
Reinforcement Learning Journal 2025
∣∣ Cover Page

Mitigating Suboptimality of Deterministic
Policy Gradients in Complex Q-functions

Ayush Jain, Norio Kosaka, Xinhu Li, Kyung-Min Kim,
Erdem Bıyık, Joseph J. Lim

Keywords: Deterministic Policy Gradients, Off-policy reinforcement learning

Summary
In reinforcement learning, off-policy actor-critic methods such as DDPG and TD3 use

deterministic policy gradients: the Q-function is learned from environment interaction data,
while the actor seeks to maximize it via gradient ascent. We observe that in complex tasks—such
as dexterous manipulation, restricted locomotion, and large discrete-action recommender sys-
tems—the Q-function exhibits multiple local optima, making naive gradient-based methods
prone to getting stuck. To address this, we introduce Successive Actors for Value Optimization
(SAVO), an architecture that (i) learns multiple actor networks, each conditioned on previously
discovered actions, and (ii) employs a sequence of “surrogate” Q-landscapes that progressively
truncate lower-value regions. This iterative scheme improves the global maximization of the
Q-function while preserving the sample efficiency advantages of gradient-based updates. Ex-
periments on restricted locomotion, dexterous manipulation, and recommender-system tasks
demonstrate that SAVO outperforms single-actor methods as well as alternative multi-actor and
sampling-based approaches.

Contribution(s)
1. We propose a new multi-actor architecture that learns several policies in parallel and then

selects the best action among them based on the current Q-function.
Context: In deterministic policy gradient methods, a single actor frequently converges to
local maxima of the Q-landscape. By training multiple actors and picking the highest-valued
action, the final policy strictly improves over any single actor policy.

2. We introduce “successive surrogate” Q-functions that flatten out regions below previously
discovered high-value actions, thus preventing actors from re-converging to known poor
local optima.
Context: Surrogate functions are created by lifting the Q-values in regions below an anchor
action. This reduces the number of local maxima in the Q-landscape. We approximate these
surrogates with neural networks to preserve gradient flow toward high-value regions without
sacrificing expressiveness.

3. We demonstrate that our Successive Actors for Value Optimization (SAVO) method con-
sistently yields higher returns in challenging tasks, including restricted continuous-control
locomotion, dexterous manipulation, and large discrete-action recommender systems.
Context: Standard TD3 or DDPG struggles in non-convex domains with many shallow
local maxima, while evolutionary methods can be computationally expensive. Our approach
combines the sample-efficiency of gradient-based learning with a mechanism to escape
suboptimal local optima. Extensive ablations show that each element (multiple actors, surro-
gates, and conditioning on prior actions) contributes to performance gains.

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

Mitigating Suboptimality of Deterministic
Policy Gradients in Complex Q-functions

Ayush Jain1,†, Norio Kosaka2, Xinhu Li1, Kyung-Min Kim3,
Erdem Bıyık1, Joseph J. Lim4

{ayushj, xinhuli, biyik}@usc.edu, kosaka.norio@lycorp.co.jp,
kyungmin.kim.ml@navercorp.com, joe.lim@kaist.ac.kr

1University of Southern California
2LY Corporation
3NAVER
4Korea Advanced Institute of Science and Technology
† Now at Meta.

Abstract

In reinforcement learning, off-policy actor-critic methods like DDPG and TD3 use
deterministic policy gradients: the Q-function is learned from environment data, while
the actor maximizes it via gradient ascent. We observe that in complex tasks such
as dexterous manipulation and restricted locomotion with mobility constraints, the Q-
function exhibits many local optima, making gradient ascent prone to getting stuck.
To address this, we introduce SAVO, an actor architecture that (i) generates multiple
action proposals and selects the one with the highest Q-value, and (ii) approximates the
Q-function repeatedly by truncating poor local optima to guide gradient ascent more
effectively. We evaluate tasks such as restricted locomotion, dexterous manipulation, and
large discrete-action space recommender systems and show that our actor finds optimal
actions more frequently and outperforms alternate actor architectures.

1 Introduction

In sequential decision-making, the goal is to build an optimal agent that maximizes the expected
cumulative returns (Sondik, 1971; Littman, 1996). Value-based reinforcement learning (RL) ap-
proaches estimate the future returns of an action with a Q value, then select actions that maximize
this Q value (Sutton & Barto, 1998). In continuous action spaces, directly enumerating all actions is
impractical, so an actor is introduced to learn which actions yield the maximum Q-value (Grondman
et al., 2012). We show that common continuous control benchmarks (Lillicrap et al., 2015) exhibit
easily optimized Q functions, which obscures a key challenge in current RL algorithms. Specifically,
when the Q-function is non-convex, such as locomotion with restricted mobility in Figure 1, a learning
actor can produce suboptimal behavior by converging at one of the local optima.

Can we build an actor architecture to find better optimal actions in such complex Q-landscapes? Prior
methods perform a search over the action space with evolutionary algorithms like CEM (De Boer et al.,
2005; Kalashnikov et al., 2018; Shao et al., 2022), but this requires numerous costly re-evaluations of
the Q-function. To avoid this, deterministic policy gradient (DPG) algorithms (Silver et al., 2014),
such as DDPG (Lillicrap et al., 2015), TD3 (Fujimoto et al., 2018), and REDQ (Chen et al., 2020)
train a parameterized actor to output actions with the objective of maximizing the Q-function locally.

A significant challenge arises in environments where the Q-function has many local optima, as shown
in Figure 1. An actor trained via gradient ascent may converge to a local optimum with a much

Reinforcement Learning Journal 2025

Action Space
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

Action Space

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Q-value

285

290

295

300

305

310

315

Hopper-Restricted

Action Space
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8

Action Space

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Q-value

2.8

2.9

3.0

3.1

3.2

3.3

3.4

Recsim

Figure 1: In continuous control tasks, we visualize trained TD3 Q-values at a fixed state sf over the
full action space (projected to 2D), Q(s, a|s = sf). In Inverted-Double-Pendulum (left) and Hopper
(middle) with action ranges restricted due to immobility, Q-landscapes have multiple local optima. In
a large discrete-action recommendation task (right), local peaks correspond to real items (black dots).
In such non-convex Q-landscapes, gradient-based actors often converge to suboptimal actions.

lower Q-value than the global maximum. This leads to suboptimal decisions during deployment and
sample-inefficient training, as the agent fails to explore high-reward trajectories (Kakade, 2003).

To improve actors’ ability to identify optimal actions in complex, non-convex Q-function landscapes,
we propose the Successive Actors for Value Optimization (SAVO) algorithm. SAVO leverages two
key insights: (1) combining multiple policies using an argmax on their Q-values to construct a
superior policy (§4.1), and (2) simplifying the Q-landscape by excluding lower Q-value regions based
on high-performing actions, inspired by Tabu Search (Glover, 1990)—a metaheuristic that avoids
cycling back to recently visited suboptimal solutions by maintaining an explicit memory of them.
SAVO achieves this via a sequence of surrogate Q-functions that iteratively exclude the Q-value of
regions below previously identified inferior actions, thereby reducing local optima and facilitating
gradient ascent (§4.2), enabling the corresponding actors to discover higher-quality actions.

We evaluate SAVO in complex Q-landscapes such as (i) continuous control in dexterous manipu-
lation (Rajeswaran et al., 2017) and restricted locomotion (Todorov et al., 2012), and (ii) discrete
decision-making in the large action spaces of simulated (Ie et al., 2019) and real-data recommender
systems (Harper & Konstan, 2015), and gridworld mining expedition (Chevalier-Boisvert et al., 2018).
We use the reframing of large discrete action RL to continuous action RL following (Van Hasselt &
Wiering, 2009) and Dulac-Arnold et al. (2015), where a policy acts in continuous actions, such as the
feature space of recommender items (Figure 1), and the nearest discrete action is executed.

Our key contribution is SAVO, an actor architecture to find better optimal actions in complex
non-convex Q-landscapes (§4). In experiments, we visualize how SAVO’s successively learned
Q-landscapes have fewer local optima (§6.2), making it more likely to find better action optima with
gradient ascent. This enables SAVO to outperform alternative actor architectures, such as sampling
more action candidates (Dulac-Arnold et al., 2015) and learning an ensemble of actors (Osband et al.,
2016) (§6.1) across continuous and discrete action RL.

2 Related Work

Q-learning (Watkins & Dayan, 1992; Tesauro et al., 1995) is a fundamental value-based RL algorithm
that iteratively updates Q-values to make optimal decisions. Deep Q-learning (Mnih et al., 2015)
has been applied to tasks with manageable discrete action spaces, such as Atari (Mnih et al., 2013;
Espeholt et al., 2018; Hessel et al., 2018), traffic control (Abdoos et al., 2011), and small-scale
recommender systems (Chen et al., 2019). However, scaling Q-learning to continuous or large
discrete action spaces requires specialized techniques to efficiently maximize the Q-function.

Analytical Q-optimization. Analytical optimization of certain Q-functions, such as wire fitting
algorithm (Baird & Klopf, 1993) and normalized advantage functions (Gu et al., 2016; Wang et al.,
2019), allows closed-form action maximization without an actor. Likewise, Amos et al. (2017)

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

Figure 2: An actor µ trained with gradient ascent on a challenging Q-landscape gets stuck in local
optima. Our approach learns a sequence of surrogates Ψi of the Q-function that successively prune
out the Q-landscape below the current best Q-values, resulting in fewer local optima. Thus, the actors
νi trained to ascend on these surrogates produce actions with a more optimal Q-value.

assume that the Q-function is convex in actions and use a convex solver for action selection. In
contrast, the Q-functions considered in this paper are inherently non-convex in action space, making
such an assumption invalid. Generally, analytical Q-functions lack the expressiveness of deep
Q-networks (Hornik et al., 1989), making them unsuitable to model complex tasks like in Figure 1.

Evolutionary Algorithms for Q-optimization. Evolutionary algorithms like simulated anneal-
ing (Kirkpatrick et al., 1983), genetic algorithms (Srinivas & Patnaik, 1994), tabu search (Glover,
1990), and the cross-entropy method (CEM) (De Boer et al., 2005) are employed in RL for global
optimization (Hu et al., 2007). Approaches such as QT-Opt (Kalashnikov et al., 2018; Lee et al.,
2023; Kalashnikov et al., 2021) utilize CEM for action search, while hybrid actor-critic methods
like CEM-RL (Pourchot & Sigaud, 2018), GRAC (Shao et al., 2022), and Cross-Entropy Guided
Policies (Simmons-Edler et al., 2019) combine evolutionary techniques with gradient descent. Despite
their effectiveness, CEM-based methods require numerous Q-function evaluations and struggle with
high-dimensional actions (Yan et al., 2019). In contrast, SAVO achieves superior performance with
only a few (e.g., three) Q-evaluations, as demonstrated in experiments (§6).

Actor-Critic Methods with Gradient Ascent. Actor-critic methods can be on-policy (Williams,
1992; Schulman et al., 2015; 2017) primarily guided by the policy gradient of expected returns, or
off-policy (Silver et al., 2014; Lillicrap et al., 2015; Fujimoto et al., 2018; Chen et al., 2020) primarily
guided by the bellman error on the critic. Deterministic Policy Gradient (DPG) (Silver et al., 2014)
and its extensions like DDPG Lillicrap et al. (2015), TD3 (Fujimoto et al., 2018) and REDQ (Chen
et al., 2020) optimize actors by following the critic’s gradient. Soft Actor-Critic (SAC) (Haarnoja
et al., 2018) extends DPG to stochastic actors. However, these methods can get trapped in local
optima within the Q-function landscape. SAVO addresses this limitation by enhancing gradient-based
actor training. This issue also affects stochastic actors, where a local optimum means an action
distribution (instead of a single action) that fails to minimize the KL divergence from the Q-function
density fully, and is a potential area for future research.

Sampling-Augmented Actor-Critic. Sampling multiple actions and evaluating their Q-values is
a common strategy to find optimal actions. Greedy actor-critic (Neumann et al., 2018) samples
high-entropy actions and trains the actor towards the best Q-valued action, yet remains susceptible to
local optima. In large discrete action spaces, methods like Wolpertinger (Dulac-Arnold et al., 2015)
use k-nearest neighbors to propose actions, requiring extensive Q-evaluations on up to 10% of total
actions. In contrast, SAVO efficiently generates high-quality action proposals through successive
actor improvements without being confined to local neighborhoods.

Ensemble-Augmented Actor-Critic. Ensembles of policies enhance exploration by providing
diverse action proposals through varied initializations (Osband et al., 2016; Chen & Peng, 2019; Song
et al., 2023; Zheng12 et al., 2018; Huang et al., 2017). The best action is selected based on Q-value
evaluations. Unlike ensemble methods, SAVO systematically eliminates local optima, offering a
more reliable optimization process for complex tasks (§6).

Reinforcement Learning Journal 2025

3 Problem Formulation

Our work tackles the effective optimization of the Q-value landscape in off-policy actor-critic methods
for continuous and large-discrete action RL. We model a task as a Markov Decision Process (MDP),
defined by a tuple {S,A, T , R, γ} of states, actions, transition probabilities, reward function, and a
discount factor. The action space A is a D-dimensional continuous vector space, RD. At every step
t in the episode, the agent receives a state observation st ∈ S from the environment and acts with
at ∈ A. Then, it receives the new state after transition st+1 and a reward rt. The objective of the agent
is to learn a policy π(a | s) that maximizes the expected discounted reward, maxπ Eπ [

∑
t γ

trt] .

3.1 Deterministic Policy Gradients (DPG)

DPG (Silver et al., 2014) is an off-policy actor-critic algorithm that trains a deterministic actor µϕ to
maximize the Q-function. This happens via two steps of generalized policy iteration, GPI (Sutton &
Barto, 1998): policy evaluation estimates the Q-function (Bellman, 1966) and policy improvement
greedily maximizes the Q-function. To approximate the argmax over continuous actions in Eq. 2,
DPG proposes the policy gradient to update the actor locally in the direction of increasing Q-value,

Qµ(s, a) = r(s, a) + γEs′ [Q
µ(s′, µ(s′))] , (1)

µ(s) = argmax
a

Qµ(s, a), (2)

∇ϕJ(ϕ) = Es∼ρµ

[
∇aQ

µ(s, a)
∣∣
a=µ(s)

∇ϕµϕ(s)
]
. (3)

DDPG (Lillicrap et al., 2015) and TD3 (Fujimoto et al., 2018) made DPG compatible with deep
networks via techniques like experience replay and target networks to address non-stationarity of
online RL, twin critics to mitigate overestimation bias, target policy smoothing to prevent exploitation
of errors in the Q-function, and delayed policy updates so critic is reliable to provide actor gradients.

3.2 The Challenge of an Actor Maximizing a Complex Q-landscape

DPG-based algorithms train the actor following the chain rule in Eq. 3. Specifically, its first term,
∇aQ

µ(s, a) involves gradient ascent in Q-versus-a landscape. This Q-landscape is often highly
non-convex (Fig. 1, 3) and changes non-stationarily during training. This makes the actor’s output
µ(s) get stuck at suboptimal Q-values, thus leading to insufficient policy improvement in Eq. 2. We
can define the suboptimality of the µ w.r.t. Qµ at state s as

∆(Qµ, µ, s) = argmax
a

Qµ(s, a)−Qµ(s, µ(s)) ≥ 0. (4)

Figure 3: Non-convex Q-landscape in
Inverted-Pendulum-Restricted leads to
the TD3 actor converging at a local
optimum a0 with large suboptimality.

Suboptimality in actors is a crucial problem because it leads
to (i) poor sample efficiency by slowing down GPI, and
(ii) poor inference performance even with an optimal Q-
function, Q∗ as seen in Fig. 3 where a TD3 actor gets stuck
at a locally optimum action a0 in the final Q-function.

This challenge fundamentally differs from the well-studied
field of non-convex optimization, where non-convexity
arises in the loss function w.r.t. the model parameters (Good-
fellow, 2016). In those cases, stochastic gradient-based
optimization methods like SGD and Adam (Kingma & Ba,
2014) are effective at finding acceptable local minima due
to the smoothness and high dimensionality of the param-
eter space, which often allows for escape from poor local
optima (Choromanska et al., 2015). Moreover, overparame-
terization in deep networks can lead to loss landscapes with
numerous good minima (Neyshabur et al., 2017).

In contrast, our challenge involves non-convexity in the Q-
function w.r.t. the action space. The actor’s task is to find,

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

Deep Set

FiLM

S
ta

te
A

c
ti
o

n
s

𝜈0 𝜈1 𝜈2

𝜈𝑖

Action

Ψ1Ψ0 Ψ2

Actors

Surrogates

𝑎0 𝑎1𝑎0 𝑎0 𝑎1 𝑎2

𝐀𝐜𝐭𝐨𝐫

𝒂∗

𝐂𝐫𝐢𝐭𝐢𝐜

𝑄

Figure 4: SAVO Architecture. (left) Q-network is unchanged. (center) Instead of a single actor, we
learn a sequence of actors and surrogate networks connected via action predictions. (right) Condition-
ing on previous actions is done with the help of a deep-set summarizer and FiLM modulation.

for every state s, the action a that maximizes Qµ(s, a). Since the Q-function can be highly non-
convex and multimodal in a, the gradient ascent step ∇aQ

µ(s, a) used in Eq. 3 may lead the actor to
converge to suboptimal local maxima in action space. Unlike parameter space optimization, the actor
cannot rely on high dimensionality or overparameterization to smooth out the optimization landscape
in action space because the Q-landscape is determined by the task’s reward. Furthermore, the non-
stationarity of the Q-function during training compounds this challenge. These properties make our
non-convex challenge unique, requiring a specialized actor to navigate the complex Q-landscape.

Tasks with several local optima in the Q-function include inverted pendulum with restricted action
space due to limitations on mobility or terrain, leading to a rugged Q-landscape (Florence et al., 2022)
as shown in Fig. 3. Dexterous manipulation tasks exhibit discontinuous behaviors like inserting a
precise peg in place with a small region of high-valued actions (Rajeswaran et al., 2017) and surgical
robotics have a high variance in Q-values of nearby motions (Barnoy et al., 2021).

3.2.1 Large Discrete Action RL Reframed as Continuous Action RL
We discuss another practical domain where non-convex Q-functions are present. In large discrete
action tasks like recommender systems (Zhao et al., 2018; Zou et al., 2019; Wu et al., 2017), a
common approach (Van Hasselt & Wiering, 2009; Dulac-Arnold et al., 2015) is to use continuous rep-
resentations of actions as a medium of decision-making. Given a set of actions, I = {I1, . . . ,IN}, a
predefined moduleR : I → A assigns each I ∈ I to its representationR(I), e.g., text embedding
of a given movie (Zhou et al., 2010). A continuous action policy π(a | s) is learned in the action
representation space, with each a ∈ A converted to a discrete action I ∈ I via nearest neighbor,

fNN(a) = arg min
Ii∈I

∥R(Ii)− a∥2.

Importantly, the nearest neighbor operation creates a challenging piece-wise continuous Q-function
with suboptima at various discrete points as shown in Fig. 1 (Jain et al., 2021; 2020).

4 Approach: Successive Actors for Value Optimization (SAVO)

We propose an online actor architecture and training method that dynamically guides gradient-based
policy improvement toward better actions throughout training. Our method preserves the time-
efficiency of gradient-based methods as opposed to maximization using expensive evolutionary
methods while mitigating the suboptimality of a single actor. We introduce two key ideas:

1. Multiple Actors: We train several gradient-based actors and select among their proposed actions
via argmax on the Q-function, ensuring the resulting policy outperforms any single actor (§4.1).

2. Easier to maximize Q-landscape: We train online surrogates of the Q-function that are biased
towards higher-value actions and progressively flatten out shallow local maxima so that gradient-
based improvement is likely to find actions in better regions (§4.2).

Reinforcement Learning Journal 2025

While surrogates generate diverse candidate actions, the final decision always uses an argmax over
the true Q-function estimate, ensuring we never do worse than ignoring the surrogates altogether.

4.1 Maximizer Actor over Multiple Action Proposals

We first show how additional actors can improve DPG’s policy improvement step. Given a policy µ
being trained with DPG over Q, consider k additional arbitrary policies ν1, . . . , νk, where νi : S → A
and let ν0 = µ. We define a maximizer actor µM for ai = νi(s) for i = 0, 1, . . . , k,

µM (s) := argmax
a∈{a0,a1,...,ak}

Q(s, a), (5)

µM can be simply shown to be a better maximizer of Q(s, a) in Eq. 2 than µ ∀s :

Q(s, µM (s)) = max
ai

Q(s, ai) ≥ Q(s, a0) = Q(s, µ(s)).

Therefore, by policy improvement theorem (Sutton & Barto, 1998), V µM (s) ≥ V µ(s), proving that
µM is better than a single µ for a given Q. Appendix 9 proves the following theorem by showing that
policy evaluation and improvement with µM converge.
Theorem 4.1 (Convergence of Policy Iteration with Maximizer Actor). A modified policy iteration
algorithm where ν0 = µ is the current policy learned with DPG and maximizer actor µM defined in
Eq. 5, converges in the tabular setting to the locally optimal policy.

This algorithm is valid for arbitrary ν1, . . . νk. We experiment with ν’s obtained by sampling from a
Gaussian centered at µ or ensembling on µ to get diverse actions. However, in high-dimensionality,
randomness around µ is not sufficient to get action proposals to significantly improve µ.

4.2 Successive Q-landscape surrogates for Better Action Proposals

To obtain better-than-random action proposals for µM , we train additional policies νi with gradient-
ascent on surrogate Q-functions with three properties:

1. Truncate regions below anchor actions: We train online surrogates of the Q-function that are
biased towards higher-value actions and progressively flatten out shallow local maxima so that
gradient-based improvement is likely to find actions in better regions.

2. Approximately track Q-function with a bias towards high valued actions: We train several
gradient-based actors and select among their proposed actions via argmax on the Q-function,
ensuring the resulting policy outperforms any single actor.

3. Gradient-based actors for each surrogate: Each surrogate likely provides a path to progressively
better optima for its actor, which in turn provides a better anchor for the following surrogates.

4.2.1 Truncate regions below anchor actions

Our inspiration is Tabu Search (Glover & Laguna, 1998), which is an optimization technique that
avoids revisiting previously explored inferior solutions, thereby enhancing the search for optimal
solutions. We adopt a similar idea by identifying relatively high-value actions, referred to as anchor
actions, which serve as local reference points during optimization. Specifically, we propose to “tabu”
regions of the Q-function landscape that fall below these anchors’ values. Concretely, we define a
surrogate function Ψ that truncates the landscape by elevating the Q-values of all inferior actions to
Q(s, a†), effectively flattening suboptimal basins and guiding the actor away from poor local optima,

Ψ(s, a; a†) = max{Q(s, a), Q(s, a†)}. (6)

Extending this idea, we define a sequence of surrogate functions using the actions from all previous
policies as anchors. Let a<i = {a0, a1, . . . , ai−1} be the anchors, the i-th surrogate function is:

Ψi(s, a; a<i) = max

{
Q(s, a),max

j<i
Q(s, aj)

}
. (7)

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

Theorem 4.2. For a state s ∈ S and surrogates Ψi defined as above, the number of local optima
decreases with each successive surrogate:

Nopt(Q(s, ·)) ≥ Nopt(Ψ1(s, ·; a0)) ≥ · · · ≥ Nopt(Ψk(s, ·; a<k)),

where Nopt(f) denotes the number of local optima of function f over A.

Proof Sketch. As Ψi→ Ψi+1, the anchor Q-value in Eq. 7 weakly increases, maxj<i Q(s, aj) ≤
maxj<(i+1) Q(s, aj), thus, eliminating more local minima below it (proof in Appendix 10.1).

4.2.2 Approximately track Q-function with a bias towards high valued actions

The surrogates Ψi have zero gradients in the flattened regions when Q(s, a) < τ , where τ =
maxj<i Q(s, aj), This means the policy gradient only updates νi when Q(s, a) ≥ τ , which may slow
down learning. To address this issue, we ease the gradient flow by learning a smooth approximation
Ψ̂i of Ψi, that is biased towards high-valued actions to provide a path to a better optimum.

Figure 5: While Ψ (left) has flat surfaces, Ψ̂ (right) smoothens the function to allow non-zero gradients
to flow into the actor towards better optima in Inverted-Pendulum-Restricted.
We approximate each surrogate Ψi with a neural network Ψ̂i, by training it with imitation learning to
track the updates to the Q-function (that is being updated by TD error) at two critical actions:

Lapprox = Es∼ρµM

 ∑
a∈{µ̃M (s),νi(s;a<i)}

∥∥∥Ψ̂i(s, a; a<i)−Ψi(s, a; a<i)
∥∥∥2
2

 ,where (8)

1. Tracking: µ̃M (s) represents the action taken in the environment at which the latest online update
to the Q-function has been made following Eq. 1, which helps track the value of Ψi.

2. High-value Bias: νi(s; a<i) is the action proposed by the i-th actor conditioned on previous
actions a<i, which is expected to be a high-valued action.

This design ensures Ψ̂i is updated on high Q-value actions and thus the landscape is biased towards
those values. This makes the gradient flow trend in the direction of high Q-values. So, even when ai
from νi falls in a region of zero gradients for Ψi, in Ψ̂i would provide policy gradient in a higher
Q-value direction, if it exists. Figure 5 shows Ψ1 and Ψ̂1 in restricted inverted pendulum task.
Figure 23 analyzes Lapprox over training, demonstrating that Ψ̂i stays close to Ψi while smoothing it.

4.2.3 Successive Gradient-based Actors for Each Surrogate Optimization

To effectively reduce local optima using the approximate surrogates Ψ̂1, . . . , Ψ̂k, we design the
policies νi to optimize their respective Ψ̂i(s, a; a<i). Each νi focuses on regions where Q(s, a) ≥
maxj<i Q(s, aj), allowing it to find better optima than previous policies. The actor νi is conditioned
on previous actions {a0, . . . , ai−1}, summarized via deep sets (Zaheer et al., 2017) (see Figure 4).
The maximizer actor µM (Eq. 5) then selects the best action among these proposals.

We train each actor νi using gradient ascent on its approximate surrogate Ψ̂i, similarly to DPG:

∇ϕi
J(ϕi) = Es∼ρµM

[
∇a Ψ̂i

(
s, a; a<i

)∣∣∣
a=νi(s; a<i)

· ∇ϕi
νi
(
s; a<i

)]
. (9)

Reinforcement Learning Journal 2025

4.3 SAVO-TD3 Algorithm and Design Choices

While the SAVO architecture (Figure 4) can be integrated with any off-policy actor-critic algorithm,
we choose to implement it with TD3 (Fujimoto et al., 2018) due to its compatibility with continuous
and large-discrete action RL (Dulac-Arnold et al., 2015). Using the SAVO actor in TD3 enhances
its ability to find better actions in complex Q-function landscapes. Algorithm 1 depicts SAVO
(highlighted) applied to TD3. We discuss design choices in SAVO and validate them in §6.

1. Removing policy smoothing: We eliminate TD3’s policy smoothing, which adds noise to the
target action ã during critic updates. In non-convex landscapes, nearby actions may have significantly
different Q-values and noise addition might obscure important variations.

Algorithm 1 SAVO-TD3

Initialize Q,Q2, µ, Ψ̂1, . . . , Ψ̂k, ν1, . . . , νk
Initialize target networks Q′ ← Q, Q′

2 ← Qtwin

Initialize replace buffer B.
for timestep t = 1 to T do

Select Action:
Evaluate a0 = µ(s), ai = νi(s; a<i) ∀i = i . . . k
Perturb with OU Noise âi = ai + ϵi ∀i = i . . . k
Evaluate µM (s) = argmaxa∈{â0,...,âk} Q

µ(s, a)
Exploration action a = µ̃M (s) = µM (s) + ϵ
Observe reward r and new state s′

Store (s, a, {âi}ki=0, r, s
′) in B

Update:
Sample N transitions (s, a, {âi}ki=0, r, s

′) from B
Compute target action ã = µM (s′)
Update Q,Q2 ← r+ γmin{Q′(s′, ã), Q′

2(s
′, ã)}

Update Ψ̂i with Eq. 8 ∀i = 1 . . . k
Update actor µ with Eq. 3
Update actor νi with Eq. 9 ∀i = 1 . . . k

end for

2. Exploration in Additional Actors:
Successive actors νi explore their surrogate
landscapes by adding OU (Lillicrap et al.,
2015) or Gaussian (Fujimoto et al., 2018)
noise to their outputs, effectively discover-
ing high-reward regions.

3. Twin Critics for Surrogates:
To prevent overestimation bias in surro-
gates Ψ̂i, we use twin critics to compute the
target of each surrogate, mirroring TD3.

4. Conditioning on Previous Actions:
Actors νi and surrogates Ψ̂i are condi-
tioned on preceding actions via FiLM lay-
ers (Perez et al., 2018) as in Fig. 4.

5. Discrete Action Space Tasks:
We apply 1-nearest-neighbor fNN before
the Q-function, so it is only queried at in-
distribution actions. For gradient flow into
the actor, a noisy Q-function is added. See
Q-smoothing in §14.3.

SAVO-TD3 systematically reduces local
optima through successive surrogates while leveraging TD3 as a robust RL baseline. In the next sec-
tion, we validate these design choices through experiments, demonstrating SAVO-TD3’s effectiveness
in complex reinforcement learning tasks against alternate actor architectures.

5 Environments

Valid Action Space

Original Action Space

Figure 6: Hopper’s 3D visual-
ization of Action Space.

We evaluate SAVO on discrete and continuous action space envi-
ronments with challenging Q-value landscapes. More environment
details are presented in Appendix 11 and Figure 12.

Locomotion in Mujoco-v4. We evaluate Mujoco (Todorov et al.,
2012) environments of Hopper, Walker2D, Inverted Pendulum, and
Inverted Double Pendulum without any restrictions.

Locomotion in Restricted Mujoco. We create a restricted locomo-
tion suite of the same environments as in Mujoco-v4, which results
in hard Q-landscapes due to high-dimensional discontinuities from a
restricted action space. Concretely, a set of predefined hyper-spheres
(as shown in Figure 6) in the action space are sampled and set to be
valid actions, while the other invalid actions have a null effect if selected. The complete details of the
mobility restrictions on the action space can be found in Appendix 11.3.1.

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00
Performance Profiles

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>
SAVO
1-Actor (TD3)
1-Actor, k-Samples (Wolpertinger)
Evolutionary Actor (CEM)
k-Actors (Ensemble)

(a) SAVO versus baseline actor architectures.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00
Performance Profiles

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

SAVO (Ours)
SAVO - Approximation
SAVO - Previous Actions
SAVO + Action Smoothing
SAVO + Joint Action

(b) SAVO versus ablations of SAVO

Figure 7: Aggregate performance profiles using normalized scores over 7 tasks and 10 seeds each.

Adroit Dexterous Manipulation (Rajeswaran et al., 2017) Door: In this task, a robotic hand is
required to open a door with a latch. The challenge lies in the precise manipulation needed to unlatch
and swing open the door using the fingers. Hammer: the robotic hand must use a hammer to drive a
nail into a board. This task tests the hand’s ability to grasp the hammer correctly and apply force
accurately to achieve the goal. Pen: This task involves the robotic hand manipulating a pen to reach a
specific goal position and rotation. The objective is to control the pen’s orientation and position using
fingers, which demands fine motor skills and coordination.

Mining Expedition in Grid World. We develop a 2D Mining grid world environment (Chevalier-
Boisvert et al., 2018) where the agent (Appendix Fig. 12) navigates a 2D maze to reach the goal,
removing mines with correct pick-axe tools to reach the goal in the shortest path. The action space
includes navigation and tool-choice actions, with a procedurally-defined action representation space.
The Q-landscape is non-convex because of the diverse effects of nearby action representations.

Simulated and Real-Data Recommender Systems. RecSim (Ie et al., 2019) simulates sequential
user interactions in a recommender system with a large discrete action space. The agent must
recommend the most relevant item from a set of 10,000 items based on user preference information.
The action representations are simulated item characteristic vectors in simulated and movie review
embeddings in the real-data task based on MovieLens (Harper & Konstan, 2015) for items.

6 Experiments

6.1 Effectiveness of SAVO in challenging Q-landscapes

We compare SAVO against the following baseline actor architectures:

• 1-Actor (TD3): Conventional single actor architecture which is susceptible to local optima.

• 1-Actor, k=3 samples (Wolpertinger): Gaussian sampling centered on actor’s output. For discrete
actions, we select 3-NN discrete actions around the continuous action (Dulac-Arnold et al., 2015).

• k=3-Actors (Ensemble): Each actor (Osband et al., 2016) can find different local optima, improving
the best action.

• Evolutionary actor (CEM): Repeated rounds of search with CEM over the action space (Kalash-
nikov et al., 2018).

• Greedy-AC: Greedy Actor Critic (Neumann et al., 2018) trains a high-entropy proposal policy and
primary actor trained from best proposals with gradient updates.

• Greedy TD3: Our version of Greedy-AC with TD3 exploration and update improvements.

• SAVO: Our method with 3 successive actors and surrogate Q-landscapes.

Reinforcement Learning Journal 2025

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

0.02

0.18

0.38

0.58

0.78

0.98

Ev
al

 S
uc

ce
ss

 R
at

e

MineWorld

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

1.5

2.3

3.1

3.9

4.7

5.5

6.3

Ev
al

 R
et

ur
n

RecSim

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

10

19

28

37

46

55

Ev
al

 R
et

ur
n

RecSim-Data

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

600

1200

1800

2400

3000

Ev
al

 R
et

ur
n

Hopper (Restricted)

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

200

400

600

800

1000

Ev
al

 R
et

ur
n

Inverted Pendulum (Restricted)

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

2000

4000

6000

8000

10000

Ev
al

 R
et

ur
n

Inv. Dbl Pend. (Restricted)

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

800

1600

2400

3200

4000

Ev
al

 R
et

ur
n

Walker2D (Restricted)

SAVO (Ours) 1-Actor (TD3) 1-Actor, k-Samples (Wolpertinger)

Greedy-AC Greedy-TD3Evolutionary Actor (CEM)

k-Actors (Ensemble)

Figure 8: SAVO against baselines on discrete and continuous tasks. Results averaged over 10 seeds.

We ablate the crucial components and design decisions in SAVO:

• SAVO - Approximation: removes the approximate surrogates (Sec. 4.2.2), using Ψi instead of Ψ̂i.

• SAVO - Previous Actions: removes conditioning on a<i in SAVO’s actors and surrogates.

• SAVO + Action Smoothing: TD3’s policy smoothing (Fujimoto et al., 2018) adds action noise to
compute Q-targets.

• SAVO + Joint Action: trains an actor with a joint action space of 3×D. The k action samples are
obtained by splitting the joint action into D dimensions. Validates successive nature of SAVO.

Aggregate performance. We utilize performance profiles (Agarwal et al., 2021) to aggregate results
across different environments in Figure 7a (evaluation mechanism detailed in Appendix 15.1). SAVO
consistently outperforms baseline actor architectures like single-actor (TD3) and sampling-augmented
actor (Wolpertinger), showing the best robustness across challenging Q-landscapes. In Figure 7b,
SAVO outperforms its ablations, validating each proposed component and design decision.

Per-environment results. In Mining Expedition, the action space has semantically different naviga-
tion and tool-choice actions, while RecSim and RecSim-Data have a large and diverse set of items.
The Q-landscape is significantly non-convex in such discrete tasks because the continuous action goes
through a nearest-neighbor step to select a discrete item. Thus, sampling more neighbors in a local
neighborhood via Wolpertinger is better than TD3’s single action in Figure 8. However, the optimal
action is not necessarily near the initial guess. Therefore, SAVO achieves the best performance by
directly addressing global non-convexity. In restricted locomotion with a discontinuous action space,
SAVO’s actors can search far separated regions to optimize the Q-landscape better than only nearby
sampled actions. Appendix Figure 22 ablates SAVO in all 7 environments and shows that the most
critical features are its successive nature, removing policy smoothing, and approximate surrogates.

6.2 Q-Landscape Analysis: Do successive surrogates reduce local optima?

In Figure 9, we visualize the surrogate landscapes in Inverted Pendulum-Restricted for one state
s. Due to successive pruning and approximation, the Q-landscapes become smoother with reduced
local optima. A single actor gets stuck in a severe local optimum a0. However, surrogate Ψ1 utilizes
a0 as an anchor and finds a better (global) optimum a1. The maximizer policy selects a0, a1, or a2,
whichever has the highest Q-value. Appendix Figure 28 shows that convex Q-landscapes are easily
optimized, while Figure 29 shows how SAVO successfully optimizes the non-convex Q-landscapes in
all other tasks. Further analysis can be found in Appendix 18.2.

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

<latexit sha1_base64="fZJDo3ToEEYDeeb9hUibg/F5Rwc=">AAACfHicbVDbahNBGJ6spx48pHrZm8FUUNRl1rSx4k1pofRCoYJpC8kSZmf/JEPnsMz8Kw1LnsGn8Vafw5eRzm4jNG1/GObj+/7jlxVKemTsbyu6d//Bw0crq2vrj588fdbeeH7ibekE9IVV1p1l3IOSBvooUcFZ4YDrTMFpdn5Q66c/wHlpzXecFZBqPjFyLAXHQI3ab6ph02TgJllasXh3h3XfURYn271Pzd/tdeeUj5L5qN1hMWuC3gbJAnTIIo5HG63Pw9yKUoNBobj3g4QVmFbcoRQK5mvD0kPBxTmfwCBAwzX4tGrWmdNXgcnp2LrwDNKGvV5Rce39TGchU3Oc+ptaTd6lDUoc76aVNEWJYMTVoHGpKFpaG0Rz6UCgmgXAhZNhVyqm3HGBwcalKUJnTk6mGHrQL5bnnh5YXbd19KvNwRm63+hLRRf/76OH4TaEi7tuy3Rtd3LT3Nvg5EOc7MTs23Znb39h/ArZJC/Ja5KQj2SPHJFj0ieC/CS/yG/yp/Uv2oreRu+vUqPWouYFWYqodwk7+77p</latexit>

a1
<latexit sha1_base64="j6zVUHunWH9J5fT4Qaoa0ebjVq4=">AAACkHicbVBbSxtBGJ1sb9beon3sy9BQSEDCrlQUitQqlFIqGGhUSJYwO/slGZzLMvOtJAz7a/pr+to+9d90dk2hUT+Y4XDOdz1ZIYXDOP7Tih48fPT4ycbTzWfPX7x81d7aPnemtByG3EhjLzPmQAoNQxQo4bKwwFQm4SK7Oqn1i2uwThj9HZcFpIrNtJgKzjBQk/ahHzdNRnaWpT7uxzu0+ZJ+XNExwgL9KVtU3UHXs2oS93aoH1QNTnq9atLuhOwm6F2QrECHrOJsstX6MM4NLxVo5JI5N0riAlPPLAouodoclw4Kxq/YDEYBaqbApb5ZsaLvApPTqbHhaaQN+3+FZ8q5pcpCpmI4d7e1mrxPG5U4PUi90EWJoPnNoGkpKRpam0ZzYYGjXAbAuBVhV8rnzDKOwdq1KVxlVszmGHrQb4bljp4YVbe19NTkYDU9bvS1osW/++jncFtt+j23Zaq2O7lt7l1wvttP9vrx4H3n6Hhl/AZ5Q96SLknIPjkiX8gZGRJOfpCf5Bf5HW1HB9HH6NNNatRa1bwmaxF9/Qv+RMbK</latexit>

Max(Q(a0), Q(a1))
<latexit sha1_base64="1uMOMnv/jepAOFdUEonmvZ330bU=">AAACfHicbVBdaxNBFJ1s/aj1o6k++jIYBUVdZps2tvhSWhAfFCqYtpAsYXb2Jhk6H8vM3dKw5Df01/ja/g7/jDi7jWDaXhjmcM79PFmhpEfGfreilXv3HzxcfbT2+MnTZ+vtjedH3pZOQF9YZd1Jxj0oaaCPEhWcFA64zhQcZ6cHtX58Bs5La37irIBU84mRYyk4BmrUflcNmyYDN8nSisU726z7gbI42ertNn+3151TPtqcj9odFrMm6G2QLECHLOJwtNH6PMytKDUYFIp7P0hYgWnFHUqhYL42LD0UXJzyCQwCNFyDT6tmnTl9E5icjq0LzyBt2P8rKq69n+ksZGqOU39Tq8m7tEGJ4520kqYoEYy4HjQuFUVLa4NoLh0IVLMAuHAy7ErFlDsuMNi4NEXozMnJFEMP+s3y3NMDq+u2jn63OThD9xt9qej83330S7gN4fyu2zJd253cNPc2ONqMk+2Y/djq7O0vjF8lL8kr8pYk5BPZI1/JIekTQS7IL3JJrlp/otfR++jjdWrUWtS8IEsR9f4CPeq+6g==</latexit>

a2

(a) Q(s, a0) (b) Ψ̂1(s, a1; a0) (c) Ψ̂2(s, a2; {a0, a1})

Figure 9: Each successive surrogate learns a Q-landscape with fewer local optima and thus is easier to
optimize by its actor. SAVO helps a single actor escape the local optimum a0 in Inverted Pendulum.

0.00 0.75 1.50 2.25 3.00
Env Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

 S
uc

ce
ss

 R
at

e

Adriot Door
TD3 + SAVO
TD3

0.00 0.75 1.50 2.25 3.00
Env Steps 1e6

0.0

0.2

0.4

0.6
Ev

al
 S

uc
ce

ss
 R

at
e

Adriot Pen
TD3 + SAVO
TD3

0.00 0.75 1.50 2.25 3.00
Env Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

 S
uc

ce
ss

 R
at

e

Adriot Hammer
TD3 + SAVO
TD3

Figure 10: TD3 is improved with SAVO on Adroit dexterous manipulation tasks.

6.3 Challenging Dexterous Manipulation (Adroit)

In Adroit (Rajeswaran et al., 2017) dexterous manipulation on Door, Pen, and Hammer, we compared
SAVO to TD3 (Fujimoto et al., 2018) and observed that SAVO successfully addressed the Q-landscape
challenges in TD3 algorithm (Figure 10) and TD3 has been improved with SAVO.

6.4 Quantitative Analysis: The Effect of Successive Actors and Surrogates

We investigate the effect of increasing the number of successive actor-surrogates in SAVO in Figure 11.
Additional actor-surrogates significantly help to reduce severe local optima initially. However, the
improvement saturates as the suboptimality gap reduces. While we still report main SAVO results
using 3 actors, SAVO significantly improves with 10 actors (Figure 11, Figure 26) across tasks.

6.5 Further experiments to validate SAVO

• Baseline Optimization. Figure 15 shows that baselines are fairly optimized, on par with SAVO on
tasks with a simple Q-landscape. Hyperparameter optimization details are discussed in §15.3.

• SAVO orthogonal to SAC. Figure 18 shows that SAVO+TD3 > SAC > TD3; thus, SAC’s stochastic
policy does not address TD3’s non-convexity. In fact, SAC also suffers from local optima (§17,
Figure 27) that SAVO+SAC mitigates successfully in unrestricted Ant-v4 and Half-Cheetah-v4.

• Design Choices. Figure 20 shows that LSTM, DeepSet, and Transformers are all valid choices
as summarizers of successive actions a<i in SAVO. Figure 21 shows that FiLM conditioning
on a<i helps in discrete action spaces, but affects continuous action space less. For exploration,
we compared Ornstein-Uhlenbeck (OU) noise and Gaussian noise and found them to be largely
equivalent across all baselines (Figure 17). In §14.7, we tried specialized initializations to enforce
diversity in the SAVO’s actors and surrogates but did not observe major gains.

• Massive Discrete Actions. SAVO also improves in RecSim-100k and RecSim-500k (Figure 19).

• Resetting baselines. SAVO outperforms resetting techniques (Nikishin et al., 2022; Kim et al.,
2024) in addressing local optima, as shown in Figure 16.

Reinforcement Learning Journal 2025

0.00 1.25 2.50 3.75 5.00
Env Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

 S
uc

ce
ss

 R
at

e

MineWorld
Length=10
Length=5
Length=4
Length=3
Length=2
Length=1

0 125000 250000 375000 500000
Env Steps

0

2000

4000

6000

8000

10000

Ev
al

 R
et

ur
n

Inv. Dbl Pend. (Restricted)
Length=15
Length=10
Length=5
Length=3
Length=1

0.0 0.5 1.0 1.5 2.0

Env Steps ×106

0

600

1200

1800

2400

3000

E
va

l
R

et
ur

n

Hopper (Restricted)
Length=15

Length=10

Length=5

Length=3

Length=1

0.00 0.75 1.50 2.25 3.00

Env Steps ×106

0

1200

2400

3600

4800

6000
E

va
l

R
et

ur
n

Adriot Door

Length=15

Length=10

Length=5

Length=3

Length=1

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

2

3

4

5

6

7

Ev
al

 R
et

ur
n

RecSim

Length=25
Length=15
Length=10
Length=5
Length=3
Length=1

Figure 11: SAVO’s improvement scales well when additional actor-surrogates are added until its
performance saturates and completely mitigates the suboptimality of TD3. While the gains are
diminishing beyond 3-5 actors in the environments we considered, 10 actors are mostly enough
to produce optimal performance (shown in red). For RecSim, which is an especially non-convex
Q-landscape because of 10,000 actions and a 45-D action representation space, we note that increasing
to 15 actors achieves the optimal performance.

7 Limitations and Conclusion
Method GPU Mem. Return Time

TD3 619MB 1107.795 0.062s
SAVO k=3 640MB 2927.149 0.088s
SAVO k=5 681MB 3517.319 0.122s

Table 1: Compute v/s Performance Gain

Introducing more actors in SAVO has negligible
influence on GPU memory, but leads to longer
inference time (Table 1). However, even for
3 actor-surrogates, SAVO achieves significant
improvements in all our experiments. Further,
for tasks with a simple convex Q-landscape, single actors do not get stuck in local optima, reducing
the improvements with SAVO. In conclusion, we improve Q-landscape optimization in actor-critic RL
with Successive Actors for Value Optimization (SAVO) in both continuous and large discrete action
spaces. We demonstrate with quantitative and qualitative analyses how the improved optimization of
Q-landscape with SAVO leads to better sample efficiency and performance.

References

Monireh Abdoos, Nasser Mozayani, and Ana LC Bazzan. Traffic light control in non-stationary
environments based on multi agent q-learning. In 2011 14th International IEEE conference on
intelligent transportation systems (ITSC), pp. 1580–1585. IEEE, 2011. 2

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural information
processing systems, 34:29304–29320, 2021. 10, 34

Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International
conference on machine learning, pp. 146–155. PMLR, 2017. 2

Leemon C Baird and A Harry Klopf. Reinforcement learning with high-dimensional continuous
actions. Wright Laboratory, Wright-Patterson Air Force Base, Tech. Rep. WL-TR-93-1147, 15,
1993. 2

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

Yotam Barnoy, Molly O’Brien, Will Wang, and Gregory Hager. Robotic surgery with lean
reinforcement learning. arXiv preprint arXiv:2105.01006, 2021. 5

Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966. 4

Lukas Biewald. Experiment tracking with weights and biases. Software available from wandb. com,
2:233, 2020. 35

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016. 35

Gang Chen and Yiming Peng. Off-policy actor-critic in an ensemble: Achieving maximum general
entropy and effective environment exploration in deep reinforcement learning. arXiv preprint
arXiv:1902.05551, 2019. 3

Xinshi Chen, Shuang Li, Hui Li, Shaohua Jiang, Yuan Qi, and Le Song. Generative adversarial user
model for reinforcement learning based recommendation system. In International Conference on
Machine Learning, pp. 1052–1061. PMLR, 2019. 2

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W Ross. Randomized ensembled double q-
learning: Learning fast without a model. In International Conference on Learning Representations,
2020. 1, 3

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid, 2018. 2, 9

Anna Choromanska, MIkael Henaff, Michael Mathieu, Gerard Ben Arous, and Yann LeCun. The
Loss Surfaces of Multilayer Networks. In Guy Lebanon and S. V. N. Vishwanathan (eds.), Proceed-
ings of the Eighteenth International Conference on Artificial Intelligence and Statistics, volume 38 of
Proceedings of Machine Learning Research, pp. 192–204, San Diego, California, USA, 09–12 May
2015. PMLR. URL https://proceedings.mlr.press/v38/choromanska15.html.
4

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on the
cross-entropy method. Annals of operations research, 134(1):19–67, 2005. 1, 3

Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap, Jonathan
Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. Deep reinforcement
learning in large discrete action spaces. arXiv preprint arXiv:1512.07679, 2015. 2, 3, 5, 8, 9

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. In International conference on machine learning,
pp. 1407–1416. PMLR, 2018. 2

Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs, Adrian
Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. In
Conference on Robot Learning, pp. 158–168. PMLR, 2022. 5

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018. 1,
3, 4, 8, 10, 11, 25

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010. 33

Fred Glover. Tabu search: A tutorial. Interfaces, 20(4):74–94, 1990. 2, 3

Fred Glover and Manuel Laguna. Tabu search. Springer, 1998. 6

https://github.com/maximecb/gym-minigrid
https://proceedings.mlr.press/v38/choromanska15.html

Reinforcement Learning Journal 2025

Ian Goodfellow. Deep learning, 2016. 4

Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. A survey of actor-critic
reinforcement learning: Standard and natural policy gradients. IEEE Transactions on Systems, Man,
and Cybernetics, part C (applications and reviews), 42(6):1291–1307, 2012. 1

Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep q-learning
with model-based acceleration. In International conference on machine learning, pp. 2829–2838.
PMLR, 2016. 2

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018. 3, 37

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015. 2, 9

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements
in deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018. 2

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989. 3

Jiaqiao Hu, Michael C Fu, and Steven I Marcus. A model reference adaptive search method for
global optimization. Operations research, 55(3):549–568, 2007. 3

Zhewei Huang, Shuchang Zhou, BoEr Zhuang, and Xinyu Zhou. Learning to run with actor-critic
ensemble. arXiv preprint arXiv:1712.08987, 2017. 3

Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models for sequence tagging, 2015. 27

Eugene Ie, Chih-wei Hsu, Martin Mladenov, Vihan Jain, Sanmit Narvekar, Jing Wang, Rui Wu, and
Craig Boutilier. Recsim: A configurable simulation platform for recommender systems. arXiv
preprint arXiv:1909.04847, 2019. 2, 9, 22

Ayush Jain, Andrew Szot, and Joseph Lim. Generalization to new actions in reinforcement
learning. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 4661–
4672. PMLR, 13–18 Jul 2020. URL http://proceedings.mlr.press/v119/jain20b.
html. 5

Ayush Jain, Norio Kosaka, Kyung-Min Kim, and Joseph J Lim. Know your action set: Learning ac-
tion relations for reinforcement learning. In International Conference on Learning Representations,
2021. 5, 22, 27

Sham Machandranath Kakade. On the sample complexity of reinforcement learning. University of
London, University College London (United Kingdom), 2003. 2

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforcement
learning for vision-based robotic manipulation. In Conference on Robot Learning, pp. 651–673.
PMLR, 2018. 1, 3, 9

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic reinforce-
ment learning at scale. arXiv preprint arXiv:2104.08212, 2021. 3

http://proceedings.mlr.press/v119/jain20b.html
http://proceedings.mlr.press/v119/jain20b.html

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

Woojun Kim, Yongjae Shin, Jongeui Park, and Youngchul Sung. Sample-efficient and safe deep
reinforcement learning via reset deep ensemble agents. Advances in Neural Information Processing
Systems, 36, 2024. 11, 24

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 4, 35

Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing.
science, 220(4598):671–680, 1983. 3

Kuang-Huei Lee, Ted Xiao, Adrian Li, Paul Wohlhart, Ian Fischer, and Yao Lu. Pi-qt-opt: Predictive
information improves multi-task robotic reinforcement learning at scale. In Conference on Robot
Learning, pp. 1696–1707. PMLR, 2023. 3

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015. 1, 3, 4, 8

Michael Lederman Littman. Algorithms for sequential decision-making. Brown University, 1996. 1

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013. 2

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015. 2

Samuel Neumann, Sungsu Lim, Ajin Joseph, Yangchen Pan, Adam White, and Martha White.
Greedy actor-critic: A new conditional cross-entropy method for policy improvement. arXiv
preprint arXiv:1810.09103, 2018. 3, 9

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring general-
ization in deep learning. Advances in neural information processing systems, 30, 2017. 4

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In International conference on machine learning, pp.
16828–16847. PMLR, 2022. 11, 24

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29, 2016. 2, 3, 9

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.
35

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018. 8, 28

Aloïs Pourchot and Olivier Sigaud. Cem-rl: Combining evolutionary and gradient-based methods
for policy search. arXiv preprint arXiv:1810.01222, 2018. 3

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017. 2, 5, 9, 11

Reinforcement Learning Journal 2025

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015. 3

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017. 3

Lin Shao, Yifan You, Mengyuan Yan, Shenli Yuan, Qingyun Sun, and Jeannette Bohg. Grac:
Self-guided and self-regularized actor-critic. In Conference on Robot Learning, pp. 267–276.
PMLR, 2022. 1, 3

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning, pp.
387–395. Pmlr, 2014. 1, 3, 4, 19

Riley Simmons-Edler, Ben Eisner, Eric Mitchell, Sebastian Seung, and Daniel Lee. Q-learning for
continuous actions with cross-entropy guided policies. arXiv preprint arXiv:1903.10605, 2019. 3

Edward Jay Sondik. The optimal control of partially observable Markov processes. Stanford
University, 1971. 1

Yanjie Song, Ponnuthurai Nagaratnam Suganthan, Witold Pedrycz, Junwei Ou, Yongming He,
Yingwu Chen, and Yutong Wu. Ensemble reinforcement learning: A survey. Applied Soft
Computing, pp. 110975, 2023. 3

Mandavilli Srinivas and Lalit M Patnaik. Genetic algorithms: A survey. computer, 27(6):17–26,
1994. 3

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. 1998. 1, 4, 6

Gerald Tesauro et al. Temporal difference learning and td-gammon. Communications of the ACM,
38(3):58–68, 1995. 2

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033. IEEE,
2012. 2, 8, 22

Hado Van Hasselt and Marco A Wiering. Using continuous action spaces to solve discrete problems.
In 2009 International Joint Conference on Neural Networks, pp. 1149–1156. IEEE, 2009. 2, 5

Pin Wang, Hanhan Li, and Ching-Yao Chan. Quadratic q-network for learning continuous control
for autonomous vehicles. arXiv preprint arXiv:1912.00074, 2019. 2

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3):279–292, 1992. 2

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992. 3

Qingyun Wu, Hongning Wang, Liangjie Hong, and Yue Shi. Returning is believing: Optimizing
long-term user engagement in recommender systems. In Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management, pp. 1927–1936, 2017. 5

Mengyuan Yan, Adrian Li, Mrinal Kalakrishnan, and Peter Pastor. Learning probabilistic multi-
modal actor models for vision-based robotic grasping. In 2019 International Conference on Robotics
and Automation (ICRA), pp. 4804–4810. IEEE, 2019. 3

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017. 7

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang Tang. Deep
reinforcement learning for page-wise recommendations. Proceedings of the 12th ACM Conference
on Recommender Systems, Sep 2018. DOI: 10.1145/3240323.3240374. URL http://dx.doi.
org/10.1145/3240323.3240374. 5

Zhuobin Zheng12, Chun Yuan, Zhihui Lin12, and Yangyang Cheng12. Self-adaptive double
bootstrapped ddpg. In International Joint Conference on Artificial Intelligence, 2018. 3

Tao Zhou, Zoltán Kuscsik, Jian-Guo Liu, Matúš Medo, Joseph Rushton Wakeling, and Yi-Cheng
Zhang. Solving the apparent diversity-accuracy dilemma of recommender systems. Proceedings of
the National Academy of Sciences, 107(10):4511–4515, 2010. 5

Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, and Dawei Yin. Reinforcement
learning to optimize long-term user engagement in recommender systems. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
2810–2818, 2019. 5

http://dx.doi.org/10.1145/3240323.3240374
http://dx.doi.org/10.1145/3240323.3240374

Reinforcement Learning Journal 2025

Supplementary Materials
The following content was not necessarily subject to peer review.

8 Reproducibility

With the aim of promising the reproducibility of our results, we have attached our code in the
supplementary materials, which contain all environments and all baseline methods we report in the
paper. The specific commands to reproduce all baselines across all environments are available in
README. We have also included all relevant hyperparameters and additional details on how we
tuned each baseline method in Appendix Table 3.

9 Proof of Convergence of Maximizer Actor in Tabular Settings

Theorem 9.1 (Convergence of Policy Iteration with Maximizer Actor). Consider a modified policy
iteration algorithm where, at each iteration, we have a set of k + 1 policies {ν0, ν1, . . . , νk}, with
ν0 = µ being the current policy learned with DPG under its assumptions of finite states, continuous
actions, and regularity conditions. We define the maximizer actor µM as:

µM (s) = arg max
a∈{ν0(s),ν1(s),...,νk(s)}

Q(s, a). (10)

In the tabular setting, the modified policy iteration algorithm using the maximizer actor converges to
the locally optimal policy.

Proof. 9.1 Policy Evaluation Converges

Given a deterministic policy π (in our case π = µM), the policy evaluation computes the action-value
function Qπ , which satisfies the Bellman equation:

Qπ(s, a) = R(s, a) + γ
∑
s′

P (s, a, s′)Qπ(s′, π(s′)).

In the tabular setting, the Bellman operator T π defined by

[T πQ](s, a) = R(s, a) + γ
∑
s′

P (s, a, s′)Q(s′, π(s′))

is a contraction mapping with respect to the max norm ∥ · ∥∞ with contraction factor γ:

∥T πQ− T πQ′∥∞ ≤ γ∥Q−Q′∥∞.

Thus, iteratively applying T π starting from any initial Q0 converges to the unique fixed point Qπ .

9.2 Policy Improvement with DPG and Maximizer Actor

At iteration n, suppose we have a policy µn.

Step 1: Policy Evaluation

Compute Qµn by solving:

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

Qµn(s, a) = R(s, a) + γ
∑
s′

P (s, a, s′)Qµn(s′, µn(s
′)).

Step 2: Policy Improvement

(a) DPG Update

Perform a gradient ascent step using the Deep Policy Gradient (DPG) method to obtain an improved
policy µ̃k+1:

µ̃k+1(s) = µn(s) + α∇aQ
µn(s, a)

∣∣
a=µn(s)

,

where α > 0 is a suitable step size.

This DPG gradient step leads to local policy improvement following over µn (Silver et al., 2014):

V µ̃k+1(s) ≥ V µn(s), ∀s ∈ S.

(b) Maximizer Actor

Given additional policies ν1, . . . , νk, define the maximizer actor µn+1 as:

µn+1(s) = arg max
a∈{µ̃k+1(s),ν1(s),...,νk(s)}

Qµn(s, a).

Since µn+1(s) selects the action maximizing Qµn(s, a) among candidates, we have:

Qµn(s, µn+1(s)) = max
a

Qµn(s, a) ≥ Qµn(s, µ̃k+1(s)) ≥ V µn(s).

By the Policy Improvement Theorem, since Qµn(s, µn+1(s)) ≥ V µn(s) for all s, it follows that:

V µn+1(s) ≥ V µn(s), ∀s ∈ S.

Thus, the sequence {V µn} is monotonically non-decreasing.

Convergence of Policy Iteration

Since {V µn} is bounded above by V ∗ (the optimal value function), it converges. In a finite MDP,
there are only finitely many possible policies. Thus, the sequence {µn} must eventually repeat, and
because each policy improvement is non-decreasing, the policies stabilize at an optimal policy µ∗.

Theorem 4.1 demonstrates how the maximizer actor at least improves over the DPG policy. Yet, there
is no guarantee that this achieves the global optimum because of the implicit dependence on the
policy gradient algorithm. Therefore, Theorem 4.1 is limited to showing convergence in the presence
of a maximizer actor to a local optimum and shows that our algorithm is a stable RL algorithm — not
one that is globally optimal. It also shows how the locally optimal policy learned with a maximizer
actor might improve the locally optimal policy learned by DPG.

10 Proof of Reducing Number of Local Optima in Successive Surrogates

Theorem 10.1. Consider a state s ∈ S, Q in Eq. 1, and Ψi in Eq. 7. Let Nopt(f) be the number of
local optima (assumed countable) of a function f : A → R, where A is the action space. Then,

Nopt(Q(s, a)) ≥ Nopt(Ψ0(s, a; {a0})), . . . ,≥ Nopt(Ψk(s, a; {a0, . . . , ak}))

Reinforcement Learning Journal 2025

Proof. Consider two consecutive surrogate functions Ψi(s, a; {a0, . . . , ai}) and
Ψi+1(s, a; {a0, . . . , ai+1}),

Ψi(s, a; a<i) = max

{
Q(s, a),max

j<i
Q(s, aj)

}
,

Ψi+1(s, a; a<i+1) = max

{
Q(s, a), max

j<i+1
Q(s, aj)

}
,

Let τi = maxj<i Q(s, aj) and τi+1 = maxj<i+1 Q(s, aj).

Consider a given state s and any particular local optimum in Ψi at a′, there can be two cases:

1. If Q(s, a’) > τi+1, then Ψi+1(s, a
′; a<i+1) = Q(s, a′).

Since, a’ is a local optimum of Ψi, there exists ϵ > 0 Ψi(s, a
′ ± ϵ; a<i) = Q(s, a′ ± ϵ) <

Ψi(s, a
′; a<i) = Q(s, a′)

Therefore, Ψi+1(s, a
′ ± ϵ; a<i+1) = Q(s, a′ ± ϵ) < Ψi+1(s, a

′; a<i+1) = Q(s, a′) Thus, a’ is
also a local optimum of Ψi+1.

2. If Q(s, a′) ≤ τi+1, then Ψi+1(s, a
′; a<i+1) = τi+1, and there exists ϵ > 0, such that Ψi+1(s, a

′±
ϵ; a<i+1) = τi+1. Thus, a’ is not a local optimum of Ψi+1

Finally, Ψi+1 does not add any new local optima, because τi+1 ≥ τi and thus all points where
Ψi+1(s, a; a<i+1) = Q(s, a), we have Ψi(s, a; a<i) = Q(s, a). Therefore ∀i ≥ 1,

Nopt(Ψi(s, a; {a0, . . . , ai})) ≥ Nopt(Ψi+1(s, a; {a0, . . . , ai+1})

The same analysis extends for Q and Ψ1, by substituting τ0 < minQ to be a very small value. Thus,
by induction, we have,

Nopt(Q(s, a)) ≥ Nopt(Ψ0(s, a; {a0})), . . . ,≥ Nopt(Ψk(s, a; {a0, . . . , ak}))

11 Environment Details

(b) Recommender Systems

Simulated
Data Movielens

Movie

Click or Not

↓

↓ ↓

↓

x100
(a) Mine World (c) Continuous Control

Figure 12: This figure provides the visual description of the environment setup.

11.1 MiningEnv

The grid world environment, introduced in Sec. 5, requires an agent to reach a goal by navigating a
2D maze as soon as possible while breaking the mines blocking the way.

State: The state space is an 8+K dimensional vector, where K equals to mine-category-size. This
vector consists of 4 independent pieces of information: Agent Position, Agent Direction, Surrounding
Path, and Front Cell Type.

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

1. Agent Position: Agent Position occupies two dimensional of the vector. The first dimension
represents the x-axis value, and the second one represents the y.

2. Agent Direction: It only takes one channel with value [0, 1, 2, 3]. Each number represents one
direction, and they are 0-right, 1-down, 2-left, and 3-up.

3. Surrounding Path: This information takes four channels. Each represents whether the cell in that
direction is an empty cell or a goal.

4. Front Cell Type: This information is in one-hot form and occupies the last K + 1-dimensional
vector, which provides the information of which kind of mine is in front of the agent. If the front
cell is an empty cell or the goal, the (K + 1)th channel will be one, and others remain to be zero

Ultimately, we will normalize each dimension to [0, 1] with each dimension’s minimum/maximum
value. Each time we reset the environment, the layout of the whole grid world will be changed, except
for the agent start position and the goal position.

Termination: An episode is terminated in success when the agent reaches the goal or after a total of
100 timesteps.

Actions: The base action set combines two kinds of actions: navigation actions and pick-axe(tool)
actions. The navigation action set is a fixed set, which contains four independent actions: going up,
down, left, and right, corresponding with the direction of the agent. They will change the agent’s
direction first and then try to make the agent take one step forward. Note that, different from the
empty cell, the agent cannot step onto the mine, which means that if the agent is trying to take a step
towards a mine or the border of the world, then the agent will stay in the same location while the
direction will still be changed. Otherwise, the agent can step onto that cell. An agent will succeed
if it reaches the goal position. The size of the pick-axe action set is equal to 50. Each tool has a
one-to-one mapping, which means they can and only can be successfully applied to one kind of mine,
and either transform that kind of mine into another type of mine or directly break it.

Reward: The agent receives a large goal reward for reaching the goal. The goal reward is discounted
based on the number of action steps taken to reach that location, thus rewarding shorter paths. To
further encourage the agent to reach the goal, a small exploration reward is added whenever the agent
gets closer to the goal, and a negative equal penalty is added whenever the agent gets further to the
goal. And also, when the agent successfully applies a tool, it will gain a small reward. When the
agent successfully breaks a mine, it will also gain a small bonus.

R(s, a) = 1Goal ·RGoal

(
1− λGoal

Ncurrent steps

Nmax steps

)
+

RStep (Ddistance before −Ddistance after) +

1correct tool applied ·RTool +

1successfully break mine ·RBonus

(11)

where RGoal = 10, RStep = 0.1, RTool = 0.1, RBonus = 0.1, λGoal = 0.9, Nmax steps = 100

Action Representations: The action representations are 4-dimensional vectors manually defined
using a mix of number ids, and each dim is scaled to [0, 1]. as shown in Graph 13. Dimensions 1
identifies the category of skills (navigation, pick-axe), 2 distinguishes movement skills (right, down,
left, up), 3 denotes the mine on which this tool can be successfully applied, and 4 shows the result of
applying this tool. We will normalize the action embedding space to [0, 1] for each dimension.

11.2 RecSim

The simulated RecSys environment requires an agent to select an item that match the user’s interest
out of a large item-set. We simulate users with a dynamically changing preference upon clicks. Thus,
the agent’s task is to infer this preference from user clicks and recommend the most relevant item to
maximize a total number of clicks.

Reinforcement Learning Journal 2025

Basic Tools
x8

Select All

Complex Tools
x63

Select 42

Agent

Mine

Empty

Goal

Mining World
Overview Action Overview

Navigation actions
x4

Select All

Action
Type

Navigation
Number

Mine-ID
Before

Mine-ID
After

0 0 [7, 8, …,
14]

15

0 0 [0, 1, …, 6] [7, 8, …,
14] or 15

1 [0, 1, 2, 3] 0 0

Basic
Mines

Empty
(No mine)

Complex
Mines

Figure 13: Mining Env Setting Description

State: The user interest embedding (eu ∈ Rn where n denotes the number of categories of items)
represents the user interest in categories that transitions over time as the user consumes different
items upon click. So, when the user clicks an item with the corresponding item embedding(ei ∈ Rn;
the same n as the one for the user embedding) then the user interest embedding(eu) will be updated
as follows;

∆(eu) = (−y|eu|+ y) · (1− eu), for y ∈ [0, 1]

ei ← eu +∆(eu) with probability[eTu ei + 1]/2

eu ← eu −∆(eu) with probability[1− eTu ei]/2

This essentially pulls the user’s preference towards the item that was clicked.

Action: The action set contains many recommendable items. So, the agent has to find the most
relevant item to a user given the item-set. See below regarding how these items are represented.

Reward: The base reward is a simulated user feedback (e.g., clicks). The user model (Ie et al., 2019)
stochastically skips or clicks the recommended item based on the present user interest embedding
(eu). Concretely, the user model computes the following score on the recommended item;

scoreitem = ⟨eu, ei⟩

pitem =
escoreitem

esitem + escoreskip

pskip =
escoreskip

esitem + escoreskip

where, eu, ei ∈ Rn are the user and item embedding, respectively, ⟨·, ·⟩ is the dot product notation
and scoreskip is a empirically decided hyper-parameter. So, given the score scoreitem of an item, the
user model computes the click likelihood through a softmax function over the recommended item
and a predefined skip score. Finally, the user model stochastically selects either click(reward=1) or
skip(reward=0) based on the categorical distribution on [pitem, pskip].

Action Representations: Following Jain et al. (2021), we implement continuous item representations
sampled from a Gaussian Mixture Model (GMM) with centers around each item category. In this
work, we did not use the sub-category in the category system.

11.3 Continuous Control

The MuJoCo (Todorov et al., 2012) benchmarking tasks are a set of standard reinforcement learning
environments provided by the MuJoCo physics engine. elow is a brief description of some of the
commonly used MuJoCo benchmarking tasks:

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

Hopper: In the Hopper task, you control a one-legged robot that must learn to hop forward while
maintaining balance. The agent needs to find an optimal hopping strategy to maximize forward
progress.

Walker2d: This task features a two-legged robot that must learn to walk forward. Similar to the
Hopper, the agent must maintain balance while moving efficiently.

HalfCheetah: The HalfCheetah task involves a four-legged cheetah-like robot. The objective is for
the robot to learn a coordinated gait that allows it to move forward as rapidly as possible.

Ant: In the Ant task, you control a four-legged ant-like robot. The challenge is for the robot to learn
to walk and navigate efficiently through its environment.

11.3.1 Restricted Locomotion in Mujoco

Figure 6 demonstrates "Restricted" locomotion. And here we provide the complete description and
justification of the Restricted Mujoco Locomotion tasks below.

Justification: The restricted locomotion setting in Mujoco limits the range of actions the agent is
allowed to perform in each dimension. For instance, the wear and tear of an agent’s hardware can
easily cause action space to behave like the one visualized in the attached PDF for Hopper. The
mixture-of-hypersphere action space is just one way to simulate such asymmetric restrictions. These
restrictions apply to the range of torques applied to the joints of hopper and walker, and on the range
of forces applied to pendulums.

Complete Description:

• Restricted Hopper & Walker

Invalid action vectors are replaced with 0. Change to environment’s step function code:

1 def step(action):
2 ...
3 if check_valid(action):
4 self.do_simulation(action)
5 else:
6 self.do_simulation(np.zeros_like(action))
7 ...

For reference, the Hopper action space is 3-dimensional, with torque applied to
[thigh, leg, foot], while the Walker action space is 6-dimensional, with torque applied to
[right thigh, right leg, right foot, left thigh, left leg, left foot]. The implication is that zero torques
are exerted for the ∆t duration between two actions, meaning no torques are applied for 0.008
seconds. This effectively slows down the agent’s current velocities and angular velocities due to
friction.

• Inverted Pendulum & Inverted Double Pendulum

Invalid action vectors are replaced with -1. Change in code:

1 def step(action):
2 ...
3 if not check_valid(action):
4 action[:] = -1.
5 self.do_simulation(action)
6 ...

For reference, the action space is 1-dimensional, with force applied on the cart. The implication is
that the cart is pushed in the left direction for 0.02 (default) seconds. Note that the action vectors
are not zeroed because a 0-action is often the optimal action, particularly when the agent starts
upright. This would make the learning task trivial, with the optimal strategy being: “learn to select
invalid actions”.

Reinforcement Learning Journal 2025

Valid Action Space

Original Action Space

Figure 14: Hopper’s 3D visualization of Action Space.

12 Additional Results

12.1 Experiment: Continuous control on Unrestricted Mujoco

In Mujoco-v4 tasks, the Q-landscape is likely to be easier to optimize than Mujoco-Restricted tasks,
and we find that baseline models consistently perform well in all the tasks, unlike Mujoco-Restricted.
Based on the performance of SAVO and baselines in Figure 15, we can infer that,

1. The baseline models have sufficient capacity and are well-tuned, as they can solve the standard
Mujoco-v4 tasks optimally.

2. SAVO performs on par with other methods in Mujoco-v4 tasks where the Q-landscape is easier to
optimize.

3. Since SAVO outperforms baseline methods only in Mujoco-Restricted, it demonstrates that the
reason of SAVO doing better is the presence of a challenging Q-landscape, such as those shown in
Figure 1.

12.2 Resetting Baselines

In this section, we clarify the distinction between primacy bias and the challenge of getting stuck in
local optima within Q-landscapes. Primacy bias, as addressed in Nikishin et al. (2022); Kim et al.
(2024), occurs when an agent is trapped in suboptimal behaviors from early training, and solutions
like resetting (reinitializing the parameters of last few layers) and re-learning from the replay buffer
mitigate this by avoiding reliance on initially collected samples.

However, these methods do not reduce the probability of an actor getting stuck in Q-function local
optima (the issue we consider in this work). In fact resetting could cause an otherwise optimal actor
to get stuck in suboptima during retraining. To demonstrate this, we conducted a reset baseline
experiment, following Nikishin et al. (2022), on TD3 in MineEnv. Here, Full-reset refers to the
reset all strategy proposed by Kim et al. (2024), while Last-layer-OOO corresponds to the approach
in Nikishin et al. (2022). Finally, TD3 (no reset) represents the standard TD3 algorithm without
these extensions. We observed no performance improvements over the standard TD3. In contrast,
our method, SAVO, directly addresses this problem by employing an actor architecture specifically
designed to navigate non-convex Q-landscapes, making it more robust to local optima.

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

0.000 0.375 0.750 1.125 1.500
Env Steps 1e6

0

1200

2400

3600

4800

6000

Ev
al

 R
et

ur
n

Ant-v4

0.000 0.375 0.750 1.125 1.500
Env Steps 1e6

0

2400

4800

7200

9600

12000

Ev
al

 R
et

ur
n

HalfCheetah-v4

0.00 0.25 0.50 0.75 1.00
Env Steps 1e6

0

800

1600

2400

3200

4000

Ev
al

 R
et

ur
n

Hopper-v4

0.00 0.25 0.50 0.75 1.00
Env Steps 1e6

0

800

1600

2400

3200

4000

Ev
al

 R
et

ur
n

Walker2D-v4

SAVO (Ours) 1-Actor (TD3) 1-Actor, k-Samples (Wolpertinger)

Greedy-AC Greedy-TD3Evolutionary Actor (CEM)

k-Actors (Ensemble)

Figure 15: TD3 is not suboptimal in Unrestricted Mujoco. We evaluate SAVO against all baselines
in the Unrestricted Mujoco continuous control tasks and show that SAVO is competitive with the
baselines that already perform optimally. The reason is investigated in §18, where tasks like Inverted
Pendulum-v4 and Hopper-v4 have visibly convex Q-landscapes. Thus, SAVO is not expected to
significantly outperform TD3 in these benchmarks.

12.3 Exploration Noise comparison: OUNoise vs Gaussian

The choice of Ornstein-Uhlenbeck (OU) noise or Gaussian noise for exploration does not make a
significant difference and we select OU noise for its better overall performance in initial experiments.
This comparison is shown in Figure 17. This finding is consistent with TD3 Fujimoto et al. (2018),
which also finds no significant difference between OU and Gaussian noise.

12.4 SAC does not address non-convex Q-landscapes

We compare the performance of SAC, TD3, and TD3 + SAVO across three Mujoco-Restricted tasks.
The results (Figure 18) indicate that TD3 + SAVO consistently outperforms the other methods,
demonstrating the effectiveness of SAVO in Hopper and Walker2D. In Inverted Pendulum, TD3 +
SAVO also shows faster convergence, further highlighting its advantages.

Reinforcement Learning Journal 2025

Figure 16: Performance comparisons of Resetting baselines averaged over 5 random seeds, and the
seed variance is shown with shading.

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

600

1200

1800

2400

3000

Ev
al

 R
et

ur
n

Hopper (Restricted)
OU-TD3
Gaussian-TD3

Figure 17: OU versus Gaussian Noise. We do not see a significant difference due to this choice, and
select OU noise due to better overall performance in experiments

13 Network Architectures

13.1 Successive Actors

The whole actor has a successive format and each successive actor will receive two pieces of infor-
mation: the state observation and the action list generated by previous successive actors. Given the
concatenation of the input components above, a 4-layer MLP with ReLU will process this information
and generate one action for one single successive actor. And this action will be concatenated with
the previous action list. After being transformed by an optional action-list-encoder, together with
the state information, they become the input of next successive actor’s input. In the end, the action
list will be processed with 1-NN to find the nearest discrete action. After this, this action list will be
delivered to the selection Q-network.

13.2 Successive Critics

The critic has a one-to-one mapping relationship with the actor. The whole critic consists of a
list of successive critics and each successive critic will receive three pieces of information: the
state observation, the action list generated by previous successive actors, and the action provided
by the corresponding successive actor. Given the concatenation of the input components above, a

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

600

1200

1800

2400

3000

Ev
al

 R
et

ur
n

Hopper (Restricted)

SAVO
TD3
SAC

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

800

1600

2400

3200

4000

Ev
al

 R
et

ur
n

Walker2D (Restricted)

SAVO
TD3
SAC

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

200

400

600

800

1000

Ev
al

 R
et

ur
n

Inverted Pendulum (Restricted)

SAVO
TD3
SAC

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

2000

4000

6000

8000

10000

Ev
al

 R
et

ur
n

Inv. Dbl Pend. (Restricted)

SAVO
TD3
SAC

Figure 18: SAC is orthogonal to the effect of SAVO. While SAC is a stochastic extension of TD3
with entropy regularization, SAVO is a plug-in actor architecture that mitigates the challenge of
the actor getting stuck in local optima. Thus, tasks where SAC outperforms TD3 differ from tasks
where SAVO outperforms TD3. Also, TD3 outperforms SAC in Restricted Hopper and Inverted-
Double-Pendulum. However, SAVO+TD3 guarantees improvement over TD3. As we show in §17,
SAVO+SAC also mitigates the local optima challenges in SAC.

2-layer MLP with ReLU will process this information and generate the action’s value for one single
successive actor. This value will be used to update itself and the actor with TD-error.

13.3 List Summarizers

In order to extract meaningful information from the list of candidate actions, following Jain et al.
(2021) we employed the sequential models and the list-summarizer as follows;

Bi-LSTM: The raw action representations of candidate actions are passed on to the 2-layer MLP
followed by ReLU. Then, the output of the MLP is processed by a 2-layer bidirectional LSTM (Huang
et al., 2015). Another 2-layer MLP follows this to create the action set summary to be used in the
following successive actor.

DeepSet: The raw action representations of candidate actions are passed on to the 2-layer MLP
followed by ReLU. Then, the output of the MLP is aggregated by the mean pooling over all the
candidate actions to compress the information. Finally, the 2-layer MLP with ReLU provides the
resultant action summary to the following successive actor.

Transformer: Similar to the Bi-LSTM variant of the summarizer, we employed the 2-layer MLP
with ReLU before inputting the candidate actions into a self-attention and feed-forward network to
summarize the information. Afterward the summarization will be part of the input of the following
successive actor.

Reinforcement Learning Journal 2025

13.4 Feature-wise Linear Modulation (FiLM)

Feature-wise Linear Modulation (Perez et al., 2018), is a technique commonly applied in neural
networks for tasks like image recognition. It enhances adaptability by dynamically adjusting inter-
mediate feature representations. Using learned parameters from one layer, FiLM linearly modulates
features in another layer, allowing the network to selectively emphasize or de-emphasize aspects of
the input data. This flexibility is beneficial for capturing complex and context-specific relationships,
improving the model’s performance in various tasks.

13.5 Selection Q-network

The selection Q-network sequentially evaluates the Q-value of the retrieved candidate actions by the
cascading actors. Thus, it receives a concatenated information of state and an action embedding for
each candidate action. Then, it selects the action with the largest Q-value amongst candidate actions
to act on the environment.

14 More experimental results

14.1 More Complex RecSim: Increasing Size of Action Space

We test the robustness of our method to more challenging Q-value landscapes in Figure 19 in
Appendix 14.1. In RecSim, we vary the action space size, from 100K to 500K. The results show that
SAVO outperforms the baselines, maintaining its robust performance even as the action complexity
increases. In contrast, the baselines experienced performance deterioration as action sizes grew larger.

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

1.5

2.3

3.1

3.9

4.7

5.5

6.3

Ev
al

 R
et

ur
n

RecSim
SAVO
TD3+Sampling
Joint

0 2 4 6 8
Env Steps 1e6

1.5

2.3

3.1

3.9

4.7

5.5

6.3

Ev
al

 R
et

ur
n

RecSim
SAVO
TD3+Sampling
Joint

Figure 19: Increasing RecSim action set size: (Left) 100K items, (Right) 500K items (6 seeds).

14.2 Design Choices: Action summarizers

In the exploration of action summarizer design choices, three key architectures were considered:
Deepset, LSTM, and Transformer models, each represented by SAVO, SAVO-lstm, and SAVO-
transformer in Fig.20, respectively. In the discrete tasks, the comparison revealed a preference for the
deepset architecture over LSTM and Transformer. In the continuous domain, however, the results
were rather varied, indicating that the effectiveness of the action summarizer depends on the specific
use case. The nuanced differences among these architectures contribute to the complexity of the
task, and further research is needed to determine the optimal design for action summarization in both
discrete and continuous contexts.

14.3 Conditioning on previous actions: FiLM v/s MLP

In the examination of conditioning on previous actions, two distinct approaches, Feature-wise
Linear Modulation (FiLM) and Multi-Layer Perceptron (MLP), represented by FiLM and non-FiLM
variants in Fig.21, were scrutinized for their efficacy. In the discrete tasks, the results unveiled

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

0.000 1.875 3.750 5.625 7.500
Env Steps 1e6

0.02

0.18

0.38

0.58

0.78

0.98

Ev
al

 S
uc

ce
ss

 R
at

e

MineWorld

SAVO-DEEPSET
SAVO-LSTM
SAVO-TRANSFORMER

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

1.5

2.3

3.1

3.9

4.7

5.5

6.3

Ev
al

 R
et

ur
n

RecSim

SAVO-DEEPSET
SAVO-LSTM
SAVO-TRANSFORMER

0 2 4 6 8
Env Steps 1e6

10

19

28

37

46

55

Ev
al

 R
et

ur
n

RecSim-Data

SAVO-DEEPSET
SAVO-LSTM
SAVO-TRANSFORMER

Figure 20: Comparison of action summarizers: the results are averaged over 5 random seeds, and the
seed variance is shown with shading.

a notable preference for FiLM over non-FiLM implementations, highlighting its effectiveness in
leveraging information from prior actions for improved conditioning. However, in the continuous
domains, the comparison between FiLM and MLP yielded varied outcomes, suggesting that the choice
between these approaches is intricately tied to the specific task context. The nuanced performance
differences observed underscore the need for continued research to ascertain the optimal approach for
conditioning on previous actions and to enhance model adaptability across diverse applications.

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

1.5

2.3

3.1

3.9

4.7

5.5

6.3

Ev
al

 R
et

ur
n

RecSim

SAVO-FILM (Ours)
SAVO-No-FILM

0 2 4 6 8
Env Steps 1e6

10

19

28

37

46

55

Ev
al

 R
et

ur
n

RecSim-Data

SAVO-FILM (Ours)
SAVO-No-FILM

0.000 1.875 3.750 5.625 7.500
Env Steps 1e6

0.02

0.18

0.38

0.58

0.78

0.98

Ev
al

 S
uc

ce
ss

 R
at

e

MineWorld

SAVO-FILM (Ours)
SAVO-No-FILM

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

600

1200

1800

2400

3000

Ev
al

 R
et

ur
n

Hopper (Restricted)

SAVO-FILM (Ours)
SAVO-No-FILM

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

800

1600

2400

3200

4000

Ev
al

 R
et

ur
n

Walker2D (Restricted)

SAVO-FILM (Ours)
SAVO-No-FILM

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

200

400

600

800

1000

Ev
al

 R
et

ur
n

Inverted Pendulum (Restricted)

SAVO-FILM (Ours)
SAVO-No-FILM

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

2000

4000

6000

8000

10000

Ev
al

 R
et

ur
n

Inverted Double Pendulum (Restricted)

SAVO-FILM (Ours)
SAVO-No-FILM

Figure 21: Comparison of how to condition on previous actions: the results are averaged over 5
random seeds, and the seed variance is shown with shading.

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

0.02

0.18

0.38

0.58

0.78

0.98

Ev
al

 S
uc

ce
ss

 R
at

e

MineWorld

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

1.5

2.3

3.1

3.9

4.7

5.5

6.3

Ev
al

 R
et

ur
n

RecSim

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

10

19

28

37

46

55

Ev
al

 R
et

ur
n

RecSim-Data

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

600

1200

1800

2400

3000

Ev
al

 R
et

ur
n

Hopper (Restricted)

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

800

1600

2400

3200

4000

Ev
al

 R
et

ur
n

Walker2D (Restricted)

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

200

400

600

800

1000

Ev
al

 R
et

ur
n

Inverted Pendulum (Restricted)

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

2000

4000

6000

8000

10000

Ev
al

 R
et

ur
n

Inv. Dbl Pend. (Restricted)

SAVO (Ours) SAVO - Approximation SAVO + Previous ActionsSAVO - Action Smoothing SAVO + Joint Action

Figure 22: Ablation study of SAVO Variations over 5 random seeds shows that every technical
component introduced in SAVO contributes to its performance.

Reinforcement Learning Journal 2025

14.4 Per-Environment Ablation Results

Figure 22 shows the per-environment performance of SAVO ablations, compiled into aggregate
performance profiles in Figure 7b. The SAVO - Approximation variant underperforms significantly
in discrete action space tasks, where traversing between local optima is complex due to nearby actions
having diverse Q-values (see the right panel of Figure 1). Similarly, adding TD3’s target action
smoothing to SAVO results in inaccurate learned Q-values when several differently valued actions
exist near the target action, as in the complex landscapes of all tasks considered.

Removing information about preceding actions does not significantly degrade SAVO’s performance
since preceding actions’ Q-values are indirectly incorporated into the surrogates’ training objective
(see Eq. 8), except for MineWorld where this information helps improve efficiency.

The SAVO + Joint ablation learns a single actor that outputs a joint action composed of k constituents,
aiming to cover the action space so that multiple coordinated actions can better maximize the Q-
function compared to a single action. However, this increases the complexity of the architecture and
only works in low-dimensional tasks like Inverted-Pendulum and Inverted-Double-Pendulum. SAVO
simplifies action candidate generation by using several successive actors with specialized objectives,
enabling easier training without exploding the action space.

14.5 Surrogate Approximation Error Analysis

In Figure 23, we analyze the surrogate approximation error across different environments to evaluate
how well the surrogate Q-functions approximate the true thresholded Q-function during training. The
surrogate error, i.e., the MSE loss from Equation 8, is expressed as a percentage of the Bellman error
to measure how closely the surrogate tracks updates to the Q-function. This analysis is important
because surrogates aim to simplify optimization while still allowing gradients to propagate effectively.

Low Surrogate Error Across Training. In most environments, the surrogate error converges to
a relatively low value between 1–10% of the Bellman error, showing that the surrogates provide a
reliable approximation. This indicates that the surrogate functions are well-suited for actor updates,
not introducing large errors in the Q-landscape and staying current with new optimal regions. The
surrogate error stays consistently low across various tasks, including restricted locomotion (e.g., Hop-
per, Walker2D) and dexterous manipulation (e.g., Adroit Pen, Adroit Hammer). This demonstrates
that the surrogate functions work well across diverse environments with varying levels of complexity.

Non-zero loss shows Smoothness in Flat Regions. The surrogate error remains positive throughout
training, including in flat regions of the Q-landscape. This ensures that gradients can still propagate,
preventing the actor from getting stuck in areas without gradient information.

Behavior in the Inverted Double Pendulum (Restricted). For the Inverted Double Pendulum
(Restricted) environment, the surrogate error increases towards the end of training. This happens
because the agent has already converged, and the increase in error reflects overtraining, which is
consistent with the observation of an unstable drop in task performance for certain seeds.

Overall, this analysis shows that surrogate functions effectively simplify the Q-value landscape,
closely track Q-function updates, and maintain robustness across different tasks, justifying their
effectiveness in enabling gradient flow in SAVO. This results in SAVO outperforming the SAVO -
Approximation baseline, as shown in Figure 7b and Figure 22.

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

0

24

48

72

96

120

Su
rro

ga
te

 E
rr

/ B
el

lm
an

 E
rr

(%
) MineWorld

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

0.0

1.4

2.8

4.2

5.6

7.0

Su
rro

ga
te

 E
rr

/ B
el

lm
an

 E
rr

(%
) RecSim

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

0

3

6

9

12

15

Su
rro

ga
te

 E
rr

/ B
el

lm
an

 E
rr

(%
) RecSim-Data

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

6

12

18

24

30

Su
rro

ga
te

 E
rr

/ B
el

lm
an

 E
rr

(%
) Inverted Pendulum (Restricted)

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

60

120

180

240

300

Su
rro

ga
te

 E
rr

/ B
el

lm
an

 E
rr

(%
) Inv. Dbl Pend. (Restricted)

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

5

10

15

20

25

Su
rro

ga
te

 E
rr

/ B
el

lm
an

 E
rr

(%
) Hopper (Restricted)

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

6

12

18

24

30

Su
rro

ga
te

 E
rr

/ B
el

lm
an

 E
rr

(%
) Walker2D (Restricted)

0.00 0.75 1.50 2.25 3.00
Env Steps 1e6

0

20

40

60

80

100

Su
rro

ga
te

 E
rr

/ B
el

lm
an

 E
rr

(%
) Adriot Door

SAVO

0.00 0.75 1.50 2.25 3.00
Env Steps 1e6

0

2

4

6

8

10

Su
rro

ga
te

 E
rr

/ B
el

lm
an

 E
rr

(%
) Adriot Pen

SAVO

0.00 0.75 1.50 2.25 3.00
Env Steps 1e6

0

40

80

120

160

200

Su
rro

ga
te

 E
rr

/ B
el

lm
an

 E
rr

(%
) Adriot Hammer

SAVO

Figure 23: Surrogate Approximation Error Analysis. The plot shows the surrogate approx-
imation error as a percentage of the Bellman error during training across various environments:
Surrogate Approximation Error

Bellman Error %. In most tasks, the surrogate loss converges to a relatively low value (within
1–10% of the Bellman error), indicating that (i) the surrogates effectively track updates to the Q-
function, and (ii) the surrogate loss remains strictly positive, highlighting the smoothness of the
surrogate landscape, especially in flat regions, where the exact approximation is undesirable to
maintain effective gradient propagation. Notably, for the Inverted Double Pendulum (Restricted)
environment, a rise in approximation error is observed towards the end of training. Upon further
investigation, this was attributed to overtraining after the agent had already converged, corresponding
to an unstable decline in task performance.

Reinforcement Learning Journal 2025

14.6 Q-Smoothing Analysis: Discrete vs. Continuous Action Spaces

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

0.02

0.18

0.38

0.58

0.78

0.98
Ev

al
 S

uc
ce

ss
 R

at
e

MineWorld

SAVO
TD3; Q-Smoothing
Wolpertinger; Naive
Wolpertinger; Q-Smoothing

(a) MineWorld

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

2

3

4

5

6

7

Ev
al

 R
et

ur
n

RecSim
SAVO
TD3; Q-Smoothing
Wolpertinger; Naive
Wolpertinger; Q-Smoothing

(b) RecSim

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

10

19

28

37

46

55

Ev
al

 R
et

ur
n

RecSim-Data

SAVO
TD3; Q-Smoothing
Wolpertinger; Naive
Wolpertinger; Q-Smoothing

(c) RecSim-Data

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

600

1200

1800

2400

3000

Ev
al

 R
et

ur
n

Hopper (Restricted)
SAVO
TD3; Naive
Wolpertinger; Naive
Wolpertinger; Q-Smoothing

(d) Hopper (Restricted)

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

800

1600

2400

3200

4000

Ev
al

 R
et

ur
n

Walker2D (Restricted)
SAVO
TD3; Naive
Wolpertinger; Naive
Wolpertinger; Q-Smoothing

(e) Walker2D (Restricted)

Figure 24: Impact of Q-smoothing. The plots compare the performance of baselines with and
without Q-smoothing. Results are averaged over 5 random seeds, with shading indicating variance.
Q-smoothing benefits discrete tasks but has negligible impact in continuous action spaces.

Baseline MineWorld RecSim RecSim-Data Hopper Walker2D

TD3 0.6 4.5 42 2100 2700
Wolpertinger [Naive] 0.0 3.9 40 1650 2900
Wolpertinger [Q-Smoothing] 0.9 5.0 46 1850 2400
SAVO (Ours) 0.98 5.5 51 2500 3200

Table 2: Q-smoothing in discrete tasks. We compare the performance of baselines with and
without Q-smoothing across tasks. Underline denotes which variant, naive or Q-smoothing, is used
in the paper results. Wolpertinger [Naive] significantly underperforms in discrete action space tasks
(denoted in red), and thus, we reported results on Wolpertinger [Q-Smoothing] in the paper. In
continuous action space tasks, there was no benefit to Q-smoothing, and thus we chose to report
results on Wolpertinger [Naive] as it is closer to the underlying TD3 algorithm. Note that the same
Q-smoothing principle is applied for TD3 and SAVO, too, i.e., their Q-function is smoothed for better
gradients in discrete action spaces, but unsmoothed Q-function is used in continuous action spaces.

The approximate surrogates introduced in §4.2.2 also have a smoothing effect on the Q-landscape that
might ease gradient flow. A similar smoothing can be applied to the primary Q-function. We found
such Q-smoothing, which involves learning an auxiliary Q-function to approximate and smooth the
primary Q-function, to be essential for discrete action spaces. Q-smoothing facilitates the necessary
gradient flow in discrete action space tasks because the primary Q-function is only trained on action
representations corresponding to a finite number of discrete actions, while the intermediate action
representations might have arbitrary values. By learning an approximate Q-function, the regions
between the true action representations are smoothed, facilitating gradient flow.

Thus, in all baselines and SAVO in discrete action space tasks, we included Q-smoothing. However,
we did not notice any benefit of Q-smoothing in continuous action space tasks, and thus, all baselines

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

and SAVO do not have Q-smoothing. SAVO still has surrogate smoothing in all environments,
because non-smoothed surrogates do not let gradient flow through flat regions.

To demonstrate the impact of Q-smoothing in both discrete and continuous action spaces, we
conducted a detailed analysis across several tasks in Figure 24 and Table 2. This section investigates
its efficacy and highlights the nuanced differences in its utility across environments.

Discrete Action Spaces: Importance of Q-Smoothing.

For discrete tasks, smoothing the Q-function significantly enhances performance by mitigating the
complexity of local optima in diverse Q-value landscapes. This experiment primarily compares 1-
Actor k-samples Wolpertinger-Naive and Wolpertinger-Q-smoothing approaches. As shown in Fig. 24,
Q-smoothing is essential for Wolpertinger to perform well, while the non-smoothed counterparts
significantly suffer in MineWorld and RecSim tasks. Note that the TD3 and SAVO results also include
Q-smoothing.

Continuous Action Spaces: Limited Impact of Q-Smoothing.

In continuous action spaces, Q-smoothing does not yield a significant performance gain. In Wolper-
tinger, both the naive and Q-smoothing variants show comparable performance, indicating sufficient
gradient information is present throughout the action space (unlike discrete action space tasks that
have missing true Q-values).

For these tasks, as shown in Fig. 24, the introduction of Q-smoothing neither improves nor degrades
performance. This justifies its exclusion from our continuous action space experiments and explains
why we reported results for Wolpertinger [Naive] in these environments, as it is closer to the
underlying TD3 algorithm. Note that the TD3 and SAVO results also exclude Q-smoothing.

Conclusion. Q-smoothing is crucial for discrete action space tasks, as demonstrated by its strong
performance in our results. However, it provides no added value for continuous tasks. Consequently,
our baselines reflect these observations, ensuring fair comparisons across all evaluated methods.

14.7 Specialized Initialization Strategies for Diversity in SAVO

To explore the potential impact of diverse policy and surrogate value function initializations on
algorithm performance, we tested two specialized initialization strategies beyond the default Xavier
initialization (Glorot & Bengio, 2010):

• Xavier (default). Weights are initialized with the default initialization: w ∼Xavier-init

• Random. Weights are initialized from a standard normal distribution, i.e., w ∼ N (0, 1).

• Add. Weights are initialized using Xavier initialization, followed by the addition of scaled standard
normal noise, i.e., x ∼ Xavier-init, y ∼ 0.5 · N (0, 1), and w = x+ y.

We compare these specialized initialization strategies in various tasks, with reward curves reported in
Fig. 25 and summarized below:

• MineWorld: Add ≈ Random ≈ Xavier

• RecSim: Add ≈ Random ≈ Xavier

• Hopper (Restricted): Add ≈ Random ≈ Xavier

• Adroit Door: Add ≈ Random < Xavier

Findings. The results indicate that specialized initialization strategies aimed at increasing diversity
do not particularly improve performance. Across most tasks, Add and Random strategies perform
similarly to standard Xavier initialization. However, in the Adroit Door task, the specialized initial-
izations underperform compared to Xavier, suggesting that task-specific factors might influence the
effectiveness of standard initialization strategies.

Reinforcement Learning Journal 2025

Conclusion. While our experiments show no significant benefit from specialized initialization strate-
gies, the idea of explicitly incorporating diversity into the optimization process remains promising.
We believe that designing algorithms with explicit diversity objectives throughout training could
serve as a valuable heuristic in future work.

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

0.02

0.18

0.38

0.58

0.78

0.98

Ev
al

 S
uc

ce
ss

 R
at

e
MineWorld

SAVO-XAVIER
SAVO-ADD
SAVO-RANDOM

(a) MineWorld

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

2

3

4

5

6

7

Ev
al

 R
et

ur
n

RecSim
SAVO-XAVIER
SAVO-ADD
SAVO-RANDOM

(b) RecSim

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

600

1200

1800

2400

3000

Ev
al

 R
et

ur
n

Hopper (Restricted)
SAVO-XAVIER
SAVO-ADD
SAVO-RANDOM

(c) Hopper (Restricted)

0.00 0.75 1.50 2.25 3.00
Env Steps 1e6

0

1200

2400

3600

4800

6000
Ev

al
 R

et
ur

n
Adriot Door

SAVO-XAVIER
SAVO-ADD
SAVO-RANDOM

(d) Adroit Door

Figure 25: Specialized Initialization Strategies. Reward curves compare Random and Add strategies
to standard Xavier initialization across 4 tasks, showing no significant advantage of specialized
initialization for increasing diversity.

15 Experiment Details

15.1 Aggregated Results: Performance Profiles

Agarwal et al. (2021) proposed a robust means to rigorously validate the efficacy of our approach.
Through the incorporation of the suggested performance profile, we have conducted a more thorough
comparison of our approach against baselines, resulting in a comprehensive understanding of the
inherent statistical uncertainty in our results. In Figure 7a, the x-axis illustrates normalized scores
across all tasks, employing min-max scaling to normalize scores based on the initial performance of
untrained agents aggregated across random seeds (i.e., Min) and the final performance presented in
Figure 8 (i.e., Max).

Figure 7a reveals the consistent high performance of our method across various random seeds, with
its curve consistently ranking at the top of the x-axis changes, while baseline curves exhibit earlier
declines compared to our approach. This visual evidence substantiates the robustness and reliability
of our method across different experimental conditions.

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

15.2 Implementation Details

We used PyTorch (Paszke et al., 2019) for our implementation, and the experiments were primarily
conducted on workstations with either NVIDIA GeForce RTX 2080 Ti, P40, or V32 GPUs on. Each
experiment seed takes about 4-6 hours for Mine World, 12-72 hours for Mujoco, and 6-72 hours for
RecSim, to converge. We use the Weights & Biases tool (Biewald, 2020) for plotting and logging
experiments. All the environments were developed using the OpenAI Gym Wrapper (Brockman
et al., 2016). We use the Adam optimizer (Kingma & Ba, 2014) throughout.

15.3 Hyperparameters

The environment-specific and RL algorithm hyperparameters are described in Table 3.

15.4 Common Hyperparameter Tuning

To ensure fairness across all baselines and our methods, We searched over hyper-parameters that are
common across baselines;

• Learning rate of Actor and Critic: (Actor) We searched over {0.01, 0.001, 0.0001, 0.0003} and
found that 0003 to be the most stable for the actor’s learning across all tasks. (Critic) Similarly to
actor, we searched over {0.01, 0.001, 0.0001, 0.0003} and found that 0.0003 to be the most stable
for the critic’s learning across all tasks.

• Network Size of Actor and Critic: (Critic) In order for the fair comparison, we employed the
same network size for the Q-network. We individually performed the architecture search on each
task and found a specific network size performing the best in the task. (Actor) Similarly to critic,
we employed the same network size for the actor components in the baseline and the cascading
actors in SAVO. And, likewise, we performed the individual architecture search on each task and
found a specific network size performing the best in the task.

Reinforcement Learning Journal 2025

Hyperparameter Mine World MuJoCo/Adroit RecSim

Environment

Total Timesteps 10M 3M 10M
Number of epochs 5K 8K 10K
Envs in Parallel 20 10 16
Episode Horizon 100 1000 20
Number of Actions 104 N/A 10000
True Action Dim 4 5 30
Extra Action Dim 5 N/A 15

RL Training

Batch size 256 256 256
Buffer size 500K 500K 1M
Actor: LR 0.0003 0.0003 0.0003
Actor: ϵstart 1 1 1
Actor: ϵend 0.01 0.01 0.01
Actor: ϵ decay steps 5M 500K 10M
Actor: ϵ in Eval 0 0 0
Actor: MLP Layers 128_64_64_32 256_256 64_32_32_16
Critic: LR 0.0003 0.0003 0.0003
Critic: γ 0.99 0.99 0.99
Critic: ϵstart 1 1 1
Critic: ϵend 0.01 0.01 0.01
Critic: ϵ decay steps 500K 500K 2M
Critic: ϵ in Eval 0 0 0
Critic: MLP Layers 128_128 256_256 64_32
updates per epoch 20 50 20
List Length 3 3 3
Type of List Encoder DeepSet DeepSet DeepSet
List Encoder LR 0.0003 0.0003 0.0003

Table 3: Environment/Policy-specific Hyperparameters

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

16 Scaling Number of Actors Needed in SAVO

0.00 0.25 0.50 0.75 1.00

Env Steps ×107

−0.02

0.18

0.38

0.58

0.78

0.98

E
va

l
S

uc
ce

ss
R

at
e

MineWorld

0.00 0.25 0.50 0.75 1.00

Env Steps ×107

1.5

2.3

3.1

3.9

4.7

5.5

6.3

E
va

l
R

et
ur

n

RecSim

0.0 0.5 1.0 1.5 2.0

Env Steps ×106

0

600

1200

1800

2400

3000

E
va

l
R

et
ur

n

Hopper (Restricted)

0.0 0.5 1.0 1.5 2.0

Env Steps ×106

0

2000

4000

6000

8000

10000

E
va

l
R

et
ur

n

Inv. Dbl Pend. (Restricted)

SAVO (Ours) 1-Actor (TD3) 1-Actor, k-Samples (Wolpertinger)

Greedy-AC Greedy-TD3Evolutionary Actor (CEM)

k-Actors (Ensemble)

Figure 26: SAVO optimized for number of actors against baselines. Comparison with baselines
with SAVO optimized for the hyperparameter of the number of actors (10-15 actors) shows a more
significant improvement than using only 3 actors in Figure 8.

16.1 Benchmarking SAVO with larger number of actors

While the results in main paper in Figure 8 use only 3 actors, we show in Figure 26 that SAVO’s
improvement over TD3 and other baselines is even more significant when the number of actors is
optimized and chosen as 10 (or 15 in RecSim).

17 Soft Actor-Critic (SAC): Mitigating Suboptimality with SAVO

We show that SAC (Haarnoja et al., 2018) is susceptible to gradient-descent-based local optima in the
soft Q-landscape and demonstrate how SAVO improves performance when integrated with SAC.

SAC is susceptible to local optima in soft Q-landscape. DPG-based methods like TD3 optimize
deterministic policies using:

π∗ = argmax
π

Es∼ρπ [Qπ(s, π(s))] ,

where gradient ascent on Qπ(s, π(s)) often results in convergence to local optima due to the non-
convexity of the Q-landscape.

SAC extends this framework by optimizing stochastic policies through entropy regularization, as:

π∗ = argmax
π

Es∼ρπ,a∼π [Q
π(s, a) + αH(π(·|s))] ,

Reinforcement Learning Journal 2025

whereH(π(·|s)) = −Ea∼π[log π(a|s)] is the entropy of the policy, weighted by α > 0.

However, despite the entropy-regularized objective, SAC’s actor is trained with gradient ascent on
the soft Q-function Qπ(s, a), which can be non-convex. Local optima in the (soft) Q-landscape arise
from fundamental properties of the MDP and the non-convex relationship of actions and expected
environment return. As a result, SAC policies are as prone to being trapped in local optima, in the
KL-divergence sense, defined by the soft Q-landscape.

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

2000

4000

6000

8000

10000

Ev
al

 R
et

ur
n

Inv. Dbl Pend. (Restricted)
TD3 + SAVO
TD3
SAC + SAVO
SAC

0.000 0.375 0.750 1.125 1.500
Env Steps 1e6

0

1200

2400

3600

4800

6000

Ev
al

 R
et

ur
n

Ant-v4
TD3 + SAVO
TD3
SAC + SAVO
SAC

0.000 0.375 0.750 1.125 1.500
Env Steps 1e6

0

2400

4800

7200

9600

12000

Ev
al

 R
et

ur
n

HalfCheetah-v4
TD3 + SAVO
TD3
SAC + SAVO
SAC

Figure 27: SAVO is complementary to TD3 and SAC. SAVO + SAC outperforms SAC in the three
tasks evaluated: (i) Restricted Inverted Double Pendulum, (ii) Unrestricted Ant-v4, (iii) Unrestricted
HalfCheetah-v4. SAVO improves or matches the performance of TD3 in the severely non-convex
Q-landscape of the Restricted Inverted Double Pendulum and the high-dimensional action spaces of
Ant-v4 and HalfCheetah-v4.

SAVO to mitigate SAC suboptimality. To address this challenge of SAC’s stochastic actor getting
stuck in the soft Q-landscape’s local optima, we propose using SAVO as the actor architecture for
SAC. In our approach, we introduce a maximizer stochastic actor πM that selects from successive
stochastic actors νi(s; a<i) by maximizing:

πM (s) := arg max
ν0,...,νk

Es∼ρπ,a∼π [Q
π(s, a) + αH(π(·|s))] .

This SAC+SAVO approach leverages SAVO’s capacity to dynamically select policies that better
navigate the soft Q-landscape while preserving SAC’s entropy-regularized exploration.

For this preliminary combination of SAC with SAVO, we do not employ the successive surrogates
but only utilize successive actors with conditioning on previous actions.

Empirical Results. Figure 27 illustrates the relative performance of SAC, TD3, TD3+SAVO, and
SAC+SAVO across the three tasks. Key findings include:

• Hopper and Walker2D: SAC+SAVO significantly improves performance compared to SAC, demon-
strating SAVO’s ability to overcome local optima in the soft Q-landscape.

• Inverted Pendulum: SAC+SAVO exhibits faster convergence compared to SAC, further highlighting
the synergy between SAVO and entropy-regularized stochastic policies.

• Across all tasks, TD3+SAVO consistently outperforms TD3, confirming SAVO’s generalizability
to deterministic policy optimization.

These results underscore the effectiveness of combining SAVO with both SAC and TD3, providing a
robust solution to mitigate local optima and enhance exploration in complex control tasks.

18 Q-Value Landscape Visualizations

18.1 1-Dimensional Action Space Environments

We conducted a Q-space analysis across Mujoco environments to show that successive critics reduce
local optima, aiding actors in optimizing actions. The outcomes are depicted in Figures 28 and 29.

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

Figure 28 illustrates a representative Q landscape from the easy environments, which are uniformly
smooth. This uniformity in the primary Q space simplifies the identification of optimal actions.

Figure 29 shows that the primary Q landscape (leftmost and rightmost) in challenging environments
is clearly uneven with several local optima. However, the Q landscapes learned by successive critics
Qi demonstrate a gradual transition toward smoothness by pruning out the locally optimal peaks
below the previously selected actions’ Q-values. This aids the actors in identifying improved actions
that are better global optima over the primary critic. Finally, when visualized together on the primary
critic (rightmost figure) the subsequent actions yield more enhanced Q-values than a0, which would
have been the action selected by a single actor.

(a) Q0(s, a0) (b) Q1(s, a1|a0) (c) Q2(s, a2|{a0, a1}) (d) Q(s, ai)∀i = 0, 1, 2

Figure 28: Successive Q landscape and primary Q landscape of Inverted Pendulum-v4.

Figure 29: Successive Q landscape and primary Q landscape across different Restricted Environments.

18.2 High-Dimensional Action Space Environments: Hopper-v4

In Fig.30 and Fig. 31, we visualize Q-landscapes for a TD3 agent across different environments,
starting with Hopper-v4. Here, actions from the 3D action space are projected onto a 2D plane using
UMAP, with 10,000 actions sampled at equal intervals to ensure adequate coverage. These Q-values
are plotted using trisurf, introducing some artificial ruggedness but providing more reliable visualiza-
tions than grid-surface plotting. Despite the inherent limitations of dimensionality reduction—where
the loss of one dimension distorts distances and relative positions—the Q-landscape for Hopper-v4

Reinforcement Learning Journal 2025

Figure 30: Hopper-v4: Q landscape visualizations at different states show a path to optimum.

reveals a large globally optimal region (in yellow), offering a clear gradient path that minimizes the
risk of the gradient-based actor getting stuck in local optima.

In Hopper-Restricted, the Q-landscapes become more complex due to the restriction of actions
within a hypersphere, with suboptimal peaks where gradient-based actors can potentially get trapped.
Although dimensional reduction limits conclusive analysis, these landscapes appear to have more
local optima compared to Hopper-v4. For higher-dimensional environments like Walker2D-v4
(6D) and Ant-v4 (8D), projecting to 2D leads to significant information loss, making it difficult
to assess convexity. Despite this, Walker2D-v4 shows a large optimal region where consecutive
actions produce similar outcomes, indicating that contact-based tasks like Walker2D and Hopper
do not inherently induce numerous local optima. However, for more complex environments like
Ant-v4 and Walker2D-Restricted, the visualizations provide limited insights due to the challenges of
dimensionality reduction.

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

Figure 31: Hopper-restricted: Q landscape visualizations at different states show several local optima.

