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ABSTRACT

Vision Transformer (ViT)-based foundation models have shown impressive per-
formance on broad tasks but struggle in fine-grained applications that depend on
local texture. This challenge stems from their lack of inductive biases toward
localized visual features, a critical gap for tasks in graphics and vision. To in-
vestigate this, we introduce a base-to-novel generalization framework that iso-
lates texture sensitivity while controlling for dataset scale and application-specific
constraints. Our analysis reveals that ViTs exhibit a pronounced deficiency in
recognizing local textures, while demonstrating a preference for global textures
presented at large spatial scales. To understand the origin of this bias, we con-
duct a systematic study across training, data, and architectural factors, focusing
on texture disentanglement, spatial scale sensitivity, and noise robustness. We
further employ representational analysis to expose ViTs’ limitations in modeling
fine-grained texture patterns. Our work provides actionable insights for improv-
ing the inductive biases of ViT-based foundation models, informing robust texture
representation in graphics applications.

1 INTRODUCTION

Foundation models Bommasani et al.|(2021);|Li et al.| (2020; [2021)); |Yao et al.|(2021); Radford et al.
(2019); |[OpenAll (2023)), especially large-scale, multimodal pre-trained architectures, have demon-
strated strong performance across a variety of downstream tasks. However, they continue to exhibit
limitations in fine-grained applications where subtle visual distinctions are critical. Recent ViT-
based vision models have primarily focused on global semantic understanding. Yet many core prob-
lems in computer graphics, such as material classification, video understanding, and photorealistic
rendering, rely heavily on accurate modeling of fine-grained, spatially localized texture features.
For example, CLIP [Radford et al.| (2021)), a widely used vision-language model, underperforms in
tasks that demand fine-grained discrimination, such as distinguishing between car models, flower
species, or aircraft types, where nuanced visual differences are essential. This limitation arises
from the inherent challenge of learning transferable and invariant representations that capture such
domain-specific nuances [Zhou et al.| (2022)); Derakhshani et al.| (2023). Robust interpretation and
disentanglement of texture information are crucial for applications ranging from texture-aware scene
segmentation to physically-based appearance rendering. As ViT architectures become increasingly
integrated into graphics pipelines, understanding their inductive biases and representational limita-
tions is essential.

Although ViTs |Dosovitskiy et al.| (2021) excel at modeling global dependencies, they theoretically
lack the inductive biases necessary for capturing local texture features. Different from convolutional
neural networks (CNNs), ViTs do not inherently exhibit translation equivariance or locality bias,
two properties critical for detecting and processing fine-grained, spatially localized textures Julesz
(1981)); ) Amadasun & King (1989); [Bajcsy| (1973); Tamura et al.[(1978)). Translation equivariance
enables CNNs to recognize patterns regardless of spatial position, while locality bias emphasizes
nearby pixel relationships, enabling effective modeling of intricate texture details. Local textures
often represent distinctive visual characteristics and can appear throughout an image, defined by
specific spatial arrangements and fine-scale patterns. The absence of these inductive biases in ViTs
hinders their ability to identify and generalize local textures, especially in zero-shot settings where
such features are underrepresented or unseen during training. This raises two key questions: How
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can we empirically validate the lack of local texture bias in ViTs? And what strategies could mitigate
this limitation to improve texture-aware generalization?

One intuitive approach for evaluating texture understanding involves training models on multimodal
datasets that pair images with textual descriptions of textures. This enables analysis of how effec-
tively Vision Transformers (ViTs) and convolutional neural networks (CNNs) associate language
with visual texture. However, due to their self-attention mechanisms and sequence-based architec-
ture, ViTs tend to exhibit greater adaptability in text-related tasks compared to CNNs. Moreover,
ViT-based foundation models like CLIP Radford et al.| (2021), which are pre-trained on large-scale
image-text datasets, are inherently optimized for multimodal integration. In contrast, traditional
CNN s typically require auxiliary components, such as LSTMs Hochreiter & Schmidhuber] (1997)
or transformer-based encoders [Vaswani et al.[(2017), to process text. This architectural asymmetry
introduces a potential bias in comparative evaluations, as performance differences may reflect text-
handling capabilities rather than genuine differences in texture association. An alternative validation
strategy involves adversarial attacks targeting texture features, enabling empirical comparison of the
robustness of ViTs and CNNs. However, results from such methods may be highly sensitive to the
specific attack types and experimental settings, limiting their generalizability. Additionally, the qual-
ity and diversity of training data are critical for reliable evaluation. Insufficient or unrepresentative
texture samples can compromise the validity of experimental findings and reduce their applicability
to real-world scenarios.

To assess whether Vision Transformers (ViTs) lack an inductive bias toward local texture features,
we first define a model as exhibiting texture bias if it prioritizes texture over shape, and shape bias if
it does the opposite |Geirhos et al.|(2019). We design targeted experiments to evaluate whether ViTs
inherently underperform in texture recognition and processing. To control for dataset scale and class
overlap, factors that can confound model performance, we introduce a base-to-novel generalization
framework. Different from existing work that evaluates ViTs on large-scale datasets, we leverage
Navon [Navon| (1977) dataset, which inherently exhibit two levels of visual features: global shape
(the large letter) and local texture (the repetition of the smaller letters). This hierarchical composition
makes them well-suited for analyzing a model’s sensitivity to texture information. We partition
the dataset into base and novel classes, training models on the base classes and testing on unseen
novel ones. This setup better simulates real-world zero-shot scenarios commonly encountered by
multimodal pre-trained models. Drawing an analogy to the Leaning Tower of Pisa experiment,
we “drop” a lead ball (ViT-B/16) and a feather (ResNet-50) in a shared zero-shot environment,
revealing, in a controlled and interpretable manner, that ViTs lack the inductive bias required for
robust texture representation.

Having established that Vision Transformers (ViTs) lack an inherent inductive bias toward local tex-
ture features, we proceed with a detailed investigation of the factors influencing feature preference
within ViTs. Our findings indicate that ViTs are more likely to prioritize texture when such features
are global rather than localized. This observation highlights the limitations of categorizing ViTs
as purely texture- or shape-biased without accounting for the spatial scale of features. To quantify
the impact of different training conditions on texture sensitivity, we introduce a systematic evalua-
tion framework that rigorously assesses supervision objectives, dataset size, training duration, and
data augmentation strategies. In parallel, we implement a representational analysis experiment to
probe internal ViT activations across layers, revealing how spatial locality and semantic abstraction
evolve throughout the network. These analyses provide a principled and reproducible framework for
evaluating the structural limitations of ViT-based vision models and informing the development of
texture-aware foundation model architectures for downstream applications. In summary, we make
the following contributions:

* We introduce the Leaning Tower of Pisa experiment, demonstrating that ViT-B-16 and
ResNet-50, despite differences in training data, exhibit similarly poor zero-shot perfor-
mance, revealing ViT’s lack of inductive bias toward local texture features.

* We analyze data and time efficiency, showing that ViTs, despite lacking a local texture bias,
strongly favor large-scale global texture features.

* We conduct an empirical analysis of training objectives, demonstrating that self-supervised
generative methods substantially improve texture recognition of ViTs by learning semanti-
cally structured representations.
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* We analyze the impact of data augmentation on texture bias in ViTs, showing that center
cropping amplifies global texture preference; augmentations such as Cutout and Gaussian
noise further reinforce global texture bias.

2 RELATED WORK

Geirhos Style Transfer Navon ImageNet-C
cat bottle C L dog bird

elephant ‘ dog B F ) fog . gla§§ blur
Figure 1: Representative examples from the three datasets, organized by shape (top) and texture
(bottom). Each dataset highlights distinct texture characteristics: GST emphasizes global textures,
Navon targets local textures, and ImageNet-C incorporates global texture corruptions.

Visual Biases in CNNs and ViTs. CNNs show asymmetric visual sensitivity: they are robust to
distortions that make images nearly unrecognizable to humans, such as grid-based warping, and can
even outperform humans on ImageNet images with removed foregrounds|Zhu et al.|(2016); |[Brendel
& Bethge| (2019). Yet, they remain vulnerable to imperceptible perturbations Fawzi & Frossard
(2015)); Ballester & Araujo| (2016)); [Dodge & Karam| (2017)); [RichardWebster et al.| (2018); (Geirhos
et al. (2018));/Azulay & Weiss|(2018); Hendrycks & Dietterich| (2018)); Baker et al.| (2018)); [Hosseini
& Poovendran|(2018);/Alcorn et al.|(2019); Barbu et al.| (2019). Despite such differences, ImageNet-
trained CNNs share several perceptual and representational traits with human vision; for instance,
distances in their feature space align with human similarity judgments, and their representations

are widely used to model primate visual cortex activity (2014); [Khaligh-Razavi &

Kriegeskorte| (2014); [Cadieu et al| (2014); [Rajalingham et al.| (2018); Johnson et al.| (2016); [Zhang
et al.[(2018)). Still, key divergences remain, especially in confusion patterns. CNNs tend to rely more
P p

on texture than shape in object recognition, contradicting the traditional view of human shape-based
recognition |Geirhos et al.| (2019). This texture bias stems largely from dataset statistics [Hermann
let al| (2020). In contrast, Vision Transformers (ViTs) rely more on shape features Naseer et al.
(2021)). This study presents the first large-scale, multi-dataset empirical analysis of texture bias in
Vision Transformers (ViTs), distinguishing between global and local biases. It fills a key gap in the
literature by systematically examining the effects of self-supervised objectives, data augmentation,
and architectures.

Bridging the Inductive Bias Gap in ViTs. CNNs excel at leveraging spatial hierarchies and local
context through convolutional operations [LeCun et al.| (2002); [Krizhevsky et al|(2012);

& Zisserman|(2014));[Szegedy et al|(2015)); He et al.| (2016);|Huang et al.|(2017); Wang et al.|(2020),
offering inherent translation invariance and locality, key for tasks like object detection [Zagoruyko

& Komodakis| (2016); Xie et al.| (2017); |[Da1 et al.| (2017); Zhu et al.| (2019). In contrast, ViTs
use self-attention to model long-range dependencies, enabling stronger global understanding (e.g.,
object relationships, scene semantics, and multi-object interactions), better multimodal integration,
and improved scalability on large datasets [Dosovitskiy et al.| (2021)); Touvron et al.| (2021); Wang
let al| (2021)); Wu et al| (2021); [Liu et al| (2021b); | Xu et al.| (2021); Graham et al.| (2021);|Chu et al.

(2021). As aresult, ViTs are increasingly supplanting CNNs in areas such as object detection, video
understanding, and multimodal learning. However, ViTs lack inherent translation invariance and
local sensitivity, inductive biases vital for robust object recognition. With increasing depth, their
features grow more abstract and less interpretable, hindering performance on fine-grained tasks.
To address these limitations, studies have proposed hybrid architectures that incorporate CNN-like

inductive biases into ViTs|Carion et al.|(2020); (2020); Zhu et al.| (2020); Sun et al.| (2021);
Beal et al| (2020); [Zheng et al| (2021)); Han et al.| (2021). These approaches include modifying
ViT architectures to enhance local sensitivity [Yuan et al| (2021); [Liu et al.| (2021a); [Wang et al.
and integrating convolutional components to leverage the complementary strengths

of both paradigms [Chen et al| (2022); [Peng et al.| (2021); [Li et al.| (2022); [Xiao et al.| (2021);
et al.| (2022); Dat et al.| (2021). For example, Conformer’s feature coupling unit for fusing CNN
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Table 1: Comparison of Representative ViT and CNN Models in Base-to-Novel Generaliza-
tion. We evenly partition the Navon dataset, characterized by local textures, into base and novel
classes.Results show mean accuracy over three runs; “HM” indicates harmonic mean.

ResNet-50 ViT-B-16
Base 7.83% +- 0.09% 71.20% +- 0.75%
Novel 8.47% +- 0.82% 8.30% +- 2.26%
HM 8.18% +- 0.48% 13.46% +- 3.95%

and ViT features Peng et al| (2021), Mobile-Former’s bidirectional integration of MobileNet and
ViT components (Chen et al.| (2022), Next-ViT’s balanced ratio of convolutional and self-attention
blocks [Li et al.| (2022), and CMT’s sequential combination of CNN and ViT modules |Xiao et al.
(2021). Optimized training strategies are another viable way, such as DeiT’s knowledge distillation
from CNN teachers|Touvron et al.[(2021)). To guide improvements to ViT-based models, we present
the Leaning Tower of Pisa experiment, which first demonstrates ViT’s lack of bias toward local
texture features. Building on this insight, we explore design principles to mitigate these limitations.

3 OVERALL METHODOLOGY

To demonstrate the absence of inductive bias for local texture features in Vision Transformers (ViTs),
we introduce base-to-novel generalization scenarios, ensuring that test distributions differ from train-
ing distributions and isolating architectural behavior from dataset scale effects. To systematically
analyze ViTs’ texture and shape biases, we adopt a multi-faceted framework incorporating diverse
training objectives, data augmentation strategies, and architectural variants. This framework en-
ables us to investigate how model design, training dynamics, and data properties jointly shape fea-
ture representations across layers. Our comprehensive analysis lays the groundwork for developing
ViT-based models capable of learning transferable, fine-grained visual representations.

Datasets. We use three datasets, each designed to isolate specific aspects of visual recognition and
enable a comprehensive analysis of model behavior across visual variations (see Figure[I). The GST
dataset contains 1,200 images generated via neural style transfer, combining the content (shape) of
one natural image with the style (texture) of another Geirhos et al.| (2019). The Navon dataset
probes global and local patterns using classic Navon figures, where a large letter (global shape) is
composed of smaller letters (local texture) |Navon! (1977). Shape and texture differ only in scale,
offering a controlled test of visual hierarchy sensitivity. The ImageNet-C dataset contains corrupted
versions of ImageNet images, treating each corruption as a texture while retaining the original class
as the shape label [Hendrycks & Dietterich! (2018)).

Evaluation metrics. We define a model as texture-biased if it classifies GST images based on texture
in over 50% of cases; otherwise, it is shape-biased. Shape match refers to the accuracy when the
shape matches the ground-truth label in the GST dataset. Stylized ImageNet|Geirhos et al.| (2018)) is
not used for evaluation, as ViTs inherently capture global features well, different from CNNs, which
benefit from such training.

4 L ACK OF INDUCTIVE BIAS FOR LOCAL TEXTURE FEATURES IN VITS

To examine the inherent texture bias in Vision Transformers (ViTs), we adopt a base-to-novel gen-
eralization framework. While ViTs effectively model global dependencies, they lack the inductive
bias needed to capture localized texture features, often characterized by fine spatial detail and spatial
invariance. Accurate texture recognition is closely tied to translation equivariance and localized pro-
cessing, yet demonstrating this empirically remains challenging. ViT performance is highly sensitive
to data scale, complicating the generalization of results. Moreover, dataset biases and constrained
experimental setups can undermine reliability. To mitigate these factors, we employ a controlled
zero-shot setting: models are trained on base classes using a 16-shot learning protocol and evaluated
on novel classes with distinct distributions. We focus on the Navon dataset, specifically designed to
disentangle texture and shape features. In our texture recognition task, all other visual variables are
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held constant. Navon figures are evenly split into base and novel categories. To highlight architec-
tural differences between ViTs and CNNs, we use ViT-B-16 for its strong local feature sensitivity
via small patch embeddings, and ResNet-50, with substantially fewer parameters, as a representative
CNN baseline. We report only texture recognition accuracy, isolating the models’ ability to capture
textures without interference from other visual factors.

Table[T|shows that ViT-B-16 achieves substantially higher accuracy on base classes than ResNet-50
(71.20% vs. 7.83%), a disparity we term the “lead ball vs. feather” effect, highlighting the impact of
pretraining scale, ViT-B-16 is pretrained on the large-scale JFT-300M dataset, whereas ResNet-50
uses a much smaller dataset, limiting its transferability. However, in the zero-shot setting, referred
to here as the “Leaning Tower of Pisa” scenario, both models converge to similar performance on
novel classes (8.3%). While ResNet-50 underperforms across the board, ViT, despite extensive
pretraining, fails to acquire robust, invariant features, resulting in a pronounced generalization gap
between base and novel classes. This performance collapse highlights ViT’s lack of inductive bias
for local texture features, which becomes especially detrimental in data-sparse scenarios. Such
biases, crucial for recognizing fine-grained textures, are better encoded in CNNs like ResNet, even
with fewer parameters. ViT’s marked decline from base to novel classes reveals a fundamental
limitation in learning transferable, invariant texture representations.

Our study highlights the absence of inductive biases for local texture features in Vision Transformers
(ViTs), as demonstrated through base-to-novel class evaluations. In contrast, convolutional neural
networks (CNNs) inherently emphasize local feature processing and exhibit translation invariance,
properties that strongly impact texture perception. The lack of such inductive biases in ViTs ad-
versely affects the generalization performance of multimodal pretraining models, especially under
distribution shifts. For instance, CLIP exhibits reduced effectiveness in fine-grained, zero-shot clas-
sification tasks, where local texture features are critical. These findings establish a foundation for
advancing foundation models. In the following sections, we investigate which training strategies can
mitigate ViTs’ limitations in capturing local texture features.

5 DECODING TEXTURE AND SHAPE BIASES IN VITS
Given ViTs’ inherent lack of inductive biases o] o e

for local texture features, a key question arises: =
Can this limitation be mitigated through in- . ’ H}//__

creased data or extended training? To ex-

plore this, we conduct an empirical study on

ViTs’ learning dynamics, focusing on their

Data efficiency

ability to distinguish between shape and tex-
ture. We train ViTs on the GST, Navon, and
ImageNet-C datasets, varying data proportions
(5% to 100%) and training durations (10 to
100 epochs). In row 2 of Figure 2| we re-
port peak performance achieved using the full
training set. Validation accuracies are system-
atically evaluated to assess texture and shape
recognition performance across different train-
ing regimes.

Figure 2: ViT Performance on Texture and
Shape Recognition. We report data efficiency
and time efficiency, showing shape accuracy
(blue) and texture accuracy (orange). Results av-
Figure [2] shows that in data efficiency experi- eraged over 5-fold cross-validation; shaded areas
ments, ViTs exhibit lower accuracy and higher indicate standard deviation.

variance in texture recognition on the Navon

dataset compared to GST (Row 1). This con-

trast highlights the architectural limitations of ViTs. The Navon dataset is explicitly designed to
disentangle local texture from global shape features, while GST consists of artworks featuring large-
scale textures, such as brush strokes and abstract forms, that benefit from ViTs’ global receptive
field. ViTs perform well on GST but struggle with Navon, revealing a clear bias toward global
texture features and difficulty in capturing fine-grained, localized textures.

In the time efficiency experiments, extending training duration gradually improves ViTs’ texture
recognition performance on the Navon dataset (Row 2), with a corresponding reduction in perfor-



Under review as a conference paper at ICLR 2026

Table 2: Training objectives and fundamental architecture influence texture preference. We
train ViT-B-16 on different objectives (rows). During this training, we keep the ViT blocks frozen,
whereas the fully connected layers are reinitialized and subjected to retraining.

Objective Shape Bias Shape Match Texture Match

AlexNet ResNet-50 ViT-B-16 AlexNet ResNet-50 ViT-B-16 AlexNet ResNet-50 ViT-B-16
Supervised 29.8% 21.9% 48.2% 17.5% 13.5% 12.5% 41.2% 48.2% 14.6%
Rotation 47.0% 32.3% 21.1% 21.6% 14.2% 6.3% 24.3% 29.8% 25.0%
BigBiGAN - 31.9% 85.4% - 17.7% 60.8% - 37.7% 23.8%

mance variance. In contrast, the ImageNet-C dataset exhibits atypical trends across both data and
time efficiency settings. Under 5-fold cross-validation, ViTs show high variance in shape recog-
nition, driven by the dataset’s noise-based perturbations. These distortions disrupt global image
statistics without introducing coherent or semantically meaningful textures, unlike GST or Navon.
Moreover, ViTs are prone to overfitting during prolonged training on ImageNet-C. These observa-
tions suggest ViTs may be more sensitive to the quality of texture information rather than its mere
presence.

Figure 2| presents our second key contribution: an analysis of data and time efficiency in relation to
ViTs’ texture preferences. While ViTs lack inductive biases for local texture features, they exhibit
a strong preference for large-scale global textures. Unlike CNNs, which benefit from translation
equivariance and local connectivity, ViTs rely on self-attention to capture global dependencies. This
makes them well-suited for recognizing broad texture patterns but less effective at detecting fine-
grained, localized textures. As such, it is insufficient to classify ViTs as strictly shape or texture
biased; instead, they show a clear preference for texture when it manifests at a global scale. More-
over, our results show that extended training duration is more effective than increasing dataset size
in improving ViTs’ performance on local texture recognition tasks. These findings emphasize the
critical influence of both training time and data characteristics on ViT performance.

6 TRAINING OBJECTIVES ON TEXTURE BIAS IN VITS

The texture recognition capabilities of ViTs are  Tuple 3: Center cropping biases ViT toward
shaped not only by their architecture but also  gjobal texture features. We analyze ViT feature
by their training objectives. To investigate this  preferences under random and center cropping,
effect, we compare ViTs trained using stan- revealing a consistent shift toward global texture
dard supervised learning with those trained us- sensitivity with center cropping.

lng Self—superVISed Ob]CCtIVCS, Wthh dlffer fun_ Model Shape Bias Shape Match Texture Match
damentally from ClaSSIﬁcatlon taSkS. Thls com- Random Center Random Center Random  Center
parison aims to reveal how training paradigms  AlexNet 282% 315%  164% 193%  418% 321%
infl ViTs’ f f VGG16 112% 158%  76% 107%  60.1% 57.1%
influence Vil's’ feature preterences. ResNet-50 195% 284%  117% 163%  484% 41.1%
. ) . . o Inception-ResNetv2  23.1% 27.9%  151% 198%  502% 512%
We train ViTs under various learning objectives Vit 55.3% 469%  S08% 467%  963% 99.2%

and evaluate their shape and texture biases us-

ing the GST dataset, which, unlike ImageNet,

explicitly disentangles shape and texture. While ImageNet top-1 accuracy reflects classification per-
formance, GST enables measurement of shape bias, shape match, and texture match to quantify
feature preference.

Classifying Image Rotations. In this method, input images are randomly rotated by 0, 90, 180, or
270 degrees, and the model is trained to predict the applied rotation, with a chance-level accuracy
of 25% |Gidaris et al.| (2018)); [Kolesnikov et al.|(2019). This unsupervised learning task is designed
to probe whether the model develops a deep understanding of object structure, including spatial
configuration, orientation, and semantic context.

BigBiGAN Framework. The BigBiGAN framework, an extension of the BIGAN model, jointly
trains a generator, discriminator, and encoder to enable bidirectional mapping between images and
latent vectors [Donahue et al.| (2016); [Dumoulin et al.| (2016). Unlike standard discriminators, Big-
BiGAN’s discriminator assesses both image realism and the consistency between images and their
latent representations, enhancing the semantic quality of the learned features.
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Results. As illustrated in Table 2] our study examines how different training objectives influence
texture bias in ViTs. We find that self-supervised methods improve texture recognition in the ViT-
B-16 model, with Rotation yielding a slightly stronger effect in isolation. Notably, BigBiGAN
not only enhances global texture recognition but also leads to a substantial increase in local shape
recognition, raising the shape bias from 48.2% to 85.4%. We explore several possible reasons for
BigBiGAN’s dual enhancement of texture and shape recognition. First, as a generative model, Big-
BiGAN learns detailed local feature representations, which may increase shape sensitivity in ViTs.
Second, its learned representations tend to disentangle structural elements, potentially aiding the
model in identifying local shape information more explicitly. Third, adversarial training in BigBi-
GAN may confer robustness to noise and perturbations, encouraging ViTs to rely on more stable
structural features such as shape. Finally, the high quality of BigBiGAN features may align more
closely with human perceptual preferences, which often prioritize shape over texture. These factors
suggest that BigBiGAN’s impact on ViT bias stems from robust feature learning that complements
the global attention mechanisms of the ViT architecture.

7 DATA AUGMENTATION ON TEXTURE BIAS IN VITS

Center-crop data augmentation increases
texture bias. We investigate how different data
augmentation strategies influence model biases,
especially with respect to local versus global
visual feature preferences. Random crop-
ping introduces spatial variability by extracting

Table 4: Cutout and Gaussian noise augmen-
tations enhance texture preference. The Rotate
augmentation applies 90°, 180°, or 270° rotations
with a 50% probability. Differences are statisti-
cally significant (p < 0.05).

X Augmentation ~ Shape Bias ~ Shape Match ~ Texture Match

patches from random locations and scales, en- -
couraging models to learn fine-grained, local- ~ 5acline 18.21% 12.50% 14.58%
¢ ging g , Rotate 53.57% 6.25% 5.83%
1;ed textu.re patterns. In contrast, center crop-  cutout 34.21% 10.00% 22.929
ping consistently samples from the central re-  Sobel filtering 45.24% 8.75% 10.00%
gion of the image, potentially biasing models  Gaussian blur 65.22% 6.25% 3.33%
Color distort. 50.00% 6.25% 6.25%
toward more global shape or structure features. Gaussian noise 31.03% 12.08% 28750

To probe these effects in Vision Transformers
(ViTs), we adopt a standard random resized
crop augmentation |Geirhos et al| (2019), sampling regions covering 8% to 100% of the original
image area with aspect ratios between 0.75 and 1.33. All cropped images are resized to 224 x 224
pixels. We compare shape bias under both random-crop and center-crop settings across a range of
architectures, including AlexNet [Krizhevsky et al.| (2012), VGG16 |Simonyan & Zisserman! (2014),
ResNet-50 [He et al.|(2016), and Inception-ResNet v2 |Szegedy et al.|(2017).

As shown in Table [3] ViTs exhibit a stronger
global texture bias under center cropping but
shift toward more localized feature recognition
when trained with random cropping. In con-
trast, CNNs show the opposite trend: random
cropping increases texture bias, while center

Table 5: Effect of combined augmentations
on texture preference. Augmentations are ap-
plied cumulatively with 50% probability (e.g., “+
Gaussian blur” includes both color distortion and
blur). “Stronger” increases this probability to
75%, while “longer” denotes 10 training epochs.

cropping reduces it [Hermann et al.|(2020). This

di hichliehts h i 1 diff Augmentation(s) Shape Bias ~ Shape Match ~ Texture Match
tvergence highlights how architectural ditter- =y o 48.21% 12.50% 14.58%
ences mediate the impact of identical data aug-  , cojor distortion 50.00% 6.25% 6.25%
mentation strategies. Unlike CNNs, ViTs lack  + Gaussian blur 34.88% 6.25% 7.50%
inductive biases such as locality and transla- ~ +Gaussian noise 53.57% 6.25% 8.33%
. S Kine th o +Min. crop of 64% 51.72% 6.25% 6.67%
tion equivariance, making them more sensitive . gyonger aug. 50.00% 6.95% 6.25%
to augmentation choices during training. Their  + Longer training 47.06% 5.83% 7.92%

self-attention mechanism favors global context

modeling, which reinforces global texture bias

when trained on center-cropped images. However, random cropping introduces spatial diversity
and varied local patterns, which may encourage ViTs to rely more on localized features, potentially
including edges, contours, or structural cues, marking a shift from their typical global focus.

Appearance-modifying data augmentation on texture bias. We extend our analysis of data aug-
mentation effects on ViT texture preferences by incorporating conditions that closely resemble hu-
man visual perception. Unlike many computer vision datasets, which assume ideal lighting, human
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vision routinely operates under varied and suboptimal conditions. To simulate this, we evaluate
six augmentation techniques and their combinations, applying them to 50% of randomly selected
samples in each mini-batch Chen et al.[(2020). This setup enables us to assess how realistic visual
perturbations affect ViT performance and adaptability under more ecologically valid conditions.

As shown in Table[d] ViT performance exhibits strong sensitivity to dataset size. On smaller datasets
such as GST, learning transferable features becomes more difficult, especially under diverse data
augmentation strategies, resulting in lower and more variable shape and texture match scores. Cer-
tain augmentations, Rotate, Color Distortion, and Gaussian Blur, enhance ViTs’ sensitivity to local
shape features, whereas Cutout and Gaussian Noise tend to improve recognition of global texture
patterns. Notably, Color Distortion achieves balanced performance across both shape and texture
tasks, suggesting it encourages more uniform feature extraction across spatial scales. A closer
analysis reveals that augmentations like Rotate and Gaussian Blur disrupt global texture features,
prompting ViTs to focus more on local shape information. In contrast, Color Distortion modifies
visual appearance without altering structural content, enabling a more even integration of shape and
texture representations.

We further examine how combinations of data augmentations influence feature preferences. As
shown in Table [5] sequentially applying Color Distortion followed by Gaussian Noise markedly
improves local shape recognition. Interestingly, extending training duration reduces local shape bias
in ViTs, in contrast to CNNs, where prolonged training often reinforces this bias. This divergence
highlights that longer training does not uniformly enhance abstraction or generalization; rather, its
effects are highly dependent on the underlying model architecture and inductive biases. In ViTs,
extended training promotes higher-level abstraction, whereas in CNNs, it tends to amplify reliance
on readily accessible local features. These findings indicate that carefully selected augmentation
strategies can partially compensate for architectural limitations in ViTs and should be adapted to the
specific model and task.

8 ARCHITECTURAL INFLUENCES ON TEXTURE AND SHAPE

To assess how model capacity influences ViTs’  Typle 6: Relationship between parameter scale
ability to distinguish between texture and shape  apqg feature preference in ViTs. “B” and "L’
features, we conduct a comparative analysis denote base and large models; 16 and 32 indicate
across ViT architectures of varying complex- patch sizes. Larger ViTs show a stronger prefer-

ity. As shown in Table [6] increasing the num-  ¢pce for global texture features.
ber of parameters leads to improved global tex-

ture recognition but reduced efficiency in lo-

Augmentation Shape Bias  Shape Match ~ Texture Match

cal shape recognition. Larger ViTs, with more VITB-16 48.21% 12.50% 14.58%

. ’ ’ ViT-B-32 36.00% 7.92% 14.17%
attention heads and deeper layers, are better i1y _j6 29.41% 6.25% 16.67%
equipped to model global context, which bene-  viT-L-32 36.36% 9.58% 19.17%

fits tasks involving large-scale texture patterns.
Howeyver, this comes at the cost of diminished
sensitivity to fine-grained, spatially localized features. Additionally, increased model capacity
heightens the risk of overfitting, especially to noise or high-frequency artifacts. These findings
underscore a key limitation of ViT scaling: as capacity grows, the ability to capture local texture
features deteriorates. Our results highlight the need for architectural innovations that enhance ViTs’
proficiency in fine-grained texture modeling.

9 REPRESENTATIONS OF TEXTURE AND SHAPE IN VITS

To better understand how different layers in Vision Transformers (ViTs) contribute to distinguishing
between local shape and global texture features, we conduct a layer-wise analysis of different ViTs
models. While ViTs are generally biased toward global textures, we hypothesize that early and inter-
mediate layers may still retain sensitivity to local shape information. We employ linear multinomial
logistic regression classifiers to decode shape and texture representations from layers block0, block4,
and block11 of frozen ViTs. As shown in Figure |3} intermediate layers achieve up to 67.50% ac-
curacy in local shape recognition, indicating their ability to capture localized features. Our findings
reveal a dual processing capability in ViTs: early and intermediate layers emphasize local shape
patterns, while deeper layers increasingly encode abstract, global texture features. This reflects a
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Table 7: Comparison of various transformer backbones in Base-to-Novel Generalization.

Model #Params Baseline BaseAcc Baseline NovelAcc Baseline Gap Augmented NovelAcc Improvement (%)
Swin-Tiny 28.8M 72.0% 9.1% 62.9% 14.6% +5.5
PVT-Tiny 13.2M 68.5% 5.6% 62.9% 10.8% +5.2
DeiT-Small 22.0M 70.0% 7.1% 62.9% 13.1% +6.0
DINO-ViT-Base 86.0M 73.5% 10.6% 62.9% 16.6% +6.0
T2T-ViT-14 21.5M 69.5% 6.6% 62.9% 11.4% +4.8

hierarchical progression in representation, where different layers specialize in distinct visual prop-
erties. For a wide range of downstream tasks requiring fine-grained local feature representations,
ViT-based foundation models’ intermediate layers enable effective feature extraction.

10 TEXTURE BIAS ACROSS VIT-BASED MODELS

To assess the generalizability of our findings,

we further evaluate five ViT-based architectures urse vra32

on local texture recognition. Swin-Tiny uses Ry R
shifted window attention in a lightweight hi- o «
erarchical design [Liu et al| (2021a). PVT-
Tiny, the smallest Pyramid Vision Transformer,
employs a multi-scale pyramid structure Wang| ¢ w /
et al| (2022). DeiT-Small achieves efficient

classification via knowledge distillation Tou] N
vron et al. (2021). DINO-ViT-Base, trained
self-supervised through distillation, learns rich
features from unlabeled data [Caron et al.

(2021).  T2T-ViT-14 improves local struc-  Figure 3: Decoding shape and texture from ViT
ture modeling through progressive tokeniza- representations. Linear classifiers predict GST
tion [Yuan et al.| (2021). We evaluate perfor- shape (blue) and texture (orange) from frozen ViT
mance on the base-to-novel generalization task  Jayer activations, revealing that mid-level layers

and analyze how data augmentation and self- retain local shape information, which fades in
supervised learning generalize across architec-  deeper layers.

tures. To strengthen the baseline, we introduce

the random crop to boost local sensitivity and

a lightweight self-supervised head, rotation prediction, which encourages learning discriminative
features via rotation angle prediction. To quantify generalization, we compute the generalization
gap and report absolute gains in novel class accuracy, highlighting improved recognition of unseen
categories. As shown in Table [/} all models, despite differences in size and design, show strong
base-class performance but a sharp drop on novel classes. This highlights a common limitation in
ViT models: a lack of inductive bias for localized, transferable patterns essential for fine-grained
recognition. The augment method consistently improves novel class accuracy across all architec-
tures.

0
blocko blocka. block11 blocko blocks. block11

11 CONCLUSION

This study presents a systematic investigation of texture bias in Vision Transformers (ViTs), demon-
strating that ViTs inherently lack inductive bias toward local texture features. Comparative eval-
uations with CNNs under base-to-novel generalization settings reveal that ViTs struggle to learn
invariant, transferable representations of localized textures. Analysis of data and training efficiency
further indicates that ViTs exhibit a pronounced preference for global texture features at larger spa-
tial scales. We further show that learning objectives, data augmentation strategies, and architectural
choices substantially affect ViTs’ feature preferences. These findings highlight a fundamental limi-
tation of current ViT architectures and inform the development of foundation models with sensitivity
to transferable local visual patterns.
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