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Abstract

We propose ARISE, a framework that com-
bines weak supervision, synthetic data gener-
ation, and contrastive representation learning
for few-shot text classification (FSTC). Weak
supervision forms a major novelty in ARISE.
Here, we propose an automatic rule induc-
tion component to induce rules from syntactic-
ngrams using inductive generalisation. The
rules we induce capture syntactic information,
often not explicitly captured by state-of-the-
art neural models. While these rules can be
noisy, they are used to learn a label aggregation
model with data programming. Subsequently,
we jointly train the base classifier along with
the label aggregation model to update their pa-
rameters. Unlike, past work that employ data
programming to label unlabeled data points,
we use it for verifying synthetically generated
labeled data. Finally, we combine synthetic
data generation and automatic rule induction,
via bootstrapping, to iteratively filter the gener-
ated rules and data. Our experiments with nine
FSTC datasets over diverse domains, and multi-
lingual experiments on seven languages, show
consistent and statistically significant improve-
ments for our proposed approach over other
state-of-the-art approaches.

1 Introduction

Few-shot text classification (FSTC) is challenging,
especially in tasks with a large, semantically simi-
lar and often overlapping label space (Zhang et al.,
2022b). Such tasks often find application in diverse
domains including task oriented dialogue (intent
classification), e-commerce, social networks, sci-
entific literature etc. (Yehudai and Bendel, 2024,
Zhang et al., 2021b). Moreover, these tasks are ex-
pected to have a unique or highly specialized label
space, leading to limited availability of annotated
data (Singhal et al., 2023; Vuli¢ et al., 2022). Intu-
itively, FSTC systems should be designed to extract
as much information as possible from the limited

supervision data available for learning. We propose
ARISE, a framework that combines automatic rule
induction (Pryzant et al., 2022; Bajpai et al., 2024),
synthetic data generation, and contrastive repre-
sentation learning (Zhang et al., 2022b) for FSTC.
Moreover, ARISE induces rules in the form of
syntactic n-grams that complements information
captured in prevalent approaches in FSTC.

FSTC tasks are generally addressed using a di-
verse set of techniques. These include In-context
learning (Brown et al., 2020; Kojima et al., 2022),
contrastive representation learning (Vuli¢ et al.,
2021), data augmentation and filtering (Lin et al.,
2023), transductive learning (Singhal et al., 2023),
weak supervision (Pryzant et al., 2022), meta-
learning (Mesgar et al., 2023) among others. Sev-
eral of these works successfully combine one or
more of these techniques for FSTC tasks (Singhal
et al., 2023; Vuli¢ et al., 2022).

In ARISE, we propose a bootstrapped approach
for iterative synthetic data generation and auto-
matic rule induction (Yarowsky, 1995; Varma and
Ré, 2018). Moreover, it enables joint training of
the induced rules with pre-trained neural models
via data programming (Maheshwari et al., 2021;
Zhang et al., 2022a). Figure 1 shows various com-
ponents and the 3-step workflow for ARISE. One,
our rule induction step extracts syntactic ngrams
from sentence-level dependency parses of the la-
beled input. Rules are induced from the syntactic
n-grams via inductive generalization using least
general generalization (LGG Plotkin, 1971; Raza
et al., 2014). The induced rules are then filtered us-
ing a submodular graph cut-based function (Bajpai
et al., 2024; Kothawade et al., 2022). Two, the data
augmentation step, involves synthetic generation
of data using in-context learning (Liu et al., 2022).
Synthetic data are generated along with their la-
bels, which are then validated using the rules. Only
those labeled data points that match with the predic-
tions of the rules are filtered. Iteratively, we induce
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Figure 1: Three-step workflow for ARISE, along with various components in it.

rules from synthetically generated data and use the
induced rules for data filtering.

Three, the joint learning step, effectively com-
bines contrastive representation learning, (Chen
et al., 2020; Khosla et al., 2020a) supervised
fine-tuning, and Data programming (Zhang et al.,
2022a) using a joint learning framework (Mahesh-
wari et al., 2021). We perform self-supervised con-
trastive pretraining (Wu et al., 2020) and supervised
contrastive learning (Khosla et al., 2020b; Zhang
et al., 2022b) over a standard pre-trained neural
classifier. We use the few-shot labeled data, along
with the filtered data, for fine tuning the neural
classifier. The induced rules enable learning a gen-
erative model as a form of weak supervision using
data programming. We jointly learn a classifier
with the generative model using SPEAR Mahesh-
wari et al. (2021), a data programming framework.

In ARISE, we induce generalized syntactic n-
grams as our rules. Our primary aim here is to
potentially capture morpho-syntactic information
from data, which currently is not captured explicitly
by other learning techniques and models employed
in ARISE. A classical NLP pipeline typically rep-
resents a string at multiple levels of abstraction
which includes POS tags, syntactic relations, efc.
(Manning et al., 2014). ARISE use higher-order
dependency structures as features and generalize
over these features using inductive generalization
(Popplestone, 1970) to induce the rules as general-
ized syntactic n-grams.

We perform extensive experiments on the ‘Few-
Many’ benchmark (Yehudai and Bendel, 2024),
consisting of eight datasets for a diverse set of
FSTC tasks. We additionally include experiments
for the ‘SciCite’ (Cohan et al., 2019) dataset, a
dataset from the scientific literature domain. Fur-
ther, we perform multilingual experiments on seven
languages using the MASSIVE dataset. Our experi-

ments are performed using both 5-shot and 10-shot
settings. In all these settings, ARISE outperforms
strong competitive models, such as IntenDD (Sing-
hal et al., 2023), Zhang et al. (2022b), and FastFit
(Yehudai and Bendel, 2024), with statistically sig-
nificant improvements.

In section 2, we elaborate on our rule induc-
tion approach for inducing generalized syntactic
n-grams. In section 3, we elaborate ARISE, a 3-
step framework for FSTC. Here, we elaborate our
iterative rule and data filtering along with the joint
learning setup.

Our major contributions are as follows:

* Our proposed approach yields statistically sig-
nificant gains in all the experiments we per-
form, compared to state-of-the-art systems
(Yehudai and Bendel, 2024; Singhal et al.,
2023; Zhang et al., 2022b). Our best perform-
ing model reports a 2.04 % increase in 10-shot
and 2.52 % increase in 5-shot settings, com-
pared to the next best model, averaged across
all the monolingual tasks.

* Our extensive experiments show that
ARISE is generalizable and across multiple
domains (as reported above) and multiple
languages. We report a 4.4 % increase in
performance, compared to the next model,
averaged across seven different languages.

* We show that leveraging syntactic information
as weak supervision for rule induction, leads
to performance improvements compared to
surface-level string n-grams as rules. Further,
our bootstrapped approach outperforms com-
petitive approaches for filtering augmented
data (Lin et al., 2023).



2 Automatic Rule Induction Using
Syntactic Tree Generalization

Distributional hypothesis (Firth, 1957) is often re-
alized using vector space models defined over a
suitable feature space (Turney and Pantel, 2010).
Inputs can be encoded into a feature space of dense
contextualized vectors (Peters et al., 2018; Devlin
etal., 2019) or into a sparse semantic space consist-
ing of lexical n-grams, syntactic n-grams (Goldberg
and Orwant, 2013), higher order dependency fea-
tures (Koo and Collins, 2010), or even graph motifs
(Biemann et al., 2016).

We induce rules that can capture complemen-
tary information that is not explicitly captured in
pre-trained neural models. Hence, we focus on
incorporating structured grammatical information
typically used in a traditional NLP pipeline (Man-
ning et al., 2014) such as Part-of-Speech (PoS) and
syntactic information. From dependency parses of
input sentences, we extract induced subtrees as fea-
tures. Each such feature is a syntactic n-gram, with
the nodes as the words and the edges labeled with
the dependency relations. We then induce rules via
the inductive generalization of these features, using
Least General Generalization (Raza et al., 2014,
Thakoor et al., 2018).

For an FSTC task with k labels, we assume the
availability of few-shot labeled dataset D, where
D = {(xi,yi)}}_1, x; is an input document and
yi € {l1,12,...,1}} is a label. We obtain sentence-
level dependency parses for each z; € D. A feature
space .thzl is defined over higher-order factoriza-
tion of the dependency parses in D. Each feature
ft € F is an induced subtree of the parses for
sentences in D. Here, a feature covers a set of doc-
uments in which that feature occurs at least once.

Rules are generalizations of features. If a gen-
eralized rule subsumes multiple features, then it
covers a union of all the sets of documents corre-
sponding to those features. The rules we generate
belong to Rj_;, where for every input in z; € D
it should either predict a label from {1, ..., k} or
should abstain (—1) from making a prediction. Our
rules are induced as the least general generaliza-
tion (LGG) over a set of features (Plotkin, 1970,
1971). A feature can be a rule in itself, i.e. F C R.
For forming the rules we define two forms of gen-
eralizations, structural and linguistic. if rule r; is
an induced subtree of r;, then we can say that r;
is more general than r;. Linguistic generalization
include, substitution (Raza et al., 2014; Thakoor

et al., 2018), of the nodes containing words with
their corresponding stems, and PoS tags (Galitsky
and Ilvovsky, 2019).

Figure 2 shows illustrative cases of generaliza-
tion. Let us consider a corpus from which features
(syntactic n-grams) fi to fg are extracted. Now, 71
to rg shows various generalized rules induced from
these features. Rules 71 to r7 show linguistic gen-
eralization and rg shows structural generalization
(from r7). Consider rules rq, r4, 75 and r7. These
rules contain nodes with a group of words. Simi-
larly, rg represents a rule that has a group of PoS
tags in one of the nodes. In linguistic generaliza-
tion, multiple trees are generalized to a single tree
by grouping words or PoS that differ in these indi-
vidual trees. Here, r is a generalisation of f1 and
f2. Similarly, r4 is a generalization of f5 and fs.
Currently, we restrict the groupings at a node to be
homogeneously typed, i.e. a set can either be that
of inflected word forms, stems or of PoS tags, but
not a mix of those. Further, the cardinality of such
a group is set to an arbitrary upper bound, to avoid
trivial generalisations.

2.1 Rule Induction via LGG

We obtain features from dependency parses of the
dataset D. We consider only those subtrees that
exactly have one of the six core dependency re-
lations in them (de Marneffe et al., 2014; Nivre
et al., 2020). These core dependency relations are
direct or indirect object, nominal or clausal subject,
clausal complement or open clausal complement.
We partition the features into 6 mutually exclusive
subsets, one each for each of the core relations.

A complete lattice is constructed out of each par-

tition, by adding a supremum and infimum element

.. ) o,
to the partition. Here, we add a rule ‘* PUCRE ,

where ‘rel’ is the core-relation corresponding to
the partition. It is the supremum for any element
in the partition, as every element in the partition
is subsumed by it and covers any document that
has the relation present in it. We also define ‘e’ as
the infimum and it represents an empty rule that
rules out any document in the input. The complete
lattice provides a search space of rules over which
the partial ordering is provided. Here, any two pair
of subtrees have a least general generalization or
a least upper bound (Raedt, 2010). In Figure 2, r;
is the LGG of f; and f5. 1 represents all the sen-
tences that either have f; or f5 in their dependency
parses. Similarly, 7o and r3 are also generalizations



(/9 foxes, cat

jumped light

Is

Charlie

=

f1 f4 f3
P8l jumped BY foxes light
(Il jumped B3 foxes brown

foxes, cat, Charlie

r foxes, fox r fox
jumped light é jumped light

s sad

jumped light

=

NOUN, PROPN

jumped
9 jumped B foxes light, brown a
foxes
r7
r's

Figure 2: Rule induction from syntactic n-grams via inductive generalization. The symbol ‘J’ denote a generaliza-
tion operation. Trees labeled from f; to fg are instances of features, and the nodes of these trees are colored using
[} Similarly, trees labeled from 7; to rg are rules and the nodes of these trees are colored using [}

of f1 and fs, but not their LGG.

For every rule in the lattice, we compute its label-
PMI vector, following Singhal et al. (2023) and Jin
et al. (2022). label-PMI vector is a vector of the
pointwise mutual information scores of the rule
corresponding to each label. From the vector, we
consider its maximum score, denoted as L-PMI.
The label corresponding to L-PMI is then assigned
to the rule. From the lattice, we start bottom up
and compute the LGG for every pair of rules. We
induce the LGG as a rule, only if it has a higher
L-PMI than the individual rules in the pair. The
rules thus induced form our candidate set of rules.

3 ARISE Framework

3.1 Rule Induction and Filtering

We induce rules from a set of input documents
(§2). These rules can be used as labeling functions
in Data Programming, henceforth to be referred
to as Programmatic Weak Supervision (PWS), for
learning a generative model (Ratner et al., 2017;
Zhang et al., 2022a). While the individual rules
are expected to be noisy in PWS, the final set of
filtered rules needs to be accurate, diverse and high
in coverage (Bajpai et al., 2024).

For rule filtering, we use the submodular graph-
cut (GC) function (Kothawade et al., 2022), as pro-
posed by Bajpai et al. (2024). Using GC, we se-
lect a final set of representative and diverse rules
R, from the set of candidate rules R. For Ry C

R, we define the GC function as foc(Ry) =
ZTiER,TjERf Sij — AZT’i,TjERf Sij- Here, \ €
[0, 1] governs the diversity-representation trade-off,
where higher X implies higher diversity in Ry. s;;
is the similarity score for rule pair r; and ;. It is
calculated as the weighted sum of the precision,
coverage, and agreement between the pair of rules,
sij = o(rs)+a(ry)+wsB({ri, r;})+y*pu(r, rj).
Here, o(r;) = Precision(r;), u(r;, ;) is the agree-
ment, calculated as the fraction of instances where
both rules agree. 3({r;,7;}) is the coverage, calcu-
lated as the fraction of instances labeled by at least
one of the rules.

Our objective function is maxr <k fac(Ry),
where k is a fixed budget (Kothawade et al.,
2022). We greedily choose a rule that maximizes
the marginal utility argmax, c(r_r St fac(Ry U
{1}) = fac(Ry). Please note that (Bajpai et al.,
2024) starts from an empty set, while we start with
the existing rule set obtained from the previous
round of bootstrapping. One round of filtering is
completed until the fixed budget k is completed.

3.2 Bootstrapping Rules and Synthetic Data

PWS is typically employed to provide noisy train-
ing labels to unlabeled data (Varma and Ré, 2018).
In ARISE, we instead use PWS on synthetically
generated data for data verification and filtering.
We start our bootstrapping with the few-shot
gold labeled data as the seed, as shown in Figure 1.



we synthetically generate new data for each class
using the few-shot prompt demonstrations, with the
demonstrations retrieved from the seed set. Zhu
et al. (2023) observe that PWS systems rely heav-
ily on the quality of gold-labeled data, especially
in the validation split. Hence, we use our gold-
labeled data as validation data for rule filtering. We
perform rule induction (§2) from the synthetically
generated data and filter the rules (§3.1) using the
gold data as the validation split. The induced rules
are then used for learning a generative model via
PWS (Chatterjee et al., 2020). Finally, the seed set
is expanded with filtered data, where only those
data points that match their generated label with
the predicted label from the generative model are
filtered. Our validation set is never expanded and
is always the gold-labeled data. The seed data set
is expanded with newly filtered data after every
iteration. Similarly, the rule set is also expanded
after every iteration of the bootstrapping process.

Data Augmentation: We use few-shot prompt
demonstration to synthetically generate new la-
beled sentences using LLMs. For each label, we
sample k instances each of positive and negative
samples from the seed set and then use it for gen-
erating new data samples (Smith et al., 2024; Lin
et al., 2023). Our prompt demonstration approach
includes label information, positive examples, and
negative examples for synthetic generation. In addi-
tion to generating new data points, we also perform
paraphrasing of data points in the seed set. By para-
phrasing, we gain diverse syntactic structures for
better rule induction.

3.3 Joint Learning with Rules

The few-shot classifier is trained using SPEAR
(Maheshwari et al., 2021), a joint learning frame-
work that learns over a feature-based classification
model and a label aggregation (LA) model. The fea-
ture model is a pre-trained neural model and LA is a
generative model (Chatterjee et al., 2020), learned
via PWS, using the automatically induced rules
as labeling functions. LA is denoted as Py(1;,y),
where 1; a vector that represents the firing of all
LFs for an input x;. Each firing, /;; can be either 0
(abstain) or class label k£ (Chatterjee et al., 2020).
Following Maheshwari et al. (2021), our joint
learning objective incorporates three different loss
components for learning from labeled data. We
provide a brief overview of each loss component
below, while encouraging interested readers to (Ma-

heshwari et al., 2021) for detailed information.

manLoE ( (y|x:), v ) + LL4(0|L)

- ZKL( (i), PolylLe) )

€L

The first component of the loss is the standard
cross-entropy loss for the model Pj: . The second
component is the negative log-likelihood on the
dataset. The third is the KL-Divergence between
the predictions of the LA and Pg models, which
enforces consensus by aligning their predictions.

Contrastive Representation Learning: The pre-
trained model, P , undergoes contrastive repre-
sentation learnlng prior to joint learning. Follow-
ing, Zhang et al. (2021a) and Singhal et al. (2023),
we first perform self-supervised contrastive learn-
ing (SSCL) over a pre-trained model. Here, the
model parameters for a given pre-trained model
is updated using, Lyt = Lsser + At Lonim- Lpt 18
a weighted sum of token-level masked language
modeling loss (L) and a sentence-level SSCL
(Lsscr; Wu et al., 2020; Liu et al., 2021). A\p; is a
weight hyper-parameter. For SSCL, given an in-
put document z;, we obtain perturbations of x; by
randomly masking tokens from it. Further, we dy-
namically mask tokens such that each sentence has
different masked positions across different train-
ing epochs. SSCL attempts to bring the x; and its
masked versions closer in the semantic space while
pulling away other pairs.

After the continued pretraining, we perform su-
pervised contrastive learning (Khosla et al., 2020a).
Here, we try to increase the similarity between in-
put pairs that belong the same class, while trying to
bring down the similarity of those belonging to dif-
ferent classes. We follow the supervised contrastive
learning (Khosla et al., 2020a) loss, where all the
documents in the same class in a batch are brought
together. Here, the same document may also be
used to create like pairs by creating perturbations
of the input.

4 Experiments

Dataset : We use FEWMANY Benchmark (Yehu-
dai and Bendel, 2024), for our monolingual ex-
periments. FEWMANY consists of eight FSTC
datasets (Yehudai and Bendel, 2024). It consists
of CLINC150 (C150; Larson et al., 2019), BANK-
ING77 (B77; Casanueva et al., 2020), HWU64



Filtering Automatic Rule
FT | CL | DA for DA Induction IDRF | ICL
PVI GC | ngrams syntactie
ngrams

Base v
Base-DA v v
Base-ST v v
IntenDD vV |V v v v
Snorkel v v v v
CPFT VAN ERVAN IRV4 v
FastFit vV | vV |V v
CPFT + Snorkel | v | vV | V v v
ARISE VAN VAN 4 v v
ARISE-Iter vV | vV |V v v v
LLMs v v v

Table 1: Techniques used by competing systems. Base is Roberta and XLM-R for monolingual and multilingual
experiments respectively. FT is fine-tuning; CL is contrastive learning; DA is data augmentation; PVI is pointwise
V-information; ST is self-training; IDRF is Iterative Data and Rules filtering.

(HU64; Liu et al., 2019a) for intent classification;
ARGUMENT Topic (AT71; Gretz et al., 2020) and
CLAIM STANCE (CS55; Bar-Haim et al., 2017)
for Topic classification; TREC question classifi-
cation dataset (T50; Li and Roth, 2002), AMA-
ZON PRODUCTS (AP106) and DBPEDIA (DB70).
We also use SciCite (SC3 Cohan et al., 2019),
from the scientific literature domain. Finally, the
multilingual experiments are performed using the
MASSIVE dataset (FitzGerald et al., 2023). Here,
we use seven typologically diverse languages in-
cluding Chinese, English, French, German, Hindi,
Japanese, and Spanish.

Data Augmentation: We use GPT-3.5, 4, and
Claude 3 Opus for synthetic data generation. We
generate label-specific data by prompt demonstra-
tion. Here, Using Wu et al. (2023), we perform
k-NN retrieval, with & = 5, from the seed data for
positive demonstrations, and randomly sampled
out of class samples as negative examples (Liu
et al., 2022). For multilingual experiments, we ex-
periment with direct generation of the synthetic
data in the target language, and also via translation
of synthetically generated English sentences. For
translation, in addition to the three aforementioned
LLMs we use NLLB-54B (Team et al., 2022) and
Google Translate. For translation in Hindi, we use
Gala et al. (2023).

Baselines: Table 1 shows our baselines. Base
models are the ‘Large’ variants of Roberta (Liu

et al., 2019b) and XLM-R (Conneau et al., 2020)
for our monolingual and multilingual experiments
respectively. Further, Base-DA is fine-tuned with
augmented data (no filtering). Base-ST is trained
using self-training-based filtering of augmented
data. We also include competitive models that also
combine multiple learning techniques, such as In-
tenDD (Singhal et al., 2023), Snorkel (Ratner et al.,
2017), CPFT (Zhang et al., 2022b), and FastFit
(Yehudai and Bendel, 2024). Following Yehudai
and Bendel (2024), we report results for ICL, in
5-shot setups, using Flan-XXL (Wei et al., 2021),
Flan-UL2 (Tay et al., 2022).

Experimental Setup: ARISE and ARISE-Iter,
as shown in Table 1, are two variants without and
with the iterative data and rule filtering (IDRF).
ARISE variants use the same pre-trained models
as used in ‘Base’. We perform all our experiments
using 5 random splits and report the average. We
use accuracy as our metric and experiment with
both 5-shot an 10-shot settings(Yehudai and Ben-
del, 2024). For joint learning, we use a 20 % split
of the synthetically generated data as a validation
split, while using all the gold data in training. For
learning the parameters for our rule filtering step
(§3.1), we use the few-shot gold data as valida-
tion. We report results for ARISE-iter induced
with rules where the gold data was used only in the
last iteration of bootstrapping. We keep a multi-
plier of 128x for our k-shot classification settings,
following Lin et al. (2023). We use the graph-based



Models AP106 | AT71 | B77 C150 | CS55 | DB70 | HU64 | TS50 | SciCite | Avg

Base 57.36 | 95.59 | 87.55 943 | 91.06 | 87.03 | 86.28 | 86.57 | 82.12 | 85.32
Base-Aug 5742 | 953 | 88.36 | 93.83 | 90.16 | 87.92 | 87.58 | 86.8 82.58 | 85.55
Base-ST 58.46 | 95.78 | 88.58 | 9437 | 91.1 | 88.23 | 88.69 | 87.26 | 83.07 | 86.17
CPFT 58.82 | 96.67 | 89.51 | 95.03 | 91.34 | 89.14 | 89.76 | 89.42 | 84.38 | 87.12
Snorkel 59.47 | 9635 | 9049 | 9496 | 90.33 | 88.42 89.2 89.3 85.21 | 87.08
FastFit 59.29 | 96.79 | 894 9548 | 90.24 | 88.63 | 89.54 | 88.84 | 85.01 | 87.02
IntenDD 59.67 | 97.02 | 90.07 | 95.71 | 91.71 | 88.93 | 89.04 | 88.45 | 85.04 | 87.29
CPET+ 59.74 | 97.12 | 90.76 | 9524 | 91.48 | 89.22 | 89.81 | 89.71 | 85.67 | 87.64
Snorkel

ARISE 60.87* | 97.02 | 92.12* | 96.37* | 91.78 | 89.59 | 90.89* | 90.24 | 85.87 | 88.31
ARISE-Iter | 62.6 | 97.93 | 92.82 | 97.15 | 92.89 | 90.78 | 92.27 | 91.32 | 87.12 | 89.43

Table 2: Accuracy Results for 10-shot monolingual FSTC. Results in boldface and those marked with * are
statistically significant by t-test (p < 0.05) compared to ARISE and CPFT+Snorkel respectively.

biaffine parser (Dozat and Manning, 2016) trained
with XLLM-R as the encoder on the UD treebank
(Zeman et al., 2023) for dependency parsing. We
obtain induced subtrees of upto 3 nodes as rules.

4.1 Results

ARISE-iter, our proposed model, reports the best
performance in all our experimental settings, as
shown in Tables 2, 3, and 4. It outperforms all other
models with statistically significant gains. ARISE-
Iter reports an absolute improvement of 1.79 %
points (2.04 % increase), 1.32 % and 2.58 % points
averaged across the datasets, for the 5 and 10-shot
monolingual and 10-shot multilingual setups.

4.2 Monolingual Results

ARISE-Iter and ARISE differs only in terms of
bootstrapping (IDRF). Bootstrapping alone leads
to an average absolute gain of 1.12 and 1.32 %
points for the 10-shot and 5-shot setups respec-
tively (Tables 2 and 3), between both the ARISE-
Iter and ARISE respectively. Base-Aug reports sta-
tistically significant gains only for 3 of 9 datasets
(B77, HU64, and DB70) compared to Base in Ta-
ble 2. It shows that data augmentation without
any filtering need not always improve the results.
Further, Base-ST on average report a gain of 0.85
% points compared to Base, with statistically sig-
nificant gains in 6 of 9 datasets (except for AT71,
C150, and CS55).

ARISE variants follow CPFT (Zhang et al.,
2022b) in employing contrastive learning (CL)
components. CL components alone in CPFT lead
to an average absolute gain of 1.8 % points com-
pared to Base, in Table 2. Similarly, Snorkel,

a PWS framework, and ARISE is trained with
the same filtered data and rules. However, unlike
ARISE, Snorkel does not use joint learning. In-
stead, Snorkel learns a generative model to label (or
filter in our case) synthetically generated sentences.
It outperforms the base model by an average abso-
lute improvement of 1.76 % points and is competi-
tive with CPFT. Snorkel and CPFT report statisti-
cally significant gains compared to Base for all the
datasets, except CS55. Snorkel and CPFT report
comparable performance on 5 of 9 datasets, with
statistically significant gains in 2 datasets each.

CPFT+Snorkel combines both contrastive rep-
resentation learning and PWS. It differs from
ARISE, only in terms of the joint learning compo-
nent. ARISE reports an absolute improvement
of 0.67 % points in 10-shot settings (Table 2),
and 0.96 % points in 5-shot settings (Table 3),
as compared to CPFT+Snorkel. Results from
Snorkel, CPFT+Snorkel, and ARISE show our
rule induction component, as a general-purpose
one for PWS. Similarly, gains in CPFT+Snorkel
and ARISE show that combining complementary
learning techniques leads to performance gains
compared to using them independently.

ARISE-Iter, our proposed approach with IRDF,
outperforms both IntenDD (Singhal et al., 2023)
and FastFit (Yehudai and Bendel, 2024), two com-
petitive models with state-of-the-art results on few-
shot learning. While FastFit originally does not
use data augmentation, we add augmented sen-
tences to it for a fair comparison. IntenDD dif-
fers from ARISE by using string-level n-grams for
weak supervision and additionally employs a two-
level transductive learning approach. ARISE-Iter




Methods AT71 | B77 | C150 | CS55 | HU64 | TS0 | Avg.
Flan-ul2 97.07 | 71.21 | 80.6 | 89.57 | 76.2 | 64.86 | 79.92
Flan-XXL 96.72 | 72.04 | 81.99 | 50.24 | 75.13 | 84.72 | 76.81
Base 95.61 | 79.77 | 91.67 | 87.94 | 79.29 | 73.67 | 84.66
FastFit 96.45 | 86.14 | 93.77 | 88.16 | 84.6 84.8 | 88.99
Intendd 96.11 | 89.13 | 94.05 | 88.76 | 88.21 | 86.86 | 90.52
CPFT+ 96.74 | 88.64 | 94.46 | 88.57 | 87.38 | 87.45 | 90.54
Snorkel
ARISE 96.68 | 90.35 | 94.89 | 90.3 | 88.04 | 88.72 | 91.5
ARISE-Iter | 97.14 | 91.68 | 96.13 | 91.59 | 90.22 | 90.14 | 92.82
Table 3: Accuracy Results for 5-shot monolingual FSTC.
En De Ja Es Fr Zh Hi Avg.
Base 77.65 | 71.23 | 74.89 | 71.56 | 72.81 | 73.14 | 71.07 | 73.19
IntenDD 79.55 | 73.64 | 76.5 | 76.92 | 76.42 | 76.53 | 74.41 | 76.28
Snorkel 80.52 | 75.39 | 78.87 | 75.79 | 77.65 | 76.7 | 74.16 | 77.01
CPFT 78.65 | 73.45 | 77.56 | 74.99 | 76.74 | 75.58 | 73.66 | 75.8
FastFit 80.73 | 75.97 | 78.49 | 75.64 | 76.84 | 75.98 | 74.07 | 76.82
CPFT + Snorkel | 81.43 | 76.67 | 79.34 | 76.43 | 78.14 | 77.66 | 75.04 | 77.82
ARISE 82.43 | 76.64 | 79.52 | 77.1 | 78.93 | 78.32 | 75.16 | 78.3
ARISE-Iter 84.96 | 79.38 | 81.87 | 79.58 | 80.16 | 79.45 | 77.41 | 80.4

Table 4: Multilingual results on MASSIVE Dataset.

when trained with string level n-grams as used in
IntenDD still outperforms IntenDD but reports an
average accuracy of 88.64 %, a drop from 89.43
for the 10-shot setting. Similarly, the use of PVI
for data filtering instead of IRDF for ARISE-Iter
results in an average accuracy of 88.19 %.

Table 3 reports results for the 5-shot setup. We
follow the setup of Yehudai and Bendel (2024) for
ICL. ARISE-Iter reports an average absolute gain
of 16.01 % and 2.28 % compared to Flan-XXL
and CPFT+Snorkel models respectively. It also
reports statistically significant gains, compared to
both, for all the datasets except AT71. Overall,
Flan-XXL and Flan-UL2 outperform other LLMs
(Touvron et al., 2023; Jiang et al., 2023) in our ICL
experiments and hence reported in Table 3.

Multilingual Experiments: Table 4 shows the
results for multilingual experiments. On an aver-
age ARISE-Iter reports an absolute improvement
of 2.1 % points compared to ARISE, the next best
model. The results show that our approach is ap-
plicable across a typologically diverse set of lan-
guages. We find translation of synthetically gener-
ated English sentences leads to empirically better
results as compared to direct generation of data in
the target language. The results for the former are

reported in Table 4. The latter approach results in
an absolute drop of 1.27 % points. Further, we also
experiment with a setting where we induct rules
from dependency parses of all the translations of
an input. Here, we observe a performance drop for
all the languages, except Hindi. On average there
is 0.76 % drop for ARISE-Iter compared to the
default setting as reported in Table 4. For Hindi, it
reported 78.62 % as compared to 77.41 % in the
default setting.

5 Conclusion

We propose ARISE, a framework that combines
contrastive representation learning, automatic rule
induction, data augmentation, IRDF and joint learn-
ing via PWS. While PWS is typically employed as
a weak supervision approach for labeling unlabeled
data, we employ it for verifying synthetically gen-
erated labeled documents. Further, we find incorpo-
rating syntactic information, instead of strings, via
rules leads to gains. Overall, ARISEoutperforms
strong competitive baselines under comparable con-
ditions. We also show the effectiveness of combin-
ing diverse learning components that enable in-
corporating complementary information from the
limited gold data to achieve state-of-the-art results.



6 Limitations

A major challenge with ARISE, currently is the
overall training time required to setup a final clas-
sifier. We currently use syntactic-ngrams with upto
3 nodes as our features. The search space expo-
nentially increases as the size of the nodes of sub-
trees further increases, limiting our ability to induce
higher-order tree structures as rules. While we cur-
rently rely on labeled synthetically generated data,
a strength of weak supervision is to incorporate un-
labeled data by labeling them. Several real world
scenarios often come up where unlabeled data is
readily available. It needs to be further investigated
whether the synthetically generated labeled data
can match the quality of real-world unlabeled data
in the context of weak supervision. The current
work does not explore this line of work, though it
seems to be an important question to be addressed.

7 Ethics Statement

All experiments conducted in this study utilize
only publicly available datasets. We used publicly
hosted APIs of GPT and Claude for synthetic data
generation. The prompts included guardrails in the
form of instructions to avoid generating problem-
atic content.
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A Example Appendix

This is an appendix.
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