

ACCELERATED LIKELIHOOD MAXIMIZATION FOR DIFFUSION-BASED VERSATILE CONTENT GENERATION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Generating diverse, coherent, and plausible content from partially given inputs re-
 012 mains a significant challenge for pretrained diffusion models. Existing approaches
 013 face clear limitations: training-based approaches offer strong task-specific results
 014 but require costly data and computation, and they generalize poorly across tasks.
 015 Training-free paradigms are more efficient and broadly applicable, but often fail
 016 to produce globally consistent results, as they usually enforce constraints only on
 017 observed regions. To address these limitations, we introduce Accelerated Like-
 018 lihood Maximization (ALM), a novel training-free sampling strategy integrated
 019 into the reverse process of diffusion models. ALM explicitly optimizes the unob-
 020 served regions by jointly maximizing both conditional and joint likelihoods. This
 021 ensures that the generated content is not only faithful to the given input but also
 022 globally coherent and plausible. We further incorporate an acceleration mechanism
 023 to enable efficient computation. Experimental results demonstrate that ALM con-
 024 sistently outperforms state-of-the-art methods in various data domains and tasks,
 025 establishing a powerful, training-free paradigm for versatile content generation.

1 INTRODUCTION

029 While naïve use of diffusion models (Ho et al., 2020; Song et al., 2021a;b) has primarily focused
 030 on generating fixed-size outputs from scratch, many practical tasks demand a more versatile ap-
 031 proach—generating content from partially observed or pre-generated inputs. This paradigm, which
 032 we call *versatile content generation*, aims to condition the generation process on the available inputs.
 033 The core challenge is enabling diffusion models to go beyond simple synthesis and instead infer
 034 missing or extended content—like filling in missing regions (inpainting) or extrapolating beyond
 035 observed boundaries (outpainting)—that remains globally coherent with the provided context. This
 036 includes a wide range of applications across diverse data domains such as image inpainting (Lugmayr
 037 et al., 2022; Zhang et al., 2023; Corneanu et al., 2024; Ju et al., 2024; Zhuang et al., 2024; Avrahami
 038 et al., 2023; Manukyan et al., 2025), wide image synthesis (Bar-Tal et al., 2023; Kim et al., 2024a;
 039 Lee et al., 2025), human motion in-completion (Cohan et al., 2024; Xie et al., 2024) and long video
 040 generation (Kim et al., 2024b; Qiu et al., 2024; Wang et al., 2023; Chen et al., 2023).

041 Despite extensive research, developing a unified approach that generalizes across such diverse content
 042 generation tasks remains a major challenge. Existing training-based methods (Ju et al., 2024; Zhuang
 043 et al., 2024; Cohan et al., 2024) can achieve strong task-specific performance, but they require
 044 substantial computational training and large-scale datasets, limiting practical deployment. Although
 045 recent visual foundation models (Rombach et al., 2022; Podell et al., 2024) offer powerful editing
 046 capabilities, they also rely on specialized training pipelines, which restrict flexibility when adapting
 047 to new tasks or modalities.

048 In contrast, our goal is to shift this paradigm; Instead of relying on costly retraining, we seek a
 049 fully training-free mechanism that can be applied directly to any pretrained generative model. Such
 050 a mechanism would immediately enhance widely used models into flexible, high-fidelity content-
 051 editing approaches without additional computation. This motivates the need for a general and widely
 052 applicable training-free framework for versatile content generation. Existing training-free approaches,
 053 such as diffusion synchronization (Bar-Tal et al., 2023; Kim et al., 2024a; Lee et al., 2025), aim
 to broaden applicability by leveraging pretrained diffusion models without task-specific retraining.
 In particular, SyncSDE (Lee et al., 2025) enforces consistency in observed regions while leaving

054 unobserved regions unconstrained, assuming that realistic completions emerge from contextual
 055 alignment. However, its performance remains limited, where it often fails to produce plausible results.
 056

057 To address this limitation, we propose *Accelerated Likelihood Maximization (ALM)*, a novel training-
 058 free sampling strategy for versatile content generation. Unlike prior diffusion synchronization
 059 methods that restrict guidance only to observed regions and rely on the implicit assumption that
 060 realistic completions will naturally emerge through the diffusion reverse process, ALM explicitly
 061 optimizes the unobserved variables during diffusion sampling. In our formulation, these unobserved
 062 regions are treated as optimization targets whose likelihood is directly maximized with respect to
 063 the observed context. This joint treatment allows the model to enforce local consistency while also
 064 aligning the overall sample with the global data distribution, ensuring the results are realistic and
 065 semantically coherent.

066 By explicitly modeling likelihood maximization, ALM generates outputs that are both visually plausi-
 067 ble and strongly consistent with the input content across domains. Beyond improving sample quality,
 068 ALM is inherently training-free and modality-agnostic, making it broadly applicable without domain-
 069 specific retraining. The framework naturally extends to a wide range of tasks—including image
 070 inpainting, wide image generation, long video synthesis, and 3D human motion inpainting—while
 071 maintaining efficiency through an acceleration mechanism that approximates iterative optimization in
 072 a single step. As a result, ALM not only addresses the key shortcomings of prior synchronization-
 073 based approaches but also establishes a general paradigm for versatile content generation. Our
 074 contributions can be summarized as follows:

- 075 • We introduce a novel sampling mechanism, ALM, that explicitly models unobserved regions
 076 during diffusion sampling, addressing a central limitation of prior synchronization-based
 077 methods.
- 078 • **ALM is a fully training-free sampling algorithm that requires no task-specific datasets or**
 079 **retraining and can be directly applied to a wide range of pretrained generative models.**
- 080 • **ALM exhibits strong robustness to hyperparameter choices and integrates an acceleration**
 081 **strategy that significantly reduces runtime while maintaining high-fidelity results.**
- 082 • **We demonstrate the versatility and effectiveness of ALM across images, videos, and 3D**
 083 **human motion, achieving state-of-the-art performance even compared to training-based**
 084 **baselines.**

085 2 RELATED WORKS

086 **Training-based approaches.** Several methods require per-task training to address specific subtasks
 087 of versatile content generation. For image inpainting, BrushNet (Ju et al., 2024) presents a plug-
 088 and-play dual-branch diffusion architecture that separately processes masked image features from
 089 diffusion latents. Similarly, PowerPaint (Zhuang et al., 2024) introduces a unified framework with
 090 learnable task prompts, allowing a model to handle diverse inpainting challenges within the image
 091 domain. Beyond images, CondMDI (Cohan et al., 2024) extends diffusion models to 3D human
 092 motion (Tevet et al., 2023) to perform human motion completion from partially observed keyframes,
 093 generating coherent and diverse motion sequences. It employs a U-Net-based (Ronneberger et al.,
 094 2015) motion diffusion model with randomly sampled keyframes. While these methods achieve
 095 strong performance on their specific tasks, their reliance on extensive, task-specific training limits
 096 their scalability and generalization across diverse domains.

097 **Training-free methods.** To overcome the high computation cost required for training-based meth-
 098 ods, several task-specific training-free approaches have been proposed. HD-Painter (Manukyan et al.,
 099 2025) introduces prompt-aware attention and reweighted attention score guidance to guide the reverse
 100 diffusion process, combined with a tailored super-resolution module and Poisson blending (Pérez
 101 et al., 2023). Blended latent diffusion (Avrahami et al., 2023) performs cutmix (Yun et al., 2019)
 102 operations between foreground and noisy background latents at each denoising step, strictly preserv-
 103 ing background through blending operation. Reconstruction guidance (Ho et al., 2022), originally
 104 proposed for long video generation, enforces consistency with observed frames during denoising of
 105 the unobserved region using L2 loss. This strategy can be extended to other modalities, such as 3D
 106 human motion, as discussed in CondMDI (Cohan et al., 2024).

Figure 1: Overview of the proposed method. ALM aims to generate versatile content via reconstructing the unobserved variable.

Diffusion synchronization. Diffusion synchronization methods propose customized strategies to model the correlations between different diffusion trajectories for versatile content generation. For instance, SyncTweedies (Kim et al., 2024a) evaluate 60 synchronization strategies and shows that the averaging in the pixel domain using Tweedie’s formula (Stein, 1981) yields the better result, though its effectiveness relies largely on heuristics without a clear mathematical explanation. SyncSDE (Lee et al., 2025) addresses this gap by formulating the posterior distribution of the observed content given unobserved region. However, its performance remains limited, as it does not explicitly optimize the unobserved region and instead relies solely on guidance from the observed region during the diffusion sampling. We further analyze its limitations and describe our approach to overcoming them in the following section.

3 PROPOSED METHOD

3.1 OVERVIEW

We aim to generate versatile content through diffusion-based (Ho et al., 2020; Song et al., 2021a;b) inpainting and outpainting in a training-free manner, where the unobserved variables are sampled while conditioning on the given observed content. We denote the observed content as \mathbf{X} and the binary mask indicating the unobserved regions as \mathbf{M} . At diffusion timestep t , the noisy observed content is represented as \mathbf{X}_t , while the unobserved variable sampled by our method is written as \mathbf{Y}_t . We further define the blended content \mathbf{E}_t as $\mathbf{E}_t = \mathbf{X}_t + \mathbf{Y}_t \odot \mathbf{M}$. During diffusion reverse process, we update the unobserved variable \mathbf{Y}_t by modifying the original DDIM (Song et al., 2021a) sampling equation as follows:

$$\mathbf{Y}_{t-1} = \sqrt{\alpha_{t-1}} \left(\frac{\mathbf{Y}_t - \sqrt{1 - \alpha_t} \epsilon_\theta(\mathbf{Y}_t, t, \mathbf{c})}{\sqrt{\alpha_t}} \right) + \sqrt{1 - \alpha_{t-1}} \epsilon_\theta(\mathbf{Y}_t, t, \mathbf{c}) + w_1 (\mathbf{1} - \mathbf{M}) \odot (\mathbf{X}_t - \mathbf{Y}_t) + \mathbf{M} \odot (w_2 \epsilon_\theta(\mathbf{Y}_t, t, \mathbf{c}) - w_3 \epsilon_\theta(\mathbf{E}_t, t, \mathbf{c})), \quad (1)$$

where ϵ_θ denotes the pretrained noise prediction network of diffusion model, \mathbf{c} is the conditioning variable (e.g. text embedding), and w_1, w_2, w_3 are tunable hyperparameters. We briefly introduce our method in this section, and attach the full derivation in the Appendix.

3.2 PRELIMINARY: OBSERVED REGION PRESERVATION VIA SYNC-SDE

A representative approach tackling training-free versatile content generation is diffusion synchronization (Kim et al., 2024a; Lee et al., 2025). SyncSDE, which provides a probabilistic explanation of why diffusion synchronization works, models the conditional probability of \mathbf{X}_t given \mathbf{Y}_t, \mathbf{c} as:

$$p(\mathbf{X}_t | \mathbf{Y}_t, \mathbf{c}) := p(\mathbf{X}_t | \mathbf{Y}_t) \sim \mathcal{N}(\mathbf{Y}_t, w_1(1 - \alpha_t)(\mathbf{1} - \bar{\mathbf{M}})^{-1}), \quad (2)$$

with a hyperparameter w_1 and a diagonal precision matrix $\bar{\mathbf{M}}$, where observed and unobserved entries are set to 0 and 1, respectively. This conditional score is then substituted into the diffusion reverse

162 process, yielding the update rule:
 163

$$164 \quad \mathbf{Y}_{t-1} = \sqrt{\alpha_{t-1}} \left(\frac{\mathbf{Y}_t - \sqrt{1-\alpha_t} \epsilon_\theta(\mathbf{Y}_t, t, \mathbf{c})}{\sqrt{\alpha_t}} \right) + \sqrt{1-\alpha_{t-1}} \epsilon_\theta(\mathbf{Y}_t, t, \mathbf{c}) \\ 165 \quad + w_1 (\mathbf{1} - \mathbf{M}) \odot (\mathbf{X}_t - \mathbf{Y}_t), \quad (3)$$

166 where the effect of γ_t in the last term is absorbed into the value of w_1 .
 167

169 3.3 UNOBSERVED REGION OPTIMIZATION VIA LIKELIHOOD MAXIMIZATION

171 Despite the synchronization strategy discussed in Sec. 3.2, it often yields suboptimal results. Our
 172 analysis suggests that the guidance mechanism derived in Eq. 3 focuses solely on optimizing the
 173 observed region, $(\mathbf{1} - \mathbf{M}) \odot \mathbf{Y}_t$, without explicitly providing any information for the unobserved
 174 region, $\mathbf{M} \odot \mathbf{Y}_t$. In other words, SyncSDE (Lee et al., 2025) does not guarantee that the unobserved
 175 region will be harmonized with the observed content; instead, it just assumes that synchronization
 176 will naturally produce a plausible outcome. As shown in Figure 3 (w/o ALM column), it often fails to
 177 generate coherent outputs, where the unobserved regions frequently contain inconsistent or arbitrary
 178 content.

179 Based on the above analysis, we aim to optimize not only the observed region but also the unobserved
 180 region of \mathbf{Y}_t by imposing a novel sampling strategy. Our method builds upon the key philosophy of
 181 SyncSDE, which guides the reverse diffusion process with a conditional score function to preserve
 182 the observed region. At each diffusion timestep t , we introduce an additional term $\Delta \mathbf{Y}_t$, which
 183 is added into the update rule of Eq. 3. We design $\Delta \mathbf{Y}_t = \sum_{i=1}^N \Delta \mathbf{Y}_t^i$, where the sequence of
 184 $\{\Delta \mathbf{Y}_t^1, \Delta \mathbf{Y}_t^2, \dots, \Delta \mathbf{Y}_t^N\}$ is constructed to iteratively minimize the following objective:
 185

$$186 \quad -\lambda_1 \log p(\mathbf{X}_t, \mathbf{M} \mid \mathbf{Y}_t^i + \mathbf{M} \odot \Delta \mathbf{Y}_t^i, \mathbf{c}) - \lambda_2 \log p(\mathbf{X}_t, \mathbf{M}, \mathbf{Y}_t^i + \mathbf{M} \odot \Delta \mathbf{Y}_t^i \mid \mathbf{c}), \quad (4)$$

187 with λ_1 and λ_2 being scalar hyperparameters ($\lambda_1 > \lambda_2$). Note that $\mathbf{Y}_t^i = \mathbf{Y}_t^{i-1} + \mathbf{M} \odot \Delta \mathbf{Y}_t^{i-1}$, and
 188 the initial values are set as $\mathbf{Y}_t^1 = \mathbf{Y}_t$ and $\{\Delta \mathbf{Y}_t^i\}_{i=1}^N = \{\mathbf{0}\}_{i=1}^N$. We distinguish between the roles of
 189 conditional and joint likelihoods presented in Eq. 4. The conditional likelihood encourages contextual
 190 consistency by aligning the unobserved region with the observed region, whereas the joint likelihood
 191 enforces that the blended content lies within the manifold of data distribution, thereby harmonizing
 192 both regions. The coefficients λ_1 and λ_2 act as weights in a composite energy function (Song et al.,
 193 2021b), allowing adaptive balancing between two terms for better performance.

194 We define $f(\Delta \mathbf{Y}_t^i)$ as the objective defined in Eq. 4. By assuming $|\Delta \mathbf{Y}_t^i| \ll 1$, we apply a Taylor
 195 expansion around 0. Then by taking a gradient descent step on $\Delta \mathbf{Y}_t$ with step size 1, we obtain:
 196

$$197 \quad \Delta \mathbf{Y}_t^i = \mathbf{M} \odot (\lambda_1 \nabla_{\mathbf{Y}_t^i} \log p(\mathbf{X}_t, \mathbf{M} \mid \mathbf{Y}_t^i, \mathbf{c}) + \lambda_2 \nabla_{\mathbf{Y}_t^i} \log p(\mathbf{X}_t, \mathbf{M}, \mathbf{Y}_t^i \mid \mathbf{c})). \quad (5)$$

198 Using the Bayes rule, we factorize the conditional log-likelihood term into $p(\mathbf{X}_t, \mathbf{M}, \mathbf{Y}_t^i \mid \mathbf{c})$ and
 199 $p(\mathbf{Y}_t^i \mid \mathbf{c})$. Following Song et al. (2021b), the second term is calculated using the pretrained diffusion
 200 model:

$$201 \quad \nabla_{\mathbf{Y}_t^i} \log p(\mathbf{Y}_t^i \mid \mathbf{c}) \simeq -\frac{1}{\sqrt{1-\alpha_t}} \epsilon_\theta(\mathbf{Y}_t^i, t, \mathbf{c}) \quad (6)$$

203 For the first term, we assume that $p(\mathbf{X}_t, \mathbf{M}, \mathbf{Y}_t^i \mid \mathbf{c}) \simeq p(\mathbf{E}_t^i \mid \mathbf{c})$, yielding
 204

$$205 \quad \nabla_{\mathbf{Y}_t^i} \log p(\mathbf{E}_t^i \mid \mathbf{c}) = \nabla_{\mathbf{E}_t^i} \log p(\mathbf{E}_t^i \mid \mathbf{c}) \odot \mathbf{M} \simeq -\frac{1}{\sqrt{1-\alpha_t}} \epsilon_\theta(\mathbf{E}_t^i, t, \mathbf{c}) \odot \mathbf{M}. \quad (7)$$

207 Putting these together, the closed form formula for $\Delta \mathbf{Y}_t$ becomes
 208

$$209 \quad \Delta \mathbf{Y}_t^i = \mathbf{M} \odot (\lambda_1 (\epsilon_\theta(\mathbf{Y}_t^i, t, \mathbf{c}) - \epsilon_\theta(\mathbf{E}_t^i, t, \mathbf{c})) - \lambda_2 \epsilon_\theta(\mathbf{E}_t^i, t, \mathbf{c})). \quad (8)$$

210 3.4 ACCELERATION STRATEGY

212 From Eq. 8, we can choose λ_1 and λ_2 such that each $\Delta \mathbf{Y}_t^i$ remains sufficiently small, then perform
 213 N sequential iterations at every diffusion timestep. However, this iterative process is computationally
 214 expensive, since its runtime grows linearly with N . To address this, we adopt a *one-step approximation*
 215 strategy, which collapses the effect of multiple small updates into a single large step. For the rest
 of the derivation, we denote $\mathbf{Y}_t^i = \mathbf{Y}_t^{i-1} + \Delta \mathbf{Y}_t^{i-1}$ by definition of $\Delta \mathbf{Y}_t^{i-1}$.

216 **Claim 1.** $\Delta \mathbf{Y}_t^i$ is small enough for all $1 \leq i \leq N$. i.e. λ_1 and λ_2 are chosen such that $|\Delta \mathbf{Y}_t^i| \ll 1$.
 217 **Claim 2.** The noise prediction network ϵ_θ of the pretrained diffusion model is L -Lipschitz (Karras
 218 et al., 2022; Kim et al., 2024b).

219 Using these claims, we analyze the difference between $\Delta \mathbf{Y}_t^i$ and $\Delta \mathbf{Y}_t^{i+1}$:

$$\begin{aligned} 220 \|\Delta \mathbf{Y}_t^{i+1} - \Delta \mathbf{Y}_t^i\| \\ 221 &\leq \lambda_1 \|\epsilon_\theta(\mathbf{Y}_t^i + \Delta \mathbf{Y}_t^i, t, \mathbf{c}) - \epsilon_\theta(\mathbf{Y}_t^i, t, \mathbf{c})\| + (\lambda_1 + \lambda_2) \|\epsilon_\theta(\mathbf{E}_t^i + \Delta \mathbf{Y}_t^i, t, \mathbf{c}) - \epsilon_\theta(\mathbf{E}_t^i, t, \mathbf{c})\| \\ 223 &\leq L(2\lambda_1 + \lambda_2) \|\Delta \mathbf{Y}_t^i\| = O(\Delta \mathbf{Y}_t^i) \end{aligned} 224$$

225 From Claim 1, it follows that $\Delta \mathbf{Y}_t^{i+1} \simeq \Delta \mathbf{Y}_t^i$ for all i . Therefore, we approximate the iterative
 226 update with a 1-step approximation as follows:

$$227 \Delta \mathbf{Y}_t \simeq N \Delta \mathbf{Y}_t^1 = \mathbf{M} \odot (w_2 \epsilon_\theta(\mathbf{Y}_t, t, \mathbf{c}) - w_3 \epsilon_\theta(\mathbf{E}_t, t, \mathbf{c})), \quad (9) \\ 228$$

229 where we define $w_2 = N\lambda_1$ and $w_3 = N(\lambda_1 - \lambda_2)$. In practice, we empirically apply a decaying
 230 schedule to these hyperparameters, defined as:

$$231 w_i = \sigma_t w_i^{\text{init}}, \quad \sigma_t = \sqrt{\frac{1 - \alpha_{t-1}}{1 - \alpha_t}} \sqrt{1 - \frac{\alpha_t}{\alpha_{t-1}}} \quad (10) \\ 232$$

233 where σ_t follows the same definition as in DDPM (Ho et al., 2020). **We further demonstrate that**
 234 **the proposed acceleration strategy dramatically reduces the required runtime while maintaining the**
 235 **fidelity in Section 4.2.1 and Appendix F.**

236 4 EXPERIMENTS

237 4.1 IMPLEMENTATION DETAILS

238 We implement our method based on PyTorch (Paszke et al., 2019). For the image and video domains,
 239 we use a DDIM (Song et al., 2021a) sampler with 50 timesteps, while for the 3D human motion
 240 domain we follow the CondMDI setup, which employs a DDPM (Ho et al., 2020) sampler with 1,000
 241 timesteps. To ensure accurate gradient estimation of log-likelihood in Eq. 6 and Eq. 7, we do not
 242 employ classifier-free guidance (Ho & Salimans, 2021) during the calculation of Eq. 8. However, for
 243 fair comparison with baselines, we still apply classifier-free guidance in the reverse diffusion process
 244 of Eq. 3, consistent with all baselines. For SyncSDE (Lee et al., 2025), since the official codebase
 245 does not support image inpainting scenarios, we reproduced it.

269 Figure 2: Qualitative comparison of our method against state-of-the-art image inpainting methods (Ju
 270 et al., 2024; Zhuang et al., 2024; Lee et al., 2025; Avrahami et al., 2023; Manukyan et al., 2025)
 271 using diverse datasets. ALM shows superior performance compared to baselines.

270 4.2 VERSATILE CONTENT GENERATION
271

272 We comprehensively evaluate our approach on both inpainting and outpainting across diverse data
273 domains, highlighting its capability for versatile content generation. Specifically, we assess image
274 inpainting in Sec. 4.2.1, wide image generation through outpainting in Sec. 4.2.2. Beyond the image
275 domain, we extend our framework to human motion in Sec. 4.2.3, and further explore its applicability
276 to long video generation in Sec. 4.2.4.

277 For each table, we **bold** and underline the best and second-best results. The overall ranking (‘Rank’)
278 is calculated by first ranking each metric individually, averaging the ranks across various metrics, and
279 then ranking these averaged scores. For additional qualitative results, [please refer to our Appendix B](#)
280 [and Project page submission](#).

281 4.2.1 IMAGE INPAINTING
282

283 Table 1: Quantitative comparison on image inpainting task with state-of-the-art methods (Ju et al.,
284 2024; Zhuang et al., 2024; Lee et al., 2025; Avrahami et al., 2023; Manukyan et al., 2025) using
285 the AFHQ (Choi et al., 2020), CelebA-HQ (Karras et al., 2018), Seasons and Painters (Anoosheh
286 et al., 2018) dataset. Methods with * and \dagger denotes results obtained using pixel-level blending and
287 super-resolution, respectively.

288 Method	Training-free	AFHQ					CelebA-HQ				
		LPIPS (↓)	MSE (↓)	SSIM (↑)	CS (↑)	Rank (↓)	LPIPS (↓)	MSE (↓)	SSIM (↑)	CS (↑)	Rank (↓)
289 BrushNet	N	0.434	0.216	0.494	29.46	6	0.369	0.195	0.558	27.01	4
290 PowerPaint	N	0.428	0.217	0.502	<u>29.26</u>	5	<u>0.365</u>	0.203	0.568	26.84	4
291 SyncSDE	Y	0.414	0.172	<u>0.552</u>	28.80	<u>2</u>	0.390	0.159	0.588	<u>28.18</u>	3
292 BLD	Y	0.421	0.149	0.520	28.71	3	0.372	<u>0.130</u>	<u>0.611</u>	28.64	2
293 HD-Painter	Y	<u>0.398</u>	<u>0.146</u>	0.498	28.28	3	0.374	0.146	0.550	26.80	6
294 ALM (Ours)	Y	0.391	0.142	0.591	29.00	1	0.342	<u>0.125</u>	0.644	28.01	1
295 BrushNet*	N	0.389	0.201	<u>0.616</u>	<u>28.91</u>	2	<u>0.335</u>	0.183	<u>0.645</u>	26.82	2
296 HD-Painter* \dagger	Y	<u>0.368</u>	<u>0.136</u>	0.610	28.46	2	0.355	0.140	0.619	<u>27.48</u>	2
297 ALM* (Ours)	Y	0.321	<u>0.125</u>	0.709	29.11	1	0.297	<u>0.112</u>	0.723	27.70	1
298 Method	Training-free	Seasons					Painters				
		LPIPS (↓)	MSE (↓)	SSIM (↑)	CS (↑)	Rank (↓)	LPIPS (↓)	MSE (↓)	SSIM (↑)	CS (↑)	Rank (↓)
299 BrushNet	N	0.474	0.229	0.405	26.38	5	0.504	0.237	0.377	26.69	5
300 PowerPaint	N	0.483	0.249	0.403	26.22	6	0.523	0.247	0.379	26.95	6
301 SyncSDE	Y	0.483	0.197	<u>0.435</u>	27.75	<u>2</u>	0.546	0.194	<u>0.408</u>	28.18	3
302 BLD	Y	0.458	0.170	0.422	26.54	4	<u>0.497</u>	<u>0.163</u>	0.392	<u>27.37</u>	2
303 HD-Painter	Y	0.435	0.163	0.423	25.72	<u>2</u>	0.485	0.200	0.387	26.31	4
304 ALM (Ours)	Y	<u>0.456</u>	0.162	0.471	26.60	1	0.504	<u>0.153</u>	0.442	27.26	1
305 BrushNet*	N	0.396	0.202	<u>0.599</u>	<u>26.04</u>	2	<u>0.423</u>	0.216	<u>0.581</u>	26.08	2
306 HD-Painter* \dagger	Y	<u>0.382</u>	<u>0.142</u>	0.597	25.87	2	0.434	<u>0.184</u>	0.573	<u>26.37</u>	2
307 ALM* (Ours)	Y	0.350	<u>0.132</u>	<u>0.675</u>	26.56	1	0.361	<u>0.127</u>	0.680	<u>26.58</u>	1

308 **Comparison with State-of-the-Art methods.** We conducted a comprehensive comparison of our
309 method against a wide range of state-of-the-art inpainting techniques. The baselines include training-
310 based methods like BrushNet (Ju et al., 2024), PowerPaint (Zhuang et al., 2024) and training-free
311 method such as SyncSDE (Lee et al., 2025), Blended Latent Diffusion (Avrahami et al., 2023),
312 and HD-Painter (Manukyan et al., 2025) using the pretrained Stable Diffusion. By comparing our
313 method against SyncSDE (Lee et al., 2025), we provide strong supporting evidences for the analysis
314 represented in Sec 3.3. For our evaluation, we used four distinct datasets: AFHQ (Choi et al., 2020),
315 CelebA-HQ (Karras et al., 2018), Seasons, and Painters (Anoosheh et al., 2018). From each dataset,
316 we randomly sample 1,000 image-mask pairs to construct the test set. We measure the performance
317 using four commonly adopted metrics; LPIPS (Zhang et al., 2018), MSE, SSIM, and CLIP Score
318 (CS) (Radford et al., 2021). Since both ALM and SyncSDE require the sequence $\{\mathbf{X}_t\}_{t=0}^T$, we apply
319 DDIM (Song et al., 2021a) inversion as a preprocessing.

320 As summarized in Table 1, our method, ALM, demonstrates outstanding performance across all
321 baselines. Notably, it consistently outperforms both training-free and even training-based methods,
322 regardless of the dataset. Figure 2 visualizes the qualitative comparisons, where our method consis-
323 tently delivers superior visual quality. Our method also shows robust performance with diverse and
324 complex mask shapes, demonstrating its generalizability. **In addition, we emphasize that ALM is**
325 **robust to variations in hyperparameters choices, consistently achieving strong performance across**
326 **configurations, as detailed in Appendix D.** We further compare ALM with Stable Diffusion Inpainting
327 in Appendix B.1 and show that our method shows superior results. Finally, Appendix E demonstrates
328 that ALM effectively handles images conditioned on long and complex text prompts, highlighting its
329 performance across challenging scenarios.

Figure 3: Ablation study results. We show the effectiveness of ALM (Eq. 8), conditional likelihood term (Eq. 4), and joint likelihood term (Eq. 4) in each row, respectively.

Analyzing the effect of the ALM. We analyze the effect of ALM by comparing with a baseline that applies only the update rule in Eq. 3. As shown in Table 2, the proposed method shows consistent improvements across diverse datasets, with clear quantitative gains. Moreover, as illustrated in the first row of Figure 3, it effectively mitigates a key limitation of the existing diffusion synchronization framework (Lee et al., 2025), which tends to overemphasize observed regions. In contrast, by explicitly optimizing conditional and joint likelihood terms for unobserved regions, our approach produces globally coherent samples that align well with the given context.

We further assess the effectiveness of the conditional and joint likelihood terms in our ALM’s optimization objective (Eq. 4). As illustrated in the second and third rows of Figure 3, both terms are crucial for generating high-quality outputs. Specifically, the conditional likelihood term is more effective with a pretrained conditional model (e.g., Stable Diffusion), while the joint term has a greater impact on unconditional diffusion models. This demonstrates that incorporating both terms enables ALM to generalize effectively across diverse diffusion models.

Table 2: Quantitative ablation results evaluating the effect of ALM in image inpainting.

Method	AFHQ				CelebA-HQ				Seasons			
	LPIPS (↓)	MSE (↓)	SSIM (↑)	CS (↑)	LPIPS (↓)	MSE (↓)	SSIM (↑)	CS (↑)	LPIPS (↓)	MSE (↓)	SSIM (↑)	CS (↑)
w/o ALM (Eq. 3)	0.401	0.169	0.559	28.88	0.384	0.161	0.594	28.29	0.470	0.189	0.441	27.47
ALM (Ours, Eq. 1)	0.391	0.142	0.591	29.00	0.342	0.125	0.644	28.01	0.456	0.162	0.471	26.60

Ablation on acceleration strategy. We provide qualitative comparisons with and without the acceleration strategy in Figure 4. The visual quality remains consistent in both settings, showing that our acceleration strategy reduces computational cost without sacrificing performance. Further runtime analysis is provided in Appendix F.

Figure 4: Qualitative comparisons with and without the acceleration strategy. We emphasize that visual quality remains consistent across both setups.

Experiments across different backbones. To validate the robustness of ALM with respect to the underlying diffusion backbone, we conduct experiments with multiple diffusion models. We first adopt an unconditional diffusion model trained on CelebA-HQ (Karras et al., 2018) using the official checkpoint from RePaint (Lugmayr et al., 2022). As shown in Figure 5 (top), our method produces plausible inpainting results across diverse scenarios, including challenging cases such as aliasing-pattern and super-resolution masks.

We further evaluate using Stable Diffusion XL (Podell et al., 2024) architecture. As illustrated in Figure 5 (bottom), our method again delivers high-quality inpainting results. These demonstrate that

378 ALM is general and architecture-robust: across three different diffusion backbones—an unconditional
 379 model, Stable Diffusion, and Stable Diffusion XL—our method consistently shows high-quality
 380 performance, **effectively broadening the applicability of modern foundation models beyond standard**
 381 **generation tasks. We also compare ALM with SDXL-Inpainting in Appendix B.1 and show that our**
 382 **method achieves comparable performance.**

392 Figure 5: (Top) Qualitative results of image inpainting using the unconditional diffusion model (Lug-
 393 mayr et al., 2022) trained on CelebA-HQ (Karras et al., 2018) dataset. (Bottom) Inpainted images
 394 sampled from AFHQ (Choi et al., 2020) dataset using the pretrained SDXL (Podell et al., 2024).

395 **Analysis on computational cost.** We quantitatively evaluate the computational cost of ALM in
 396 comparison to baseline methods. Table 3 reports the required GPU memory (GB) and runtime (s) for
 397 generating a single image. Overall, ALM is fully training-free, and its computational cost remains
 398 on par with existing training-free baselines. With the results in Table 1, these findings highlight
 399 that ALM achieves the best trade-off between performance and computational efficiency among the
 400 various methods.

401 Table 3: Quantitative computational cost analysis across diverse baselines.

Method	Additional training cost	GPU Memory (GB) (\downarrow)	Runtime (s) (\downarrow)	LPIPS (\downarrow)
BrushNet	3 days with 8 V100 GPUs	4.73	3.189	0.434
PowerPaint	requires 8 A100 GPUs	5.54	4.089	0.428
SyncSDE	-	4.98	6.734	0.414
BLD	-	3.39	2.615	0.421
HD-Painter	-	29.07	38.840	<u>0.398</u>
ALM (Ours)	-	4.98	8.584	0.391
ALM w/o inversion	-	4.98	3.850	0.606

4.2.2 WIDE IMAGE GENERATION VIA OUTPAINTING

411 Beyond image inpainting, our approach also naturally extends to the outpainting task, enabling the
 412 synthesis of wide, high-resolution images. We employ an autoregressive image outpainting strategy
 413 to generate wide images. Starting from an 512×512 patch generated with the pretrained Stable
 414 Diffusion (Rombach et al., 2022), subsequent overlapping patches are iteratively synthesized via
 415 outpainting. The patches are overlapped such that the i -th patch is placed on top of the $(i - 1)$ -th one
 416 and decoded using the pretrained VAE (Kingma & Welling, 2013) decoder of Stable Diffusion. With
 417 a stride of 384 pixels, we generate seven patches in total, resulting in a 2048×512 resolution image.
 418 We compare our method against state-of-the-art diffusion synchronization approaches, including
 419 SyncTweedies (Kim et al., 2024a) and SyncSDE (Lee et al., 2025). We report FID (Heusel et al.,
 420 2017), KID (Bińkowski et al., 2018), Aesthetic Score (Schuhmann et al., 2022) to evaluate the fidelity
 421 of the generated image, and CLIP Score (Radford et al., 2021) to quantify text-image alignment.
 422 As shown in Table 4 and Figure 6, our methods achieves outstanding performance compared to the
 423 baselines. Since our approach is training-free and does not rely on specific mask priors, our approach
 424 exhibits high versatility, seamlessly generalizing to outpainting tasks.

425 Table 4: Quantitative comparison on wide image generation task with state-of-the-art methods (Kim
 426 et al., 2024a; Lee et al., 2025). KID (Bińkowski et al., 2018) metric is scaled by 10^3 .

Method	FID (\downarrow)	KID (\downarrow)	Aesthetic Score (\uparrow)	CLIP Score (\uparrow)	Rank (\downarrow)
SyncTweedies	108.73	61.08	<u>6.065</u>	33.16	3
SyncSDE	<u>106.81</u>	<u>58.79</u>	6.049	33.47	<u>2</u>
ALM (Ours)	102.30	46.01	6.086	<u>33.27</u>	1

Figure 6: Qualitative comparison of our method against state-of-the-art wide image generation methods (Kim et al., 2024a; Lee et al., 2025). While baseline-generated images often exhibit artifacts and blur, ALM produces wide images with higher fidelity and improved global coherence. For example, (Left) SyncSDE exhibits noticeable color inconsistencies and edge artifacts across patch boundaries, whereas ALM clearly alleviates these issues. (Right) SyncTweedies produces blurry regions on the left side of the image, and SyncSDE shows structural inconsistency in the upper-right area. In contrast, ALM generates a wide image with neither blurred nor inconsistent regions.

4.2.3 HUMAN MOTION INPAINTING

We demonstrate the versatility of our method by extending its application beyond images to 3D human motion data. Specifically, we tackle the task of human motion inpainting, where the goal is to reconstruct missing parts of a motion sequence. We evaluated the performance across two distinct scenarios: the “first-half prediction,” where the task is to predict the initial part of a sequence given only the latter half, and the “middle-half prediction,” where the model must fill in the central portion given the first and last quarters. We utilized a U-Net-based pre-trained diffusion model (Karunratanakul et al., 2023) for text-to-motion synthesis.

We compare our method against training-based method CondMDI (Cohan et al., 2024), and training-free methods like Reconstruction Guidance (Ho et al., 2022) and its Imputation-based variant (Tevet et al., 2023). For each inpainting scenario, we sample 1,000 motion sequences from the HumanML3D (Guo et al., 2022) dataset and report the average performance over 10 replications. We measure FID (Heusel et al., 2017), Matching Score, R-precision, and Diversity metrics. Table 5 illustrate that the proposed method achieves superior performance with high versatility across various human motion inpainting scenarios. In Figure 7, the given frames are highlighted in orange, while the inpainted frames generated by the model are shown in blue. We further conduct an ablation study, as presented in Table 6, demonstrating that ALM substantially contributes to these performance gains.

Figure 7: Qualitative result on human motion inpainting task.

486

487
488
489
Table 5: Quantitative comparison on human motion inpainting task with state-of-the-art baselines Co-
han et al. (2024); Ho et al. (2022) using the motion sequences sampled from HumanML3D (Guo
et al., 2022) dataset. Methods with * indicate results obtained with imputation (Tevet et al., 2023).

Method	Training-free	First half					Middle half				
		FID (↓)	Match. (↓)	R-Prec. (↑)	Diversity (↑)	Rank (↓)	FID (↓)	Match. (↓)	R-Prec. (↑)	Diversity (↑)	Rank (↓)
CondMDI	N	0.626	4.510	0.356	8.724	3	0.599	4.429	0.360	8.574	3
Recon. Gui.	Y	11.742	5.199	0.279	6.076	5	13.113	5.124	0.295	6.018	5
Recon. Gui.*	Y	3.738	4.359	0.360	7.745	3	4.390	4.383	0.362	7.589	4
Ours	Y	0.346	4.112	0.400	8.926	1	0.494	4.136	0.395	8.728	1
Ours*	Y	0.503	4.098	0.398	8.804	2	0.692	4.126	0.394	8.595	2

490

491
492
493
494
Table 6: Quantitative evaluation of ALM’s effect on human motion inpainting.

Method	FID (↓)	Skating Ratio (↓)	Trajectory Error (↓)	Keyframe Error (↓)
w/o ALM (Eq. 3)	0.412	0.121	0.917	0.518
ALM (Ours, Eq. 1)	0.346	0.118	0.907	0.386

495

496

4.2.4 LONG VIDEO GENERATION

500 We extend our versatility into the video domain by generating temporally long sequences. Analogous
 501 to the wide image generation task, we produce videos by autoregressively sampling multiple
 502 overlapping video patches along the temporal axis. For implementation, we employ the pretrained
 503 LaVie (Wang et al., 2025), a diffusion-based text-to-video model that generates 512×320 resolution
 504 videos in the first stage, producing 16 frames from a single text prompt. By setting a temporal
 505 stride of 8 and synthesizing a total of 12 patches, we generate a 104-frame video. Consecutive
 506 patches are overlaid along the temporal axis and decoded using LaVie’s pretrained VAE (Kingma &
 507 Welling, 2013) decoder. We visualize the generated long video sequences in Figure 8. As shown,
 508 ALM produces visually coherent and semantically consistent sequences, maintaining spatio-temporal
 509 continuity. Furthermore, Appendix E demonstrates that ALM remains effective even for videos with
 510 dynamic motions, highlighting its robustness in complex scenarios. Lastly, we compare our method
 511 against three baselines; FreeNoise (Qiu et al., 2024), SEINE (Chen et al., 2023), and SyncSDE (Lee
 512 et al., 2025) and present the results in Appendix G. We use a total of 250 video sequences for evalua-
 513 tion, each containing 104 frames. As shown, our method outperforms the baselines, emphasizing the
 514 effectiveness of our method.

515

516

517
518
519
520
521
522
523
524
Figure 8: Qualitative results of long video generation. We use the pretrained LaVie (Wang et al.,
525 2025), which generates 16 frame videos by default, and extend the synthesized videos to 104 frames
526 using ALM.

527

528

529
530
531
532
533
534
535
536
537
538
539
5 CONCLUSION

531 In this work, we introduce a novel, training-free sampling strategy for diffusion-based versatile
 532 content generation. Versatile content generation relies heavily on inpainting and outpainting, where
 533 diffusion models often struggle due to their limited generalization capacity, despite the fact that
 534 solving these problems gradually expands their applicability. Unlike prior approaches that require per-
 535 scenario tuning, our method is entirely training-free and can be generalized across diverse domains,
 536 thereby effectively mitigating the inherent limitations of diffusion models. Building on recent
 537 advances in diffusion synchronization, we synchronize observed content with unobserved variables
 538 by maximizing both joint and conditional likelihoods. Furthermore, we propose a computationally
 539 efficient acceleration strategy for likelihood maximization. Experimental results across diverse tasks
 and modalities demonstrate that our approach achieves state-of-the-art performance in versatile
 content generation.

540 REFERENCES
541

542 Asha Anoosheh, Eirikur Agustsson, Radu Timofte, and Luc Van Gool. Combogan: Unrestrained
543 scalability for image domain translation. In *CVPRW*, 2018.

544 Omri Avrahami, Ohad Fried, and Dani Lischinski. Blended latent diffusion. *ACM transactions on*
545 *graphics (TOG)*, 2023.

546 Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel. Multidiffusion: Fusing diffusion paths for
547 controlled image generation. 2023.

548 Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
549 gans. *ICLR*, 2018.

550 Xinyuan Chen, Yaohui Wang, Lingjun Zhang, Shaobin Zhuang, Xin Ma, Jiashuo Yu, Yali Wang,
551 Dahua Lin, Yu Qiao, and Ziwei Liu. Seine: Short-to-long video diffusion model for generative
552 transition and prediction. In *ICLR*, 2023.

553 Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis for
554 multiple domains. In *CVPR*, 2020.

555 Setareh Cohan, Guy Tevet, Daniele Reda, Xue Bin Peng, and Michiel van de Panne. Flexible motion
556 in-betweening with diffusion models. In *SIGGRAPH*, 2024.

557 Ciprian Corneanu, Raghudeep Gadde, and Aleix M Martinez. Latentpaint: Image inpainting in latent
558 space with diffusion models. In *WACV*, 2024.

559 Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li Cheng. Generating
560 diverse and natural 3d human motions from text. In *CVPR*, 2022.

561 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
562 trained by a two time-scale update rule converge to a local nash equilibrium. *NIPS*, 2017.

563 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *NeurIPS Workshop*, 2021.

564 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *NeurIPS*, 2020.

565 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
566 Fleet. Video diffusion models. *NeurIPS*, 2022.

567 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
568 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 2022.

569 Xuan Ju, Xian Liu, Xintao Wang, Yuxuan Bian, Ying Shan, and Qiang Xu. Brushnet: A plug-and-play
570 image inpainting model with decomposed dual-branch diffusion. In *ECCV*, 2024.

571 Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
572 improved quality, stability, and variation. *ICLR*, 2018.

573 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
574 based generative models. *NeurIPS*, 2022.

575 Korrawe Karunratanakul, Konpat Preechakul, Supasorn Suwajanakorn, and Siyu Tang. Guided
576 motion diffusion for controllable human motion synthesis. In *ICCV*, 2023.

577 Jaihoon Kim, Juil Koo, Kyeongmin Yeo, and Minhyuk Sung. Syncweedies: A general generative
578 framework based on synchronized diffusions. *NeurIPS*, 2024a.

579 Jihwan Kim, Junoh Kang, Jinyoung Choi, and Bohyung Han. Fifo-diffusion: Generating infinite
580 videos from text without training. *NeurIPS*, 2024b.

581 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv:1312.6114*, 2013.

582 Hyunjun Lee, Hyunsoo Lee, and Sookwan Han. Syncsde: A probabilistic framework for diffusion
583 synchronization. In *CVPR*, 2025.

594 Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
 595 Repaint: Inpainting using denoising diffusion probabilistic models. In *CVPR*, 2022.
 596

597 Hayk Manukyan, Andranik Sargsyan, Barsegh Atanyan, Zhangyang Wang, Shant Navasardyan, and
 598 Humphrey Shi. Hd-painter: high-resolution and prompt-faithful text-guided image inpainting with
 599 diffusion models. In *ICLR*, 2025.

600 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 601 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
 602 high-performance deep learning library. *NeurIPS*, 2019.

603

604 Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson image editing. In *Seminal Graphics
 605 Papers: Pushing the Boundaries, Volume 2*, pp. 577–582. 2023.

606 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 607 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 608 synthesis. *ICLR*, 2024.

609

610 Haonan Qiu, Menghan Xia, Yong Zhang, Yingqing He, Xintao Wang, Ying Shan, and Ziwei Liu.
 611 Freenoise: Tuning-free longer video diffusion via noise rescheduling. *ICLR*, 2024.

612 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 613 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 614 models from natural language supervision. In *ICML*, 2021.

615

616 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 617 resolution image synthesis with latent diffusion models. In *CVPR*, 2022.

618 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 619 image segmentation. In *International Conference on Medical image computing and computer-
 620 assisted intervention*, 2015.

621

622 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 623 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 624 open large-scale dataset for training next generation image-text models. *NeurIPS*, 2022.

625

626 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *ICLR*,
 627 2021a.

628

629 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 630 Poole. Score-based generative modeling through stochastic differential equations. *ICLR*, 2021b.

631

632 Charles M Stein. Estimation of the mean of a multivariate normal distribution. *The annals of Statistics*,
 1981.

633

634 Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Daniel Cohen-Or, and Amit H Bermano.
 635 Human motion diffusion model. *ICLR*, 2023.

636

637 Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphaël Marinier, Marcin Michalski, and
 638 Sylvain Gelly. Fvd: A new metric for video generation. 2019.

639

640 Fu-Yun Wang, Wenshuo Chen, Guanglu Song, Han-Jia Ye, Yu Liu, and Hongsheng Li. Gen-l-video:
 641 Multi-text to long video generation via temporal co-denoising. *arXiv:2305.18264*, 2023.

642

643 Yaohui Wang, Xinyuan Chen, Xin Ma, Shangchen Zhou, Ziqi Huang, Yi Wang, Ceyuan Yang, Yinan
 644 He, Jiashuo Yu, Peiqing Yang, et al. Lavie: High-quality video generation with cascaded latent
 645 diffusion models. *IJCV*, 2025.

646

647 Yiming Xie, Varun Jampani, Lei Zhong, Deqing Sun, and Huaizu Jiang. Omnicontrol: Control any
 648 joint at any time for human motion generation. *ICLR*, 2024.

649

650 Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
 651 Cutmix: Regularization strategy to train strong classifiers with localizable features. In *ICCV*, 2019.

648 Guanhua Zhang, Jiabao Ji, Yang Zhang, Mo Yu, Tommi S Jaakkola, and Shiyu Chang. Towards
649 coherent image inpainting using denoising diffusion implicit models. 2023.
650

651 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
652 effectiveness of deep features as a perceptual metric. In *CVPR*, 2018.

653 Junhao Zhuang, Yanhong Zeng, Wenran Liu, Chun Yuan, and Kai Chen. A task is worth one word:
654 Learning with task prompts for high-quality versatile image inpainting. In *ECCV*, 2024.
655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A DETAILED DERIVATION OF ALM
703704 A.1 PRELIMINARY: OBSERVED REGION PRESERVATION VIA SYNC SDE
705

706 A representative approach for versatile content generation is diffusion synchronization (Kim et al.,
707 2024a; Lee et al., 2025). SyncSDE, which provides a probabilistic explanation of why diffusion
708 synchronization works, generates content by introducing a conditional probability term that couples
709 different diffusion trajectories. Specifically, it factorizes the conditional score function of the diffusion
710 model used during the sampling of \mathbf{Y}_t as:

$$711 \nabla_{\mathbf{Y}_t} \log p(\mathbf{Y}_t | \mathbf{X}_t, \mathbf{c}) = \nabla_{\mathbf{Y}_t} \log p(\mathbf{Y}_t | \mathbf{c}) + \nabla_{\mathbf{Y}_t} \log p(\mathbf{X}_t | \mathbf{Y}_t, \mathbf{c}), \quad (11)$$

712 where the conditional probability of \mathbf{X}_t given \mathbf{Y}_t, \mathbf{c} is modeled as:

$$714 p(\mathbf{X}_t | \mathbf{Y}_t, \mathbf{c}) := p(\mathbf{X}_t | \mathbf{Y}_t) \sim \mathcal{N}(\mathbf{Y}_t, w_1(1 - \alpha_t)(\mathbf{1} - \bar{\mathbf{M}})^{-1}), \quad (12)$$

715 with a hyperparameter w_1 , and a diagonal precision matrix $\bar{\mathbf{M}}$, where the observed and unobserved
716 entries are set to 0 and 1, respectively. This conditional score is then substituted into the diffusion
717 reverse process, yielding the update rule:

$$719 \mathbf{Y}_{t-1} = \sqrt{\frac{\alpha_{t-1}}{\alpha_t}} \mathbf{Y}_t + (1 - \alpha_t) \gamma_t \nabla_{\mathbf{Y}_t} \log p(\mathbf{Y}_t | \mathbf{X}_t, \mathbf{c}), \quad (13)$$

721 where $\gamma_t = \sqrt{\alpha_{t-1}/\alpha_t} - \sqrt{(1 - \alpha_{t-1})/(1 - \alpha_t)}$. Finally, this leads to the following modified
722 update equation as follows:

$$724 \mathbf{Y}_{t-1} = \sqrt{\alpha_{t-1}} \left(\frac{\mathbf{Y}_t - \sqrt{1 - \alpha_t} \epsilon_\theta(\mathbf{Y}_t, t, \mathbf{c})}{\sqrt{\alpha_t}} \right) + \sqrt{1 - \alpha_{t-1}} \epsilon_\theta(\mathbf{Y}_t, t, \mathbf{c}) \\ 725 + w_1(\mathbf{1} - \mathbf{M}) \odot (\mathbf{X}_t - \mathbf{Y}_t), \quad (14)$$

727 where the effect of γ_t in the last term is absorbed into the value of w_1 .
728

729 A.2 UNOBSERVED REGION OPTIMIZATION VIA LIKELIHOOD MAXIMIZATION
730

731 Despite the synchronization strategy discussed in Sec. A.1, it often yields suboptimal results. Our
732 analysis suggests that the guidance mechanism derived in Eq. 14 focuses solely on optimizing the
733 observed region, $(\mathbf{1} - \mathbf{M}) \odot \mathbf{Y}_t$, without explicitly providing any information for the unobserved
734 region, $\mathbf{M} \odot \mathbf{Y}_t$. In other words, SyncSDE (Lee et al., 2025) does not guarantee that the unobserved
735 region will be harmonized with the observed content; instead, it just assumes that synchronization
736 will naturally produce a plausible outcome. To validate this analysis, we conduct an experiment on
737 image inpainting using the pretrained Stable Diffusion (Rombach et al., 2022). As shown in Figure 3
738 (1st row, “w/o ALM” columns), it often fails to generate coherent outputs, where the unobserved
739 regions frequently contain inconsistent or arbitrarily generated content that does not harmonize with
740 the observed region. In contrast, our method successfully synthesizes the unobserved region, with the
741 tailored sampling strategy which we detail in this section.

742 Based on the above analysis, we aim to optimize not only the observed region but also the unobserved
743 region of \mathbf{Y}_t by imposing a novel sampling strategy. Our method builds upon the key philosophy of
744 SyncSDE, which guides the reverse diffusion process with a conditional score function to preserve
745 the observed region. At each diffusion timestep t , we introduce an additional term $\Delta \mathbf{Y}_t$, which is
746 incorporated into the update rule of Eq. 14, to revise the reverse diffusion process as:

$$747 \mathbf{Y}_{t-1} = \sqrt{\alpha_{t-1}} \left(\frac{\mathbf{Y}_t - \sqrt{1 - \alpha_t} \epsilon_\theta(\mathbf{Y}_t, t, \mathbf{c})}{\sqrt{\alpha_t}} \right) + \sqrt{1 - \alpha_{t-1}} \epsilon_\theta(\mathbf{Y}_t, t, \mathbf{c}) \\ 748 + w_1(\mathbf{1} - \mathbf{M}) \odot (\mathbf{X}_t - \mathbf{Y}_t) + \Delta \mathbf{Y}_t. \quad (15)$$

750 We design $\Delta \mathbf{Y}_t = \sum_{i=1}^N \Delta \mathbf{Y}_t^i$, where the sequence of $\{\Delta \mathbf{Y}_t^1, \Delta \mathbf{Y}_t^2, \dots, \Delta \mathbf{Y}_t^N\}$ is constructed to
751 iteratively minimize the following objective:

$$753 -\lambda_1 \log p(\mathbf{X}_t, \mathbf{M} | \mathbf{Y}_t^i + \mathbf{M} \odot \Delta \mathbf{Y}_t^i, \mathbf{c}) - \lambda_2 \log p(\mathbf{X}_t, \mathbf{M}, \mathbf{Y}_t^i + \mathbf{M} \odot \Delta \mathbf{Y}_t^i | \mathbf{c}), \quad (16)$$

754 with λ_1 and λ_2 being scalar hyperparameters ($\lambda_1 > \lambda_2$). Note that $\mathbf{Y}_t^i = \mathbf{Y}_t^{i-1} + \mathbf{M} \odot \Delta \mathbf{Y}_t^{i-1}$,
755 and the initial values are set as $\mathbf{Y}_t^1 = \mathbf{Y}_t$ and $\{\Delta \mathbf{Y}_t^i\}_{i=1}^N = \{\mathbf{0}\}_{i=1}^N$. We distinguish between the

roles of conditional and joint likelihoods presented in Eq. 16. The conditional likelihood encourages contextual consistency by aligning the unobserved region with the observed region, whereas the joint likelihood enforces that the blended content lies within the support of full data distribution, thereby harmonizing both regions into a globally realistic sample. This separation enables our method to simultaneously preserve local consistency and guarantee global harmonization. The coefficients λ_1 and λ_2 act as weights in a composite energy function (Song et al., 2021b), allowing adaptive balancing between two terms for better performance.

We define $f(\Delta \mathbf{Y}_t^i)$ as the optimization objective defined in Eq. 4. By assuming $|\Delta \mathbf{Y}_t^i| \ll 1$ and applying a Taylor expansion around 0, we derive:

$$\begin{aligned} f(\Delta \mathbf{Y}_t^i) &\simeq -\lambda_1(\log p(\mathbf{X}_t, \mathbf{M} | \mathbf{Y}_t^i, \mathbf{c}) + (\mathbf{M} \odot \nabla_{\mathbf{Y}_t^i} \log p(\mathbf{X}_t, \mathbf{M} | \mathbf{Y}_t^i, \mathbf{c})))^\top \Delta \mathbf{Y}_t^i \\ &\quad - \lambda_2(\log p(\mathbf{X}_t, \mathbf{M}, \mathbf{Y}_t^i | \mathbf{c}) + (\mathbf{M} \odot \nabla_{\mathbf{Y}_t^i} \log p(\mathbf{X}_t, \mathbf{M}, \mathbf{Y}_t^i | \mathbf{c})))^\top \Delta \mathbf{Y}_t^i. \end{aligned} \quad (17)$$

Taking a gradient descent step with respect to $\Delta \mathbf{Y}_t$ with step size set to 1, we obtain:

$$\Delta \mathbf{Y}_t^i = \mathbf{M} \odot (\lambda_1 \nabla_{\mathbf{Y}_t^i} \log p(\mathbf{X}_t, \mathbf{M} | \mathbf{Y}_t^i, \mathbf{c}) + \lambda_2 \nabla_{\mathbf{Y}_t^i} \log p(\mathbf{X}_t, \mathbf{M}, \mathbf{Y}_t^i | \mathbf{c})). \quad (18)$$

We further factorize the conditional log-likelihood as follows:

$$\nabla_{\mathbf{Y}_t^i} \log p(\mathbf{X}_t, \mathbf{M} | \mathbf{Y}_t^i, \mathbf{c}) = \nabla_{\mathbf{Y}_t^i} \log p(\mathbf{X}_t, \mathbf{M}, \mathbf{Y}_t^i | \mathbf{c}) - \nabla_{\mathbf{Y}_t^i} \log p(\mathbf{Y}_t^i | \mathbf{c}). \quad (19)$$

Following Song et al. (2021b), the second term is calculated using the pretrained diffusion model:

$$\nabla_{\mathbf{Y}_t^i} \log p(\mathbf{Y}_t^i | \mathbf{c}) \simeq -\frac{1}{\sqrt{1-\alpha_t}} \epsilon_\theta(\mathbf{Y}_t^i, t, \mathbf{c}) \quad (20)$$

For the first term, we assume that $p(\mathbf{X}_t, \mathbf{M}, \mathbf{Y}_t^i | \mathbf{c}) \simeq p(\mathbf{E}_t^i | \mathbf{c})$, yielding

$$\nabla_{\mathbf{Y}_t^i} \log p(\mathbf{E}_t^i | \mathbf{c}) = \nabla_{\mathbf{E}_t^i} \log p(\mathbf{E}_t^i | \mathbf{c}) \odot \mathbf{M} \simeq -\frac{1}{\sqrt{1-\alpha_t}} \epsilon_\theta(\mathbf{E}_t^i, t, \mathbf{c}) \odot \mathbf{M}. \quad (21)$$

Putting these together, the closed form formula for $\Delta \mathbf{Y}_t$ becomes

$$\Delta \mathbf{Y}_t^i = \mathbf{M} \odot (\lambda_1(\epsilon_\theta(\mathbf{Y}_t^i, t, \mathbf{c}) - \epsilon_\theta(\mathbf{E}_t^i, t, \mathbf{c})) - \lambda_2 \epsilon_\theta(\mathbf{E}_t^i, t, \mathbf{c})). \quad (22)$$

A.3 ACCELERATION STRATEGY

From the relation

$$|\Delta \mathbf{Y}_t^i| \leq |\lambda_1| \|\epsilon_\theta(\mathbf{Y}_t^i, t, \mathbf{c}) - \epsilon_\theta(\mathbf{E}_t^i, t, \mathbf{c})\| + |\lambda_2| \|\epsilon_\theta(\mathbf{E}_t^i, t, \mathbf{c})\|, \quad (23)$$

we can choose λ_1 and λ_2 such that each $\Delta \mathbf{Y}_t^i$ remains sufficiently small, then perform N sequential iterations at every diffusion timestep. However, this iterative process is computationally expensive, since its runtime grows linearly with N . To address this, we adopt a *one-step approximation* strategy, which collapses the effect of multiple small updates into a single large step. Intuitively, instead of gradually refining the unobserved region through lots of iterations, we directly approximate the outcome of the full optimization in a single update, significantly reducing computation time while preserving the intended correction. For the rest of the derivation, we denote $\mathbf{Y}_t^i = \mathbf{Y}_t^{i-1} + \Delta \mathbf{Y}_t^{i-1}$ by definition of $\Delta \mathbf{Y}_t^{i-1}$.

Claim 1. $\Delta \mathbf{Y}_t^i$ is small enough for all $1 \leq i \leq N$. i.e. λ_1 and λ_2 are chosen such that $|\Delta \mathbf{Y}_t^i| \ll 1$.

Claim 2. The noise prediction network ϵ_θ of the pretrained diffusion model is L -Lipschitz (Karras et al., 2022; Kim et al., 2024b).

Using these claims, we analyze the difference between $\Delta \mathbf{Y}_t^i$ and $\Delta \mathbf{Y}_t^{i+1}$:

$$\begin{aligned} \|\Delta \mathbf{Y}_t^{i+1} - \Delta \mathbf{Y}_t^i\| &\leq \|(\lambda_1(\epsilon_\theta(\mathbf{Y}_t^i + \Delta \mathbf{Y}_t^i, t, \mathbf{c}) - \epsilon_\theta(\mathbf{E}_t^i + \Delta \mathbf{Y}_t^i, t, \mathbf{c})) - \lambda_2 \epsilon_\theta(\mathbf{E}_t^i + \Delta \mathbf{Y}_t^i, t, \mathbf{c})) \\ &\quad - (\lambda_1(\epsilon_\theta(\mathbf{Y}_t^i, t, \mathbf{c}) - \epsilon_\theta(\mathbf{E}_t^i, t, \mathbf{c})) - \lambda_2 \epsilon_\theta(\mathbf{E}_t^i, t, \mathbf{c}))\| \\ &= \|\lambda_1(\epsilon_\theta(\mathbf{Y}_t^i + \Delta \mathbf{Y}_t^i, t, \mathbf{c}) - \epsilon_\theta(\mathbf{Y}_t^i, t, \mathbf{c})) - (\lambda_1 + \lambda_2)(\epsilon_\theta(\mathbf{E}_t^i + \Delta \mathbf{Y}_t^i, t, \mathbf{c}) - \epsilon_\theta(\mathbf{E}_t^i, t, \mathbf{c}))\| \\ &\leq \lambda_1 \|\epsilon_\theta(\mathbf{Y}_t^i + \Delta \mathbf{Y}_t^i, t, \mathbf{c}) - \epsilon_\theta(\mathbf{Y}_t^i, t, \mathbf{c})\| + (\lambda_1 + \lambda_2) \|\epsilon_\theta(\mathbf{E}_t^i + \Delta \mathbf{Y}_t^i, t, \mathbf{c}) - \epsilon_\theta(\mathbf{E}_t^i, t, \mathbf{c})\| \\ &\leq L(2\lambda_1 + \lambda_2) \|\Delta \mathbf{Y}_t^i\| \\ &= O(\Delta \mathbf{Y}_t^i) \end{aligned} \quad (24)$$

810 From Claim 1, it follows that $\Delta \mathbf{Y}_t^{i+1} \simeq \Delta \mathbf{Y}_t^i$ for all i . Therefore, we approximate the iterative
 811 update with a 1-step approximation as follows:
 812

$$\begin{aligned} 813 \Delta \mathbf{Y}_t &\simeq N \Delta \mathbf{Y}_t^1 = \mathbf{M} \odot (N \lambda_1(\epsilon_\theta(\mathbf{Y}_t, t, \mathbf{c}) - \epsilon_\theta(\mathbf{E}_t, t, \mathbf{c})) - N \lambda_2 \epsilon_\theta(\mathbf{E}_t, t, \mathbf{c})) \\ 814 &= \mathbf{M} \odot (w_2 \epsilon_\theta(\mathbf{Y}_t, t, \mathbf{c}) - w_3 \epsilon_\theta(\mathbf{E}_t, t, \mathbf{c})), \end{aligned} \quad (25)$$

815 where we define $w_2 = N \lambda_1$ and $w_3 = N(\lambda_1 - \lambda_2)$. In practice, we empirically apply a decaying
 816 schedule to these hyperparameters, defined as:
 817

$$818 w_i = \sigma_t w_i^{\text{init}}, \quad \sigma_t = \sqrt{\frac{1 - \alpha_{t-1}}{1 - \alpha_t}} \sqrt{1 - \frac{\alpha_t}{\alpha_{t-1}}} \quad (26) \\ 819$$

820 where σ_t follows the same definition as in DDPM (Ho et al., 2020). For all experiments, we set the
 821 hyperparameter value to satisfy $w_1^{\text{init}} = w_3^{\text{init}}$.
 822

824 B ADDITIONAL EXPERIMENTAL RESULTS

826 In this section, we present an additional versatile content generation result with experimental details.
 827

828 B.1 IMAGE INPAINTING

830 We visualize additional image inpainting results using images brought from the AFHQ (Choi et al.,
 831 2020), CelebA-HQ (Karras et al., 2018), Seasons, and Painters (Anoosheh et al., 2018) dataset in
 832 Figure 10. We use the pretrained Stable Diffusion (Rombach et al., 2022) v1-5 checkpoint for the
 833 experiment. Note that we bring inpainting masks from the experimental setup of RePaint (Lugmayr
 834 et al., 2022). In addition, the masked source image is provided as input, which follows the standard
 835 image inpainting setup. As shown, our method achieves superior inpainting performance in diverse
 836 scenarios. For the blending operation (denoted * as in Table 1), we follow the setting of BrushNet (Ju
 837 et al., 2024), where the binary mask is first blurred using a Gaussian filter before blending.
 838

839 **Comparison with Stable Diffusion Inpainting.** We employ Stable Diffusion Inpainting (Rombach
 840 et al., 2022) as an additional baseline and compare with ALM. As shown in Table 7, our method
 841 consistently outperforms Stable Diffusion Inpainting. Experimental setups are identical as reported
 842 in Sec. 4.2.1.

843 Table 7: Quantitative comparison of our method against Stable Diffusion Inpainting (Rombach et al.,
 844 2022) on CelebA-HQ (Karras et al., 2018) and Painters (Anoosheh et al., 2018) dataset.

845 Method	Training-free	846 CelebA-HQ				847 Painters			
		848 LPIPS (↓)	849 MSE (↓)	850 SSIM (↑)	851 CS (↑)	852 LPIPS (↓)	853 MSE (↓)	854 SSIM (↑)	855 CS (↑)
856 Stable Diffusion Inpainting	N	0.356	0.130	0.570	26.29	0.452	0.163	0.391	26.06
857 ALM (Ours)	Y	0.342	0.125	0.644	28.01	0.504	0.153	0.442	27.26

849 **Comparison with SDXL-Inpainting.** We apply ALM to the SDXL, one of the most widely used
 850 diffusion models, and compare it with SDXL-Inpainting in Table 8. Our method achieves comparable
 851 performance, demonstrating that ALM can immediately upgrade pretrained image generation models
 852 to perform high-fidelity versatile content generation purely through our training-free mechanism.
 853

854 Table 8: Quantitative comparison of our method against SDXL-Inpainting (Podell et al., 2024) on
 855 CelebA-HQ (Karras et al., 2018) and Painters (Anoosheh et al., 2018) dataset.

857 Method	Training-free	858 CelebA-HQ				859 Painters			
		860 LPIPS (↓)	861 MSE (↓)	862 SSIM (↑)	863 CS (↑)	864 LPIPS (↓)	865 MSE (↓)	866 SSIM (↑)	867 CS (↑)
868 SDXL-Inpainting	N	0.286	0.046	0.693	27.11	0.338	0.052	0.609	26.77
869 ALM (Ours)	Y	0.315	0.105	0.710	27.78	0.422	0.133	0.618	27.50

870 **Failure cases analysis.** We present failure cases of ALM in Figure 9, where the synthesized
 871 unobserved regions are not fully harmonized with the observed content. We hypothesize that this
 872 issue arises from the limited capacity of the pretrained Stable Diffusion. To mitigate this limitation,
 873

864 we fine-tune the model on a specific dataset. Here, considering the high computational cost of
 865 full U-Net fine-tuning, we instead adopt LoRA (Hu et al., 2022) with a rank of 4 and attach the
 866 resulting weights to the pretrained Stable Diffusion. Interestingly, this lightweight tuning successfully
 867 addresses the observed limitations. **This demonstrates that our framework is even compatible with**
 868 **and can benefit from existing fine-tuning techniques.**

870
 871 Figure 9: Failure cases of the proposed method. These limitations can be effectively addressed
 872 through lightweight per-dataset LoRA (Hu et al., 2022) training.
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

966 Figure 10: Qualitative results of image inpainting using the pretrained Stable Diffusion (Rombach
967 et al., 2022) on diverse datasets (Choi et al., 2020; Karras et al., 2018; Anoosheh et al., 2018).

968
969
970
971

972 B.2 WIDE IMAGE GENERATION
973

974 We used 9 prompts with 50 images per each prompt for evaluation. Figure 11 visualizes diverse
975 samples of wide images generated with ALM using the pretrained Stable Diffusion (Rombach et al.,
976 2022) v2-1-base checkpoint. Our method effectively generates visually plausible images.
977

1002 Figure 11: Qualitative results of wide image generation. We use the pretrained Stable Diffusion (Rom-
1003 bach et al., 2022) to generate 2048×512 sized wide image.
1004

1005 B.3 LONG VIDEO GENERATION
1006

1007 Figure 12 shows additional video sequences generated by combining ALM with the pretrained
1008 LaVie (Wang et al., 2025) checkpoint. The sequence length is extended from 16 frames to 104 frames.
1009 We also provide the video sequences in the submitted Project page.
1010

1024 Figure 12: Qualitative results of long video generation. We use the pretrained LaVie (Wang et al.,
1025 2025), which by default generates 16-frame videos, and extent them to 104 frames using ALM.
1026

1026
1027

B.4 HUMAN MOTION INPAINTING

1028
1029
1030
1031
1032
1033

Figure 13 illustrates qualitative results of human motion inpainting under two scenarios: “first-half prediction” (1st–2nd row) and “middle-half prediction” (3rd–4th row), using the pretrained U-Net-based human motion diffusion model (Karunratanakul et al., 2023). ALM effectively reconstructs the unobserved parts of the human motion sequences. We visualize the given frames in **orange**, and the synthesized frames in **blue**. For better visualization, we also provide the full motion sequences in the Project page of supplementary material.

1034
1035
1036
1037
1038
1039
1040
1041
1042
10431076
1077
1078
1079

Figure 13: Qualitative results of human motion inpainting. We show first-half inpainting (1st–2nd row) and middle-half completion scenario (3rd–4th row) using the pretrained U-Net-based human motion diffusion model (Karunratanakul et al., 2023).

1080

B.5 HUMAN MOTION IN-BETWEENING

1081

1082 In this section, we show additional application of ALM. Especially, we evaluate the proposed
 1083 method on human motion in-betweening task and compare with baselines (Ho et al., 2022; Cohan
 1084 et al., 2024). In the case of human motion in-betweening, we provide one frame every 10 frames,
 1085 and the model aims to predict the intermediate sequences. Basically, we follow the experimental
 1086 setup discussed in Section 4.2.3. We report the measured metrics in Table 9, where our method
 1087 outperforms Reconstruction Guidance and shows comparable performance with the training-based
 1088 method, CondMDI.

1089

1090 Table 9: Quantitative comparison on human motion in-betweening task with state-of-the-art base-
 1091 lines Cohan et al. (2024); Ho et al. (2022) using the sequences sampled from HumanML3D (Guo
 1092 et al., 2022) dataset. Methods with * indicate results obtained with imputation (Tevet et al., 2023).

Method	Training-free	FID	Matching Score	R-Precision	Diversity	Rank
CondMDI	N	0.131	<u>4.071</u>	<u>0.407</u>	9.218	1
Reconstruction Guidance	Y	1.965	4.293	<u>0.372</u>	8.105	5
Reconstruction Guidance*	Y	1.703	4.270	0.376	8.217	4
Ours	Y	<u>0.828</u>	4.081	0.399	<u>8.721</u>	3
Ours*	Y	0.943	4.034	0.411	8.679	2

1093

1094

1095

1096

1097

1098

C USAGE OF LARGE LANGUAGE MODELS

1099

1100

1101 We used Large Language Models to correct grammatical errors and enhance the overall quality of
 1102 writing.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134 **D ANALYSIS ON HYPERPARAMETER SENSITIVITY**
1135

1136 We introduce three hyperparameters: w_1 , w_2 and w_3 . However, in practice, we fix $w_1 = w_3$ for all
1137 experiments and practical usage, yielding only two hyperparameters. We now demonstrate that ALM
1138 is robust under variations of these hyperparameters through additional experiments conducted on the
1139 image inpainting task.

1140 We sweep w_1 over $[0.5, 1, 1.5]$, and w_2 over $[0.001, 0.005, 0.01]$ and provide the corresponding
1141 quantitative results in Table 10 as well as qualitative comparisons in Figure 14. As shown, our method
1142 consistently maintains strong performance across all tested configurations, thereby confirming the
1143 robustness of the proposed method.

1144
1145 Table 10: Quantitative analysis of hyperparameter sensitivity on AFHQ (Choi et al., 2020) and
1146 CelebA-HQ (Karras et al., 2018) datasets using the pretrained Stable Diffusion (Rombach et al.,
1147 2022).

Method	AFHQ				CelebA-HQ			
	LPIPS (↓)	MSE (↓)	SSIM (↑)	CS (↑)	LPIPS (↓)	MSE (↓)	SSIM (↑)	CS (↑)
Baseline (Best)	0.414	0.172	0.552	28.80	0.372	0.130	0.611	28.64
ALM ($w_1=1.0, w_2=0.001$)	0.388	0.146	0.582	28.91	0.340	0.129	0.634	28.04
ALM ($w_1=1.0, w_2=0.005$)	0.391	0.142	0.591	29.00	0.342	0.125	0.644	28.01
ALM ($w_1=1.0, w_2=0.01$)	0.400	0.138	0.597	29.07	0.349	0.123	0.651	27.99
ALM ($w_1=0.5, w_2=0.005$)	0.402	0.159	0.578	28.82	0.359	0.137	0.627	28.05
ALM ($w_1=1.5, w_2=0.005$)	0.389	0.136	0.594	29.04	0.340	0.121	0.648	28.04
Source (Masked)	(1.0, 0.001)	(1.0, 0.005)	(1.0, 0.01)	(0.5, 0.005)	(1.5, 0.005)			

1162 Figure 14: Qualitative result of the proposed method on 5 different hyperparameter values (w_1, w_2).
1163 The images are generated using the pretrained Stable Diffusion (Rombach et al., 2022).

1164 **E APPLICATION OF ALM ON COMPLEX SCENARIOS**

1165 In this section, we qualitatively show ALM’s performance on challenging scenarios. We first
1166 provide the visualizations of long video generation results with dynamic motions in Figure 15,
1167 further highlighting the versatility of our method. We further show that our method maintains high
1168 performance even when the source prompt is extremely long and packed with semantic details, in
1169 Figure 16.

1170
1171 Figure 15: Qualitative results of ALM on long video generation task with videos containing dynamic
1172 motions. We use the pretrained LaVie (Wang et al., 2025) for video generation.

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197

1204 “A photorealistic, high-quality
1205 close-up photograph of a cat, captured
1206 with a professional DSLR camera in
1207 soft natural light. The fur is detailed
1208 and textured, with individual hairs
1209 visible. Its eyes are sharp, reflective,
1210 and expressive, showing clear
1211 highlights. Shallow depth of field
1212 creates a smooth bokeh background.
1213 Warm, balanced colors, realistic
1214 shadows.”

1204 “A photorealistic, high-quality
1205 close-up photograph of a dog, captured
1206 with a professional DSLR camera in soft natural light. The fur is
1207 detailed and textured, with individual
1208 hairs visible. Its eyes are sharp,
1209 reflective, and expressive, showing
1210 clear highlights. Shallow depth of
1211 field creates a smooth bokeh
1212 background. Warm, balanced colors,
1213 realistic shadows.”

1204 “A meticulously captured,
1205 high-resolution photograph of a
1206 captivating painting. The image
1207 showcases the artwork’s intricate
1208 brushwork, vibrant color palette, and
1209 delicate textural details. Every stroke
1210 and nuance of the artist’s technique is
1211 preserved with stunning clarity. The
1212 lighting highlights the subtle
1213 dimensionality and rich pigments,
1214 bringing the painted scene to life
1215 through the lens”

1216 “An epic, sweeping, high-definition
1217 photograph of a breathtaking natural
1218 landscape. The vast expanse reveals
1219 rolling forms and serene features,
1220 bathed in soft, ethereal light. Verdant
1221 textures carpet the terrain, leading the
1222 eye towards distant, majestic horizons
1223 under an expansive sky. Every
1224 element contributes to a sense of
1225 profound tranquility and
1226 awe-inspiring grandeur, captured with
1227 impeccable clarity.”

1216 “A high-quality, photorealistic portrait
1217 of a woman face, captured with a
1218 professional camera in soft natural
1219 light. Her skin texture is detailed and
1220 natural, with subtle pores and smooth
1221 contours. Her eyes are sharp and
1222 expressive with clean reflections. The
1223 framing is close-up, using shallow
1224 depth of field to create a gentle bokeh
1225 background. Balanced colors, soft
1226 shadows”

1216 “High-quality, photorealistic portrait
1217 of a man’s face, captured with a
1218 professional camera in soft natural
1219 light. Detailed natural skin texture,
1220 subtle pores, smooth contours. Sharp,
1221 expressive eyes with clean reflections.
1222 Close-up framing, shallow depth of
1223 field, gentle bokeh background.
1224 Balanced colors, soft shadows.”

1231 Figure 16: Qualitative result of ALM on complex scenes generated from extremely long and complex
1232 source prompts. We use Stable Diffusion XL (Podell et al., 2024) for image generation.

1233
1234
1235
1236
1237
1238
1239
1240
1241

1242 F QUALITATIVE ABLATION ON THE PROPOSED ACCELERATION STRATEGY
12431244 We provide qualitative comparisons with and without the acceleration strategy. Notably, the visual
1245 quality remains consistent across both setups, demonstrating that the proposed acceleration strategy
1246 effectively reduces the computational cost while maintaining the overall performance.1247
1248 Figure 17: Qualitative comparisons with and without the acceleration strategy. We emphasize that
1249 visual quality remains consistent across both setups. This demonstrates that the acceleration strategy
1250 effectively reduces the computational cost without performance degradation.
12511252 In Table 11, we also show the effectiveness of the proposed acceleration strategy by measuring the
1253 required computational cost. As shown, acceleration strategy leads to a significant reduction in
1254 runtime.
12551256 Table 11: Ablation on acceleration strategy in terms of computational cost.
1257

Method	GPU Memory (GB) (↓)	Runtime (s) (↓)
ALM (Ours)	4.98	8.58
ALM w/o acceleration ($N = 1000$)	4.98	1836.23

1258 G COMPARISON ON LONG VIDEO GENERATION
12591260 We compare the proposed method for long video generation against three baselines; FreeNoise (Qiu
1261 et al., 2024), SEINE (Chen et al., 2023), and SyncSDE (Lee et al., 2025) using the pretrained LaVie
1262 model (Wang et al., 2025). For evaluation, we adopt FVD (Unterthiner et al., 2019), KVD, and
1263 CLIP (Radford et al., 2021) text-video similarity. We use a total of 250 video sequences for evaluation,
1264 each containing 104 frames. We show the quantitative evaluation result in Table 12. As shown, our
1265 method outperforms the baselines, emphasizing the effectiveness of our method. Note that we scale
1266 the value of FVD and KVD by 1/1000. We also visualize the qualitative comparison in Figure 18.
12671268 Table 12: Quantitative comparison of long video generation with FreeNoise (Qiu et al., 2024),
1269 SEINE (Chen et al., 2023), and SyncSDE (Lee et al., 2025) using the pretrained Lavie Wang et al.
1270 (2025) model.
1271

Method	FVD (↓)	KVD (↓)	CS (↑)
FreeNoise	2.552	4.360	31.08
SEINE	3.650	6.611	30.43
SyncSDE	<u>2.505</u>	<u>5.635</u>	31.18
ALM (Ours)	2.487	4.219	31.12

1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Figure 18: Qualitative comparisons in the task of long video generation. We compare our method with FreeNoise (Qiu et al., 2024), SEINE (Chen et al., 2023), and SyncSDE (Lee et al., 2025). Our method shows superior performance compared to the baselines, while baselines struggle to generate temporally consistent outcomes.

Figure 19: Frame-by-frame visualization of the long video generated by ALM and SEINE (Chen et al., 2023). Our method well preserves the temporal identity and evolution of the smoke structure, while SEINE induces abnormal structural reformation between adjacent frames.

Figure 20: Additional qualitative comparisons in the task of long video generation. We compare our method with FreeNoise (Qiu et al., 2024), SEINE (Chen et al., 2023), and SyncSDE (Lee et al., 2025). Our method shows superior performance compared to the baselines, while baselines struggle to generate temporally consistent outcomes.