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Abstract

We propose ARISE, a framework that com-001
bines weak supervision, synthetic data gener-002
ation, and contrastive representation learning003
for few-shot text classification (FSTC). Weak004
supervision forms a major novelty in ARISE.005
Here, we propose an automatic rule induc-006
tion component to induce rules from syntactic-007
ngrams using inductive generalisation. The008
rules we induce capture syntactic information,009
often not explicitly captured by state-of-the-010
art neural models. While these rules can be011
noisy, they are used to learn a label aggregation012
model with data programming. Subsequently,013
we jointly train the base classifier along with014
the label aggregation model to update their pa-015
rameters. Unlike, past work that employ data016
programming to label unlabeled data points,017
we use it for verifying synthetically generated018
labeled data. Finally, we combine synthetic019
data generation and automatic rule induction,020
via bootstrapping, to iteratively filter the gener-021
ated rules and data. Our experiments with nine022
FSTC datasets over diverse domains, and multi-023
lingual experiments on seven languages, show024
consistent and statistically significant improve-025
ments for our proposed approach over other026
state-of-the-art approaches.027

1 Introduction028

Few-shot text classification (FSTC) is challenging,029

especially in tasks with a large, semantically simi-030

lar and often overlapping label space (Zhang et al.,031

2022b). Such tasks often find application in diverse032

domains including task oriented dialogue (intent033

classification), e-commerce, social networks, sci-034

entific literature etc. (Yehudai and Bendel, 2024;035

Zhang et al., 2021b). Moreover, these tasks are ex-036

pected to have a unique or highly specialized label037

space, leading to limited availability of annotated038

data (Singhal et al., 2023; Vulić et al., 2022). Intu-039

itively, FSTC systems should be designed to extract040

as much information as possible from the limited041

supervision data available for learning. We propose 042

ARISE, a framework that combines automatic rule 043

induction (Pryzant et al., 2022; Bajpai et al., 2024), 044

synthetic data generation, and contrastive repre- 045

sentation learning (Zhang et al., 2022b) for FSTC. 046

Moreover, ARISE induces rules in the form of 047

syntactic n-grams that complements information 048

captured in prevalent approaches in FSTC. 049

FSTC tasks are generally addressed using a di- 050

verse set of techniques. These include In-context 051

learning (Brown et al., 2020; Kojima et al., 2022), 052

contrastive representation learning (Vulić et al., 053

2021), data augmentation and filtering (Lin et al., 054

2023), transductive learning (Singhal et al., 2023), 055

weak supervision (Pryzant et al., 2022), meta- 056

learning (Mesgar et al., 2023) among others. Sev- 057

eral of these works successfully combine one or 058

more of these techniques for FSTC tasks (Singhal 059

et al., 2023; Vulić et al., 2022). 060

In ARISE, we propose a bootstrapped approach 061

for iterative synthetic data generation and auto- 062

matic rule induction (Yarowsky, 1995; Varma and 063

Ré, 2018). Moreover, it enables joint training of 064

the induced rules with pre-trained neural models 065

via data programming (Maheshwari et al., 2021; 066

Zhang et al., 2022a). Figure 1 shows various com- 067

ponents and the 3-step workflow for ARISE. One, 068

our rule induction step extracts syntactic ngrams 069

from sentence-level dependency parses of the la- 070

beled input. Rules are induced from the syntactic 071

n-grams via inductive generalization using least 072

general generalization (LGG Plotkin, 1971; Raza 073

et al., 2014). The induced rules are then filtered us- 074

ing a submodular graph cut-based function (Bajpai 075

et al., 2024; Kothawade et al., 2022). Two, the data 076

augmentation step, involves synthetic generation 077

of data using in-context learning (Liu et al., 2022). 078

Synthetic data are generated along with their la- 079

bels, which are then validated using the rules. Only 080

those labeled data points that match with the predic- 081

tions of the rules are filtered. Iteratively, we induce 082
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Figure 1: Three-step workflow for ARISE, along with various components in it.

rules from synthetically generated data and use the083

induced rules for data filtering.084

Three, the joint learning step, effectively com-085

bines contrastive representation learning, (Chen086

et al., 2020; Khosla et al., 2020a) supervised087

fine-tuning, and Data programming (Zhang et al.,088

2022a) using a joint learning framework (Mahesh-089

wari et al., 2021). We perform self-supervised con-090

trastive pretraining (Wu et al., 2020) and supervised091

contrastive learning (Khosla et al., 2020b; Zhang092

et al., 2022b) over a standard pre-trained neural093

classifier. We use the few-shot labeled data, along094

with the filtered data, for fine tuning the neural095

classifier. The induced rules enable learning a gen-096

erative model as a form of weak supervision using097

data programming. We jointly learn a classifier098

with the generative model using SPEAR Mahesh-099

wari et al. (2021), a data programming framework.100

In ARISE, we induce generalized syntactic n-101

grams as our rules. Our primary aim here is to102

potentially capture morpho-syntactic information103

from data, which currently is not captured explicitly104

by other learning techniques and models employed105

in ARISE. A classical NLP pipeline typically rep-106

resents a string at multiple levels of abstraction107

which includes POS tags, syntactic relations, etc.108

(Manning et al., 2014). ARISE use higher-order109

dependency structures as features and generalize110

over these features using inductive generalization111

(Popplestone, 1970) to induce the rules as general-112

ized syntactic n-grams.113

We perform extensive experiments on the ‘Few-114

Many’ benchmark (Yehudai and Bendel, 2024),115

consisting of eight datasets for a diverse set of116

FSTC tasks. We additionally include experiments117

for the ‘SciCite’ (Cohan et al., 2019) dataset, a118

dataset from the scientific literature domain. Fur-119

ther, we perform multilingual experiments on seven120

languages using the MASSIVE dataset. Our experi-121

ments are performed using both 5-shot and 10-shot 122

settings. In all these settings, ARISE outperforms 123

strong competitive models, such as IntenDD (Sing- 124

hal et al., 2023), Zhang et al. (2022b), and FastFit 125

(Yehudai and Bendel, 2024), with statistically sig- 126

nificant improvements. 127

In section 2, we elaborate on our rule induc- 128

tion approach for inducing generalized syntactic 129

n-grams. In section 3, we elaborate ARISE, a 3- 130

step framework for FSTC. Here, we elaborate our 131

iterative rule and data filtering along with the joint 132

learning setup. 133

Our major contributions are as follows: 134

• Our proposed approach yields statistically sig- 135

nificant gains in all the experiments we per- 136

form, compared to state-of-the-art systems 137

(Yehudai and Bendel, 2024; Singhal et al., 138

2023; Zhang et al., 2022b). Our best perform- 139

ing model reports a 2.04 % increase in 10-shot 140

and 2.52 % increase in 5-shot settings, com- 141

pared to the next best model, averaged across 142

all the monolingual tasks. 143

• Our extensive experiments show that 144

ARISE is generalizable and across multiple 145

domains (as reported above) and multiple 146

languages. We report a 4.4 % increase in 147

performance, compared to the next model, 148

averaged across seven different languages. 149

• We show that leveraging syntactic information 150

as weak supervision for rule induction, leads 151

to performance improvements compared to 152

surface-level string n-grams as rules. Further, 153

our bootstrapped approach outperforms com- 154

petitive approaches for filtering augmented 155

data (Lin et al., 2023). 156
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2 Automatic Rule Induction Using157

Syntactic Tree Generalization158

Distributional hypothesis (Firth, 1957) is often re-159

alized using vector space models defined over a160

suitable feature space (Turney and Pantel, 2010).161

Inputs can be encoded into a feature space of dense162

contextualized vectors (Peters et al., 2018; Devlin163

et al., 2019) or into a sparse semantic space consist-164

ing of lexical n-grams, syntactic n-grams (Goldberg165

and Orwant, 2013), higher order dependency fea-166

tures (Koo and Collins, 2010), or even graph motifs167

(Biemann et al., 2016).168

We induce rules that can capture complemen-169

tary information that is not explicitly captured in170

pre-trained neural models. Hence, we focus on171

incorporating structured grammatical information172

typically used in a traditional NLP pipeline (Man-173

ning et al., 2014) such as Part-of-Speech (PoS) and174

syntactic information. From dependency parses of175

input sentences, we extract induced subtrees as fea-176

tures. Each such feature is a syntactic n-gram, with177

the nodes as the words and the edges labeled with178

the dependency relations. We then induce rules via179

the inductive generalization of these features, using180

Least General Generalization (Raza et al., 2014;181

Thakoor et al., 2018).182

For an FSTC task with k labels, we assume the183

availability of few-shot labeled dataset D, where184

D = {(xi, yi)}ni=1, xi is an input document and185

yi ∈ {l1, l2, ..., lk} is a label. We obtain sentence-186

level dependency parses for each xi ∈ D. A feature187

space Ff
t=1 is defined over higher-order factoriza-188

tion of the dependency parses in D. Each feature189

ft ∈ F is an induced subtree of the parses for190

sentences in D. Here, a feature covers a set of doc-191

uments in which that feature occurs at least once.192

Rules are generalizations of features. If a gen-193

eralized rule subsumes multiple features, then it194

covers a union of all the sets of documents corre-195

sponding to those features. The rules we generate196

belong to Rr
t=1, where for every input in xi ∈ D197

it should either predict a label from {1, ..., k} or198

should abstain (−1) from making a prediction. Our199

rules are induced as the least general generaliza-200

tion (LGG) over a set of features (Plotkin, 1970,201

1971). A feature can be a rule in itself, i.e. F ⊆ R.202

For forming the rules we define two forms of gen-203

eralizations, structural and linguistic. if rule ri is204

an induced subtree of rj , then we can say that ri205

is more general than rj . Linguistic generalization206

include, substitution (Raza et al., 2014; Thakoor207

et al., 2018), of the nodes containing words with 208

their corresponding stems, and PoS tags (Galitsky 209

and Ilvovsky, 2019). 210

Figure 2 shows illustrative cases of generaliza- 211

tion. Let us consider a corpus from which features 212

(syntactic n-grams) f1 to f6 are extracted. Now, r1 213

to r8 shows various generalized rules induced from 214

these features. Rules r1 to r7 show linguistic gen- 215

eralization and r8 shows structural generalization 216

(from r7). Consider rules r1, r4, r5 and r7. These 217

rules contain nodes with a group of words. Simi- 218

larly, r6 represents a rule that has a group of PoS 219

tags in one of the nodes. In linguistic generaliza- 220

tion, multiple trees are generalized to a single tree 221

by grouping words or PoS that differ in these indi- 222

vidual trees. Here, r1 is a generalisation of f1 and 223

f2. Similarly, r4 is a generalization of f2 and f3. 224

Currently, we restrict the groupings at a node to be 225

homogeneously typed, i.e. a set can either be that 226

of inflected word forms, stems or of PoS tags, but 227

not a mix of those. Further, the cardinality of such 228

a group is set to an arbitrary upper bound, to avoid 229

trivial generalisations. 230

2.1 Rule Induction via LGG 231

We obtain features from dependency parses of the 232

dataset D. We consider only those subtrees that 233

exactly have one of the six core dependency re- 234

lations in them (de Marneffe et al., 2014; Nivre 235

et al., 2020). These core dependency relations are 236

direct or indirect object, nominal or clausal subject, 237

clausal complement or open clausal complement. 238

We partition the features into 6 mutually exclusive 239

subsets, one each for each of the core relations. 240

A complete lattice is constructed out of each par- 241

tition, by adding a supremum and infimum element 242

to the partition. Here, we add a rule ‘* rel←−− *’, 243

where ‘rel’ is the core-relation corresponding to 244

the partition. It is the supremum for any element 245

in the partition, as every element in the partition 246

is subsumed by it and covers any document that 247

has the relation present in it. We also define ‘ϵ’ as 248

the infimum and it represents an empty rule that 249

rules out any document in the input. The complete 250

lattice provides a search space of rules over which 251

the partial ordering is provided. Here, any two pair 252

of subtrees have a least general generalization or 253

a least upper bound (Raedt, 2010). In Figure 2, r1 254

is the LGG of f1 and f2. r1 represents all the sen- 255

tences that either have f1 or f2 in their dependency 256

parses. Similarly, r2 and r3 are also generalizations 257
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Figure 2: Rule induction from syntactic n-grams via inductive generalization. The symbol ‘⊒’ denote a generaliza-
tion operation. Trees labeled from f1 to f6 are instances of features, and the nodes of these trees are colored using

. Similarly, trees labeled from r1 to r8 are rules and the nodes of these trees are colored using .

of f1 and f2, but not their LGG.258

For every rule in the lattice, we compute its label-259

PMI vector, following Singhal et al. (2023) and Jin260

et al. (2022). label-PMI vector is a vector of the261

pointwise mutual information scores of the rule262

corresponding to each label. From the vector, we263

consider its maximum score, denoted as L-PMI.264

The label corresponding to L-PMI is then assigned265

to the rule. From the lattice, we start bottom up266

and compute the LGG for every pair of rules. We267

induce the LGG as a rule, only if it has a higher268

L-PMI than the individual rules in the pair. The269

rules thus induced form our candidate set of rules.270

3 ARISE Framework271

3.1 Rule Induction and Filtering272

We induce rules from a set of input documents273

(§2). These rules can be used as labeling functions274

in Data Programming, henceforth to be referred275

to as Programmatic Weak Supervision (PWS), for276

learning a generative model (Ratner et al., 2017;277

Zhang et al., 2022a). While the individual rules278

are expected to be noisy in PWS, the final set of279

filtered rules needs to be accurate, diverse and high280

in coverage (Bajpai et al., 2024).281

For rule filtering, we use the submodular graph-282

cut (GC) function (Kothawade et al., 2022), as pro-283

posed by Bajpai et al. (2024). Using GC, we se-284

lect a final set of representative and diverse rules285

Rf , from the set of candidate rules R. For Rf ⊆286

R, we define the GC function as fGC(Rf ) = 287∑
ri∈R,rj∈Rf

sij − λ
∑

ri,rj∈Rf
sij . Here, λ ∈ 288

[0, 1] governs the diversity-representation trade-off, 289

where higher λ implies higher diversity inRf . sij 290

is the similarity score for rule pair ri and rj . It is 291

calculated as the weighted sum of the precision, 292

coverage, and agreement between the pair of rules, 293

sij = α(ri)+α(rj)+w∗β({ri, rj})+γ∗µ(ri, rj). 294

Here, α(ri) = Precision(ri), µ(ri, rj) is the agree- 295

ment, calculated as the fraction of instances where 296

both rules agree. β({ri, rj}) is the coverage, calcu- 297

lated as the fraction of instances labeled by at least 298

one of the rules. 299

Our objective function is max|Rf |≤k fGC(Rf ), 300

where k is a fixed budget (Kothawade et al., 301

2022). We greedily choose a rule that maximizes 302

the marginal utility argmaxri∈{R−Rf}fGC(Rf ∪ 303

{i}) − fGC(Rf ). Please note that (Bajpai et al., 304

2024) starts from an empty set, while we start with 305

the existing rule set obtained from the previous 306

round of bootstrapping. One round of filtering is 307

completed until the fixed budget k is completed. 308

3.2 Bootstrapping Rules and Synthetic Data 309

PWS is typically employed to provide noisy train- 310

ing labels to unlabeled data (Varma and Ré, 2018). 311

In ARISE, we instead use PWS on synthetically 312

generated data for data verification and filtering. 313

We start our bootstrapping with the few-shot 314

gold labeled data as the seed, as shown in Figure 1. 315
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we synthetically generate new data for each class316

using the few-shot prompt demonstrations, with the317

demonstrations retrieved from the seed set. Zhu318

et al. (2023) observe that PWS systems rely heav-319

ily on the quality of gold-labeled data, especially320

in the validation split. Hence, we use our gold-321

labeled data as validation data for rule filtering. We322

perform rule induction (§2) from the synthetically323

generated data and filter the rules (§3.1) using the324

gold data as the validation split. The induced rules325

are then used for learning a generative model via326

PWS (Chatterjee et al., 2020). Finally, the seed set327

is expanded with filtered data, where only those328

data points that match their generated label with329

the predicted label from the generative model are330

filtered. Our validation set is never expanded and331

is always the gold-labeled data. The seed data set332

is expanded with newly filtered data after every333

iteration. Similarly, the rule set is also expanded334

after every iteration of the bootstrapping process.335

Data Augmentation: We use few-shot prompt336

demonstration to synthetically generate new la-337

beled sentences using LLMs. For each label, we338

sample k instances each of positive and negative339

samples from the seed set and then use it for gen-340

erating new data samples (Smith et al., 2024; Lin341

et al., 2023). Our prompt demonstration approach342

includes label information, positive examples, and343

negative examples for synthetic generation. In addi-344

tion to generating new data points, we also perform345

paraphrasing of data points in the seed set. By para-346

phrasing, we gain diverse syntactic structures for347

better rule induction.348

3.3 Joint Learning with Rules349

The few-shot classifier is trained using SPEAR350

(Maheshwari et al., 2021), a joint learning frame-351

work that learns over a feature-based classification352

model and a label aggregation (LA) model. The fea-353

ture model is a pre-trained neural model and LA is a354

generative model (Chatterjee et al., 2020), learned355

via PWS, using the automatically induced rules356

as labeling functions. LA is denoted as Pθ(li, y),357

where li a vector that represents the firing of all358

LFs for an input xi. Each firing, lij can be either 0359

(abstain) or class label k (Chatterjee et al., 2020).360

Following Maheshwari et al. (2021), our joint361

learning objective incorporates three different loss362

components for learning from labeled data. We363

provide a brief overview of each loss component364

below, while encouraging interested readers to (Ma-365

heshwari et al., 2021) for detailed information. 366

min
θ,ϕ

∑
i∈L

LCE

(
P f
ϕ (y|xi), yi

)
+ LLs(θ|L) 367

+
∑
i∈L

KL
(
P f
ϕ (y|xi), Pθ(y|li)

)
368

The first component of the loss is the standard 369

cross-entropy loss for the model P f
ϕ . The second 370

component is the negative log-likelihood on the 371

dataset. The third is the KL-Divergence between 372

the predictions of the LA and P f
ϕ models, which 373

enforces consensus by aligning their predictions. 374

Contrastive Representation Learning: The pre- 375

trained model, P f
ϕ , undergoes contrastive repre- 376

sentation learning prior to joint learning. Follow- 377

ing, Zhang et al. (2021a) and Singhal et al. (2023), 378

we first perform self-supervised contrastive learn- 379

ing (SSCL) over a pre-trained model. Here, the 380

model parameters for a given pre-trained model 381

is updated using, Lpt = Lsscl + λptLmlm. Lpt is 382

a weighted sum of token-level masked language 383

modeling loss (Lmlm) and a sentence-level SSCL 384

(Lsscl; Wu et al., 2020; Liu et al., 2021). λpt is a 385

weight hyper-parameter. For SSCL, given an in- 386

put document xi, we obtain perturbations of xi by 387

randomly masking tokens from it. Further, we dy- 388

namically mask tokens such that each sentence has 389

different masked positions across different train- 390

ing epochs. SSCL attempts to bring the xi and its 391

masked versions closer in the semantic space while 392

pulling away other pairs. 393

After the continued pretraining, we perform su- 394

pervised contrastive learning (Khosla et al., 2020a). 395

Here, we try to increase the similarity between in- 396

put pairs that belong the same class, while trying to 397

bring down the similarity of those belonging to dif- 398

ferent classes. We follow the supervised contrastive 399

learning (Khosla et al., 2020a) loss, where all the 400

documents in the same class in a batch are brought 401

together. Here, the same document may also be 402

used to create like pairs by creating perturbations 403

of the input. 404

4 Experiments 405

Dataset : We use FEWMANY Benchmark (Yehu- 406

dai and Bendel, 2024), for our monolingual ex- 407

periments. FEWMANY consists of eight FSTC 408

datasets (Yehudai and Bendel, 2024). It consists 409

of CLINC150 (C150; Larson et al., 2019), BANK- 410

ING77 (B77; Casanueva et al., 2020), HWU64 411
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FT CL DA
Filtering
for DA

Automatic Rule
Induction IDRF ICL

PVI ST GC ngrams
syntactic
ngrams

Base ✓
Base-DA ✓ ✓
Base-ST ✓ ✓ ✓
IntenDD ✓ ✓ ✓ ✓ ✓
Snorkel ✓ ✓ ✓ ✓
CPFT ✓ ✓ ✓ ✓
FastFit ✓ ✓ ✓ ✓
CPFT + Snorkel ✓ ✓ ✓ ✓ ✓
ARISE ✓ ✓ ✓ ✓ ✓
ARISE-Iter ✓ ✓ ✓ ✓ ✓ ✓
LLMs ✓ ✓ ✓

Table 1: Techniques used by competing systems. Base is Roberta and XLM-R for monolingual and multilingual
experiments respectively. FT is fine-tuning; CL is contrastive learning; DA is data augmentation; PVI is pointwise
V-information; ST is self-training; IDRF is Iterative Data and Rules filtering.

(HU64; Liu et al., 2019a) for intent classification;412

ARGUMENT TOPIC (AT71; Gretz et al., 2020) and413

CLAIM STANCE (CS55; Bar-Haim et al., 2017)414

for Topic classification; TREC question classifi-415

cation dataset (T50; Li and Roth, 2002), AMA-416

ZON PRODUCTS (AP106) and DBPEDIA (DB70).417

We also use SciCite (SC3 Cohan et al., 2019),418

from the scientific literature domain. Finally, the419

multilingual experiments are performed using the420

MASSIVE dataset (FitzGerald et al., 2023). Here,421

we use seven typologically diverse languages in-422

cluding Chinese, English, French, German, Hindi,423

Japanese, and Spanish.424

Data Augmentation: We use GPT-3.5, 4, and425

Claude 3 Opus for synthetic data generation. We426

generate label-specific data by prompt demonstra-427

tion. Here, Using Wu et al. (2023), we perform428

k-NN retrieval, with k = 5, from the seed data for429

positive demonstrations, and randomly sampled430

out of class samples as negative examples (Liu431

et al., 2022). For multilingual experiments, we ex-432

periment with direct generation of the synthetic433

data in the target language, and also via translation434

of synthetically generated English sentences. For435

translation, in addition to the three aforementioned436

LLMs we use NLLB-54B (Team et al., 2022) and437

Google Translate. For translation in Hindi, we use438

Gala et al. (2023).439

Baselines: Table 1 shows our baselines. Base440

models are the ‘Large’ variants of Roberta (Liu441

et al., 2019b) and XLM-R (Conneau et al., 2020) 442

for our monolingual and multilingual experiments 443

respectively. Further, Base-DA is fine-tuned with 444

augmented data (no filtering). Base-ST is trained 445

using self-training-based filtering of augmented 446

data. We also include competitive models that also 447

combine multiple learning techniques, such as In- 448

tenDD (Singhal et al., 2023), Snorkel (Ratner et al., 449

2017), CPFT (Zhang et al., 2022b), and FastFit 450

(Yehudai and Bendel, 2024). Following Yehudai 451

and Bendel (2024), we report results for ICL, in 452

5-shot setups, using Flan-XXL (Wei et al., 2021), 453

Flan-UL2 (Tay et al., 2022). 454

Experimental Setup: ARISE and ARISE-Iter, 455

as shown in Table 1, are two variants without and 456

with the iterative data and rule filtering (IDRF). 457

ARISE variants use the same pre-trained models 458

as used in ‘Base’. We perform all our experiments 459

using 5 random splits and report the average. We 460

use accuracy as our metric and experiment with 461

both 5-shot an 10-shot settings(Yehudai and Ben- 462

del, 2024). For joint learning, we use a 20 % split 463

of the synthetically generated data as a validation 464

split, while using all the gold data in training. For 465

learning the parameters for our rule filtering step 466

(§3.1), we use the few-shot gold data as valida- 467

tion. We report results for ARISE-iter induced 468

with rules where the gold data was used only in the 469

last iteration of bootstrapping. We keep a multi- 470

plier of 128x for our k-shot classification settings, 471

following Lin et al. (2023). We use the graph-based 472
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Models AP106 AT71 B77 C150 CS55 DB70 HU64 T50 SciCite Avg
Base 57.36 95.59 87.55 94.3 91.06 87.03 86.28 86.57 82.12 85.32
Base-Aug 57.42 95.3 88.36 93.83 90.16 87.92 87.58 86.8 82.58 85.55
Base-ST 58.46 95.78 88.58 94.37 91.1 88.23 88.69 87.26 83.07 86.17
CPFT 58.82 96.67 89.51 95.03 91.34 89.14 89.76 89.42 84.38 87.12
Snorkel 59.47 96.35 90.49 94.96 90.33 88.42 89.2 89.3 85.21 87.08
FastFit 59.29 96.79 89.4 95.48 90.24 88.63 89.54 88.84 85.01 87.02
IntenDD 59.67 97.02 90.07 95.71 91.71 88.93 89.04 88.45 85.04 87.29
CPFT+
Snorkel

59.74 97.12 90.76 95.24 91.48 89.22 89.81 89.71 85.67 87.64

ARISE 60.87* 97.02 92.12* 96.37* 91.78 89.59 90.89* 90.24 85.87 88.31
ARISE-Iter 62.6 97.93 92.82 97.15 92.89 90.78 92.27 91.32 87.12 89.43

Table 2: Accuracy Results for 10-shot monolingual FSTC. Results in boldface and those marked with * are
statistically significant by t-test (p < 0.05) compared to ARISE and CPFT+Snorkel respectively.

biaffine parser (Dozat and Manning, 2016) trained473

with XLM-R as the encoder on the UD treebank474

(Zeman et al., 2023) for dependency parsing. We475

obtain induced subtrees of upto 3 nodes as rules.476

4.1 Results477

ARISE-iter, our proposed model, reports the best478

performance in all our experimental settings, as479

shown in Tables 2, 3, and 4. It outperforms all other480

models with statistically significant gains. ARISE-481

Iter reports an absolute improvement of 1.79 %482

points (2.04 % increase), 1.32 % and 2.58 % points483

averaged across the datasets, for the 5 and 10-shot484

monolingual and 10-shot multilingual setups.485

4.2 Monolingual Results486

ARISE-Iter and ARISE differs only in terms of487

bootstrapping (IDRF). Bootstrapping alone leads488

to an average absolute gain of 1.12 and 1.32 %489

points for the 10-shot and 5-shot setups respec-490

tively (Tables 2 and 3), between both the ARISE-491

Iter and ARISE respectively. Base-Aug reports sta-492

tistically significant gains only for 3 of 9 datasets493

(B77, HU64, and DB70) compared to Base in Ta-494

ble 2. It shows that data augmentation without495

any filtering need not always improve the results.496

Further, Base-ST on average report a gain of 0.85497

% points compared to Base, with statistically sig-498

nificant gains in 6 of 9 datasets (except for AT71,499

C150, and CS55).500

ARISE variants follow CPFT (Zhang et al.,501

2022b) in employing contrastive learning (CL)502

components. CL components alone in CPFT lead503

to an average absolute gain of 1.8 % points com-504

pared to Base, in Table 2. Similarly, Snorkel,505

a PWS framework, and ARISE is trained with 506

the same filtered data and rules. However, unlike 507

ARISE, Snorkel does not use joint learning. In- 508

stead, Snorkel learns a generative model to label (or 509

filter in our case) synthetically generated sentences. 510

It outperforms the base model by an average abso- 511

lute improvement of 1.76 % points and is competi- 512

tive with CPFT. Snorkel and CPFT report statisti- 513

cally significant gains compared to Base for all the 514

datasets, except CS55. Snorkel and CPFT report 515

comparable performance on 5 of 9 datasets, with 516

statistically significant gains in 2 datasets each. 517

CPFT+Snorkel combines both contrastive rep- 518

resentation learning and PWS. It differs from 519

ARISE, only in terms of the joint learning compo- 520

nent. ARISE reports an absolute improvement 521

of 0.67 % points in 10-shot settings (Table 2), 522

and 0.96 % points in 5-shot settings (Table 3), 523

as compared to CPFT+Snorkel. Results from 524

Snorkel, CPFT+Snorkel, and ARISE show our 525

rule induction component, as a general-purpose 526

one for PWS. Similarly, gains in CPFT+Snorkel 527

and ARISE show that combining complementary 528

learning techniques leads to performance gains 529

compared to using them independently. 530

ARISE-Iter, our proposed approach with IRDF, 531

outperforms both IntenDD (Singhal et al., 2023) 532

and FastFit (Yehudai and Bendel, 2024), two com- 533

petitive models with state-of-the-art results on few- 534

shot learning. While FastFit originally does not 535

use data augmentation, we add augmented sen- 536

tences to it for a fair comparison. IntenDD dif- 537

fers from ARISE by using string-level n-grams for 538

weak supervision and additionally employs a two- 539

level transductive learning approach. ARISE-Iter 540
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Methods AT71 B77 C150 CS55 HU64 T50 Avg.
Flan-ul2 97.07 71.21 80.6 89.57 76.2 64.86 79.92
Flan-XXL 96.72 72.04 81.99 50.24 75.13 84.72 76.81
Base 95.61 79.77 91.67 87.94 79.29 73.67 84.66
FastFit 96.45 86.14 93.77 88.16 84.6 84.8 88.99
Intendd 96.11 89.13 94.05 88.76 88.21 86.86 90.52
CPFT+
Snorkel

96.74 88.64 94.46 88.57 87.38 87.45 90.54

ARISE 96.68 90.35 94.89 90.3 88.04 88.72 91.5
ARISE-Iter 97.14 91.68 96.13 91.59 90.22 90.14 92.82

Table 3: Accuracy Results for 5-shot monolingual FSTC.

En De Ja Es Fr Zh Hi Avg.
Base 77.65 71.23 74.89 71.56 72.81 73.14 71.07 73.19
IntenDD 79.55 73.64 76.5 76.92 76.42 76.53 74.41 76.28
Snorkel 80.52 75.39 78.87 75.79 77.65 76.7 74.16 77.01
CPFT 78.65 73.45 77.56 74.99 76.74 75.58 73.66 75.8
FastFit 80.73 75.97 78.49 75.64 76.84 75.98 74.07 76.82
CPFT + Snorkel 81.43 76.67 79.34 76.43 78.14 77.66 75.04 77.82
ARISE 82.43 76.64 79.52 77.1 78.93 78.32 75.16 78.3
ARISE-Iter 84.96 79.38 81.87 79.58 80.16 79.45 77.41 80.4

Table 4: Multilingual results on MASSIVE Dataset.

when trained with string level n-grams as used in541

IntenDD still outperforms IntenDD but reports an542

average accuracy of 88.64 %, a drop from 89.43543

for the 10-shot setting. Similarly, the use of PVI544

for data filtering instead of IRDF for ARISE-Iter545

results in an average accuracy of 88.19 %.546

Table 3 reports results for the 5-shot setup. We547

follow the setup of Yehudai and Bendel (2024) for548

ICL. ARISE-Iter reports an average absolute gain549

of 16.01 % and 2.28 % compared to Flan-XXL550

and CPFT+Snorkel models respectively. It also551

reports statistically significant gains, compared to552

both, for all the datasets except AT71. Overall,553

Flan-XXL and Flan-UL2 outperform other LLMs554

(Touvron et al., 2023; Jiang et al., 2023) in our ICL555

experiments and hence reported in Table 3.556

Multilingual Experiments: Table 4 shows the557

results for multilingual experiments. On an aver-558

age ARISE-Iter reports an absolute improvement559

of 2.1 % points compared to ARISE, the next best560

model. The results show that our approach is ap-561

plicable across a typologically diverse set of lan-562

guages. We find translation of synthetically gener-563

ated English sentences leads to empirically better564

results as compared to direct generation of data in565

the target language. The results for the former are566

reported in Table 4. The latter approach results in 567

an absolute drop of 1.27 % points. Further, we also 568

experiment with a setting where we induct rules 569

from dependency parses of all the translations of 570

an input. Here, we observe a performance drop for 571

all the languages, except Hindi. On average there 572

is 0.76 % drop for ARISE-Iter compared to the 573

default setting as reported in Table 4. For Hindi, it 574

reported 78.62 % as compared to 77.41 % in the 575

default setting. 576

5 Conclusion 577

We propose ARISE, a framework that combines 578

contrastive representation learning, automatic rule 579

induction, data augmentation, IRDF and joint learn- 580

ing via PWS. While PWS is typically employed as 581

a weak supervision approach for labeling unlabeled 582

data, we employ it for verifying synthetically gen- 583

erated labeled documents. Further, we find incorpo- 584

rating syntactic information, instead of strings, via 585

rules leads to gains. Overall, ARISEoutperforms 586

strong competitive baselines under comparable con- 587

ditions. We also show the effectiveness of combin- 588

ing diverse learning components that enable in- 589

corporating complementary information from the 590

limited gold data to achieve state-of-the-art results. 591
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6 Limitations592

A major challenge with ARISE, currently is the593

overall training time required to setup a final clas-594

sifier. We currently use syntactic-ngrams with upto595

3 nodes as our features. The search space expo-596

nentially increases as the size of the nodes of sub-597

trees further increases, limiting our ability to induce598

higher-order tree structures as rules. While we cur-599

rently rely on labeled synthetically generated data,600

a strength of weak supervision is to incorporate un-601

labeled data by labeling them. Several real world602

scenarios often come up where unlabeled data is603

readily available. It needs to be further investigated604

whether the synthetically generated labeled data605

can match the quality of real-world unlabeled data606

in the context of weak supervision. The current607

work does not explore this line of work, though it608

seems to be an important question to be addressed.609

7 Ethics Statement610

All experiments conducted in this study utilize611

only publicly available datasets. We used publicly612

hosted APIs of GPT and Claude for synthetic data613

generation. The prompts included guardrails in the614

form of instructions to avoid generating problem-615

atic content.616
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munds Grūzı̄tis, Bruno Guillaume, Céline Guillot-1064
Barbance, Tunga Güngör, Nizar Habash, Hinrik Haf-1065
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Balkız Öztürk Başaran, Teresa Paccosi, Alessio 1125
Palmero Aprosio, Anastasia Panova, Hyunji Hayley 1126
Park, Niko Partanen, Elena Pascual, Marco Passarotti, 1127
Agnieszka Patejuk, Guilherme Paulino-Passos, Giu- 1128
lia Pedonese, Angelika Peljak-Łapińska, Siyao Peng, 1129
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