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ABSTRACT

Federated learning (FL) emerges as a promising paradigm for training machine
learning models on decentralized data sources while preserving privacy. How-
ever, the presence of not independent and identically distributed (non-IID) data
among the clients introduces high variance in gradient updates, posing a signifi-
cant challenge to the global model’s performance in terms of accuracy and con-
vergence. To mitigate the adverse effects of data heterogeneity, we propose a
novel momentum-based partial variance reduction technique. Our approach ad-
justs the gradient updates for the final classification layers of the client’s neural
network by leveraging the gradient differences between local and global mod-
els. This adjustment aims to effectively capture and mitigate client drift, a key
challenge arises from the presence of non-IID data distributions across clients.
We systematically explains client drifts and conduct extensive experiments on
three widely-used datasets, demonstrating that our method significantly enhances
global model accuracy while reducing the communication rounds needed for con-
vergence. Notably, our momentum-based partial variance reduction technique
provides a robust mechanism, rendering more efficient and effective in scenar-
ios with inherently non-IID and heterogeneous data distributions. By address-
ing the critical challenge of data heterogeneity in FL, our proposed approach
paves the way for more reliable and accurate model training while preserving
the privacy of decentralized data sources. The code is available at the following
link https://anonymous.4open.science/r/FedPMVR-33C1.

1 INTRODUCTION

Federated learning (FL) has emerged as a effective solution to privacy concerns in centralized model
training, enabling multiple clients to collaboratively build while keeping their raw data decentralized
and private (McMahan et al., 2017), (Guo et al., 2021), (Park et al., 2021). In FL, clients perform
local training on their data and only share model updates (weights) with a central server, which
aggregates these updates to refine the global model. While federated training offers significant ad-
vantages in preserving user privacy, it faces a practical obstacle in the form of data heterogeneity (Li
et al., 2020a). Diverse user behaviors across different clients can lead to significant heterogeneity in
their local data, resulting in unstable convergence, slow training progress, and suboptimal or even
detrimental model performance (Zhao et al., 2018), (Karimireddy et al., 2020). FedAvg (McMahan
et al., 2017), the widely adopted FL algorithm, often encounters challenges in achieving optimal
accuracy and convergence, particularly in scenarios with heterogeneous data distributions across
clients. This difficulty arises from client drift, a phenomenon resulting from the varying nature of
data among participating clients. Client drift occurs when local models diverge significantly from
the global model, causing aggregated updates to become less effective or detrimental to overall per-
formance (Karimireddy et al., 2020). Addressing data heterogeneity and client drift is crucial for
harnessing the full potential of FL in real-world applications with decentralized and diverse data.

Previous research efforts have aimed to address the issue of client drift by introducing penalties
for the divergence between client and server models (Li et al., 2020a), (Li et al., 2021a) or by em-
ploying variance reduction approaches during the client model update process (Karimireddy et al.,
2020), (Acar et al., 2021). Techniques like CCVR (Luo et al., 2021) first reported that classification
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layers are solely accountable for client drift and addressed data heterogeneity through re-training
classifiers using virtual features derived from an approximate Gaussian mixture model (GMM).
However, creating representative datasets or features spanning multiple clients can be challenging,
requiring domain knowledge and raising privacy concerns. Recent research has highlighted how
biased classifiers adversely affect the performance of federated training on heterogeneous and long-
tailed data (Shang et al., 2022). To mitigate this issue, Luo et al. (2021) proposed a method that
addresses long-tailed and heterogeneous data by re-training the classifier on the server using learn-
able features from client models. Additionally, researchers have investigated gradient variability
across clients, especially in deeper or classification layers, using metrics like drift diversity. In par-
ticular, Li et al. (2023) found that client drift predominantly originates from the classification layers
and proposed a partial variance reduction technique using control variates, though this approach can
lead to increased communication costs.

Building on prior researches (Refer to Appendix A for the detailed related works), we introduce
Federated Partial Momentum Variance Reduction (FedPMVR) that integrates a momentum-based
variance reduction technique that selectively targets the classification layers of client neural net-
works. Our approach employs standard stochastic gradient descent (SGD) in the initial layers to
capture diverse representations from heterogeneous client data while incorporating a momentum
term in the classification layers to enhance gradient alignment. By maintaining a local momentum
term for each client, FedPMVR captures the drift between local and global models, efficiently ad-
dressing client drift in non-IID data settings. To the best of our knowledge, this is the first work
to leverage such a selective momentum-based regularization, achieving improved performance by
balancing representation learning with variance reduction. The key contributions are summarized as
follows:

• We propose FedPMVR, which employs momentum terms to reduce divergence between
the classification layers of client and global models, effectively addressing client drift from
non-IID data distributions.

• Momentum term incorporation in FedPMVR allows aligning local models with the global
model, facilitating faster convergence to the global optimum and accelerating convergence.

• We provide theoretical convergence guarantees for FedPMVR in convex and non-convex
settings, demonstrating its limited reliance on measures of data heterogeneity.

• Experimental evaluations consistently show that FedPMVR outperforms state-of-the-art
approaches across diverse datasets with varying levels of data heterogeneity.

2 METHODS AND MATERIALS

This section explores the impact of client drift resulting from data heterogeneity, introduces the pro-
posed FedPMVR approach, highlights the role and benefits of momentum terms, and discusses how
partial momentum variance helps mitigate client drift, alongside a theoretical convergence analysis.

2.1 ILLUSTRATION OF CLIENT DRIFT

Considering a standard FL setup where the global model at round t is denoted by Wt. Each client i
performs local updates using gradient descent with the following update rule:

wi
t = wi

t−1 − η∇Li(w
i
t−1), (1)

where wi
t is the local model of client i at iteration t, η is the local learning rate, and ∇Li(w

i
t−1) is

the gradient of the loss function for client i at iteration t − 1. The deviation of each client model
from the global optimum W ∗ is captured by the distance ζi = ∥wi

R −W ∗∥, where R corresponds
the number of local updates. With increased heterogeneity (lower β), the distance ζi grows, leading
to greater client drift. The server-side aggregation of client models is given by:

Wt+1 =
1

C

C∑
i=1

wi
t, (2)
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where C is the number of clients. Increased drift caused by data heterogeneity adversely affects
the outcomes of model aggregation, ultimately hindering the convergence of the global model to the
optimal solution W ∗. For example, consider a scenario with two clients optimizing simple quadratic
loss functions, both aiming for a global optimum of W ∗ = 3. If we set the initial global model
as W 0 = 0, the disparity in data distributions can significantly slow down the rate at which the
global model approaches this optimal point, illustrating the impact of client drift on model training
dynamics.

Case 1: Low Heterogeneity In this scenario, the clients’ data distributions are more homogeneous,
meaning that the data across clients is relatively similar. Consider Client 1 with a loss function
L1(w) = (w − 15)2, resulting in a local gradient ∇L1(w) = 2(w − 15). The corresponding
weight update is w1

t = wt−1 − η · 2(wt−1 − 15). Similarly, for Client 2, with a loss function
L2(w) = (w − 2)2, the gradient becomes ∇L2(w) = 2(w − 2), and the update rule follows as
w2

t = wt−1 − η · 2(wt−1 − 2). Starting with W 0 = 0, after one round of updates, the client models
are updated as follows:

• Client 1: w1
1 = 0− η · 2(0− 15) = 30η,

• Client 2: w1
2 = 0− η · 2(0− 2) = 4η.

Here the loss functions for the clients were deliberately chosen with significantly different optima
(15 and 2) to allow each client to independently explore their local minima. This setup facilitates
convergence towards the global optimum during federated training, enabling better alignment with
the overall objective. At the server, the aggregation of client models can be expressed as follows:

w1 =
1

2
(30η + 4η) = 17η. (3)

v

(a) (b)

Figure 1: Illustration of client drift under data heterogeneity: (a) shows the global model weights
across communication rounds compared to the optimum global model weight, and (b) depicts the
distance between the obtained global model and the true global optimum after each round.

Case 2: High Heterogeneity In this scenario, clients exhibit highly diverse data distributions,
indicating significant variations in their local datasets. Consider Client 1 with loss function
L1(w) = (w − 3)2, with the local gradient ∇L1(w) = 2(w − 3). Similarly, for Client 2, with
a loss function L2(w) = (w − 3.5)2, the local gradient ∇L2(w) = 2(w − 3.5). Starting with
w0 = 0, after one round of updates, the client models are updated as follows:

• Client 1: w1
1 = 0− η · 2(0− 3) = 6η,

• Client 2: w1
2 = 0− η · 2(0− 3.5) = 3.5η.

The loss functions for the clients were taken with closely aligned optima (3 and 3.5), enabling them
to converge quickly to their local minima during federated training. However, this rapid convergence
is likely to occur far from the true global optimum. At the server, the models are aggregated and
expressed as follows:

3
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w1 =
1

2
(6η + 3.5η) = 4.75η. (4)

The above analysis can be similarly applied to subsequent training rounds. The outcomes illustrated
in Fig.1 (a) indicates that with increased data heterogeneity, the model rapidly converges to a stable
point rather than achieving the global optimum. Conversely, in scenarios of lower heterogeneity,
convergence takes additional rounds, ultimately leading to the global optimum. A similar trend is
evident in Fig.1 (b).

2.2 FEDPMVR: FEDERATED PARTIAL MOMENTUM VARIANCE REDUCTION

Our proposed method, FedPMVR, incorporates momentum correction for the last classification lay-
ers of the neural network during the local model updation. The core concept is to harness the benefits
of momentum-based optimization on the local client side to mitigate the effects of non-IID data dis-
tribution across clients, which can lead to better performance. Details of the two-step process are
given below.

2.2.1 CLIENT UPDATE STEP

In the client update step, each client performs the following operations:

• Local Model Initialization: To ensure a consistent starting point for local training, each
client initializes its local model by setting the weight parameters to those of the global
model received from the central server. This initialization process guarantees that all clients
start their local optimization from an identical model state.

• Local Model Training: For a predefined number of epochs, the client trains the local
model using their local dataset. This training process involves updating the model weights
using SGD or a variant of SGD, such as Adam or RMSprop.

• Gradient Computation: Upon completing local model training, the client calculates the
gradients of the updated local weights in relation to the initial global weights. These gradi-
ents indicate the necessary weight adjustments to minimize the loss function for the client’s
local data.

• Momentum Update: For the last few layers of the neural network, the client updates the
corresponding momentum terms using an exponential moving average of the gradients.
Specifically, for each weight in these layers, the momentum term is updated as follows:

m
′
= α · gradient + (1− α) ·m, (5)

where m
′

is the momentum term, α is a hyperparameter that controls the learning rate
for the momentum update, ‘gradient’ denotes the current weight gradient, and m is the
previous momentum term value.

• Weight Correction: After updating the momentum terms, the client corrects the local
model weights for the last few layers by subtracting the corresponding momentum terms
from the weights. This weight correction step is performed as follows:

w′′ = w′ −m′, (6)
where w′′ is the corrected weights and w′ is the previous weights.

2.2.2 SERVER AGGREGATION

On the server side, the local model weights from the all clients are averaged to obtain a new global
model using Eq. 7, where Wt+1 is the global model for round t+ 1, C is the number of clients, nc

is the number of samples for client c, n is the total number of samples across all clients. and wi
t is

the ith client weighs at round t.

Wt+1 =
nc

n

C∑
i=1

wi
t (7)

The server then updates the global model weights with the computed averages, and the aggregation
process is repeated for the desired number of communication rounds. The process is outlined in
Algorithm 1 in the Appendix.
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2.3 USEFULNESS OF MOMENTUM TERM FOR EACH CLIENT

Incorporating momentum terms into the FL framework, particularly at the client level, presents a
robust solution to mitigate the issue of client drift due to data heterogeneity. It stabilizes gradient
updates by accumulating past gradient information, which counters sudden changes and reduces
variance caused by non-IID data across clients. This stabilization leads to more reliable updates
and mitigates client drift. Additionally, momentum accelerates convergence by maintaining the
gradient direction and reducing oscillations, allowing clients to overcome local minima and saddle
points more effectively. An example of integrating the proposed approach into the standard FedAvg
algorithm is provided below, demonstrating how partial momentum variance reduction effectively
mitigates client drift caused by heterogeneous data distributions.

In FedAvg, each client c performs local updates based on its local data distribution, which may differ
significantly from the other client’s data distribution. The objective is to minimize the global loss
function as presented in Eq. 8:

min
w

f(w) =

C∑
c=1

nc

n
fc(w), (8)

where fc(w) is the local loss function for client c, nc is the number of samples for client c, and n is
the total number of samples across all clients. Each client performs several gradient descent steps on
its local loss function. For client c, at communication round t, the local update can be presented as
Eq. 1. After the local updates, the server aggregates the local models by averaging the local updates
using Eq. 7. The global update can be written as below:

wt+1 = wt − ηg

C∑
c=1

nc

n
∇fc(wt). (9)

where ηg is the global learning rate. This equation shows that the global update depends on a
weighted sum of local gradients. When the data distribution of client c deviates significantly from
that of other clients, the local gradient ∇fc(wt) will differ from the true global gradient ∇f(wt).
This discrepancy, termed as client drift δc is defined in Eq. 10:

δc = ∇fc(wt)−∇f(wt). (10)

Thus, the aggregated global update is expressed as:

wt+1 = wt − η

(
∇f(wt) +

C∑
c=1

nc

n
δc

)
. (11)

The term
∑C

c=1
nc

n δc represents the drift caused by non-IID data across clients. When local gradients
are highly variable due to data heterogeneity, this drift term increases, causing divergence between
the global model and the optimal solution.

2.3.1 MITIGATING CLIENT DRIFT USING PARTIAL MOMENTUM VARIANCE REDUCTION

In the proposed method, momentum is applied exclusively to the last two layers of each client’s
local model. Denoting the momentum term for the ith layer of client c at round t as mc,i

t , the
momentum-based local update for the last two layers (i = −2,−1) is defined as:

mc,i
t+1 = αmc,i

t + (1− α)∇fc(wc,i
t ), (12)

where α ∈ [0, 1) is the learning rate for momentum term, and i denotes the layer index. Conse-
quently, the weight update for the last two layers is expressed as:

wc,i
t+1 = wc,i

t − ηmc,i
t+1, for i = −2,−1. (13)

For all other layers (i ̸= −2,−1), the model updates follow the standard SGD process:

5
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wc,i
t+1 = wc,i

t − η∇fk(wc,i
t ), for i ̸= −2,−1. (14)

The global update integrates momentum for the final two layers while employing standard SGD for
the others. Specifically, the global update for the ith layer is expressed as follows:

wi
t+1 =

{
wi

t − η
∑C

c=1
nc

n mc,i
t+1, if i = −2,−1,

wi
t − η

∑C
c=1

nc

n ∇fc(w
i
t), otherwise.

(15)

Incorporating momentum exclusively in the last two layers significantly reduces variability in local
updates by smoothing out gradient fluctuations, particularly in layers most affected by non-IID data.
This smoothing effect minimizes drift in these deeper layers, which are crucial for overall perfor-
mance, while simultaneously aligning the updates with the global objective, thereby reducing client
drift and improving model consistency. Mathematically, the drift for the last two layers is modified
to:

δic = (1− α)
(
∇fc(wi

t)−∇f(wi
t)
)
, for i = −2,−1 (16)

which is smaller than the original drift in FedAvg, since (1− α) < 1. Thus, the magnitude of client
drift for the last two layers is reduced, while the other layers are updated with standard SGD.

2.4 CONVERGENCE ANALYSIS

We provide a theoretical convergence analysis for both convex and non-convex settings in Ap-
pendix B.

3 EXPERIMENTS

3.1 DATASET

We utilized three well-established classification benchmarks: CIFAR10 (Krizhevsky et al., 2009),
MNIST (LeCun et al., 2010), and FMNIST (Xiao et al., 2017). To make the non-IID data partitions,
we replicated a partitioning strategy inspired by the approach detailed in (Lin et al., 2020), (Wang
et al., 2020a), (Yurochkin et al., 2019). This involved distributing the data using a Dirichlet distribu-
tion with a concentration parameter β. The degree of data heterogeneity across clients is governed
by the concentration parameter β with a smaller value, resulting in a more skewed data distribution,
mimicking real-world scenarios where data is unevenly partitioned. Figure 9 in the Appendix sec-
tion demonstrates an example of the non-uniform data distribution observed in the MNIST dataset.
In our experiments, we adopted β values of 0.1 and 0.3, which are commonly employed values (Lin
et al., 2020) to simulate varying levels of data heterogeneity. Each client possesses its own local data
partition, which remains unchanged throughout the communication rounds. Refer to Appendix C.1
for the detailed experimental setup.

Table 1: Top-1 accuracy (%) on CIFAR10, MNIST, and FMNIST datasets with varying degrees of
data heterogeneity. The values in bold represent the highest accuracy achieved. * represents the
convergence failure by the respective algorithm.

Dataset CIFAR10 MNIST FMNIST

Model CNN VGG19 LeNet LeNet

β = 0.1 β = 0.3 β = 0.1 β = 0.3 β = 0.1 β = 0.3 β = 0.1 β = 0.3
Fedavg 49.04±0.45 55.08±0.50 50.34±0.35 52.48±0.42 97.15±0.20 98.44±0.15 82.66±0.30 85.78±0.40
FedProx 50.38±0.48 55.12±0.44 47.01±0.33 52.39±0.39 97.65±0.22 98.62±0.18 82.33±0.28 85.97±0.38
FedNova 44.74±0.39 47.98±0.45 48.94±0.37 54.11±0.41 95.76±0.28 97.62±0.24 75.04±0.35 76.53±0.42
FedBN 51.84±0.41 54.62±0.43 10 (*) 55.25±0.39 96.80±0.25 98.47±0.20 82.86±0.33 85.57±0.38
FedDyn 44.03±0.38 50.99±0.41 47.58±0.34 44.03±0.40 88.84±0.45 94.55±0.38 69.79±0.45 80.22±0.42
MOON 48.08±0.42 49.68±0.44 47.40±0.36 50.26±0.39 96.92±0.22 80.69±0.28 80.73±0.35 83.61±0.40
SCAFFOLD 50.34±0.44 55.76±0.47 52.13±0.40 56.29±0.42 97.19±0.21 98.46±0.19 81.75±0.32 85.09±0.39
FedPVR 47.04±0.40 49.89±0.43 49.05±0.38 42.93±0.37 97.34±0.22 98.46±0.18 80.95±0.34 82.32±0.40
FedPMVR 51.86±0.45 56.07±0.48 52.35±0.41 56.41±0.44 97.86±0.20 98.67±0.16 83.18±0.33 86.14±0.38
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3.2 COMPARISON WITH THE STATE-OF-THE-ART METHODS

To assess the efficacy of the proposed FedPMVR, we selected eight popular FL algorithms for
comparison: FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020a), FedNova (Wang et al.,
2020b), FedBN (Li et al., 2021b), FedDyn (Acar et al., 2021), MOON (Li et al., 2021a), SCAF-
FOLD (Karimireddy et al., 2020), and FedPVR (Li et al., 2023). Our proposed FedPMVR demon-
strated superior performance, achieving the highest top-1 accuracy across all experimental settings
involving varying degrees of data heterogeneity (β = 0.1 and 0.3) on three real-world datasets
(refer to Table 1). Notably, in the highly heterogeneous setting (β = 0.1) on CIFAR10, FedP-
MVR attained an accuracy of 51.86% with the CNN model and 56.07% with VGG19, surpassing
the performance of the second-best methods, FedBN (51.84%) and Scaffold (55.76%), respectively.
With β = 0.3, FedPMVR achieved accuracies of 56.07% and 56.41%, respectively, surpassing the
runner-up method, SCAFFOLD, in both instances. Similarly, on MNIST with β = 0.1, FedPMVR
reached 97.86% accuracy, exceeding FedProx (97.65%), and with β = 0.3, it accomplished 98.67%
accuracy compared to FedProx’s 98.62%. Lastly, on FMNIST with β = 0.1, FedPMVR attained
83.18% accuracy, outperforming FedBN (82.86%), and with β = 0.3, it achieved 86.14% accuracy,
surpassing the second best FedProx (85.97%).

Table 2: Number of communication rounds required (speedup compared to FedAvg) to achieve the
best top-1 accuracy of FedAvg. * represents the convergence failure by the respective algorithm.

Dataset CIFAR10 MNIST FMNIST

Model CNN VGG19 LeNet LeNet

α = 0.1 α = 0.3 α = 0.1 α = 0.3 α = 0.1 α = 0.3 α = 0.1 α = 0.3
Fedavg 43 (1.0x) 30 (1.0x) 10 (1.0x) 20 (1.0x) 150 (1.0x) 30 (1.0x) 115 (1.0x) 35 (1.0x)
FedProx 40 (1.07x) * * * 60 (2.5) 35 (0.85x) 150 (0.77x) 55 (0.67x)
FedNova * * * * * * * *
FedBN * 55 (0.54x) * 50 (0.4x) * 34 (0.88x) 60 (1.92x) 55 (0.67x)
FedDyn * * * * * * * *
MOON 120 (0.35x) * * * * * * *
SCAFFOLD 27 (1.6x) 25 (1.2x) 10 (1.0x) 22 (0.9x) 85 (1.76x) 23 (1.3x) 60(1.92x) 50 (0.7x)
FedPVR * * 13 (0.77x) 00 (0.0x) 50 (3.0x) 23 1.3x) * *
FedPMVR 25 (1.7x) 21 (1.42x) 10 (1.0x) 20 (1.0x) 50 (3.0x) 23 (1.3x) 40 (2.88x) 30 (1.17x)

Figure 2: The performance comparison of proposed FedPMVR with baseline approaches using CNN
model: (a) β = 0.1 and (b) β = 0.3 on the CIFAR10 dataset.

3.3 CONVERGENCE ANALYSIS

Following the methodology outlined in (Fan et al., 2022), we evaluated the number of commu-
nication rounds required by each approach to achieve the best accuracy attained by FedAvg. Ta-
ble 2 presents the results for the required number of communication rounds and the corresponding
speedup achieved by each algorithm. As evident from the results, certain algorithms, including
MOON and FedPVR, failed to converge. In contrast, the proposed FedPMVR converged to the best
accuracy attained by FedAvg while requiring the minimum number of communication rounds. No-
tably, FedPMVR achieves a speedup ranging from a minimum of 1.42 to a maximum of 3 times
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compared to FedAvg across different non-IID settings and three real-world datasets. Additionally,
FedPMVR does not necessitate any extra parameters, unlike SCAFFOLD and FedPVR. Conse-
quently, FedPMVR operates equivalently to FedAvg in terms of the number of shared parameters
while achieving superior test accuracy in fewer communication rounds. This efficiency and per-
formance advantage make FedPMVR a compelling choice for FL tasks. This significant speedup
underscores the superiority of our approach in terms of convergence speed and reduced communica-
tion overhead. Figure 2 shows the learning curves for CIFAR10, where test accuracy declines after
a certain number of rounds for both β values (0.1 and 0.3). Nonetheless, our proposed method con-
sistently outperforms all baselines, achieving higher accuracy and demonstrating greater robustness
to data heterogeneity. For the MNIST dataset (Fig. 3), several baseline methods fail to converge
and exhibit divergence. In contrast, our proposed method consistently outperforms the baselines,
surpassing them after 50 rounds (for β = 0.1) and 25 rounds (for β = 0.3), delivering consis-
tently higher accuracy throughout the training process. A similar trend is observed for the FMNIST
dataset (Fig. 4), where our method demonstrates superior stability during training while consistently
outperforming the baseline approaches.

Figure 3: The performance comparison of proposed FedPMVR with baseline approaches: (a) β =
0.1 and (b) β = 0.3 on the MNIST dataset.

Figure 4: The performance comparison of proposed FedPMVR with baseline approaches: (a) β =
0.1 and (b) β = 0.3 on the FMNIST dataset.

3.4 CONFORMAL PREDICTION

Addressing significant data variability among clients in FL poses a significant challenge (Luo et al.,
2021). To mitigate this issue, we employ a straightforward post-processing approach using confor-
mal prediction to improve model performance. We analyze the empirical coverage and average size
of the predictive set of the server model after 60 communication rounds. Empirical coverage mea-
sures the percentage of correct predictions within the predictive sets, while the average predictive
set size represents the mean length of these sets across test images (Angelopoulos et al., 2022). Our
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Figure 5: Relation between average predictive size and empirical coverage when β = 0.1.

Figure 6: Experiments on partial participation of
clients in the federated training process.

Figure 7: The performance comparison of pro-
posed FedPMVR with baseline approaches on
the IID Dataset..

findings reveal that a slight increase in the predictive set size can boost accuracy compared to indi-
vidual models. Additionally, our approach often outperforms the top-1 accuracy of other individual
models at a comparable or faster rate. Notably, as depicted in Fig. 5, the proposed model achieves
similar or better coverage with smaller prediction sets than individual models, indicating the ef-
fective performance of the proposed model. In the coverage range between 0.8 and 0.9, our model
maintains smaller prediction sets, demonstrating superior performance. Overall, the proposed model
consistently achieves higher coverage with smaller prediction sets compared to individual models,
effectively balancing high coverage with compact prediction sets, a desirable trait for practical ap-
plications.

3.5 PERFORMANCE ANALYSIS UNDER PARTIAL CLIENT PARTICIPATION

To align with more realistic FL scenarios, we conducted experiments using partial client partici-
pation, where only a subset of clients engaged in each FL round. Specifically, we simulated 100
clients, randomly selecting 20 (20% participation) per round. Using the CIFAR-10 dataset with
β = 0.1 using VGG19 model, the results (shown in Fig. 6 and Table 3 in Appendix) demonstrate
that FedPMVR achieves the highest accuracy of 51.33%, outperforming all baselines. Addition-
ally, Fig. 6 highlights that FedPMVR not only achieves superior accuracy but also converges more
quickly under this partial participation setting.

3.6 RESULTS ON IID DATASET

To evaluate the proposed FedPMVR method’s efficacy on IID datasets, we constructed an IID parti-
tion of the CIFAR10 dataset by setting β = 100, used CNN network and compared its performance
against other baselines. The results, presented in Fig. 7, demonstrate that FedPMVR outperforms
the baseline methods and converges rapidly in the IID setting. This finding highlights that FedP-
MVR’s applicability extends beyond non-IID data partitions, as it proves equally effective in IID
data settings.
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4 ABLATION STUDY

To gain deeper insights into the effectiveness of our method FedPMVR, we perform several exper-
iments on the CIFAR10 dataset using CNN network in a highly heterogeneous setting (β = 0.1)
unless explicitly stated otherwise.

4.1 EFFECT OF APPLYING MOMENTUM VARIANCE REDUCTION ON DIFFERENT LAYERS OF
THE MODEL

Figure 8: Effect of using momentum variance re-
duction on different layers in the neural network.

To validate the rationale behind selectively ap-
plying our proposed momentum-based variance
reduction techniques to the classification lay-
ers, we conducted experiments investigating the
effects of applying this approach to other lay-
ers of the neural network model. Previous re-
search (Li et al., 2023) highlights that client
drift primarily manifests in the classification
layers, underscoring the importance of address-
ing this issue in those layers. The results, de-
picted in Fig. 8, reveal that indiscriminately
applying partial variance reduction across all
layers adversely impacts performance. How-
ever, as we selectively applied partial variance
reduction to the layers closer to the classifier,
we achieved the highest accuracy and superior
convergence rates. These findings corroborate
our hypothesis and underscore the efficacy of
our approach in mitigating client drift, specif-
ically in the classification layers, which are
most susceptible to this phenomenon. By judi-
ciously targeting the classification layers with
our momentum-based variance reduction tech-
niques, we effectively address the root cause of
client drift, that leads to improved model performance and convergence in FL settings.

In addition to this experiment, we conducted two more experiments to investigate the impact of the
hyperparameter α on test accuracy and the performance of the proposed model with the baselines
under larger client participation. These detailed results can be found in subsections C.2 and C.3 in
the Appendix.

5 CONCLUSION

In this paper, we investigated data heterogeneity within the traditional FL framework, focusing on
enhancing the accuracy and convergence speed of the final global model. We conducted an in-depth
analysis of client drift in FL, which arises from data heterogeneity, causing local models to di-
verge from the global model and reducing the effectiveness of aggregated updates. To address this,
we introduced FedPMVR, which employs a straightforward yet effective partial momentum vari-
ance reduction technique to stabilize training, accelerate convergence, and improve overall global
model performance. The core advantage of FedPMVR lies in its ability to mitigate client drift
through momentum-based variance reduction, ensuring stable gradient updates without increasing
much communication overhead. Our comprehensive experiments across multiple datasets confirm
FedPMVR’s superior performance, particularly in highly non-IID data scenarios, demonstrating sig-
nificant improvements in both convergence speed and model accuracy. Importantly, FedPMVR re-
quires only a minor modification to the existing FedAvg, offering an efficient and scalable solution
for real-world FL applications. Additionally, while FedPMVR introduces minimal computational
overhead at the client side for calculating the momentum term, future work will focus on exploring
strategies to further mitigate this cost. We also aim to extend our approach to more complex scenar-
ios, such as asynchronous updates and the integration of advanced privacy-preserving techniques.
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APPENDIX

A RELATED WORK

Various approaches have been extensively explored to address the challenges arising from data het-
erogeneity in the context of FL. These methodologies can be broadly classified into three main
categories: (1) client drift mitigation strategies (Li et al., 2021a), (Karimireddy et al., 2020), (Sahoo
et al., 2024b), (Li et al., 2023) (Sahoo et al., 2024a), which modify the local objectives of clients to
better align their models with the global model; (2) aggregation scheme enhancements (Hsu et al.,
2019), (Lin et al., 2020), (Wang et al., 2020b), (Wang et al., 2020a), which focus on improving the
server-side fusion mechanism for model updates; and (3) personalized FL techniques (Fallah et al.,
2020), (Sattler et al., 2020), (Bui et al., 2019), which aim to train personalized models for individual
clients. Since our work centers on minimizing client-server model divergence to mitigate client drift,
we primarily discuss client drift mitigation strategies.

FedAvg (McMahan et al., 2017) is the most widely adopted optimization method in FL, but data het-
erogeneity often results in subpar performance. To tackle this issue, methods like FedProx (Li et al.,
2020a) have introduced a proximal regularization term at the client side to manage divergence; how-
ever, it still falls short in effectively aligning the optimal points (Acar et al., 2021). FedNova (Wang
et al., 2020b) tackled the issue of objective inconsistency caused by client heterogeneity in feder-
ated optimization by introducing a normalized averaging method, which effectively mitigates this
inconsistency and accelerates error convergence. Li et al. (2021b) used local batch normalization
to mitigate feature shifts, and demonstrated faster convergence. Acar et al. (2021) proposed a dy-
namic regularizer aimed at bridging the gap between local and global minima, facilitating better
alignment of local solutions with the global model. Li et al. (2021a) introduced a model-contrastive
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framework that aligns local representations with the global model using contrastive loss, enhanc-
ing consistency and convergence, particularly in non-IID settings. Similarly, FedMut (Hu et al.,
2024) generates intermediate models through global model mutation, which avoids sharp solutions,
improves generalization in heterogeneous data, and outperforms FedAvg in handling data hetero-
geneity. Stochastic variance reduction (SVR) techniques, such as SVRG (Johnson & Zhang, 2013),
SAGA (Defazio et al., 2014), and their variants, have been explored to mitigate challenges posed
by data heterogeneity. These methods leverage control variate to reduce the variance inherent in
traditional stochastic gradient descent (SGD), enabling linear convergence rates for strongly convex
optimization problems. SCAFFOLD (Karimireddy et al., 2020) and DANE (Shamir et al., 2014)
have incorporated variance reduction techniques for the entire model on convex problems, but their
performance in non-convex setups has not been extensively explored. While these approaches have
the potential to be beneficial, they incur higher communication costs due to the transmission of ad-
ditional control variates (Halgamuge et al., 2009). Moreover, existing methods have demonstrated
rapid convergence in simpler models, but their effectiveness on deep neural networks (DNNs) (He
et al., 2015), (Huang et al., 2018) remains largely unexplored. FedPVR (Li et al., 2023) revis-
its the performance of FedAvg in DNNs and reveals significant diversity in the final classification
layers. By proposing variance reduction solely on the final layers, FedPVR outperforms several
benchmarks, addressing the limitations of existing approaches and demonstrating the effectiveness
of targeted variance reduction techniques. Several momentum-based techniques have been explored
to enhance FL convergence (Das et al., 2022). Liu et al. (2020) incorporated Momentum Gradi-
ent Descent (MGD) into the local update step, accelerating convergence, deriving an upper bound
on the convergence rate, and identifying conditions where it outperforms standard FL. Building on
this, Cheng et al. (2023) demonstrated that momentum improves FedAvg and Scaffold, allowing
FedAvg to converge without assuming bounded data heterogeneity, even with a constant local learn-
ing rate. They also showed that momentum accelerates Scaffold’s convergence under partial client
participation, leading to new variance-reduced extensions with state-of-the-art convergence rates.
Further, Sun et al. (2024) introduced a general framework for server momentum in FL, accom-
modating diverse momentum schemes, stagewise hyperparameter scheduling, and handling system
heterogeneity and asynchronous local computing.

B THEORETICAL CONVERGENCE ANALYSIS

This section will provide a theoretical analysis of the FedPMVR in both convex and non-convex
settings. We begin by establishing assumptions that are akin to those employed in the FedAvg algo-
rithm (McMahan et al., 2017), (Li et al., 2020b), followed by discussing convergence guarantees.

ASSUMPTIONS AND NOTATION

• Convexity: The local objective function for client i fi is convex, i.e., fi(y) ≥ fi(x) +
⟨∇fi(x), y − x⟩ for all x, y.

• Lipschitz Smoothness: |∇fi(x) − ∇fi(y)| ≤ L|x − y| for all x, y and some constant
L > 0.

• Bounded Gradients: E|∇fi(x; ξi)|2 ≤ G2 for all x and some constant G > 0, where
ξi denotes the random variable representing the data samples used to compute stochastic
gradients on client i.

• Data Heterogeneity: Similar to the (Li et al., 2023), We assume there exists constant ζ̂
such that ∀x ∈ Rd: 1

N

∑N
i=1 E|∇fi(x)|2 ≤ ζ̂2, ∀x.

B.1 CONVEX SETTING

Using the convexity property of F :

F (y
(r,k+1)
i ) ≤ F (y

(r,k)
i ) + ⟨∇F (y

(r,k)
i ), y

(r,k+1)
i − y

(r,k)
i ⟩, (17)

where F is the global objective function and y
(r,k)
i is the local model parameters for client i at round

r and iteration k. Substituting the local update with momentum (Eq. 18) with Eq. 17, we obtain
Eq. 19.

y
(r,k+1)
i = y

(r,k)
i − ηl(g

(r,k)
i +m

(r,k)
i ), (18)
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where ηl is the local learning rate, g(r,k)i is the local stochastic gradient for client i at round r and
iteration k, and m

(r,k)
i is the momentum term for client i at round r and iteration k.

F (y
(r,k+1)
i ) ≤ F (y

(r,k)
i )− ηl⟨∇F (y

(r,k)
i ), g

(r,k)
i +m

(r,k)
i ⟩. (19)

Taking the expectation (Eq. 19) with respect to the stochastic gradients, we obtain Eq. 20.

E[F (y
(r,k+1)
i )] ≤ E[F (y

(r,k)
i )]− ηlE[⟨∇F (y

(r,k)
i ),∇fi(y(r,k)i )⟩]. (20)

Using E[⟨∇F (y
(r,k)
i ),∇fi(y(r,k)i )⟩] = ∥∇F (y

(r,k)
i )∥2 in the Eq. 20, we obtain Eq. 21.

E[F (y
(r,k+1)
i )] ≤ E[F (y

(r,k)
i )]− ηl∥∇F (y

(r,k)
i )∥2. (21)

Summing over K local updates, we obtain Eq. 22:

E[F (y
(r,K)
i )] ≤ E[F (y

(r,0)
i )]− ηl

K−1∑
k=0

∥∇F (y
(r,k)
i )∥2. (22)

We take the average over clients and obtain Eq. 23:

1

N

N∑
i=1

E[F (y
(r,K)
i )] ≤ 1

N

N∑
i=1

E[F (y
(r,0)
i )]− ηl

K−1∑
k=0

1

N

N∑
i=1

∥∇F (y
(r,k)
i )∥2. (23)

Using the global model update (Eq. 24) in the Eq. 23 and taking the average over R communication
rounds, we obtain Eq. 25:

x(r+1) =
1

N

N∑
i=1

y
(r,K)
i , (24)

where x(r) is the global model parameters at round r.

1

R

R−1∑
r=0

E[F (x(r))− F ∗] ≤ O

(
G
√
K√

NR
+

ζ̂
√
K√
R

+
ζ̂p
√
K√

NR
+

F (x(0))− F ∗

R

)
(25)

where F ∗ is the optimal value of the global objective function F , and K is the number of local up-
dates. The convergence rate is influenced by the number of communication rounds R, the number of
clients N , the gradient bound G, and data heterogeneity ζ̂. As R increases, the algorithm converges
faster.

B.2 NON-CONVEX SETTING

Given the smoothness property of F , we can get Eq. 26:

F (y
(r,k+1)
i ) ≤ F (y

(r,k)
i ) + ⟨∇F (y

(r,k)
i ), y

(r,k+1)
i − y

(r,k)
i ⟩+ L

2
∥y(r,k+1)

i − y
(r,k)
i ∥2. (26)

Substituting the local update with momentum (Eq. 27) in the Eq. 26, we obtain Eq. 28:

y
(r,k+1)
i = y

(r,k)
i − ηl(g

(r,k)
i +m

(r,k)
i ) (27)

F (y
(r,k+1)
i ) ≤ F (y

(r,k)
i )− ηl⟨∇F (y

(r,k)
i ), g

(r,k)
i +m

(r,k)
i ⟩+ L

2
η2l ∥g

(r,k)
i +m

(r,k)
i ∥2. (28)

Taking the expectation (Eq. 28) with respect to the stochastic gradients, we obtain Eq. 29:

E[F (y
(r,k+1)
i )] ≤ E[F (y

(r,k)
i )]−ηlE[⟨∇F (y

(r,k)
i ),∇fi(y(r,k)i )⟩]+L

2
η2l E[∥∇fi(y

(r,k)
i )+m

(r,k)
i ∥2].

(29)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Using E[⟨∇F (y
(r,k)
i ),∇fi(y(r,k)i )⟩] = ∥∇F (y

(r,k)
i )∥2, in Eq. 29, we obtain Eq. 30:

E[F (y
(r,k+1)
i )] ≤ E[F (y

(r,k)
i )]− ηl∥∇F (y

(r,k)
i )∥2 + L

2
η2l E[∥∇fi(y

(r,k)
i ) +m

(r,k)
i ∥2]. (30)

Using E[∥∇fi(y(r,k)i )∥2] ≤ G2, in Eq. 30, we obtain Eq. 31:

E[∥∇fi(y(r,k)i ) +m
(r,k)
i ∥2] ≤ 2E[∥∇fi(y(r,k)i )∥2] + 2E[∥m(r,k)

i ∥2] ≤ 2G2 + 2∥m(r,k)
i ∥2 (31)

Combining Eq. 30 and Eq. 31, we obtain Eq. 32:

E[F (y
(r,k+1)
i )] ≤ E[F (y

(r,k)
i )]− ηl∥∇F (y

(r,k)
i )∥2 + Lη2l (G

2 + ∥m(r,k)
i ∥2). (32)

Summing over K local updates and R communication rounds and averaging over clients, we obtain
Eq. 33:

1

R

R−1∑
r=0

E[F (x(r))− F ∗] ≤ O

(
G
√
K√

NR
+

ζ̂K3/2

√
R

+
ζ̂p
√
K√
N

+
F (x(0))− F ∗

R

)
, (33)

where ζ̂p is the heterogeneity measure for the layers with applied momentum correction. The con-
vergence rate also depends on the number of local updates K and the heterogeneity measure ζ̂p.
The presence of ζ̂p indicates that applying momentum correction to the last layers can potentially
improve the convergence rate if the gradients for these layers are more aligned across clients.

Algorithm 1 FedPMVR
1: Server Initialization: Initialize the global model weights. W0

2: Client Initialization: Initialize the clients momentum terms mi
0 = 0 for all the clients, learning

rate α for momentum update, the number of local epochs E and the local learning rate η.
3: Define the mask p ∈ {0, 1}d with v non-zero elements (indices of last few layers).
4: Spvr ← {j : pj = 1} ▷ Indices of layers for momentum correction
5: Ssgd ← {j : pj = 0} ▷ Indices of layers without momentum correction
6: Client Update:
7: for each communication round t = 1, 2, . . . , T do
8: Broadcast the global model weights Wr to all the clients.
9: for each client c ∈ {1, 2, . . . , C} in parallel do

10: Initialize the local model weights wc ←Wt

11: Initialize the client momentum terms mclient
c ← 0

12: for e = 1, 2, . . . , E do
13: Update the local model weights wk using SGD on the client’s local data.
14: end for
15: Compute the gradients gc = ∇wL(wc;Dc).
16: for j ∈ Spvr do
17: Update the client momentum term: mclient

c,j ← αgc,j + (1− α)mclient
c,j

18: Correct the weight: wc,j ← wc,j −mclient
c,j

19: end for
20: for j ∈ Ssgd do
21: Update the weight: wc,j ← wc,j − ηgc,j
22: end for
23: Send the corrected local model weights wc to the server
24: end for
25: end for
26: Server Aggregation:
27: Aggregate the received local model weights: wt+1 ← 1

C

∑C
c=1 w

c
t
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C EXPERIMENTAL DETAILS

C.1 EXPERIMENTAL SETUP

For our experiments with MNIST and FMNIST, we have utilized the well-established LeNet (LeCun
et al., 1998) neural network, commonly employed in FL research (Duan et al., 2023). For the
CIFAR10 dataset, we constructed a custom 5-layer convolutional neural network (CNN) architecture
from scratch to serve as the base encoder, following the approach presented in (Li et al., 2021a).
This base encoder composed of two convolutional layers with (5 × 5) kernels, each succeeded by
a (2 × 2) max pooling layer. Subsequently, the architecture includes two fully connected (FC)
layers with ReLU activation functions, the first containing 120 and the second containing 84 units of
neurons. Following the methodology outlined in (Duan et al., 2023), we applied variance reduction
techniques to the last two layers of the model to tackle the impact of data heterogeneity. We followed
the configurations reported in prior studies (Li et al., 2023) and (Yu et al., 2022) by involving 10
participating clients per communication round and employing a batch size of 32. Each local client
performed two local epochs of model updating during each round. We have employed a maximum
of 300 server-client communication rounds with the early stopping criteria. To evaluate the global
model’s performance, a test set, unseen during training, is held out at the server. We utilize the actual
test split from the original dataset for this purpose. To determine the optimal client learning rate for
each experiment, we conducted a grid search over 0.05, 0.01, 0.2, 0.3. For all datasets and methods,
the optimizer used was SGD with a learning rate of 0.01, a weight decay of 1e−6, and a momentum
value of 0.9. we conducted a grid search over 0.001, 0.1, 0.3, 0.6, 0.8 to choose the learning rate
for momentum update α. We employed hyperparameters (if any) similar to those specified in the
original papers for all baseline methods. We have run each experiment three times with different
seed values and reported the average of the performance with the standard deviation.

Figure 9: Visualization of the data distribution among local clients for MNIST using Dirichlet sam-
pling under (a) IID (β = 100), (b) non-IID (β = 0.1), and (c) non-IID (β = 0.3) conditions. Each
grid cell represents the number of samples of a particular class assigned to a client. Darker colors
indicate a higher number of samples allocated to the client.

Table 3: Performance comparison of FedPMVR and baseline methods on the CIFAR10 dataset with
β = 0.1 using the VGG19 model under partial client participation.

Method Accuracy
FedAvg 50.21 ± 0.35
FedProx 48.17 ± 0.40
FedNova 41.87 ± 0.50
FedBN 44.66 ± 0.30
FedDyn 45.99 ± 0.45
MOON 50.96 ± 0.33
SCAFFOLD 10 (*)
FedPVR 40.11 ± 0.55
FedPMVR (Proposed) 51.33 ± 0.28
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C.2 EFFECT ON TEST ACCURACY FOR DIFFERENT VALUES OF HYPERPARAMETER α

The hyperparameter α controls the degree of variance reduction in the classification layers by mod-
ulating the momentum update. α can take values between 0 and 1. To gain insights into the nature
of this hyperparameter, we experimented with a range of values from lower to higher magnitudes.
As depicted in Fig. 10, higher values of α lead to lower accuracy, while values closer to zero yields
higher accuracy. A possible explanation for this observation is that when α is set to a higher value,
instead of mitigating client drift, it may inadvertently exacerbate drift by aggressively reducing the
weight magnitudes in an attempt to align with the global model for achieving the global optimum.
Conversely, lower values of α closer to zero effectively curb client drift, resulting in improved accu-
racy. These findings suggest that α is an easily tunable hyperparameter, with lower values close to
zero proving to be the most effective in enhancing the performance of our proposed approach.

Figure 10: Effect of different values of learning rate for momentum update α.

C.3 PERFORMANCE ANALYSIS IN LARGE-SCALE CLIENT SETTINGS

To assess the scalability, we evaluated the performance of FedPMVR and baselines by varying the
number of participating clients, as depicted in Fig. 11. As the number of clients increased from 10
to 50, FedPMVR exhibited a significantly slower decline in accuracy compared to the baselines.
This observation demonstrates the superior scalability of our method, enabling it to maintain high
accuracy even as the number of participating clients grows. Notably, FedPMVR achieved the highest
test accuracy among all baselines in all evaluated cases, further underscoring its robust performance
and ability to handle increasing client populations effectively. This scalability is a desirable attribute,
particularly in real-world FL scenarios involving large numbers of clients, where our method can
deliver consistent and reliable results.

C.4 LIMITATIONS

While this work primarily investigates data heterogeneity in terms of label and quantity skewness,
the concept of momentum-based variance reduction could be expanded to address other forms of
heterogeneity, such as feature-level heterogeneity in classification tasks. Additionally, the imple-
mentation of FedPMVR incurs some computational overhead due to the use of momentum terms for
last-layer updates on the client side, an issue we plan to investigate further in future work to mitigate
this impact. Furthermore, despite federated learning’s advantages in privacy preservation and col-
laborative learning, it remains vulnerable to privacy leakage from malicious clients, as highlighted

18
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Figure 11: Test accuracy of the proposed and baseline algorithms with different numbers of clients.

in recent studies (Zhang et al., 2022), (Cao et al., 2021). This paper does not delve into this aspect
and considers it a potential avenue for future research.
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