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Abstract

Federated learning is a rapidly growing area
of research, holding the promise of privacy-
preserving distributed training on edge devices.
The largest barrier to wider adoption of fed-
erated learning is the communication cost of
model updates, which is accentuated by the
fact that many edge devices are bandwidth-
constrained. At the same time, within the ma-
chine learning theory community, a separate
line of research has emerged around optimiz-
ing networks within a subspace of the full space
of all parameters. The dimension of the small-
est subspace for which these methods still yield
strong results is called the intrinsic dimension.
In this work, we prove a general correspon-
dence between the notions of intrinsic dimen-
sion and gradient compressibility, and we show
that a family of low-bandwidth federated learn-
ing algorithms, which we call intrinsic gradi-
ent compression algorithms, naturally emerges
from this correspondence. Finally, we conduct
large-scale NLP experiments using transformer
models with over 100M parameters (GPT-2 and
BERT), and show that our method outperforms
the state-of-the-art in gradient compression.

1 Introduction

Federated learning is a nascent area of study which
seeks to perform machine learning in a privacy-
preserving way. However, federated learning with
deep neural networks suffers from a problem with
communication bandwidth: it is very costly to send
gradient/model updates over a network, especially
when communicating with mobile phones and edge
devices.

To reduce bandwidth for federated learning, it
is natural to utilize various forms of compression.
Previous works have tried to achieve compression
in two ways: (1) by compressing the information
communicated in standard gradient descent algo-
rithms (e.g. quantizing gradients (Wen et al., 2017))
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and (2) by training with non-standard methods that
naturally use less bandwidth (e.g. prototypical net-
works (Tan et al., 2021)).

At the same time, in the machine learning the-
ory community, researchers have been working to
understand what at first seems like an entirely dif-
ferent question: why do hugely overparametrized
models generalize so well? One promising ap-
proach to this answering this question has utilized
the concept of intrinsic dimension, defined for a
given optimization problem as the smallest dimen-
sion d for which we can solve the problem when
the weights are restricted to a a d-dimensional man-
ifold. To be precise, it is the smallest d for which
the standard loss minimization problem

min
θ′∈Rd

ℓ(fg(θ′)) (1)

has a satisfactory solution, where the image of g
is a d-dimensional manifold. If the intrinsic di-
mension of a problem is low, then even if a model
is vastly overparameterized, only a small number
of parameters need to be tuned in order to obtain
a good solution, which is often enough to imply
certain generalization guarantees.

We begin this paper by observing that the two
problems above are naturally related. If one can
find a solution to the problem by only tuning d pa-
rameters, as in Equation (1), then a corresponding
low bandwidth algorithm can be found by simply
running stochastic gradient descent in the reduced
parameter space (in this case, Rd).

However, simply optimizing a subset of a
model’s parameters is often insufficient for train-
ing models (especially when training from scratch,
rather than finetuning). Thus, we are inspired to
seek a more general characterization of algorithms
that use a low amount of bandwidth. In order
to do this, we rewrite the optimization problem
in Equation (1) in the original parameter space.
When g(θ′) = Aθ′ for some matrix A (so the low-
dimensional manifold is a low-dimensional sub-



space), stochastic gradient descent can be rewritten
as

θt+1 = θt − ηAA⊤∇θℓ(fθ)|θ=θt . (2)

We call this method static intrinsic gradient com-
pression, because our gradients are projected into
a static (“intrinsic”) subspace. Now, Equation (2)
admits a natural generalization, which allows us
to explore more of the parameter space while still
preserving a low level of upload bandwidth usage:

θt+1 = θt − ηAtA
⊤
t ∇θℓ(fθ)|θ=θt (3)

where At may vary with time. We call the set of
all such algorithms intrinsic gradient compression
algorithms, and consider three particular instantia-
tions: static, time-varying, and k-varying, each of
which perform in different use cases.

Our approach is model-agnostic and highly scal-
able. In experiments across multiple federated
learning benchmarks (language modeling, text clas-
sification, and image classification), we vastly out-
perform prior gradient compression methods, and
show strong performance even at very high com-
pression rates (e.g. up to 1000×).

Our contributions are as follows.

• We find a general class of optimization algo-
rithms based on the notion of intrinsic dimen-
sion that use low amounts of upload band-
width, which we denote intrinsic gradient
compression algorithms.

• We specify three such algorithms: static com-
pression, time-varying compression and K-
varying compression, with different levels of
upload and download bandwidth for use in
various federated settings.

• In a set of experiments, we show that these
methods significantly outperform prior ap-
proaches to federated learning with gradient
compression, obtaining large reductions in
bandwidth at the same level of performance.

In Section 2, we describe the preliminaries
needed to contextualize our work, namely ideas
from intrinsic dimension, federated learning, and
gradient compression. In Section 3, we show how
the algorithm used by intrinsic dimension naturally
generalizes to algorithms which use little upload
bandwidth. In Section 4 we consider special in-
stantiations of these algorithms in federated learn-
ing settings which attain low upload and down-
load bandwidth, and in Section 5 show that they

achieve state of the art results. Finally, Section 6
concludes.

2 Preliminaries

2.1 Intrinsic Dimension

The concept of intrinsic dimension was introduced
in the work of (Li et al., 2018), as a way of evaluat-
ing the true difficulty of an optimization problem.
While this can usually be done by counting the
number of parameters, some optimization prob-
lems are easier than others in that solutions may be
far more plentiful.. One can write

ℓ(fθ) = ℓ(fg(θ′)) (4)

where g : Rd → RD and thus we’ve transformed
the problem into an optimization problem over θ2.
If we can still find good solutions to the original
problem where θ2 ∈ Θ2, then the problem’s intrin-
sic dimension may be lower, and thus the question
may be easier than previously expected. Through-
out this paper we will always take g(θ′) = Aθ′+θ0
for a D × d matrix A, and take Θ2 = Rd, and
Θ1 = RD, where D > d, where θ0 is the original
value of the expression.

The intrinisic dimension g(ℓ, L) with respect to
a task ℓ and performance threshold L is equal to the
smallest integer d so that optimizing Equation (4)
on task ℓ could lead to a solution of performance
at least equal to T . The intrinsic dimension is
not exactly knowable, because we cannot find the
“best performing model” exactly. However, if say,
training with some optimization algorithm gives
us a solution to Equation (4) with loss ≤ L and
with d dimensions, we can say with certainty that
g(ℓ, T ) ≤ d.

2.2 Federated Learning

Federated learning is a paradigm built around pro-
tecting the privacy of user data. The standard model
involves a server and many clients, where the raw
data must remain on the client’s device but the
server learns a model. Generally, this is imple-
mented by only the gradients of the model on the
data being sent to the central server, which then
runs a standard algorithm. A common example
of this is the FedAvg algorithm (McMahan et al.,
2017), where models are trained to near-completion
on a each client’s data, and the data is then aver-
aged. In what follows, we define an epoch to be a
single pass over every client.



2.3 Gradient Compression
Sending full gradients in standard uncompressed
form uses far more bandwidth than we are afforded
in certain settings. For example, in a 1 billion pa-
rameter model (hardly particularly large by current
standards) one gradient update would take 4 giga-
bytes of bandwidth uncompressed. Thus, there has
been substantial amounts of work in compressing
the gradient, like (Albasyoni et al., 2020), which
finds an optimal gradient compression algorithm,
albeit one which is computationally infeasible.

2.4 Related Work: Model Pruning and Model
Compression

Related Work: Model Pruning There has been
great interest in compressing models by using
fewer weights, starting with the work of (Hinton
et al., 2015; Han et al., 2015). One related work is
Diff Pruning (Guo et al., 2021), which constrains
the number of weights that can be changed from
a pretrained model. In essence, diff pruning at-
tempts to solve an L0 minimization problem on
the weights of the model, and approaches this by
means of a relaxation.

A number of other works have explored the
idea of finetuning by only modifying a subset of
a model’s parameters. (Jiang et al., 2019) and
(Bibikar et al., 2021) utilize sparsity to reduce com-
munication costs during training. (Ravfogel et al.,
2021) finetunes only the layer biases of large mod-
els. Similarly, (Houlsby et al., 2019) finetunes low-
parameter adapters between each layer. Compared
to (Ravfogel et al., 2021) our method is far more
flexible, allowing any number of parameters to be
changed. Compared to (Houlsby et al., 2019) our
methods are architecture-independent, and can be
applied to any model.

Related Work: Federated Learning Federated
learning is a machine learning paradigm in which
a model is trained by a collection of clients, each
with their own private local data. From the in-
troduction of federated learning (McMahan et al.,
2017), it was clear that communication costs rep-
resented a significant challenge: sending gradients
or weights over a network is costly due to the large
size of modern machine learning models. (McMa-
han et al., 2017) introduced the FedAvg algorithm,
which aims to reduce communication costs by send-
ing and averaging weights, rather than gradients.
Specifically, clients train their model locally for a
given number of epochs, send it to the server, and

received an averaged copy of the model weights.
However, sending the full set of model weights
often remains very costly (especially when clients
only have a small amount of local data, such that
many rounds of communication are necessary);
as a result, FedAvg performs poorly in heavily-
bandwidth-constrained settings.

Recently, FetchSGD (Rothchild et al., 2020)
aimed to address this issue differently by utilizing
the concept of sketching. Rather than transmitting
full gradients from the client to the server, they
send a sketch of the gradient. This approach per-
forms well, but only yields moderate compression
rates. We compare to FetchSGD in Section 5.

3 A Family of Low-Bandwidth
Algorithms

In this section, we characterize a family of low-
bandwidth optimization algorithms based on the
notion of intrinsic dimension.

We start from the optimization problem induced
by intrinsic dimension (Equation (4)). If we di-
rectly run gradient descent on Equation (4) with
respect to the intrinsic weights θ′, we obtain an
equation of the following form:

θ′t+1 = θ′t − η∇θ′
(
ℓ(fg(θ′))

)
= θ′t − η∇θ′ (ℓ(fAθ′))

= θ′t − ηA⊤∇θ(ℓ(fθ))
⊤|θ=Aθ′t+θ0

Then, left-multiplying both sides by A we obtain

θt+1 = θt − η AA⊤∇θ(ℓ(fθ))|θ=θt︸ ︷︷ ︸
compressed gradient︸ ︷︷ ︸

approximate gradient

(5)

Note that here, we can interpret
A⊤∇θ(ℓ(f(θ)))|θ=θt as a compressed gradi-
ent with dimension d, and AA⊤∇θ(ℓ(f(θ)))|θ=θt

as the approximate gradient. This inspires us to
consider the more general family of optimization
algorithms given by

θt+1 = θt − ηAtA
⊤
t (vt), (6)

where vt is a D dimensional vector computed from
data available at timestep t that plays a similar role
to a gradient, but may not be an exact gradient, and
the At are all D× d matrices known ahead of time
(say, generated with random seeds). One intuitive
way of interpreting this algorithm is that θt+1 − θt
is constrained to lie in a low-dimensional subspace,



Algorithm 1 Static Intrinsic Gradient Compression
input: learning rate η, timesteps T , local batch size ℓ,
clients per round W
Create matrix A ∈ RD×d with E[AA⊤] = ID .
Current Vector: Σ0 = 0
for t = 1, 2 · · ·T do

Randomly select W clients c1, . . . cW .
loop

{In parallel on clients {ci}Wi=1}
Download Σt−1, calculate current θt−1 = θ0 +
A(Σt−1).
Compute stochastic gradient gti on batch Bi of size ℓ:
gti =

1
ℓ

∑ℓ
j=1 ∇θL(θt−1, zj).

Sketch gti to St
i = A⊤gti and upload it to the aggrega-

tor.
end loop
Aggregate sketches St = 1

W

∑W
i=1 S

t
i

Unsketch: ∆t = ASt

Update: θt = θt−1 − η∆t, Σt = Σt−1 − ηSt.
end for

namely that given by the span of At. This family
of algorithms can be made to use only d upload
bandwidth, as only the vector A⊤

t (vt) must be up-
loaded. Furthermore, note that Equation (6) has no
references to the intrinsic weights θ′, meaning that
it represents a general optimization algorithm in
the original space. Formally,
Theorem 3.1. All algorithms of the form

θt+1 = θt − ηAtA
⊤
t (vt)

can be simulated with d upload bandwidth in a
standard federated learning setting, where vt is a
function that can be calculated by the client at time
t combined with all data from the server.

We call all such algorithms intrinsic gradient
compression algorithms. Note that this theorem
only bounds the upload bandwidth capacity needed
to run gradient descent, and does not bound the
download bandwidth. In the particular instantia-
tions we consider, we will demonstrate that one can
also bound the download bandwidth.

4 Intrinsic Gradient Compression
Algorithms

While Theorem 3.1 shows that any algorithm of the
form Equation (6) can be implemented with low
levels of upload bandwidth, not every algorithm
of the form Equation (6) can be implemented with
low levels of download bandwidth as well. The-
orem 3.1 gives rise to a family of algorithms we
denote intrinsic gradient compression algorithms.
In this section, we describe three particular intrin-
sic gradient compression algorithms which use low
amounts of both upload and download bandwidth.

These federated learning algorithms can be de-
composed into three main phases.

• Reconciliation: The client reconciles its
model with the server’s copy of the model.

• Compression: The local model calculates,
compresses, and sends its local gradient to the
server.

• Decompression: The server model updates
its own copy of the model using the estimated
gradient from the local model.

In general, reconciliation will be by far the most
complex part of each algorithm, and the other steps
are essentially shared across algorithms.

We show how to implement SGD for each vari-
ant, and note that this choice of optimization al-
gorithm is quite necessary – other optimization
algorithms like SGD with momentum cause the
parameters to not move in the low-dimensional sub-
space, which makes the compression impossible.
While one can implement a variant which resets
the momentum every epoch, momentum is rarely
a useful optimization in federated learning due to
the non-i.i.d. nature of the batches) so we do not
consider this.

Static Intrinsic Gradient Compression In this
subsection, we seek to implement the static intrin-
sic gradient compression algorithm

θt = θt−1 − ηAA⊤∇θL(θt−1)

in a federated learning setting.
In the reconciliation phase, since we know that

the parameters θc (which denotes the current param-
eters of the server) will always be equal to θ0+AΣ
for some Σ ∈ Rd, the server can just send Σ to the
client, which will take d download bandwidth.

For compression, the client compresses the gra-
dient by multiplying by A⊤, and for decompression
the server multiplies this by A. The full algorithm
is given in Algorithm 1.

Time-Varying Intrinsic Gradient Compression
In this subsection, we implement the time-varying
intrinsic gradient compression algorithm

θt = θt−1 − ηAeA
⊤
e ∇θL(θt−1)

in a federated learning setting, where e is the epoch.
In this case, we show that our algorithm can be

implemented with at most 2d bandwidth used per



Intrinsic Gradient Compression Method Upload Download Dimensions Explored

Static dE dE d

Time-Varying dE 2dE dE

K-Varying dE 2dEK dEK

No Compression DE DE D

Table 1: Bandwidth and Performance Comparisons. The bandwidth refers to that of that used for each client.
Note that we break upload and download bandwidth into separate columns, because download speeds can often be
considerably faster than upload speeds and we may thus be willing to tolerate higher values of download bandwidth.
A realistic example of the values of the variables above is e.g. d = 103, D = 108, E = 20,K = 8.

client per timestep, so over E epochs there is 2dE
bandwidth used total on downloading. Since this
bandwidth is twice that of static subspace compres-
sion, but we search E times more directions in the
space, this algorithm is particularly useful when
we have many epochs.

Letting θce be the client parameters at epoch e,
note that we have the value of θce−1 when perform-
ing reconciliation. Now we can write

θce − θce−1 = (θce − θfinal
e−1) + (θfinale−1 − θce−1)

and we can see that (θce−θfinal
e−1) lies in the column

space of Ae and (θfinal
e−1 − θce−1) lies in the column

space of Ae−1, which is enough to find the full
algorithm, given in Algorithm 2.

K-Varying Intrinsic Gradient Compression In
this subsection, we describe how to implement
the K-varying intrinsic gradient compression al-
gorithm

θt = θt−1 − ηA(i)
e A(i)⊤

e ∇θL(θt−1)

where {A(i)
e }Ki=1 is the set of K compression ma-

trices used at epoch e, and i is a randomly chosen
integer between 1 and K inclusive.

This method is motivated from the fact that
in many cases, the upload speed is much slower
than the download speed, so we may only want
to project the gradient into part of the subspace
currently being explored, as opposed to the com-
plete subspace. This allows each client to explore
d directions at a time, but for dK directions to be
explored across the entire epoch. As such, the al-
gorithm identical time-varying compression, and is
given in Algorithm 3.

Choice of Compression Matrix Finally, we we
discuss the choice of compression matrix for A. We
note that our methods are agnostic to the specific

choice of A, and depend only on the existence of ef-
ficient subroutines for calculating the matrix-vector
products Ax and A⊤y. Nonetheless, the choice of
A has significant implications for the resulting ac-
curacy of the algorithms. In order to maintain the
most proximity to the original stochastic gradient
descent algorithm, we will choose normalized A
so that E[AA⊤] = ID.

The naive choice is to let A be a D × d random
dense matrix, but such a choice is impossible due
to memory constraints. For example, if we aim
to train even a small version of BERT (100M pa-
rameters) with an intrinsic dimension of 1000, we
would need to store a matrix with 1011 entries.

The approach taken by (Aghajanyan et al., 2021;
Li et al., 2018) for large-scale experiments, which
we follow, utilizes the Fastfood transform (Le et al.,
2013), in which A can be expressed as the D × d
matrix Ai = UnpadDBiHΠiGiHPad2ℓ where 2ℓ

is the smallest power of two larger than D, H is a
standard Hadamard matrix, Bi is a random diago-
nal matrix with independent Rademacher entries
(random signs), Π is a random permutation ma-
trix, G is a random diagonal matrix with indepen-
dent standard normal entries, Pad2ℓ to be a linear
operator which simply pads a d-dimensional vec-
tor v with zeroes until it has size 2ℓ, and UnpadD
is a linear operator which takes the first D ele-
ments from a 2ℓ-dimensional vector. Since we
can quickly compute a matrix-vector product by
H with a fast Walsh-Hadamard transform, we
can perform a matrix multiplication by AiA

⊤
i in

O(ℓ2ℓ) = O(D logD) time and O(D) space.

Performance Comparison We show the theoret-
ical tradeoffs between each of these algorithms in
Table 1.



Name Intrinsic Dim. PPL Up. Comp. Down. Comp. Total Comp.

Uncompressed 13.9 1 1 1

(McMahan et al., 2017) FedAvg (2 local iters) 16.3 2 2 2
(McMahan et al., 2017) FedAvg (5 local iters) 20.1 5 5 5

Local Top-K (k = 50, 000) 19.3 30.3 2490 60
Local Top-K (k = 500, 000) 17.1 3.6 248 7.1

(Rothchild et al., 2020) FetchSGD (k = 25, 000) 14.8 3.8 100 7.3
(Rothchild et al., 2020) FetchSGD (k = 50, 000) 15.8 2.4 10 3.9

Ours (static) 16384 27.7 7595 7595 7595
Ours (K-subspace) 16384 19.6 7595 949 1688
Ours (static) 65536 20.6 1900 1900 1900
Ours (K-subspace) 65536 17.8 1900 237 422
Ours (static) 262144 17.6 475 475 475
Ours (K-subspace) 262144 16.6 475 59.3 105
Ours (static) 1048576 15.8 119 119 119
Ours (K-subspace) 1048576 15.4 119 14.8 26.3
Ours (static) 4194304 14.8 29.7 29.7 29.7

Table 2: Language modeling perplexity (lower is better) and compression rates (higher is better) for a GPT-2 model
(124M parameters) on the PersonaChat dataset. We compare to prior work, including the state-of-the-art in gradient
compression (FetchSGD), and we show upload, download, and total compression rates. For our intrinsic gradient
compression results, we give static and K-subspace compression for a range of dimensions between 16386 and
4194304. For K-subspace compression we use K = 8. Overall, we match or exceed the performance of prior work
with significantly improved compression rates.

5 Experiments

We evaluate our method across a range of bench-
marks to showcase the potential of our three algo-
rithms. These include two natural language pro-
cessing tasks (language modeling and text classifi-
cation), as well as a computer vision task (image
classification).

As with previous works (Rothchild et al., 2020;
McMahan et al., 2017), we simulate the feder-
ated learning in order to scale to large numbers
of clients (upwards of 10, 000). We simulate on 8
commercial-grade GPUs for the language model-
ing experiments and 1 GPU for the other experi-
ments. We perform experiments in both non-IID
(language modeling, image classification) and IID
(text classification) settings, because both scenarios
are common in real-world federated learning.

Image Classification (ResNet-9 on CIFAR-10)
First, we consider image classification on the
CIFAR-10 dataset, a collection of 50,000 images
with resolution 32 × 32px. We use the same ex-
perimental setup as (Rothchild et al., 2020): we
split the data between 10,000 clients in a non-IID
fashion, such that each client only has data from a
single class. At each step, we sample 100 clients at
random, such that each gradient step corresponds
to 500 images. We perform 24 rounds of communi-

cation between all clients (i.e. 24 training epochs).
We use a ResNet-9 architecture with 6,570,880

trainable parameters for our fair comparison to pre-
vious work. Note that the model does not have
batch normalization, as batch normalization would
not make sense in a setting where each client has
so few examples. Due to the substantial number of
epochs performed here, we experiment with both
static and time-varying gradient compression (k-
varying compression is better suited to settings
involving fewer rounds of communication). We
perform experiments across intrinsic dimensions
of 4000, 8000, 16000, 32000, 64000, 128000, and
256000.

Our results are shown in Figure 1. Whereas
FedAvg and Top-K struggle at even modest com-
pression rates (e.g. 3×), the intrinsic gradient com-
pression methods deliver strong performance at
much larger compression rates. The intrinsic meth-
ods outperform the current state-of-the-art gradient
compression method, FetchSGD (Rothchild et al.,
2020), by a large margin, and easily scale to high
compression rates (e.g. 100×). Finally, we see
that time-varying intrinsic compression generally
outperforms static compression for the same com-
munication cost.

Text Classification (BERT on SST-2) Next, we
consider text classification on the Stanford Senti-
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Figure 1: Results on computer vision benchmarks. Both
static and time-varying intrinsic gradient dimension sig-
nificantly outperform perform work, with time-varying
intrinsic compression performing best. On the right,
we see that time-varying and static compression per-
form similarly at the beginning of training, but time-
varying outperforms static eventually but are tied at the
beginning, and that time-varying outperforms static with
equal space. For the FedAvg and uncompressed meth-
ods with compression rates above 1, compression was
performed by training for fewer epochs.

ment Treebank-v2 (SST-2) dataset (Socher et al.,
2013), a common sentiment analysis dataset. For
this experiment, we consider an IID data split into
50 and 500 clients, respectively. We employ the
popular BERT (Devlin et al., 2019) transformer
architecture with 109M parameters. The purpose
of this experiment is to push the limits of gradi-
ent compression; we project the 109M-dimension
BERT gradients into as few as 200 dimensions.

We perform 30 rounds (i.e. 30 epochs) of train-
ing for all compressed runs, while we perform 6 for
the uncompressed baseline (as it converges more
quickly). Federated learning experiments has pre-
viously been criticized for being challenging to
reproduce; as a result, we perform each run five

100 101 102 103 104

Overall Compression

14

16

18

20

22

24

26

28

Pe
rp

le
xi

ty

FedAvg
FetchSGD
Local Top-K
Local Top-K +mom
Ours (k-varying)
Ours (static)
Uncompressed

(a) Perplexity on PersonaChat compared to other recent
federated learning methods

103 104 105

Overall Compression

70

75

80

85

90

95

Ac
cu

ra
cy

Time-Varying
Static

(b) Accuracy on SST-2

Figure 2: Results on NLP benchmarks. Note that while
K-varying appears to perform poorly on PersonaChat,
the upload performance is much stronger. See Ap-
pendix D for these full results.

times over different random seeds. We report the
mean, min, max, and standard deviation of the runs
in Appendix D.

Due to the substantial number of epochs per-
formed here, it is natural to apply static and time-
varying intrinsic gradient compression. We use
intrinsic dimensions of 200, 400, 800, . . . , 25600.

Our results are given in Figure 2. First, along
similar lines to (Aghajanyan et al., 2021), we find
that it is possible to achieve remarkably high com-
pression ratios for text classification: we achieve
close to full performance even when compressing
the 109M-dimension parameter vector into an in-
trinsic space of dimension 16,384. Furthermore,
we find that time-varying intrinsic gradient com-
pression consistently outperforms static intrinsic
gradient compression at the same compression rate.

Language Modeling (GPT-2 on PersonaChat)
Lastly, we consider language modeling on the Per-
sonaChat (Zhang et al., 2018) dataset of dialogues
between Amazon Mechanical Turk workers as-



signed to act out specific personalities. 1 The
dataset has a non-IID split into 17,568 clients in
which each client is assigned all data correspond-
ing to given personality; as a result, it is widely
used in federated learning simulations. We perform
language modeling using the GPT-2 transformer ar-
chitecture (124M parameters). For fair comparison
to previous work, we conduct only two rounds of
training across the clients (i.e. two epochs).

Due to the low number of training rounds, it is
natural to apply static and K-varying gradient com-
pression.2 Specifically, we apply both of these al-
gorithms to train GPT-2 using intrinsic dimensions
of 16384, 65536, 262144, 1048576, and 4194304.

Our results are shown in Figure 2. Overall, intrin-
sic dimension-based gradient compression vastly
outperforms a wide range of prior approaches to
reducing communication in federated learning. On
the low-compression end of the spectrum, we ob-
tain nearly full performance with superior com-
pression rates to FedAvg (McMahan et al., 2017)
and the recent FetchSGD (Rothchild et al., 2020).
On the high-compression end of the spectrum, we
scale better than previous approaches. For example,
we obtain a perplexity of around 20 even with an
extremely high compression rate of 1898.

Finally, we see that K-varying intrinsic com-
pression performs similarly to (or slightly worse)
than static compression at the same level of over-
all compression. However, if it is more impor-
tant to conserve upload bandwidth than download
bandwidth, then K-varying intrinsic gradient com-
pression significantly outperforms static intrinsic
gradient compression (see Section 4).

5.1 Gradient Compression Results

One of the primary motivations of federated learn-
ing is the desire for individual clients to be able
to retain data privacy while still participating in
model training.

However, a number of works have shown that
if the client does not have a large amount of data

1 In more detail, the PersonaChat dataset (Zhang et al.,
2018) was collected by first giving imaginary personas (de-
fined by a set of 5 sentences) to Amazon Mechanical Turk
workers and asking them to take on those personas. Then,
the system paired workers and asked them to discuss. Since
the personas were imaginary and no personally identifiable
information was exchanged (in particular, the workers were ex-
plicitly told to not use personally identifiable information) the
dataset does not contain personally identifiable information.

2Time-varying compression does not make sense here, as
its benefit is derived from the setting where there are many
rounds of communication between the clients.

and the client sends back their full local gradient, it
is possible to approximately reconstruct their local
data from the model. This is a significant problem,
because their data would then effectively be visible
to the central server and any attackers that intercept
their communications.

Here, we show that compressing gradients with
our approach can mitigate this problem. Specifi-
cally, we check if our compressed gradients can
be reconstructed with the procedure proposed by
(Zhu et al., 2019). As in (Zhu et al., 2019), we use a
ResNet-152 model a randomly selected image from
ImageNet and run for 24,000 iterations (by which
time the method has converged). We reconstruct
the image both from the full gradient (the center im-
age) and from a the intrinsically-compressed image
(the right image) with intrinsic dimension 65,536.

As seen in Figure 3, given the full gradient it
is possible to obtain a fairly good reconstruction
of the image. By contrast, with our method, the
reconstruction is visually much less similar from
original image. Of course, our method does not
solve the problem entirely; an outline of the dog in
the image is still visible because the compressed
gradient still contains some information about the
local data. To solve the issue entirely, it would
be necessary to use a method such as differential
privacy.

6 Conclusion

Federated learning holds the promise of large-scale
model training while simultaneously letting users
retain control over their data. In this paper, we
preset a set of novel algorithms for scalable and
efficient federated learning. These algorithms are
particularly helpful for NLP training, where mod-
els often have hundreds of millions of parameters.
Our experiments finetuning BERT and GPT-2 that
our proposed method significantly improves upon
the state-of-the-art in gradient compression for fed-
erated learning. In future work, we hope to deploy
our system in a real-world federated learning set-
ting with a large number of physical devices, rather
than solely in simulation.
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Appendix

A Algorithms

In Algorithm 2 and Algorithm 3 below, we provide
the full time-varying and K-varying intrinsic gra-
dient compression algorithms, which were omitted
from the main text.

B Proofs

B.1 Proof of Theorem 3.1

First, note that the server knows the value of At.
Then, for any local vector vt, the client can send
A⊤

t (vt) to the server, and the server can calculate
AtA

⊤
t , enabling it to continue executing the algo-

rithm.

C Additional Related work

In the main paper, we described the prior work
in federated learning and machine learning theory
that was directly relevant to our paper’s method.
Here, we describe a number of less-related works
that could not be included in the main paper due to
space constraints.

Intrinsic Dimensionality As mentioned in the
main paper, the concept of measuring the intrin-
sic dimensional of loss landscapes was introduced
by (Li et al., 2018). (Li et al., 2018) consider
optimizing a D-parameter model in a random d-
dimensional subspace of the full parameter space.
They define the intrinsic dimension of the opti-
mization problem as the minimum dimension d
for which a solution to the problem can be found,
where a “solution” refers attaining a certain percent-
age of the maximum possible validation accuracy
(i.e. the validation accuracy obtained by optimizing
in all D dimensions). They use a fixed cut-off of
90% accuracy for their experiments.

(Aghajanyan et al., 2021) followed up on this
work by considering the setting of finetuning mod-
els in natural language processing. They show that
the intrinsic dimension of some of these tasks (e.g.
text classification on MRPC) is surprisingly low.

A number of works have tried to measure the in-
trinsic dimension of datasets, rather than objective
landscapes. (Levina and Bickel, 2005) introduced
a maximum likelihood approach to estimating in-
trinsic dimensionality based on nearest-neighbors,
while (Ceruti et al., 2014) employed angle and
norm-based similarity. More recently, () further

extended this line of work to use minimal neigh-
borhood information.

Finally, some works have tried to measure the
intrinsic dimensionality of image representations
and datasets. (Gong et al., 2019) finds that the
representations produced by popular image and
face representation learning models (ResNet-50
and SphereFace) have quite low intrinsic dimen-
sionalities (16 and 19, respectively). Along similar
lines, (Pope et al., 2021) showed that popular im-
age datasets (MNIST, CIFAR 10, ImageNet) also
have low intrinsic dimensionality.

Federated Learning Federated learning is gener-
ally concerned with the distributed training of ma-
chine learning models across many devices, each
of which holds private data. Many aspects of this
federated setup are separate subfields of research,
including how to ensure the privacy of client-held
data (Xie et al., 2020; Bhagoji et al., 2019), how
to deal with heterogeneous data and networks (Li
et al., 2020a,b; Yu et al., 2020), how to reconcile
weights/gradients from multiple clients (Li et al.,
2020a; Wang et al., 2020; Li et al., 2020c), how to
manage clients in a fault-tolerant manner, deploy-
ment on mobile/iot devices (He et al., 2020), and
fairness (Mohri et al., 2019).

Numerous works focus on making federated
training more efficient, with the ultimate goal of re-
ducing communication cost and training time. The
classic FedAvg (McMahan et al., 2017) algorithm
tries to do this by communicating weights rather
than gradients. FedProx (Li et al., 2020a) general-
izes and re-parametrizes FedAvg. FedMA (Wang
et al., 2020) continues to improve this approach
by matching and averaging hidden layers of net-
works with similar activations at each communica-
tion round. FedAwS (Yu et al., 2020) considers fed-
erated averaging in the case where each client has
data from only a single class. (Malinovsky et al.,
2020) analyzes a generalization of these weight-
averaging approaches from a theoretical viewpoint.

Relative to the weight averaging approach, the
approach of compressing and sending gradients is
relatively understudied. (Albasyoni et al., 2020)
describes an approach that is theoretically optimal
but not practical for large non-linear models. (Han
et al., 2020) proposes adaptive gradient sparsifica-
tion for federated learning, in which a subset of
the full gradient is communicated at each round.
FetchSGD (Rothchild et al., 2020) compresses gra-
dients by sketching; it is the current state-of-the-art



Algorithm 2 Time-Varying Intrinsic Gradient Compression
input: learning rate η, timesteps T , local batch size ℓ, clients per round W
for e = 1, 2, · · ·E do

Create matrix Ae
i.i.d.∼ A where A ∈ RD×d with E[AA⊤] = ID .

Current, Final Vector: Σcurrent
e = 0, Σfinal

e = 0
for t = 1, 2 · · ·T do

Randomly select W clients c1, . . . cW .
loop

{In parallel on clients {ci}Wi=1}
Download Σcurrent

e ,Σfinal
e−1 , calculate current θcie = θcie−1 +Ae−1(Σ

final
e−1 − Σlast) +Ae(Σ

current
e ).

Update Σlast = Σcurrent
e .

Compute stochastic gradient gti on batch Bi of size ℓ: gti = 1
ℓ

∑ℓ
j=1 ∇θL(θcie , zj).

Sketch gti : S
(e)t
i = A⊤

e g
t
i and upload it to the aggregator.

end loop
Aggregate sketches S(e)t = 1

W

∑W
i=1 S

(e)t
i

Unsketch: ∆(e)t = AeS
(e)t

Update: θcurrent = θcurrent − η∆(e)t, Σcurrent
e = Σcurrent

e − ηS(e)t.
end for
Let Σfinal

e = Σcurrent
e .

end for

in gradient compression for federated learning. We
describe it in further depth in the main paper.

Finally, (Reddi et al., 2021) and (Li et al., 2020c)
accelerate training by bringing adaptive optimiz-
ers built for centralized learning into the federated
setting.

D Further Experimental Analysis

In the main paper, we included a number of fig-
ures demonstrating our performance in comparison
to prior work. Here, we include tables with our
precise results for clarity and in order to facilitate
future comparison with our work.

D.1 Further PersonaChat Analysis

Section 4 shows full results on PersonaChat, com-
plete with upload and download compression.
Overall compression is calculated as average com-
pression over both upload and download.

We compare with FedAvg (McMahan et al.,
2017), Top-K, and FetchSGD (Rothchild et al.,
2020). FedAvg is the baseline federated learning
approach involving sending and averaging weights.
Top-K refers to sending the top gradients, sorted
by magnitude. FetchSGD compresses the weights
with sketching.

Our method significantly outperforms compet-
ing approaches across the board. We obtain an
accuracy close to that of uncompressed optimiza-
tion using INSERTx overall compression; FedAvg
and Top-K both fail to achieve such strong results,
while FetchSGD does so at a significantly lower
compression rate.

Next we compare static and K-varying intrinsic
gradient compression. When comparing overall
compression rates, static compression is slightly
better than K-varying compression. However, K-
varying compression is optimized for low upload
bandwidth; it obtains much better upload compres-
sion rates than static compression at the same ac-
curacy. For example, K-varying compression with
k = 8 and d = 65536 yields perplexity 17.6 at
upload compression 1900×, whereas static com-
pression with d = 262144 yields perplexity 17.4
at upload compression 475×.

D.2 Further SST-2 Analysis
In Table 3, we show full results for the SST-2
dataset with static and time-varying gradient com-
pression for a range of intrinsic dimensions. We
include in this experiment an demonstration of the
robustness of our method to variation in random
seeds; we run each experiment five times using
separate random seeds (i.e. different intrinsic sub-
spaces and model initializations). We report stan-
dard errors in Table 3; variability is quite low.

We also see that time-varying intrinsic gradient
compression outperforms static intrinsic compres-
sion, especially for low intrinsic dimensions. For
example, time-varying compression at d = 200
outperforms static compression with d = 400, and
time-varying compression with d = 400 outper-
forms static compression with d = 800.



Algorithm 3 K-Varying Intrinsic Gradient Compression
input: distinct subspaces K, learning rate η, timesteps T , local batch size ℓ, clients per round W
for e = 1, 2, . . . E do

Create matrices A(1)
e , A

(2)
e , . . . A

(K)
e

i.i.d.∼ A where A ∈ RD×d with E[AA⊤] = ID .
Current, Final Vector: Σcurrent(k)

e = 0, Σfinal(k)
e = 0 for k = 1, 2, . . .K.

for t = 1, 2 · · ·T do
Randomly select W clients c1, . . . cW .
loop

{In parallel on clients {ci}Wi=1}
Download Σ

current(k)
e ,Σ

final(k)
e−1 for k = 1, . . .K, and calculate:

θcie = θcie−1 +
∑K

k=1

(
Ae−1(Σ

final(k)
e−1 − Σlast(k)) +Ae(Σ

current(k)
e ).

)
Σlast(k) = Σ

c(k)
e for k = 1, 2, . . .K.

Choose a random k1 ∼ DUnif({1, 2, . . .K})
Compute stochastic gradient gti on batch Bi of size ℓ: gti = 1

ℓ

∑ℓ
j=1 ∇θL(θcie , zj).

Sketch gti : S
(e)t
i = (k1, A

(k1)⊤
e gti) and upload it to the aggregator.

end loop
Write sketches received as {S(e)t

w }Ww=1 = {(jw, C(e)t
w )}Ww=1.

Unsketch S(e)t to get ∆(e)t = 1
W

∑W
w=1 A

(jw)
e C

(e)t
w

Update: θcurrent = θcurrent − η∆(e)t,
for k = 1, 2 . . .K do

Update: Σcurrent(k)
e = Σ

current(k)
e − η

W

∑
w,jw=k C

(e)t
w .

end for
end for
Let Σfinal(k)

e = Σ
c(k)
e for k = 1, 2, . . .K.

end for



(a) Input (b) Reconstruction from full gradient. (c) Reconstruction from gradient with
intrinsic compression.

Figure 3: Image reconstruction from gradients with and without our intrinsic gradient compression method. On the
left, we show the original image. In the center, we show the result of reconstructing the image from a single gradient
from a ResNet-152 model (60M parameters), produced using the method of (Zhu et al., 2019). On the right, we
show the result of the same image reconstruction method applied to an gradient compressed by our algorithm using
intrinsic dimension 65,536.



Intrinsic Dim. 200 400 800 1,600

Static 82.8 (±0.69) 85.3 (±0.89) 87.1 (±0.57) 87.5 (±0.94)

Time-Varying 85.9 (±0.85) 87.8 (±0.61) 87.8 (±0.59) 88.7 (±0.54)

Intrinsic Dim. 3,200 6,400 12,800 25,600

Static 88.3 (±0.65) 89.4 (±0.33) 89.5 (±0.21) 89.5 (±0.21)

Time-Varying 89.0 (±0.53) 89.4 (±0.91) 89.4 (±0.19) 89.4 (±0.19)

Table 3: Accuracy and standard error of a BERT model trained on the Stanford Sentiment Treebank v2 (SST-2) for
varying intrinsic dimensions. We calculate the standard error over five trials with different random seeds. We see that
for fixed dimension, time-varying intrinsic gradient compression outperforms static intrinsic gradient compression.
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