
linear kernal MDP (Zhong et al., 2021), constrained tabular MDP (Ding & Lavaei, 2022), and stochastic
shorted path problem (Chen & Luo, 2022).

The rest of the paper is organized as follows. Section 2 presents our problem definition. Section 3 establishes
the minimax regret lower bound for nonstationary linear MDPs. Section 4 and Section 5 present our
algorithms LSVI-UCB-Restart, Ada-LSVI-UCB-Restart and their dynamic regret bounds. Section 6 shows
our experiment results. Section 7 concludes the paper and discusses some future directions. All detailed
proofs can be found in Appendices.

Notation We use ⟨·, ·⟩ to denote inner products in Euclidean space, ∥v∥2 to denote the L2 norm of vector
v, and ∥v∥Λ to denote the norm induced by a positive definite matrix A for vector v, i.e., ∥v∥Λ =

√
v⊤Λv.

For an integer N , we denote the set of positive integers {1, 2, . . . , N} as [N ].
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2 Preliminaries

We consider the setting of a nonstationary finite-horizon episodic Markov decision process (MDP), specified
by a tuple (S,A, H, K,P = {Pk

h}h∈[H],k∈[K], r = {rk
h}h∈[H],k∈[K]), where the set S is the collection of states,

A is the collection of actions, H is the length of each episode, K is the total number of episodes, and P
and r are the transition kernel and deterministic reward functions respectively. Moreover, Pk

h(·|s, a) denotes
the transition kernel over the next states if the action a is taken for state s at step h in the k-th episode,
and rk

h : S × A → [0, 1] is the deterministic reward function at step h in the k-th episode. Note that we
are considering a nonstationary setting, thus we assume the transition kernel P and reward function r may
change in different episodes. We will explicitly quantify the nonstationarity later.

The learning protocol proceeds as follows. In episode k, the initial state sk
1 is chosen by an adversary.

Then at each step h ∈ [H], the agent observes the current state sh ∈ S, takes an action ah ∈ A, receives
an instantaneous reward rk

h(sh, ah), then transitions to the next state sh+1 according to the distribution
Pk

h(·|sh, ah). This process terminates at step H and then the next episode begins. The agent interacts with
the environment for K episodes, which yields T = KH time steps in total.

A policy π is a collection of functions πh : S → A,∀h ∈ [H]. We define the value function at step h in
the k-th episode for policy π as the expected value of the cumulative rewards received under policy π when
starting from an arbitrary state s:

V π
h,k(s) = Eπ

[
H∑

h′=h

rk
h′(sh′ , ah′)|sh = s

]
,∀s ∈ S, h ∈ [H], k ∈ [K].

Note that the value function also depends on the episode k since the Markov decision process is nonstationary.
Similarly, we can also define the action-value function (a.k.a. Q function) for policy π at step h in the k-th
episode, which gives the expected cumulative reward starting from an arbitrary state-action pair:

Qπ
h,k(s, a) = rk

h(s, a) + Eπ

[
H∑

h′=h+1
rk

h′(sh′ , ah′)|sh = s, ah = a

]
,∀(s, a) ∈ S ×A, h ∈ [H], k ∈ [K].

We define the optimal value function and optimal action-value function for step h in k-th episode as
V ∗

h,k(s) = supπ V π
h,k(s) and Q∗

h,k(s, a) = supπ Qπ
h,k(s, a) respectively, which always exist (Puterman, 2014).

For simplicity, we denote Es′∼Pk
h

(·|s,a)[Vh+1(s′)] = [Pk
hVh+1](s, a). Using this notation, we can write down the

Bellman equation for any policy π,

Qπ
h,k(s, a) = (rk

h + Pk
hV π

h+1,k)(s, a), V π
h,k(s) = Qπ

h,k(s, πh(s)), V π
H+1,k(s) = 0,∀(s, a, k) ∈ S ×A× [K].

Similarly, the Bellman optimality equation is

Q∗
h,k(s, a) = (rk

h + Pk
hV ∗

h+1,k)(s, a), V ∗
h,k(s) = max

a∈A
Q∗

h,k(s, a), V ∗
H+1,k(s) = 0,∀(s, a, k) ∈ S ×A× [K].

This implies that the optimal policy π∗ is greedy with respect to the optimal action-value function Q∗(·, ·).
Thus in order to learn the optimal policy it suffices to estimate the optimal action-value function.

Recall that the agent is learning the optimal policy via interactions with the environment, despite the
uncertainty of r and P. In the k-th episode, the adversary chooses the initial state sk

1 , then the agent decides
its policy πk for this episode based on historical interactions. To measure the convergence to optimality, we
consider an equivalent objective of minimizing the dynamic regret (Cheung et al., 2020),

Dyn-Reg(K) =
K∑

k=1

[
V ∗

1,k(sk
1)− V πk

1,k (sk
1)
]

.

2.1 Linear Markov Decision Process

We consider a special class of MDPs called linear Markov decision process (Melo & Ribeiro, 2007; Bradtke
& Barto, 1996; Jin et al., 2020), which assumes both transition function P and reward function r are linear
in a known feature map ϕ(·, ·). The formal definition is as follows.
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Definition 1. (Linear MDP). The MDP (S,A, H, K,P, r) is a linear MDP with the feature map ϕ : S×A →
Rd, if for any (h, k) ∈ [H]× [K], there exist d unknown measures µh,k = (µ1

h,k, . . . , µd
h,k)⊤ on S and a vector

θh,k ∈ Rd such that

Pk
h(s′|s, a) = ϕ(s, a)⊤µh,k(s′), rk

h(s, a) = ϕ(s, a)⊤θh,k.

Without loss of generality, we assume ∥ϕ(s, a)∥2 ≤ 1 for all (s, a) ∈ S×A, and max{∥µh,k∥2 , ∥θh,k∥2} ≤
√

d
for all (h, k) ∈ [H]× [K].

Note that the transition function P and reward function r are determined by the unknown measures
{µh,k}h∈[H],k∈[K] and latent vectors {θh,k}h∈[H],k∈[K]. The quantities µh,k and θh,k vary across time in
general, which leads to change in transition function P and reward function r. Following Besbes et al.
(2014); Cheung et al. (2019; 2020), we quantify the total variation on µ and θ in terms of their respective
variation budget Bθ and Bµ, and define the total variation budget B as the summation of these two variation
budgets:

Bθ =
K∑

k=2

H∑
h=1
∥θh,k − θh,k−1∥2 , Bµ =

K∑
k=2

H∑
h=1
∥µh,k(S)− µh,k−1(S)∥2 , B = Bθ + Bµ,

where µh,k(S) is the concatenation of µh,k(s) for all states.

3 Minimax Regret Lower Bound

In this section, we derive the minimax regret lower bound for nonstationary linear MDPs. All of the detailed
proofs for this section are included in Appendix A.

We first derive the minimax regret lower bound for stationary linear MDP by constructing hard instances,
which addresses a problem proposed in Jin et al. (2020).
Theorem 1. For any algorithm, if d ≥ 4 and T ≥ 64(d − 3)2H, then there exists at least one stationary
linear MDP instance that incurs regret at least Ω(d

√
HT ).

Remark 1. Note that this lower bound is tighter than simply applying the minimax regret lower bound for tab-
ular episodic MDP. Recall that the minimax regret lower bound for tabular episodic MDP is Ω(

√
SAHT ) (Os-

band & Van Roy, 2016), and we can convert any tabular MDP into a linear MDP by setting the feature ϕ(·, ·)
as an indicator vector with d = SA dimension (Jin et al., 2020). Thus simply applying the regret lower bound
for tabular episodic MDP yields Ω

(√
dHT

)
.

The key step of this proof is to construct the hard-to-learn MDP instances. Inspired by lower bound
construction for stochastic contextual bandits (Dani et al., 2008; Lattimore & Szepesvári, 2020), we construct
an ensemble of hard-to-learn 3-state linear MDPs, which is illustrated in Figure 1. This construction can be
viewed as a generalization of the lower bound construction for linear contextual bandits (Dani et al., 2008;
Lattimore & Szepesvári, 2020). The intuition is that the reward distributions under optimal and suboptimal
policies for these instances are close: thus it is statistically hard for any learner to identify the optimal policy.

Each linear MDP instance in this ensemble has three states s0, s1, s2 (s1 and s2 are absorbing states), and
it is characterized by a unique (d− 3)-dimensional vector {±

√
(d− 3)H/

√
T}d−3. Specifically, the vector v

defines the transition function of the corresponding MDP, as illustrated in Figure 1. Each action a of this
MDP instance is encoded by a (d − 3) dimensional vector a ∈

{
±1/
√

d− 3
}d−3. The reward functions for

the three states are fixed regardless of the actions, specifically, r(s0, a) = r(s2, a) = 0, r(s1, a) = 1,∀a ∈ A.
For each episode, the agent starts at s0, and ends at step H. The transition functions of the linear MDP
parametrized by v are defined as follows,

P(s1|s0, a) = δ + ⟨a, v⟩, P(s2|s0, a) = 1− δ − ⟨a, v⟩, P(s1|s1, a) = 1, P(s2|s2, a) = 1,

where δ = 1
4 . Notice that the optimal policy for the MDP instance parametrized by v is taking the action that

maximizes the probability to reach s1, which is equivalent to taking the action such that its corresponding

5



Under review as submission to TMLR

s0

s1

s2

δ + 〈a1,v〉

δ + 〈ai,v〉

1− δ − 〈a1,v〉

1− δ − 〈ai,v〉

1

1

. .
.

. . .

1

Figure 1: Graphical illustration of the hard-to-learn linear MDP instances with deterministic reward.

vector a satisfies sgn(ai) = sgn(vi),∀i ∈ [d−3]. Furthermore, it can be verified that the above MDP instance
is indeed a linear MDP, by setting:

ϕ(s0, a) = (0, 1, δ, a), ϕ(s1, a) = (1, 0, 0, 0⃗), ϕ(s2, a) = (0, 1, 0, 0⃗)
µ(s0) = (0, 0, 0, 0⃗), µ(s1) = (1, 0, 1, v), µ(s2) = (0, 1,−1,−v), θ = (1, 0, 0, 0).

Remark 2. Note that the above parameters violate the normalization assumption in Definition 1, but it is
straightforward to normalize them. We ignore the additional rescaling to clarify the presentation.

After constructing the ensemble of hard instances, we can derive the minimax regret lower bound for sta-
tionary linear MDP. For the detailed proof, please refer to Appendix A.

Based on Theorem 1, we can derive the dynamic regret lower bound for nonstationary linear MDP
Theorem 2. For any algorithm, the dynamic regret is at least Ω(B1/3d2/3H1/3T 2/3) for one nonstationary
linear MDP instance, if d ≥ 4, T ≥ 64(d− 3)2H.

Sketch of Proof. The construction of the lower bound instance is based on the construction used in Theo-
rem 1. Nature divides the whole time horizon into ⌈K

N ⌉ intervals of equal length N episodes (the last episode
may be shorter). For each interval, nature initiates a new stationary linear MDP parametrized by v, which
is drawn from a set {±

√
d− 3/

√
N}d−3. Note that nature chooses the parameters for the linear MDP for

each interval only depending on the learner’s policy, and the worst-case regret for each interval is at least
Ω(d
√

H2N). Since there are at least ⌈K
N ⌉ − 1 intervals, the total regret is at least Ω(d

√
H2K2N−1/2). By

checking the total variation budget B, we can obtain the lower bound for N , which is Ω(B−2/3d2/3K2/3).
Then we can obtain the desired regret lower bound. For the detailed proof, please refer to Appendix A.

4 LSVI-UCB-Restart Algorithm

In this section, we describe our proposed algorithm LSVI-UCB-Restart, and discuss how to tune the hyper-
parameters for cases when local variation is known or unknown. For both cases, we present their respective
regret bounds. Detailed proofs are deferred to Appendix B.

4.1 Algorithm Description

Our proposed algorithm LSVI-UCB-Restart has two key ingredients: least-squares value iteration with
upper confidence bound to properly handle the exploration-exploitation trade-off (Jin et al., 2020), and
restart strategy to adapt to the unknown nonstationarity. Our algorithm is summarized in Algorithm 1.
From a high-level point of view, our algorithm runs in epochs. At each epoch, we first estimate the action-
value function by solving a regularized least-squares problem from historical data, then construct the upper
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confidence bound for the action-value function, and update the policy greedily w.r.t. action-value function
plus the upper confidence bound. Finally, we periodically restart our algorithm to adapt to the nonstationary
nature of the environment.

Next, we delve into more details of the algorithm design. Note that in a linear MDP, for any policy π, the
Q-function is linear in the feature embedding ϕ(·, ·). As a preliminary, we briefly introduce least-squares
value iteration (Bradtke & Barto, 1996; Osband et al., 2016), which is the key tool to estimate w, the latent
vector used to form the optimal action-value function, Q∗

h,k(·, ·) = ⟨ϕ(·, ·), w⟩. Least-squares value iteration
is a natural extension of classical value iteration algorithm (Sutton & Barto, 2018), which finds the optimal
action-value function by recursively applying Bellman optimality equation,

Q∗
h,k(s, a) = [rh,k + Pk

h max
a′∈A

Q∗
h+1,k−1(·, a′)](s, a).

In practice, the transition function P is unknown, and the state space might be so large that it is impossible
for the learner to fully explore all states. If we parametrize the action-value function in a linear form as
⟨ϕ(·, ·), w⟩, it is natural to solve a regularized least-squares problems using collected data inspired by classical
value iteration. Specifically, the update formula of wk

h in Algorithm 1 (line 8) is the analytic solution of the
following regularized least-squares problem:

wk
h = arg min

w

k−1∑
l=τ

[rh,l(sl
h, al

h) + max
a∈A

Qk−1
h+1(sl

h+1, a)− ⟨ϕ(sl
h, al

h), w⟩]2 + ∥w∥2 .

One might be skeptical since simply applying least-squares method to solve w does not take the distribution
drift in P and r into account and hence, may lead to non-trivial estimation error. However, we show that
the estimation error can gracefully adapt to the nonstationarity, and it suffices to restart the estimation
periodically to achieve good dynamic regret.

In addition to least-squares value iteration, the inner loop of Algorithm 1 also adds an additional quadratic
bonus term β ∥ϕ(·, ·)∥(Λk

h
)−1 (line 9) to encourage exploration, where β is a scalar and Λk

h is the Gram matrix
of the regularized least-squares problem. Intuitively, 1/∥ϕ∥−1

(Λk
h

)−1 is the effective sample number of the
agent observed so far in the direction of ϕ, thus the quadratic bonus term can quantify the uncertainty of
estimation. We will show later if we tune βk properly, then our action-value function estimate Qk

h can be an
optimistic upper bound or an approximately optimistic upper bound of the optimal action-value function,
so we can adapt the principle of optimism in the face of uncertainty (Auer et al., 2002a) to explore.

Finally, we use epoch restart strategy to adapt to the drifting environment, which achieves near-optimal
dynamic regret notwithstanding its simplicity. Specifically, we restart the estimation of w after W

H episodes,
all illustrated in the outer loop of Algorithm 1. Note that in general epoch size W can vary for different
epochs, but we find that a fixed length is sufficient to achieve near-optimal performance.

4.2 Regret Analysis

Now we derive the dynamic regret bounds for LSVI-UCB-Restart, first introducing additional notation for lo-
cal variations. We let Bθ,E =

∑
k∈E

∑H
h=1 ∥θh,k − θh,k−1∥2 and Bµ,E =

∑
k∈E

∑H
h=1 ∥µh,k(S)− µh,k−1(S)∥2

be the local variation for θ and µ in epoch E . To derive the dynamic regret lower bounds, we need the fol-
lowing lemma to control the fluctuation of least-squares value iteration.
Lemma 1. (Modified from Jin et al. (2020)) Denote τ to be the first episode in the epoch which contains
episode k. There exists an absolute constant C such that the following event E,∥∥∥∥∥

k−1∑
l=τ

ϕl
h[V k

h+1(sl
h+1)− Pl

hV k
h+1(sl

h, al
h)]

∥∥∥∥∥
(Λk

h
)−1

≤ CdH
√

log[2(cβ + 1)dW/p], ∀(k, h) ∈ E × [H].

happens with probability at least 1− p/2.

Next we proceed to derive the dynamic regret bounds for two cases: (1) local variations are known, and (2)
local variations are unknown.
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Algorithm 1 LSVI-UCB-Restart Algorithm
Require: time horizon T , epoch size W

1: Set epoch counter j = 1.
2: while j ≤ ⌈ T

W ⌉ do
3: set τ = (j − 1) W

H

4: for all k = τ, τ + 1, . . . , min(τ + W
H − 1, K) do

5: Receive the initial state sk
1 .

6: for all step h = H, . . . , 1 do
7: Λk

h ←
∑k−1

l=τ ϕ(sl
h, al

h)ϕ(sl
h, al

h)⊤ + I

8: wk
h ← (Λk

h)−1∑k−1
l=τ ϕ(sl

h, al
h)[rh,l(sl

h, al
h) + maxa Qk−1

h+1(sl
h+1, a)]

9: Qk
h(·, ·)← min{(wk

h)⊤ϕ(·, ·) + βk ∥ϕ(·, ·)∥(Λk
h

)−1 , H}
10: end for
11: for all step h = 1, . . . , H do
12: take action ak

h ← arg maxa Qk
h(sk

h, a), and observe sk
h+1

13: end for
14: end for
15: set j = j + 1
16: end while

4.2.1 Known Local Variations

For the case of known local variations, under event E defined in Lemma 1, the estimation error of least-squares
estimation scales with the quadratic bonus ∥ϕ(·, ·)∥(Λk

h
)−1 uniformly for any policy π, which is detailed in

the following lemma.
Lemma 2. Under event E defined in Lemma 1, we have for any policy π, ∀s, a, h, k ∈ S ×A× [H]× E,

|⟨ϕ(s, a), wk
h⟩ −Qπ

h,k(s, a)− Pk
h(V k

h+1 − V π
h+1,k)(s, a)|≤ βk ∥ϕ(s, a)∥(Λk

h
)−1 ,

where βk = C0dH
√

log(2dW/p)+Bθ,E
√

d(k − τ)+Bµ,EH
√

d(k − τ) and τ is the first episode in the current
epoch.

The proof of Lemma 2 is included in Appendix B. Based on Lemma 2, we can show that if we set βk

properly with knowledge of local variations Bθ,E and Bµ,E , the action-value function estimate maintained in
Algorithm 1 is an upper bound of the optimal action-value function under event E.
Lemma 3. Under event E defined in Lemma 1, for episode k, if we set βk = cdH

√
log(2dW/p) +

Bθ,E
√

d(k − τ) + Bµ,EH
√

d(k − τ), we have

Qk
h(s, a) ≥ Q∗

h,k, ∀(s, a, h, k) ∈ S ×A× [H]× E .

Sketch of Proof. For the last step H in each episode, the results hold due to Lemma 2 since after step H
there is no reward and the episode terminates. We then prove Qk

h is indeed the upper bound for the optimal
action-value function Q∗

h,k for remaining h ∈ [H − 1] by induction. Please see Appendix B for details.

After showing the action-value function estimate is the optimistic upper bound of the optimal action-value
function, we can derive the dynamic regret bound within one epoch via recursive regret decomposition. The
dynamic regret within one epoch for Algorithm 1 with the knowledge of Bθ,E and Bµ,E is as follows, and
the proof is deferred to Appendix B.
Theorem 3. For each epoch E with epoch size W , set β in the k-th episode as βk = cdH

√
log(2dW/p) +

Bθ,E
√

d(k − τ) + Bµ,EH
√

d(k − τ), where c is an absolute constant and p ∈ (0, 1). Then the dynamic regret
within that epoch is Õ(H3/2d3/2W 1/2 + Bθ,EdW + Bµ,EdHW ) with probability at least 1− p.

By summing over all epochs and applying the union bound, we can obtain the dynamic regret upper bound
for LSVI-UCB-Restart for the whole time horizon.
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Theorem 4. If we set βk = cdH
√

log(2dT/p) + Bθ,E
√

d(k − τ) + Bµ,EH
√

d(k − τ), the dynamic regret of
LSVI-UCB-Restart is Õ(H3/2d3/2TW −1/2 + BθdW + BµdHW ), with probability at least 1− p.

By properly tuning the epoch size W , we can obtain a tight dynamic regret upper bound.
Corollary 1. Let W = ⌈B−2/3T 2/3d1/3H−2/3⌉H, and βk = cdH

√
log(2dW/p) + Bθ,E

√
d(k − τ) +

Bµ,EH
√

d(k − τ) for each epoch. LSVI-UCB-Restart achieves Õ(B1/3d4/3H4/3T 2/3) dynamic regret, with
probability at least 1− p.
Remark 3. Corollary 1 shows that if local variations are known, we can achieve near-optimal dependency
on the the total variation Bθ, Bµ and time horizon T compared to the lower bound provided in Theorem 2.
However, the dependency on d and H is worse. This is not surprising since the dependency on d and H is
not optimal for LSVI-UCB suggested by Theorem 1, thus it is impossible for LSVI-UCB-Restart to achieve
optimal dependency on d and H.

4.2.2 Unknown Local Variation

If the local variations are unknown, the proof is similar to the case of known local variations. We only
highlight the differences compared to the previous case. The key difference is that without knowledge of
local variations Bθ and Bµ, we set the hyper-parameter β = cdH

√
log(2dW/p). As a result, the action-

value function estimate Qk
h maintained in Algorithm 1 is no longer the optimistic upper bound of the optimal

action-value function, but only approximately, up to some error, proportional to the local variation. The
rigorous statement is as follows.
Lemma 4. Under event E defined in Lemma 1, if we set β = cdH

√
log(2dW/p), we have

∀(s, a, h, k) ∈ S ×A× [H]× E ,

Qk
h(s, a) ≥ Q∗

h,k − (H − h + 1)(Bθ,E
√

d(k − τ) + Bµ,EH
√

d(k − τ)).

Sketch of Proof. For the case when local variations are unknown, the least -squares estimation error have
some additional terms that are linear in the local variations Bθ,E and Bµ,E (See Lemma 7 in Appendix B).
Then we can prove that Qk

h is an approximate upper bound of Q∗
h,k via induction. For details, please see

Appendix B.

By applying a similar proof technique as Theorem 3, we can derive the dynamic regret within one epoch
when local variations are unknown.
Theorem 5. For each epoch E with epoch size W , if we set βk = cdH

√
log(2dW/p), where c is an absolute

constant and p ∈ (0, 1), then the dynamic regret within that epoch is Õ(
√

d3H3W + Bθ,E
√

d/HW 3/2 +
Bµ,E

√
dHW 3/2) with probability at least 1 − p, where Bθ,E and Bµ,E are the total variation within that

epoch.

By summing regret over epochs and applying a union bound over all epochs, we obtain the dynamic regret
of LSVI-UCB-Restart for the whole time horizon.
Theorem 6. If we set β = cdH

√
log(2dT/p), then the dynamic regret of LSVI-UCB-Restart is

Õ(d3/2H3/2TW −1/2 + Bθd1/2H−1/2W 3/2 + Bµd1/2H1/2W 3/2), with probability at least 1− p.

By properly tuning the epoch size W , we can obtain a tight regret bound for the case of unknown local
variations as follows.
Corollary 2. Let W = ⌈B−1/2T 1/2d1/2H−1/2⌉H and βk = cdH

√
log(2dW/p). Then LSVI-UCB-Restart

achieves Õ(B1/4d5/4H5/4T 3/4) dynamic regret, with probability at least 1− p.
Remark 4. Our algorithm has a slightly worse regret bound compared with Wei & Luo (2021). However, our
algorithm has a much better better computational complexity, since we only require to maintain one instance
of the base algorithm. We are also the first one to conduct numerical experiments on online exploration for
non-stationary MDPs (Section 6). How to achieve the Õ(T 2/3) dynamic regret bound without prior knowledge
and with only one base instance is still an open problem.
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5 Ada-LSVI-UCB-Restart: a Parameter-free Algorithm

In practice, the total variations Bθ and Bµ are unknown. To mitigate this issue, we present a parameter-free
algorithm Ada-LSVI-UCB-Restart and its dynamic regret bound.

5.1 Algorithm Description

Inspired by bandit-over-bandit mechanism (Cheung et al., 2019), we develop a new parameter-free algorithm.
The key idea is to use LSVI-UCB-Restart as a subroutine (set β = cdH

√
log(2dT/p) since we assume total

variations are unknown), and periodically update the epoch size based on the historical data under the time-
varying P and r (potentially adversarial). More specifically, Ada-LSVI-UCB-Restart (Algorithm 2) divides
the whole time horizon into ⌈ T

HM ⌉ blocks of equal length M episodes (the length of the last block can be
smaller than M episodes), and specifies a set JW from which epoch size is drawn. For each block i ∈ [⌈ T

HM ⌉],
Ada-LSVI-UCB runs a master algorithm to select the epoch size Wi and runs LSVI-UCB-Restart with Wi

for the current block. After the end of this block, the total reward of this block is fed back to the master
algorithm, and the posteriors of the parameters are updated accordingly.

For the detailed master algorithm, we select EXP3-P (Bubeck & Cesa-Bianchi, 2012) since it is able to deal
with non-oblivious adversary. Now we present the details of Ada-LSVI-UCB-Restart. We set the length of
each block M and the feasible set of epoch size JW as follows:

M = ⌈5T 1/2d1/2H−1/2⌉, JW = {H, 2H, 4H, . . . , MH}.

The intuition of designing the feasible set for epoch size JW is to guarantee it can well-approximate the
optimal epoch size with the knowledge of total variations while on the other hand make it as small as
possible, so the learner do not lose much by adaptively selecting the epoch size from JW . This intuition is
more clear when we derive the dynamic regret bound of Ada-LSVI-UCB-Restart. Denoting |JW |= ∆, the
master algorithm EXP3-P treats each element of JW as an arm and updates the probabilities of selecting
each feasible epoch size based on the reward collected in the past. It begins by initializing

α = 0.95

√
ln ∆

∆⌈T/MH⌉
, β =

√
ln ∆

∆⌈T/MH⌉
, γ = 1.05

√
ln ∆

∆⌈T/MH⌉
, ql,1 = 0, l ∈ [∆], (1)

where α, β, γ are parameters used in EXP3-P and ql,1, l ∈ [∆] are the initialization of the estimated total
reward of running different epoch lengths. At the beginning of the block i, the agent first sees the initial
state s

(i−1)H
1 , and updates the probability of selecting different epoch lengths for block i as

ul,i = (1− γ) exp(αql,i)∑
l∈[∆] exp(αql,i)

+ γ

∆ . (2)

Then the master algorithm samples li ∈ [∆] according to the updated distribution {ul,i}i∈[∆]; the epoch
size Wi for the block i is chosen as li-th element in JW , ⌊M li/⌊ln M⌋⌋H. After selecting the epoch size
Wi, Ada-LSVI-UCB runs a new copy of LSVI-UCB-Restart with that epoch size. By the end of each block,
Ada-LSVI-UCB-Restart observes the total reward of the current block, denoted as Ri(Wi, s

(i−1)H
1 ), then the

algorithm updates the estimated total reward of running different epoch sizes (divide Ri(Wi, s
(i−1)H
1 ) by

MH to normalize):

ql,i+1 = ql,i + β + 1{l = li}Ri(Wi, s
(i−1)H
1 )/MH

ul,i
. (3)

5.2 Regret Analysis

Now we present the dynamic regret bound achieved by Ada-LSVI-UCB-Restart.
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Algorithm 2 ADA-LSVI-UCB-Restart Algorithm
Require: time horizon T , block length M , feasible set of epoch size Jw

1: Initialize α, β, γ and {ql,1}l∈[∆] according to Eq. 1.
2: for all i = 1, 2, . . . , ⌈T/HM⌉ do
3: Receive the initial state s

(i−1)H
1

4: Update the epoch size selection distribution {ul,i}l∈[∆] according to Eq. 2
5: Sample li ∈ [∆] from the updated distribution {ul,i}l∈[∆], then set the epoch size for block i as

Wi = ⌊M li/⌊ln M⌋⌋H.
6: for all t = (i− 1)MH + 1, . . . , min(iMH, T ) do
7: Run LSVI-UCB-Restart algorithm with epoch size Wi

8: end for
9: After observing the total reward for block i, Ri(Wi, s

(i−1)H
1 ), update the estimated total reward of

running different epoch sizes {ql,i+1}l∈[∆] according to Eq. 3
10: end for

Theorem 7. The dynamic regret of Ada-LSVI-UCB-Restart is Õ(B1/4d5/4H5/4T 3/4).

Sketch of Proof. To analyze the dynamic regret of Ada-LSVI-UCB-Restart, we decompose the dynamic
regret into two terms. The first term is regret incurred by always selecting the best W † from JW , and the
second term is regret incurred by adaptively selecting the epoch size from JW via EXP3-P rather than always
selecting W †. For the second term, we reduce to an adversarial bandit problem and directly use the regret
bound of EXP3-P (Bubeck & Cesa-Bianchi, 2012; Auer et al., 2002b). For the first term, we show that W †

can well-approximate the optimal epoch size with the knowledge of Bµ and Bθ, up to constant factors. Thus
we can use Theorem 6 to bound the first term. For details, see Appendix C.

Remark 5. The dynamic regret bound of Ada-LSVI-UCB-Restart is on the same order as that of
LSVI-UCB-Restart when local variations are unknown. Thus we do not lose too much by not knowing
local variations.

6 Experiments

In this section, we perform empirical experiments on synthetic datasets to illustrate the effectiveness of
LSVI-UCB-Restart and Ada-LSVI-UCB-Restart. We compare the cumulative rewards of the proposed
algorithms with three baseline algorithms: Epsilon-Greedy (Watkins, 1989), Random-Exploration, and
LSVI-UCB (Jin et al., 2020). As discussed before, we are the first one to perform numerical experiments on
online exploration for non-stationary MDPs and demonstrate the effectiveness of proposed algorithms.

The agent takes actions uniformly in Random-Exploration. In Epsilon-Greedy, instead of adding a
bonus term as in LSVI-UCB, the agent takes the greedy action according to the current estimate of Q
function with probability 1 − ϵ, and takes the action uniformly at random with probability ϵ, where
we set ϵ = 0.05. For LSVI-UCB and LSVI-UCB-Restart, we set β = 0.001cdH

√
log(200dT ). In addi-

tion, for LSVI-UCB-Restart we test the performance of two cases: (1) known global variation, where we
set W = ⌈B−1/2T 1/2d1/2H−1/2⌉H; (2) unknown global variation (denoted LSVI-UCB-Restart-Unknown),
where we set W = ⌈T 1/2d1/2H−1/2⌉H (the dynamic regret bound is Õ(Bd5/4H5/4T 3/4) for this case). For
ADA-LSVI-UCB-Restart, we set the length of each block M = ⌈0.2T 1/2d1/2H1/2⌉. Note that the tuning of
hyperparameters is different from our theoretical derivations by some constant factors. The reason is that
the worst-case analysis is pessimistic and we ignore the constant factor in the derivation.

Settings We consider an MDP with S = 15 states, A = 7 actions, H = 10, d = 10, and T = 20000. In the
abruptly-changing environment, the linear MDP changes abruptly every 100 episodes to another linear MDP
with different transition function and reward function. The changes happen periodically by cycling through
different linear MDPs; we have 5 different linear MDPs in total. In the gradually-changing environment, we
consider the same set of 5 linear MDPs, {M0, M1, . . . , M4}. The environment changes smoothly from Mi to
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M(i+1) mod 5 over every 100 episodes. To be more specific, at episode 100i (i is a non-negative integer), the
MDP model is Mi mod 5 parameterized by latent vectors {θi mod 5

h }H
h=1 and {µi mod 5

h (S)}H
h=1. The latent

vectors of the MDP from episode 100i to 100(i + 1) are the linear interpolations of those of Mi mod 5 and
M(i+1) mod 5, i.e., at episode k (100i ≤ k ≤ 100(i+1)), θh,k = (1− k−100i

100 )θi mod 5
h + k−100i

100 θ
(i+1) mod 5
h ,∀h ∈

[H], µh,k(S) = (1 − k−100i
100 )µi mod 5

h (S) + k−100i
100 µ

(i+1) mod 5
h (S), ∀h ∈ [H]. To make the environment

challenging for exploration, our construction falls into the category of combination lock (Koenig & Simmons,
1993). For each of these 5 linear MDPs, there is only one good (and different) chain that contains a huge
reward at the end, but 0 reward for the rest of the chain. Further, any sub-optimal action has small positive
rewards that would attract the agent to depart from the optimal route. Therefore, the agent must perform
“deep exploration” (Osband et al., 2019) to obtain near-optimal policy. The details of the constructions are
in Appendix E. Here we report the cumulative rewards and the running time of all algorithms averaged over
10 trials.

From Figure 2, we see LSVI-UCB-Restart with the knowledge of global variation drastically outperforms
all other methods, in both abruptly-changing and gradually-changing environments, since it restarts the
estimation of the Q function with knowledge of the total variations. Ada-LSVI-UCB-Restart also outperforms
the baselines because it also takes the nonstationarity into account by periodically updating the epoch size
for restart. In addition, Ada-LSVI-UCB-Restart has a huge gain compared to LSVI-UCB-Restart-Unknown,
which agrees with our theoretical analysis. This suggests that Ada-LSVI-UCB-Restart works well when the
knowledge of global variation is unavailable. Our proposed algorithms not only perform systemic exploration,
but also adapt to the environment change.
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Figure 2: Comparisons of different methods on cumulative reward under two different environments. The
results are averaged over 10 trials and the error bars show the standard deviations. The environment changes
abruptly in the left subfigure, whereas the environment changes gradually in the right subfigure.

From Figure 2, we find that the restart strategy works better under abrupt changes than under gradual
changes, since the gap between our algorithms and the baseline algorithms is larger in this setting. The
reason is that the algorithms designed to explore in stationary MDPs are generally insensitive to abrupt
change in the environment. For example, UCB-type exploration does not have incentive to take actions
other than the one with the largest upper confidence bound of Q-value, and if it has collected sufficient
number of samples, it very likely never explores the new optimal action thereby taking the former optimal
action forever. On the other hand, in gradually-changing environment, LSVI-UCB and Epsilon-Greedy
can perform well in the beginning when the drift of environment is small. However, when the change of
environment is greater, they no longer yield satisfactory performance since their Q function estimate is quite
off. This also explains why LSVI-UCB and Epsilon-Greedy outperform ADA-LSVI-UCB at the beginning in
the gradually-changing environment, as shown in Figure 2.
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Figure 3 shows that the running times of LSVI-UCB-Restart and Ada-LSVI-UCB-Restart are roughly
the same. They are much less compared with LSVI-UCB and Epsilon-Greedy. This is because
LSVI-UCB-Restart and Ada-LSVI-UCB-Restart can automatically restart according to the variation of the
environment and thus have much smaller computational burden since it does not need to use thw entire
history to compute the current policy at each time step. Although Random-Exploration takes the least
time, it cannot find the near-optimal policy. This result further demonstrates that our algorithms are not
only sample-efficient, but also computationally tractable.
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Figure 3: Comparisons of different methods on running time for two different environments. The results are
averaged over 10 trials and the error bars show the standard deviations. See Appendix E.2 for details on
hardware.

7 Conclusion and Future Work

In this paper, we studied nonstationary RL with time-varying reward and transition functions. We focused
on the class of nonstationary linear MDPs such that linear function approximation is sufficient to realize
any value function. We first incorporated the epoch start strategy into LSVI-UCB algorithm (Jin et al.,
2020) to propose the LSVI-UCB-Restart algorithm with low dynamic regret when the total variations are
known. We then designed a parameter-free algorithm Ada-LSVI-UCB-Restart that enjoys a slightly worse
dynamic regret bound without knowing the total variations. We derived a minimax regret lower bound is
for nonstationary linear MDPs to demonstrate that our proposed algorithms are near-optimal. Specifically,
when the local variations are known, LSVI-UCB-Restart is near order-optimal except for the dependency
on feature dimension d, planning horizon H, and some poly-logarithmic factors. Numerical experiments
demonstrates the effectiveness of our algorithms.

A number of future directions are of interest. An immediate step is to investigate whether the dependence
on the dimension d and planning horizon H in our bounds can be improved, and whether the minimax regret
lower bound can also be improved. It would also be interesting to investigate the setting of nonstationary
RL under general function approximation (Wang et al., 2020; Du et al., 2021; Jin et al., 2021), which is
closer to modern RL algorithms in practice. Recall that our algorithm is more computationally efficient than
other works. Another closely related and interesting direction is to study the low-switching cost (Gao et al.,
2021) or deployment efficient (Huang et al., 2021) algorithm in the nonstationary RL setting. Finally, our
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algorithm is based on the Optimism in Face of Uncertainty. There is another broad category of algorithms
called Thompson Sampling (TS) (Agrawal & Jia, 2017; Russo, 2019; Agrawal et al., 2021; Xiong et al.,
2021; Ishfaq et al., 2021; Dann et al., 2021; Zhang, 2022). It would be an interesting avenue to see whether
empirically appealing TS algorithms are also suitable in nonstationary RL settings.
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A Proofs in Section 3

In this section, we prove the minimax regret lower bound of nonstationary linear MDP. We first prove the
regret lower bound of stationary linear MDP.

Proof of Theorem 1. Let Pπ
t,v (assume t is a multiple of H) be the probability distribution of

{a1
1,
∑H

h=1 r1
h, a2

1,
∑H

h=1 r2
h, . . . , a

t/H
1 ,

∑H
h=1 r

t/H
h } of running algorithm π on linear MDP parametrized by v.

First note that by the Markov property of π, we can decompose DKL(Pπ
t,v||Pπ

t,v′) as

t/H∑
l=1

EDKL

(
P

(
H∑

h=1
rl

h|al
1, v

)
||P

(
H∑

h=1
rl

h|al
1, v′

))
.

Recall that due to our hard cases construction, the first step in every episode determines the distribution of
the total reward of that episode, thus

DKL

(
P

(
H∑

h=1
rl

h|al
1, v

)
||P

(
H∑

h=1
rl

h|al
1, v′

))

=
(
δ + ⟨al

1, v⟩
)

log δ + ⟨al
1, v⟩

δ + ⟨al
1, v′⟩

+
(
1− δ − ⟨al

1, v⟩
)

log 1− δ − ⟨al
1, v⟩

1− δ − ⟨al
1, v′⟩

(4)

We bound the KL divergence in (4) applying the following lemma.

Lemma 5. (Auer et al., 2010) If 0 ≤ δ′ ≤ 1/2 and ϵ′ ≤ 1− 2δ′, then

δ′ log δ′

δ′ + ϵ′ + (1− δ′) log 1− δ′

1− δ′ − ϵ′ ≤
2(ϵ′)2

δ′ .

To apply Lemma 5, we let ⟨al
1, v⟩+ δ = δ′, ⟨v− v′, al

1⟩ = ϵ′. Thus we must ensure the following inequalities
hold for any a, v, v′:
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T
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To guarantee the above inequalities hold, we can set δ = 1
4 and let (d−3)

√
H√

T
≤ 1

8 . Now we get back to

bounding Eq. 4. Let ∆ = (d−3)
√

H√
T

and suppose v and v′ only differ in one coordinate. Then
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T
.

Furthermore, let Ei,b be the the following event:

|{l ∈ [K] : sgn(al
1)i ̸= sgn(b)}|≥ 1

2K.

Let qi,v = P[Ei,vi
|v], the probability that the agent is taking sub-optimal action for the i-th coordinate for

at least half of the episodes given that the underlying linear MDP is parameteriezed by v. We can then
lower bound the regret of any algorithm when running on linear MDP parameterized by v as:

Regv(T ) ≥
d−3∑
i=1

qi,vK(H − 1)
√

H

T

≥
(√

TH −
√

K
) d−3∑

i=1
qi,v, (5)
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since whenever the learner takes a sub-optimal action that differs from the optimal action by one coordinate,
it will incur 2

√
H
T (H − 1) expected regret. Next we take the average over 2d−3 linear MDP instances to

show that on average it incurs Ω(d
√

HT ) regret, thus there exists at least one instance incurring Ω(d
√

HT )
regret. Before that, we need to bound the summation of bad events under two close linear MDP instances.
Denote the vector which is only different from v in i-th coordinate as v⊕i. Then we have

qi,v + qi,v⊕i = P[Ei,vi |v] + P[Ei,v⊕i
i
|v⊕i]

= P[Ei,vi
|v] + P[Ēi,vi

|v⊕i]

≥ 1
2 exp(−DKL(PT,v||PT,v⊕i))

≥ 1
2 exp(−64), (6)

where the inequality is due to Bretagnolle-Huber inequality (Bretagnolle & Huber, 1979). Now we are ready
to lower bound the average regret over all linear MDP instances.

1
2d−3

∑
v

Regv(T ) ≥
√

HT −
√

K

2d−3

∑
v

d−3∑
i=1

qi,v

≥
√

HT −
√

K

2d−3

d−3∑
i=1

∑
v

qi,v + qi,v⊕i

2

≥
√

HT −
√

K

2d−3 2d−3 1
4e−64(d− 3)

≳ Ω(d
√

HT )

where the first inequality is due to (5), and the third inequality is due to (6).

Based on Theorem 1, we can derive the minimax dynamic regret for nonstationary linear MDP.

Proof of Theorem 2. We construct the hard instance as follows: We first divide the whole time horizon T into
⌈K

N ⌉ intervals, where each interval has ⌈K
N ⌉ episodes (the last interval might be shorter if K is not a multiple

of N). For each interval, the linear MDP is fixed and parameterized by a v ∈ {±
√

(d−3)√
N
}d−3 which we define

when constructing the hard instances in Theorem 1. Note that different intervals are completely decoupled,
thus information is not passed across intervals. For each interval, it incurs regret at least Ω(d

√
H2N) by

Theorem 1. Thus the total regret is at least

Dyn-Reg(T ) ≳ (⌈K
N
⌉ − 1)Ω(d

√
H2N)

≳ Ω(d
√

H2K2N−1/2). (7)

Intuitively, we would like N to be as small as possible to obtain a tight lower bound. However, due to our
construction, the total variation for two consecutive blocks is upper-bounded by√√√√d−3∑

i=1

4(d− 3)
N

= 2(d− 3)√
N

.

Note that the total time variation for the whole time horizon is B and by definition B ≥ 2(d−3)√
N

(⌊K
N ⌋ − 1),

which impliesN ≳ Ω(B−2/3d2/3K2/3). Substituting the lower bound of N into (7), we have

Dyn-Reg(T ) ≳ Ω(B1/3d2/3K2/3H) ≳ Ω(B1/3d2/3H1/3T 2/3)

which concludes the proof.
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B Proofs in Section 4

Here we provide the proofs in Section 4. We first want to comment that our algorithm builds on LSVI-UCB.
LSVI can be seen as a specialization of the regression-based Fitted Q-Iteration algorithm (Ernst et al., 2005;
Munos & Szepesvári, 2008; Chen & Jiang, 2019) to the linear case, and LSVI-UCB (Jin et al., 2020) further
adds the bonus term on top of that to handle exploration.

Now, we introduce some notations we use throughout the proof. We let wk
h, Λk

h and Qk
h as the parameters

and action-value function estimate in episode k for step h. Denote value function estimate as V k
h (s) =

maxa Qk
h(s, a). For any policy π, we let wπ

h,k, Qπ
h,k be the ground-truth parameter and action-value function

for that policy in episode k for step h. We also abbreviate ϕ(sl
h, al

h) as ϕl
h for notational simplicity.

We first work on the case when local variation is known and then consider the case when local variation is
unknown.

B.1 Case 1: Known Local Variation

Before we prove the regret upper bound within one epoch (Theorem 5), we need some additional lemmas.
The first lemma is used to control the fluctuations in least-squares value iteration, when performed on the
value function estimate V k

h (·) maintained in Algorithm 1.

Proof of Lemma 1. The lemma is slightly different than Jin et al. (2020, Lemma B.3), since they assume
Ph is fixed for different episodes. It can be verified that the proof for stationary case still holds in our case
without any modifications since the results in Jin et al. (2020) holds for least-squares value iteration for
arbitrary function in the function class of our interest, i.e., {V |V = {ϕ(·, ·), w}, w ∈ Rd}.

We then proceed to derive the error bound for the action-value function estimate maintained in the algorithm
for any policy.

Proof of Lemma 2. Note that Qπ
h,k(s, a) = ⟨ϕ(s, a), wπ

h,k⟩. First we can decompose wk
h −wπ

h,k as
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We bound the individual terms on right side one by one. For the first term,
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where the last inequality is due to Lemma 9. For the second term, we know that under event E defined in
Lemma 1,
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where the first three inequalities are due to Cauchy-Schwarz inequality and boundedness of Pl
h − Pk

h and
V k

h+1, and the last inequality is due to Lemma 10.

For the fourth term,
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where the inequalities are derived similarly as bounding the third term. After combining all the upper
bounds for these individual terms, we have

|⟨ϕ(s, a), wk
h⟩ −Qπ

h,k(s, a)− Pk
h

(
V k

h+1 − V π
h+1,k

)
(s, a)|

≤4H
√

d ∥ϕ(s, a)∥(Λk
h

)−1 + CdH
√

log[2(cβ + 1)dW/p] ∥ϕ(s, a)∥(Λk
h

)−1

+ Bθ,E
√

d(k − τ) ∥ϕ(s, a)∥(Λk
h

)−1 + Bµ,EH
√

d(k − τ) ∥ϕ(s, a)∥(Λk
h

)−1

≤C0dH
√

log[2dW/p] ∥ϕ(s, a)∥(Λk
h

)−1 + Bθ,E
√

d(k − τ) ∥ϕ(s, a)∥(Λk
h

)−1

+ Bµ,EH
√

d(k − τ) ∥ϕ(s, a)∥(Λk
h

)−1 .

The second inequality holds if we choose a sufficiently large absolute constant C0.

Lemma 2 implies that the action-value function estimate we maintained in Algorithm 1 is always an optimistic
upper bound of the optimal action-value function with high confidence, if we know the local variation.

Proof of Lemma 3. We prove this by induction. First prove the base case when h = H. According to
Lemma 2, we have

|⟨ϕ(s, a), wk
H⟩ −Q∗

H,k(s, a)|≤ βk ∥ϕ(s, a)∥(Λk
H

)−1 ,

which implies

Qk
H(s, a) = min{⟨wk

H , ϕ(s, a)⟩+ βk ∥ϕ(s, a)∥(Λk
H

)−1 , H} ≥ Q∗
H,k(s, a).

Now suppose the statement holds true at step h + 1, then for step h, due to Lemma 2, we have

|⟨ϕ(s, a), wk
h⟩ −Qπ

h,k(s, a)− Pk
h(V k

h+1 − V ∗
h+1,k)(s, a)|≤ βk ∥ϕ(s, a)∥(Λk

h
)−1 .

By the induction hypothesis, we have Pk
h(V k

h+1 − V ∗
h+1,k)(s, a) ≥ 0, thus

Qk
h(s, a) = min{⟨wk

h, ϕ(s, a)⟩+ βk ∥ϕ(s, a)∥(Λk
H

)−1 , H} ≥ Q∗
h,k(s, a).

Next we derive the bound for the gap between the value function estimate and the ground-truth value
function for the executing policy πk, δk

h = V k
h (sk

h)− V πk

h,k(sk
h), in a recursive manner.

Lemma 6. Let δk
h = V k

h (sk
h)− V πk

h,k(sk
h), ζk

h+1 = E[δk
h+1|sk

h, ak
h]− δk

h+1. Under event E defined in Lemma 1,
we have for all (k, h) ∈ E × [H],

δk
h ≤ δk

h+1 + ζk
h+1 + 2βk

∥∥ϕk
h

∥∥
(Λk

h
)−1 .

Proof. By Lemma 2, for any (s, a, h, k) ∈ S ×A× [H]× E ,

Qk
h(s, a)−Qπk

h (s, a) ≤ Pk
h(V k

h+1 − V πk

h+1,k)(s, a) + 2βk ∥ϕ(s, a)∥(Λk
H

)−1 .

Note that Qk
h(sk

h, ak
h) = maxa Qk

h(sk
h, a) = V k

h (sk
h) according to Algorithm 1, and Qπk

h,k(sk
h, ak

h) = V πk

h,k(sk
h) by

the definition. Thus,

δk
h ≤ δk

h+1 + ζk
h+1 + 2βk

∥∥ϕk
h

∥∥
(Λk

h
)−1 .

Now we are ready to derive the regret bound within one epoch.
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Proof of Theorem 3. We denote the dynamic regret within that epoch as Dyn-Reg(E). We define δk
h =

V k
h (sk

h) − V πk

h,k(sk
h) and ζk

h+1 = E[δk
h+1|sk

h, ak
h] − δk

h+1 as in Lemma 8. We derive the dynamic regret within
a epoch E (the length of this epoch is W which is equivalent to W

H episodes) conditioned on the event E
defined in Lemma 1 which happens with probability at least 1− p/2.

Dyn-Reg(E) =
∑
k∈E

[
V ∗

1,k(sk
1)− V πk

1,k

]
≤
∑
k∈E

[
V k

1 (sk
1)− V πk

1,k

]
≤
∑
k∈E

δk
1

≤
∑
k∈E

H∑
h=1

ζk
h + 2

∑
k∈K

βk

H∑
h=1

∥∥ϕk
h

∥∥
(Λk

h
)−1 , (8)

where the first inequality is due to Lemma 3, the third inequality is due to Lemma 6. For the first term in
the right side, since V k

h is independent of the new observation sk
h, {ζk

h} is a martingale difference sequence.
Applying the Azuma-Hoeffding inequlity, we have for any t > 0,

P

(∑
k∈E

H∑
h=1

ζk
h ≥ t

)
≥ exp(−t2/(2WH2)).

Hence with probability at least 1− p/2, we have

∑
k∈E

H∑
h=1

ζk
h ≤ 2H

√
W log(2dW/p). (9)

For the second term, we bound via Cauchy-Schwarz inequality:

2
∑
k∈E

βk

H∑
h=1

∥∥ϕk
h

∥∥
(Λk

h
)−1 = 2C0dH

√
log 2(dW/p)

∑
k∈E

H∑
h=1

∥∥ϕk
h

∥∥
(Λk

h
)−1 + 2

∑
k∈E

Bθ,E
√

d(k − τ)
H∑

h=1

∥∥ϕk
h

∥∥
(Λk

h
)−1

+ 2
∑
k∈E

BµH
√

d(k − τ)
H∑

h=1

∥∥ϕk
h

∥∥
(Λk

h
)−1

≤ 2C0dH
√

log 2(dW/p)
H∑

h=1

√
W/H(

∑
k∈E

∥∥ϕk
h

∥∥2
(Λk

h
)−1)1/2

+ 2
H∑

h=1
(
∑
k∈E

Bθ,E
√

d(k − τ))1/2(
∑
k∈E

∥∥ϕk
h

∥∥2
(Λk

h
)−1)1/2

+ 2
H∑

h=1
(
∑
k∈E

Bµ,EH
√

d(k − τ))1/2(
∑
k∈E

∥∥ϕk
h

∥∥2
(Λk

h
)−1)1/2

≤ 2C0dH
√

log 2(dW/p)
H∑

h=1

√
W/H(

∑
k∈E

∥∥ϕk
h

∥∥2
(Λk

h
)−1)1/2

+ 2
H∑

h=1
Bθ,E

√
d

W

H
(
∑
k∈E

∥∥ϕk
h

∥∥2
(Λk

h
)−1)1/2

+ 2
H∑

h=1
Bθ,E

√
dW (

∑
k∈E

∥∥ϕk
h

∥∥2
(Λk

h
)−1)1/2 (10)
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By Lemma 11, we have

(
∑
k∈E

∥∥ϕk
h

∥∥2
(Λk

h
)−1)1/2 ≤

√
d log

(
W

H
+ 1
)

. (11)

Finally, by combining Eq. 8–11, we obtain the regret bound within the epoch E as:

Dyn-Reg(E) ≲ Õ(H3/2d3/2W 1/2 + Bθ,EdW + Bµ,EdHW ).

By summing over all epochs and applying a union bound, we obtain the regret bound for the whole time
horizon.
Theorem 8. If we set β = βk = cdH

√
log(2dT/p)+Bθ,E

√
d(k − τ)+Bµ,EH

√
d(k − τ), the dynamic regret

of LSVI-UCB-Restart is Õ(H3/2d3/2TW −1/2 + BθdW + BµdHW ), with probability at least 1− p.

Proof. In total there are N = ⌈ T
W ⌉ epochs. For each epoch Ei if we set δ = p

N , then it will incur regret
Õ(d3/2H3/2W 1/2 + Bθ,Ei

dW + Bµ,Ei
dHW ) with probability at least 1 − p

N . By summing over all epochs
and applying the union bound over them, we can obtain the regret upper bound for the whole time horizon.
With probability at least 1− p,

Dyn-Reg(T ) =
∑
Ei

Dyn-Reg(Ei)

≲
∑
Ei

Õ(d3/2H3/2W 1/2 + Bθ,Ei
dW + Bµ,Ei

dHW )

≲ Õ(H3/2d3/2TW −1/2 + BθdW + BµdHW ).

B.2 Case 2: Unknown Local Variation

Similar to the case of known local variation, we first derive the error bound for the action-value function
estimate maintained in the algorithm for any policy, which is the following technical lemma.
Lemma 7. Under event E defined in Lemma 1, we have for any policy π, ∀s, a, h, k ∈ S ×A× [H]× E,

|⟨ϕ(s, a), wk
h⟩ −Qπ

h,k(s, a)− Pk
h(V k

h+1 − V π
h+1,k)(s, a)|≤ β ∥ϕ(s, a)∥(Λk

h
)−1 + Bθ,E

√
d(k − τ) + Bµ,EH

√
d(k − τ),

where β = C0dH
√

log(2dW/p) and τ is the first episode in the current epoch.

Proof. This lemma is a looser upper bound implied by Lemma 2. By Lemma 2, we have

|⟨ϕ(s, a), wk
h⟩ −Qπ

h,k(s, a)− Pk
h(V k

h+1 − V π
h+1,k)(s, a)|

≤CodH
√

log(2dW/p) ∥ϕ(s, a)∥(Λk
h

)−1 + Bθ,E
√

d(k − τ) ∥ϕ(s, a)∥(Λk
h

)−1

+ Bµ,EH
√

d(k − τ) ∥ϕ(s, a)∥(Λk
h

)−1

≤CodH
√

log(2dW/p) ∥ϕ(s, a)∥(Λk
h

)−1 + Bθ,E
√

d(k − τ)

+ Bµ,EH
√

d(k − τ),

where the second inequality is due to ∥ϕ(s, a)∥ ≤ 1 and λmin(Λk
h) ≥ 1, thus ∥ϕ(s, a)∥(Λk

h
)−1 ≤ 1.

Different from Lemma 3, when the local variation is unknown, the action-value function estimate we main-
tained in Algorithm 1 is no longer an optimistic upper bound of the optimal action-value function, but
approximately up to some error proportional to the local variation.
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Proof of Lemma 4. We prove this by induction. First prove the base case when h = H. According to
Lemma 7, we have

|⟨ϕ(s, a), wk
H⟩ −Q∗

H,k(s, a)| ≤ β ∥ϕ(s, a)∥(Λk
H

)−1 + Bθ,E
√

d(k − τ) + Bµ,EH
√

d(k − τ),

which implies

Qk
H(s, a) = min{⟨wk

H , ϕ(s, a)⟩+ β ∥ϕ(s, a)∥(Λk
H

)−1 , H}

≥ Q∗
H,k(s, a)− (Bθ,E

√
d(k − τ) + Bµ,EH

√
d(k − τ)).

Now suppose the statement holds true at step h + 1, then for step h, due to Lemma 7, we have

|⟨ϕ(s, a), wk
h⟩ −Qπ

h,k(s, a)− Pk
h(V k

h+1 − V ∗
h+1,k)(s, a)|

≤β ∥ϕ(s, a)∥(Λk
h

)−1 + Bθ,E
√

d(k − τ) + Bµ,EH
√

d(k − τ).

By the induction hypothesis, we have [Pk
h(V k

h+1 − V ∗
h+1,k)](s, a) ≥ −(H − h + 2)(Bθ,E

√
d(k − τ) +

Bµ,EH
√

d(k − τ)), thus

Qk
h(s, a) = min{⟨wk

h, ϕ(s, a)⟩+ β ∥ϕ(s, a)∥(Λk
H

)−1 , H}

≥ Q∗
h,k(s, a)− (H − h + 1)(Bθ,E

√
d(k − τ) + Bµ,EH

√
d(k − τ)).

Similar to Lemma 6, next we derive the bound for the gap between the value function estimate and the
ground-truth value function for the executing policy πk, δk

h = V k
h (sk

h) − V πk

h,k(sk
h), in a recursive manner,

when the local variation is unknown.
Lemma 8. Let δk

h = V k
h (sk

h)− V πk

h,k(sk
h), ζk

h+1 = E[δk
h+1|sk

h, ak
h]− δk

h+1. Under event E defined in Lemma 1,
we have for all (k, h) ∈ E × [H],

δk
h ≤ δk

h+1 + ζk
h+1 + 2β

∥∥ϕk
h

∥∥
(Λk

h
)−1 + Bθ,E

√
d(k − τ) + Bµ,EH

√
d(k − τ).

Proof. By Lemma 7, for any (s, a, h, k) ∈ S ×A× [H]× E ,

Qk
h(s, a)−Qπk

h (s, a) ≤ Pk
h(V k

h+1 − V πk

h+1,k)(s, a) + 2β ∥ϕ(s, a)∥(Λk
H

)−1 + Bθ,E
√

d(k − τ) + Bµ,EH
√

d(k − τ).

Note that Qk
h(sk

h, ak
h) = maxa Qk

h(sk
h, a) = V k

h (sk
h) according to Algorithm 1, and Qπk

h,k(sk
h, ak

h) = V πk

h,k(sk
h) by

the definition. Thus,

δk
h ≤ δk

h+1 + ζk
h+1 + 2β

∥∥ϕk
h

∥∥
(Λk

h
)−1 + Bθ,E

√
d(k − τ) + Bµ,EH

√
d(k − τ).

Now we are ready to prove Theorem 5, which is the regret upper bound within one epoch.

Proof of Theorem 5. We denote the dynamic regret within an epoch as Dyn-Reg(E). We define δk
h =

V k
h (sk

h) − V πk

h,k(sk
h) and ζk

h+1 = E[δk
h+1|sk

h, ak
h] − δk

h+1 as in Lemma 8. We derive the dynamic regret within
a epoch E (the length of this epoch is W which is equivalent to W

H episodes) conditioned on the event E
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defined in Lemma 1 which happens with probability at least 1− p/2.

Dyn-Reg(E)

=
∑
k∈E

[
V ∗

1,k(sk
1)− V πk

1,k (sk
1)
]

≤
∑
k∈E

[V k
1 (sk

1) + Bθ,EH
√

d(k − τ) + Bµ,EH2
√

d(k − τ)− V πk

1,k (sk
1)]

≤
∑
k∈E

[δk
1 + Bθ,EH

√
d(k − τ) + Bµ,EH2

√
d(k − τ)]

≤
∑
k∈E

H∑
h=1

ζk
h + 2β

∑
k∈E

H∑
h=1

∥∥ϕk
h

∥∥
(Λk

h
)−1 + 2

∑
k∈E

Bθ,EH
√

d(k − τ) + 2
∑
k∈E

Bµ,EH2
√

d(k − τ)

≤
∑
k∈E

H∑
h=1

ζk
h + 2β

∑
k∈E

H∑
h=1

∥∥ϕk
h

∥∥
(Λk

h
)−1 + Bθ,EW

√
2d(W/H + 1) + Bµ,EW

√
2d(WH + H) (12)

where the first inequality is due to Lemma 4, the third inequality is due to Lemma 8, and the last inequality
is due to Jensen’s inequality. Now we need to bound the first two terms in the right side. Note that {ζk

h} is
a martingale difference sequence satisfying |ζk

h |≤ 2H for all (k, h). By Azuma-Hoeffding inequality we have
for any t > 0,

P

(∑
k∈E

H∑
h=1

ζk
h ≥ t

)
≥ exp(−t2/(2WH2)).

Hence with probability at least 1− p/2, we have

∑
k∈E

H∑
h=1

ζk
h ≤ 2H

√
W log(2dW/p). (13)

For the second term, note that by Lemma 11 for any h ∈ [H], we have

∑
k∈E

(ϕk
h)⊤(Λk

h)−1ϕk
h ≤ 2 log

[
det(Λk+1

h )
det(Λ1

h)

]
≤ 2d log

(
W

H
+ 1
)

.

By Cauchy-Schwarz inequality, we have

∑
k∈E

H∑
h=1

∥∥ϕk
h

∥∥
(Λk

h
)−1 ≤

H∑
h=1

√
W/H

[∑
k∈E

(ϕk
h)⊤(Λk

h)−1ϕk
h

]1/2

≤ H

√
2d

W

H
log
(

W

H
+ 1
)

≤ H

√
2d

W

H
log [2dW/p]. (14)

Finally, combining Eq. 12–14, we have with probability at least 1− p,

Dyn-Reg(E) ≤ 2H
√

W log(2dW/p) + C0dH2
√

log(2dW )/p

√
2d

W

H
log[2dW/p]

+ Bθ,EW
√

2d(W/H + 1) + Bµ,EW
√

2d(WH + H)

≲ Õ(
√

d3H3W + Bθ,E
√

d/HW 3/2 + Bµ,E
√

dHW 3/2).

27



Under review as submission to TMLR

Now we can derive the regret bound for the whole time horizon by summing over all epochs and applying a
union bound. We restate the regret upper bound and provide its detailed proof.
Theorem 9. If we set β = cdH

√
log(2dT/p), the dynamic regret of LSVI-UCB-Restart algorithm is

Õ(W −1/2Td3/2H3/2 + Bθd1/2H−1/2W 3/2 + Bµd1/2H1/2W 3/2), with probability at least 1− p.

Proof. In total there are N = ⌈ T
W ⌉ epochs. For each epoch Ei if we set δ = p

N , then it will incur regret
Õ(
√

d3H3W + Bθ,Ei

√
d/HW 3/2 + Bµ,Ei

√
dHW 3/2) with probability at least 1 − p

N . By summing over all
epochs and applying a union bound over them, we can obtain the regret upper bound for the whole time
horizon. With probability at least 1− p,

Dyn-Reg(T ) =
∑
Ei

Dyn-Reg(Ei) ≲
∑
Ei

Õ(
√

d3H3W + Bθ,Ei

√
d/HW 3/2 + Bµ,Ei

√
dHW 3/2)

≲ Õ(d3/2H3/2TW −1/2 + Bθd1/2H−1/2W 3/2 + Bµd1/2H1/2W 3/2).

C Proofs in Section 5

In this section, we derive the regret bound for Ada-LSVI-UCB-Restart algorithm.

Proof of Theorem 7. Let Ri(W, s
(i−1)H
1 ) be the totol reward recieved in i-th block by running proposed

LSVI-UCB-Restart with window size W starting at state s
(i−1)H
1 , we can first decompose the regret as

follows:

Dyn-Reg(T ) =
K∑

k=1
V ∗

1,k(s1
k)−

⌈T/MH⌉∑
i=1

Ri(W †, s
(i−1)H
1 )︸ ︷︷ ︸

1

+
⌈T/MH⌉∑

i=1
(Ri(W †, s

(i−1)H
1 )−Ri(Wi, s

(i−1)H
1 )︸ ︷︷ ︸

2

,

where term 1 is the regret incurred by always selecting the best epoch size for restart in the feasible set
JW , and term 2 is the regret incurred by adaptively tuning epoch size by EXP3-P. We denote the optimal
epoch size in this case as W ∗ = ⌈(Bθ + Bµ + 1)−1/2d1/2H1/2T 1/2⌉H. It is straightforward to verify that
1 ≤ W ∗ ≤ MH, thus there exists a W † ∈ JW such that W † ≤ W ∗ ≤ 2W †, which well-approximates the
optimal epoch size up to constant factors. Denote the total variation of θ and µ in block i as Bθ,i and Bµ,i

respectively. Now we can bound the regret. For the first term, we have

1 ≲
⌈T/MH⌉∑

i=1
Õ(d3/2H3/2MH(W †)−1/2 + Bθ,id

1/2H−1/2(W †)3/2 + Bµ,id
1/2H1/2(W †)3/2)

≲ Õ(d3/2H3/2T (W †)−1/2 + Bθd1/2H−1/2(W †)3/2 + Bµd1/2H1/2(W †)3/2)
≲ Õ(d3/2H3/2T (W ∗)−1/2 + Bθd1/2H−1/2(W ∗)3/2 + Bµd1/2H1/2(W ∗)3/2)
≲ Õ((Bθ + Bµ + 1)1/4d5/4H5/4T 3/4),

where the first inequality is due to Theorem 6, and the third inequality is due to W † differs from W ∗ up to
constant factor. For the second term, we can directly apply the regret bound of EXP3-P algorithm (Bubeck
& Cesa-Bianchi, 2012). In this case there are ∆ = ln M + 1 arms, number of equivalent time steps is ⌈ T

MH ⌉,
and loss per equivalent time step is bounded within [0, MH]. Thus we have

2 ≲ Õ(MH
√

∆T/MH) ≤ Õ(d1/4H3/4T 3/4).

Combining the bound of 1 and 2 yields the regret bound of Ada-LSVI-UCB-Restart,

Dyn-Reg(T ) ≲ Õ((Bθ + Bµ + 1)1/4d5/4H5/4T 3/4).
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D Auxiliary Lemmas

In this section, we present some useful auxiliary lemmas.
Lemma 9. For any fixed policy π, let {wπ

h,k}h∈[H],k∈[K] be the corresponding weights such that Qπ
h,k(s, a) =

⟨ϕ(s, a), wπ
h,k⟩ for all (s, a, h, k) ∈ S ×A× [H]× [K]. Then we have

∀(k, h) ∈ [K]× [H],
∥∥wπ

h,k

∥∥ ≤ 2H
√

d.

Proof. By the Bellman equation, we know that for any (h, k) ∈ [H]× [K],

Qπ
h,k(s, a) = (rk

h + Pk
hV π

h+1,k)(s, a)

= ⟨θh,k +
∫

V π
h+1,kdµh,k(s′), ϕ(s, a)⟩

= ⟨wπ
h,k, ϕ(s, a)⟩,

where the second equality holds due to the linear MDP assumption. Under the normalization assumption
in Definition 1, we have ∥θh,k∥ ≤

√
d, V π

h+1,k ≤ H and ∥µh,k(s′)∥ ≤
√

d. Thus,

wπ
h,k ≤

√
d + H

√
d ≤ 2H

√
d.

Lemma 10. Let Λt = I +
∑t

i=1 ϕ⊤
i ϕi, where ϕt ∈ Rd, then

t∑
i=1

ϕ⊤
i (Λt)−1ϕi ≤ d.

Proof. We have
∑t

i=1 ϕ⊤
i (Λt)−1ϕi =

∑t
i=1 Tr(ϕ⊤

i (Λt)−1ϕi) = Tr((Λt)−1∑t
i=1 ϕiϕ

⊤
i ). After apply eigen-

value decomposition, we have
∑t

i=1 ϕiϕ
⊤
i = Udiag(λ1, . . . , λd) and Λt = Udiag(λ1 + 1, . . . , λd + 1). Thus∑t

i=1 ϕ⊤
i (Λt)−1ϕi =

∑d
i=1

λi

λi
≤ d.

Lemma 11. (Abbasi-Yadkori et al., 2011) Let {ϕt}t≥0 be a bounded sequence in Rd satisfying supt≥0 ∥ϕt∥ ≤
1. Let Λ0 ∈ Rd×d be a positive definite matrix. For any t ≥ 0, we define Λt = Λ0 +

∑t
j=1 ϕ⊤

j ϕj. Then if the
smallest eigenvalue of Λ0 satisfies λmin(Λ0) ≥ 1, we have

log
[

det(Λt)
det(Λ0)

]
≤

t∑
j=1

ϕ⊤
j Λ−1

j−1ϕj ≤ 2 log
[

det(Λt)
det(Λ0)

]
.

E Details of the Experiments

E.1 Synthetic Linear MDP Construction

The MDP has S = 15 states, A = 7 actions, H = 10, d = 10, and T = 20000, and 5 special chains. The
states are denoted s1, . . . , sS , and the actions are denoted a1, . . . , aA. We first construct the known feature ϕ.
Intuitively, ϕ represents the transition from S ×A space to d-dim space. We let the special chains have the
correct transition to the d-dim space while other parts have random transition. This special transition will
later be connected with µh,k, (i.e., the transition from d-dim space to S space) to form the chain. A special
property of the construction is at any episode k, the transition function only has one connected chain and
such chain is similar to combination lock. The agent must find this unique chain to achieve good behavior.

We let feature ϕ have “one-hot” form (each (s, a) deterministically transits to a latent state in d-dim space),
and satisfy the following:

29



Under review as submission to TMLR

1. For special chain i = 1, . . . , 5, we have ϕ(si, ai)[i] = 1 and ϕ(si, ai)[n] = 0, n ̸= i. For i = 1, . . . , 5
and j ∈ [A], j ̸= i, we have ϕ(si, aj)[n] = 1 and ϕ(si, aj)[l] = 0, l ∈ [S], l ̸= n, where k is uniformly
drawn from 1, . . . , i− 1, i + 1, . . . , d.

2. For normal chain i = 6, . . . , S, and j ∈ [A] we have ϕ(si, aj)[n] = 1, and ϕ(si, aj)[l] = 0, l ∈ [S], l ̸= n,
where n is uniformly drawn from 1, . . . , d.

Now consider designing µh,k. As mentioned in the main text, we have a set of 5 different MDPs, and they
have unique but different good chains. The abruptly-changing environment abruptly switches the good chain
(or linear MDP) periodically every 100 episodes, whereas the gradually-changing environment switches the
good chain (or linear MDP) continuously from one to another within every 100 episodes. In the following
construction, we only design those 5 different MDPs for the abruptly-changing environment since we only
need to take convex combination of different MDPs in the gradually-changing case. For each of those 5 linear
MDPs, we only let one special chain be connected, and it becomes the good chain. Other special chains are
broken in the µh,k part (i.e., the part transits from d-dim space to S space). When the good chain is g ∈ [5]
in episode k, we let µh,k satisfy the following:

1. For good chain g, ∀h ∈ [H], we have µh,k(sg)[g] = 0.99, µh,k(sg+1)[g] = 0.01, and µh,k(sn)[g] =
0, n ̸= g, g + 1.

2. For other special but not good chain ǧ ∈ [5], ǧ ̸= g, ∀h ∈ [H], we have µh,k(sǧ)[ǧ] = 0.01,
µh,k(sǧ+1)[ǧ] = 0.99, and µh,k(sn)[ǧ] = 0, n ∈ [S], n ̸= ǧ, ǧ + 1.

3. For all normal chain i = 6, . . . , d, ∀h ∈ [H], we randomly sample two states n1 and n2, and let
µh,k(sn1)[i] = 0.8, µh,k(sn2)[i] = 0.2, and µh,k(sn)[i] = 0, n ∈ [S], n ̸= n1, n2.

Finally we construct θh,k, which is related to the reward function. To ensure g ∈ [5] is a good chain, we
place a huge reward at the end of the chain but 0 reward for the rest of the chain. In addition, we put small
intermediate rewards on sub-optimal actions. Specifically, when g is the good chain at episode k, θh,k is as
follows:

1. For good chain g, we have θh,k[g] = 0,∀h ∈ [H − 1], and θH,k[g] = 1.

2. For all other chains i ∈ [d], i ̸= g, ∀h ∈ [H], we let θh,k[i] uniformly sample from [0.005, 0.008].

In our construction, it is straightforward to verify that we have a valid transition function, and the transition
function and reward function together satisfy the combination lock type construction. Notice that sometimes
we refer to the normal chain in the S space and sometimes in the d-dim space. The reason is that a special
chain must be connected in both parts (S ×A space to d-dim space and d-dim space to S space), so we can
break any part to make it a normal chain.

E.2 Hardware Details

All experiments are performed on a Macbook Pro with 8 cores, 16 GB of RAM.
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