
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

Mitigating Suboptimality of Deterministic Policy
Gradients in Complex Q-functions

Anonymous authors
Paper under double-blind review

Keywords: Deterministic Policy Gradients, Off-policy reinforcement learning

Summary
In reinforcement learning, off-policy actor-critic methods such as DDPG and TD3 use

deterministic policy gradients: the Q-function is learned from environment interaction data,
while the actor seeks to maximize it via gradient ascent. We observe that in complex tasks—such
as dexterous manipulation, restricted locomotion, and large discrete-action recommender sys-
tems—the Q-function exhibits multiple local optima, making naive gradient-based methods
prone to getting stuck. To address this, we introduce Successive Actors for Value Optimization
(SAVO), an architecture that (i) learns multiple actor networks, each conditioned on previously
discovered actions, and (ii) employs a sequence of “surrogate” Q-landscapes that progressively
truncate lower-value regions. This iterative scheme improves the global maximization of the
Q-function while preserving the sample efficiency advantages of gradient-based updates. Ex-
periments on restricted locomotion, dexterous manipulation, and recommender-system tasks
demonstrate that SAVO outperforms single-actor methods as well as alternative multi-actor and
sampling-based approaches.

Contribution(s)
1. We propose a new multi-actor architecture that learns several policies in parallel and then

selects the best action among them based on the current Q-function.
Context: In deterministic policy gradient methods, a single actor frequently converges to
local maxima of the Q-landscape. By training multiple actors and picking the highest-valued
action, the final policy strictly improves over any single actor policy.

2. We introduce “successive surrogate” Q-functions that flatten out regions below previously
discovered high-value actions, thus preventing actors from re-converging to known poor
local optima.
Context: Surrogate functions are created by lifting the Q-values in regions below an anchor
action. This reduces the number of local maxima in the Q-landscape. We approximate these
surrogates with neural networks to preserve gradient flow toward high-value regions without
sacrificing expressiveness.

3. We demonstrate that our Successive Actors for Value Optimization (SAVO) method con-
sistently yields higher returns in challenging tasks, including restricted continuous-control
locomotion, dexterous manipulation, and large discrete-action recommender systems.
Context: Standard TD3 or DDPG struggles in non-convex domains with many shallow
local maxima, while evolutionary methods can be computationally expensive. Our approach
combines the sample-efficiency of gradient-based learning with a mechanism to escape
suboptimal local optima. Extensive ablations show that each element (multiple actors, surro-
gates, and conditioning on prior actions) contributes to performance gains.

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

Mitigating Suboptimality of Deterministic Policy Gra-
dients in Complex Q-functions

Anonymous authors
Paper under double-blind review

Abstract

In reinforcement learning, off-policy actor-critic methods like DDPG and TD3 use1
deterministic policy gradients: the Q-function is learned from environment data, while2
the actor maximizes it via gradient ascent. We observe that in complex tasks such as3
dexterous manipulation and restricted locomotion, the Q-function exhibits many local4
optima, making gradient ascent prone to getting stuck. To address this, we introduce5
SAVO, an actor architecture that (i) generates multiple action proposals and selects6
the one with the highest Q-value, and (ii) approximates the Q-function repeatedly by7
truncating poor local optima to guide gradient ascent more effectively. We evaluate tasks8
such as restricted locomotion, dexterous manipulation, and large discrete-action space9
recommender systems and show that our actor finds optimal actions more frequently and10
outperforms alternate actor architectures.11

1 Introduction12

Action Space
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

Action Space

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Q-value

285

290

295

300

305

310

315

Hopper-Restricted

Action Space
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8

Action Space

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Q-value

2.8

2.9

3.0

3.1

3.2

3.3

3.4

Recsim

Figure 1: In continuous action space tasks, we plot the Q-value at a state against the action space (or
its 2D-projection). In restricted control of Inverted-Double-Pendulum (left) and Hopper (middle),
certain action ranges are unsafe, resulting in various locally optimal actions. In a large discrete-action
recommendation system (right), local peaks exist at actions that represent real items (black dots). In
such non-convex Q-landscapes, gradient-based actors often converge at suboptimal actions.

In sequential decision-making, the goal is to build an optimal agent that maximizes the expected13
cumulative returns (Sondik, 1971; Littman, 1996). Value-based reinforcement learning (RL) ap-14
proaches estimate the future returns of an action with a Q value, then select actions that maximize15
this Q value (Sutton & Barto, 1998). In continuous action spaces, directly enumerating all actions is16
impractical, so an actor is introduced to learn which actions yield the maximum Q-value (Grondman17
et al., 2012). We show that common continuous control benchmarks (Lillicrap et al., 2015) exhibit18
easily optimized Q functions, which obscures a key challenge in current RL algorithms. Specifically,19
when the Q-function is non-convex, such as restricted locomotion in Figure 1, a learning actor can20
produce suboptimal behavior by converging at one of the local optima.21

1

Under review for RLC 2025, to be published in RLJ 2025

Figure 2: An actor µ trained with gradient ascent on a challenging Q-landscape gets stuck in local
optima. Our approach learns a sequence of surrogates Ψi of the Q-function that successively prune
out the Q-landscape below the current best Q-values, resulting in fewer local optima. Thus, the actors
νi trained to ascend on these surrogates produce actions with a more optimal Q-value.

Can we build an actor architecture to find better optimal actions in such complex Q-landscapes? Prior22
methods perform a search over the action space with evolutionary algorithms like CEM (De Boer et al.,23
2005; Kalashnikov et al., 2018; Shao et al., 2022), but this requires numerous costly re-evaluations of24
the Q-function. To avoid this, deterministic policy gradient (DPG) algorithms (Silver et al., 2014),25
such as DDPG (Lillicrap et al., 2015), TD3 (Fujimoto et al., 2018), and REDQ (Chen et al., 2020)26
train a parameterized actor to output actions with the objective of maximizing the Q-function locally.27

A significant challenge arises in environments where the Q-function has many local optima, as shown28
in Figure 1. An actor trained via gradient ascent may converge to a local optimum with a much29
lower Q-value than the global maximum. This leads to suboptimal decisions during deployment and30
sample-inefficient training, as the agent fails to explore high-reward trajectories (Kakade, 2003).31

To improve actors’ ability to identify optimal actions in complex, non-convex Q-function landscapes,32
we propose the Successive Actors for Value Optimization (SAVO) algorithm. SAVO leverages two33
key insights: (1) combining multiple policies using an argmax on their Q-values to construct a34
superior policy (§4.1), and (2) simplifying the Q-landscape by excluding lower Q-value regions based35
on high-performing actions, inspired by tabu search (Glover, 1990), thereby reducing local optima36
and facilitating gradient-ascent (§4.2). By iteratively applying these strategies through a sequence of37
simplified Q-landscapes and corresponding actors, SAVO progressively finds more optimal actions.38

We evaluate SAVO in complex Q-landscapes such as (i) continuous control in dexterous manipu-39
lation (Rajeswaran et al., 2017) and restricted locomotion (Todorov et al., 2012), and (ii) discrete40
decision-making in the large action spaces of simulated (Ie et al., 2019) and real-data recommender41
systems (Harper & Konstan, 2015), and gridworld mining expedition (Chevalier-Boisvert et al., 2018).42
We use the reframing of large discrete action RL to continuous action RL following (Van Hasselt &43
Wiering, 2009) and Dulac-Arnold et al. (2015), where a policy acts in continuous actions, such as the44
feature space of recommender items (Figure 1), and the nearest discrete action is executed.45

Our key contribution is SAVO, an actor architecture to find better optimal actions in complex46
non-convex Q-landscapes (§4). In experiments, we visualize how SAVO’s successively learned47
Q-landscapes have fewer local optima (§6.2), making it more likely to find better action optima with48
gradient ascent. This enables SAVO to outperform alternative actor architectures, such as sampling49
more action candidates (Dulac-Arnold et al., 2015) and learning an ensemble of actors (Osband et al.,50
2016) (§6.1) across continuous and discrete action RL.51

2 Related Work52

Q-learning (Watkins & Dayan, 1992; Tesauro et al., 1995) is a fundamental value-based RL algorithm53
that iteratively updates Q-values to make optimal decisions. Deep Q-learning (Mnih et al., 2015)54
has been applied to tasks with manageable discrete action spaces, such as Atari (Mnih et al., 2013;55
Espeholt et al., 2018; Hessel et al., 2018), traffic control (Abdoos et al., 2011), and small-scale56
recommender systems (Chen et al., 2019). However, scaling Q-learning to continuous or large57
discrete action spaces requires specialized techniques to efficiently maximize the Q-function.58

2

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

Analytical Q-optimization. Analytical optimization of certain Q-functions, such as wire fitting59
algorithm (Baird & Klopf, 1993) and normalized advantage functions (Gu et al., 2016; Wang et al.,60
2019), allows closed-form action maximization without an actor. Likewise, Amos et al. (2017)61
assume that the Q-function is convex in actions and use a convex solver for action selection. In62
contrast, the Q-functions considered in this paper are inherently non-convex in action space, making63
such an assumption invalid. Generally, analytical Q-functions lack the expressiveness of deep64
Q-networks (Hornik et al., 1989), making them unsuitable to model complex tasks like in Figure 1.65

Evolutionary Algorithms for Q-optimization. Evolutionary algorithms like simulated anneal-66
ing (Kirkpatrick et al., 1983), genetic algorithms (Srinivas & Patnaik, 1994), tabu search (Glover,67
1990), and the cross-entropy method (CEM) (De Boer et al., 2005) are employed in RL for global68
optimization (Hu et al., 2007). Approaches such as QT-Opt (Kalashnikov et al., 2018; Lee et al.,69
2023; Kalashnikov et al., 2021) utilize CEM for action search, while hybrid actor-critic methods70
like CEM-RL (Pourchot & Sigaud, 2018), GRAC (Shao et al., 2022), and Cross-Entropy Guided71
Policies (Simmons-Edler et al., 2019) combine evolutionary techniques with gradient descent. Despite72
their effectiveness, CEM-based methods require numerous Q-function evaluations and struggle with73
high-dimensional actions (Yan et al., 2019). In contrast, SAVO achieves superior performance with74
only a few (e.g., three) Q-evaluations, as demonstrated in experiments (§6).75

Actor-Critic Methods with Gradient Ascent. Actor-critic methods can be on-policy (Williams,76
1992; Schulman et al., 2015; 2017) primarily guided by the policy gradient of expected returns, or77
off-policy (Silver et al., 2014; Lillicrap et al., 2015; Fujimoto et al., 2018; Chen et al., 2020) primarily78
guided by the bellman error on the critic. Deterministic Policy Gradient (DPG) (Silver et al., 2014)79
and its extensions like DDPG Lillicrap et al. (2015), TD3 (Fujimoto et al., 2018) and REDQ (Chen80
et al., 2020) optimize actors by following the critic’s gradient. Soft Actor-Critic (SAC) (Haarnoja81
et al., 2018) extends DPG to stochastic actors. However, these methods can get trapped in local82
optima within the Q-function landscape. SAVO addresses this limitation by enhancing gradient-based83
actor training. This issue also affects stochastic actors, where a local optimum means an action84
distribution (instead of a single action) that fails to minimize the KL divergence from the Q-function85
density fully, and is a potential area for future research.86

Sampling-Augmented Actor-Critic. Sampling multiple actions and evaluating their Q-values is87
a common strategy to find optimal actions. Greedy actor-critic (Neumann et al., 2018) samples88
high-entropy actions and trains the actor towards the best Q-valued action, yet remains susceptible to89
local optima. In large discrete action spaces, methods like Wolpertinger (Dulac-Arnold et al., 2015)90
use k-nearest neighbors to propose actions, requiring extensive Q-evaluations on up to 10% of total91
actions. In contrast, SAVO efficiently generates high-quality action proposals through successive92
actor improvements without being confined to local neighborhoods.93

Ensemble-Augmented Actor-Critic. Ensembles of policies enhance exploration by providing94
diverse action proposals through varied initializations (Osband et al., 2016; Chen & Peng, 2019; Song95
et al., 2023; Zheng12 et al., 2018; Huang et al., 2017). The best action is selected based on Q-value96
evaluations. Unlike ensemble methods, SAVO systematically eliminates local optima, offering a97
more reliable optimization process for complex tasks (§6).98

3 Problem Formulation99

Our work tackles the effective optimization of the Q-value landscape in off-policy actor-critic methods100
for continuous and large-discrete action RL. We model a task as a Markov Decision Process (MDP),101
defined by a tuple {S,A, T , R, γ} of states, actions, transition probabilities, reward function, and a102
discount factor. The action space A is a D-dimensional continuous vector space, RD. At every step103
t in the episode, the agent receives a state observation st ∈ S from the environment and acts with104
at ∈ A. Then, it receives the new state after transition st+1 and a reward rt. The objective of the agent105
is to learn a policy π(a | s) that maximizes the expected discounted reward, maxπ Eπ [

∑
t γ

trt] .106

3

Under review for RLC 2025, to be published in RLJ 2025

3.1 Deterministic Policy Gradients (DPG)107

DPG (Silver et al., 2014) is an off-policy actor-critic algorithm that trains a deterministic actor µϕ to108
maximize the Q-function. This happens via two steps of generalized policy iteration, GPI (Sutton &109
Barto, 1998): policy evaluation estimates the Q-function (Bellman, 1966) and policy improvement110
greedily maximizes the Q-function. To approximate the argmax over continuous actions in Eq. 2,111
DPG proposes the policy gradient to update the actor locally in the direction of increasing Q-value,112

Qµ(s, a) = r(s, a) + γEs′ [Q
µ(s′, µ(s′))] , (1)

µ(s) = argmax
a

Qµ(s, a), (2)

∇ϕJ(ϕ) = Es∼ρµ

[
∇aQ

µ(s, a)
∣∣
a=µ(s)

∇ϕµϕ(s)
]
. (3)

DDPG (Lillicrap et al., 2015) and TD3 (Fujimoto et al., 2018) made DPG compatible with deep113
networks via techniques like experience replay and target networks to address non-stationarity of114
online RL, twin critics to mitigate overestimation bias, target policy smoothing to prevent exploitation115
of errors in the Q-function, and delayed policy updates so critic is reliable to provide actor gradients.116

3.2 The Challenge of an Actor Maximizing a Complex Q-landscape117

DPG-based algorithms train the actor following the chain rule in Eq. 3. Specifically, its first term,118
∇aQ

µ(s, a) involves gradient ascent in Q-versus-a landscape. This Q-landscape is often highly119
non-convex (Fig. 1, 3) and changes non-stationarily during training. This makes the actor’s output120
µ(s) get stuck at suboptimal Q-values, thus leading to insufficient policy improvement in Eq. 2. We121
can define the suboptimality of the µ w.r.t. Qµ at state s as122

∆(Qµ, µ, s) = argmax
a

Qµ(s, a)−Qµ(s, µ(s)) ≥ 0. (4)

Suboptimality in actors is a crucial problem because it leads to (i) poor sample efficiency by slowing123
down GPI, and (ii) poor inference performance even with an optimal Q-function, Q∗ as seen in124
Fig. 3 where a TD3 actor gets stuck at a locally optimum action a0 in the final Q-function.125

Figure 3: Non-convex Q-landscape in
Inverted-Pendulum-Restricted leads to
a suboptimally converged actor.

This challenge fundamentally differs from the well-studied126
field of non-convex optimization, where non-convexity127
arises in the loss function w.r.t. the model parameters (Good-128
fellow, 2016). In those cases, stochastic gradient-based129
optimization methods like SGD and Adam (Kingma & Ba,130
2014) are effective at finding acceptable local minima due131
to the smoothness and high dimensionality of the param-132
eter space, which often allows for escape from poor local133
optima (Choromanska et al., 2015). Moreover, overparame-134
terization in deep networks can lead to loss landscapes with135
numerous good minima (Neyshabur et al., 2017).136

In contrast, our challenge involves non-convexity in the Q-137
function w.r.t. the action space. The actor’s task is to find, for138
every state s, the action a that maximizes Qµ(s, a). Since139
the Q-function can be highly non-convex and multimodal140
in a, the gradient ascent step ∇aQ

µ(s, a) used in Eq. 3 may141
lead the actor to converge to suboptimal local maxima in142
action space. Unlike parameter space optimization, the actor cannot rely on high dimensionality143
or overparameterization to smooth out the optimization landscape in action space because the Q-144
landscape is determined by the task’s reward. Furthermore, the non-stationarity of the Q-function145
during training compounds this challenge. These properties make our non-convex challenge unique,146
requiring a specialized actor to navigate the complex Q-landscape.147

Tasks with several local optima in the Q-function include restricted inverted pendulum shown in148
Fig. 3, where certain regions of the action space are invalid or unsafe, leading to a rugged Q-149
landscape (Florence et al., 2022). Dexterous manipulation tasks exhibit discontinuous behaviors like150

4

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

Deep Set

FiLM

S
ta

te
A

c
ti
o

n
s

𝜈0 𝜈1 𝜈2

𝜈𝑖

Action

Ψ1Ψ0 Ψ2

Actors

Surrogates

𝑎0 𝑎1𝑎0 𝑎0 𝑎1 𝑎2

𝐀𝐜𝐭𝐨𝐫

𝒂∗

𝐂𝐫𝐢𝐭𝐢𝐜

𝑄

Figure 4: SAVO Architecture. (left) Q-network is unchanged. (center) Instead of a single actor, we
learn a sequence of actors and surrogate networks connected via action predictions. (right) Condition-
ing on previous actions is done with the help of a deep-set summarizer and FiLM modulation.

inserting a precise peg in place with a small region of high-valued actions (Rajeswaran et al., 2017)151
and surgical robotics have a high variance in Q-values of nearby motions (Barnoy et al., 2021).152

3.2.1 Large Discrete Action RL Reframed as Continuous Action RL153

We discuss another practical domain where non-convex Q-functions are present. In large discrete154
action tasks like recommender systems (Zhao et al., 2018; Zou et al., 2019; Wu et al., 2017), a155
common approach (Van Hasselt & Wiering, 2009; Dulac-Arnold et al., 2015) is to use continuous rep-156
resentations of actions as a medium of decision-making. Given a set of actions, I = {I1, . . . ,IN}, a157
predefined moduleR : I → A assigns each I ∈ I to its representationR(I), e.g., text embedding158
of a given movie (Zhou et al., 2010). A continuous action policy π(a | s) is learned in the action159
representation space, with each a ∈ A converted to a discrete action I ∈ I via nearest neighbor,160

fNN(a) = arg min
Ii∈I

∥R(Ii)− a∥2.

Importantly, the nearest neighbor operation creates a challenging piece-wise continuous Q-function161
with suboptima at various discrete points as shown in Fig. 1 (Jain et al., 2021; 2020).162

4 Approach: Successive Actors for Value Optimization (SAVO)163

We propose an online actor architecture and training method that dynamically guides gradient-based164
policy improvement toward better actions throughout training. Our method preserves the time-165
efficiency of gradient-based methods as opposed to maximization using expensive evolutionary166
methods while mitigating the suboptimality of a single actor. We introduce two key ideas:167

1. Multiple Actors: We train several gradient-based actors and select among their proposed actions168
via argmax on the Q-function, ensuring the resulting policy outperforms any single actor (§4.1).169

2. Easier to maximize Q-landscape: We train online surrogates of the Q-function that are biased170
towards higher-value actions and progressively flatten out shallow local maxima so that gradient-171
based improvement is likely to find actions in better regions (§4.2).172

While surrogates generate diverse candidate actions, the final decision always uses an argmax over173
the true Q-function estimate, ensuring we never do worse than ignoring the surrogates altogether.174

4.1 Maximizer Actor over Multiple Action Proposals175

We first show how additional actors can improve DPG’s policy improvement step. Given a policy µ176
being trained with DPG over Q, consider k additional arbitrary policies ν1, . . . , νk, where νi : S → A177
and let ν0 = µ. We define a maximizer actor µM for ai = νi(s) for i = 0, 1, . . . , k,178

µM (s) := argmax
a∈{a0,a1,...,ak}

Q(s, a), (5)

µM can be simply shown to be a better maximizer of Q(s, a) in Eq. 2 than µ ∀s :179

Q(s, µM (s)) = max
ai

Q(s, ai) ≥ Q(s, a0) = Q(s, µ(s)).

5

Under review for RLC 2025, to be published in RLJ 2025

Therefore, by policy improvement theorem (Sutton & Barto, 1998), V µM (s) ≥ V µ(s), proving that180
µM is better than a single µ for a given Q. Appendix 9 proves the following theorem by showing that181
policy evaluation and improvement with µM converge.182

Theorem 4.1 (Convergence of Policy Iteration with Maximizer Actor). A modified policy iteration183
algorithm where ν0 = µ is the current policy learned with DPG and maximizer actor µM defined in184
Eq. 5, converges in the tabular setting to the optimal policy.185

This algorithm is valid for arbitrary ν1, . . . νk. We experiment with ν’s obtained by sampling from a186
Gaussian centered at µ or ensembling on µ to get diverse actions. However, in high-dimensionality,187
randomness around µ is not sufficient to get action proposals to significantly improve µ.188

4.2 Successive Q-landscape surrogates for Better Action Proposals189

To obtain better-than-random action proposals for µM , we train additional policies νi with gradient-190
ascent on surrogate Q-functions with three properties:191

1. Truncate regions below anchor actions: We train online surrogates of the Q-function that are192
biased towards higher-value actions and progressively flatten out shallow local maxima so that193
gradient-based improvement is likely to find actions in better regions.194

2. Approximately track Q-function with a bias towards high valued actions: We train several195
gradient-based actors and select among their proposed actions via argmax on the Q-function,196
ensuring the resulting policy outperforms any single actor.197

3. Gradient-based actors for each surrogate: Each surrogate likely provides a path to progressively198
better optima for its actor, which in turn provides a better anchor for the following surrogates.199

4.2.1 Truncate regions below anchor actions200

Our inspiration is Tabu Search (Glover & Laguna, 1998), which is an optimization technique that201
avoids revisiting previously explored inferior solutions, thereby enhancing the search for optimal202
solutions. We propose to “tabu” certain regions of the Q-function landscape deemed suboptimal203
based on previously identified “anchor” actions. Given a known action a†, we define a surrogate204
function that truncates the landscape by elevating the Q-values of all inferior actions to q(s, a†):205

Ψ(s, a; a†) = max{Q(s, a), q(s, a†)}. (6)

Extending this idea, we define a sequence of surrogate functions using the actions from all previous206
policies as anchors. Let a<i = {a0, a1, . . . , ai−1} be the anchors, the i-th surrogate function is:207

Ψi(s, a; a<i) = max

{
Q(s, a),max

j<i
q(s, aj)

}
. (7)

Theorem 4.2. For a state s ∈ S and surrogates Ψi defined as above, the number of local optima208
decreases with each successive surrogate:209

Nopt(Q(s, ·)) ≥ Nopt(Ψ1(s, ·; a0)) ≥ · · · ≥ Nopt(Ψk(s, ·; a<k)),

where Nopt(f) denotes the number of local optima of function f over A.210

Proof Sketch. As Ψi→ Ψi+1, the anchor Q-value in Eq. 7 weakly increases, maxj<i Q(s, aj) ≤211
maxj<(i+1) Q(s, aj), thus, eliminating more local minima below it (proof in Appendix 10.1).212

4.2.2 Approximately track Q-function with a bias towards high valued actions213

The surrogates Ψi have zero gradients in the flattened regions when Q(s, a) < τ , where τ =214
maxj<i Q(s, aj), This means the policy gradient only updates νi when Q(s, a) ≥ τ , which may slow215

6

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

Figure 5: While Ψ (left) has flat surfaces, Ψ̂ (right) smoothens the function to allow non-zero gradients
to flow into the actor towards better optima in Inverted-Pendulum-Restricted.

down learning. To address this issue, we ease the gradient flow by learning a smooth approximation216
Ψ̂i of Ψi, that is biased towards high-valued actions to provide a path to a better optimum.217

We approximate each surrogate Ψi with a neural network Ψ̂i, by training it with imitation learning to218
track the updates to the Q-function (that is being updated by TD error) at two critical actions:219

Lapprox = Es∼ρµM

 ∑
a∈{µ̃M (s),νi(s;a<i)}

∥∥∥Ψ̂i(s, a; a<i)−Ψi(s, a; a<i)
∥∥∥2
2

 ,where (8)

1. Tracking: µ̃M (s) represents the action taken in the environment at which the latest online update220
to the Q-function has been made following Eq. 1, which helps track the value of Ψi.221

2. High-value Bias: νi(s; a<i) is the action proposed by the i-th actor conditioned on previous222
actions a<i, which is expected to be a high-valued action.223

This design ensures Ψ̂i is updated on high Q-value actions and thus the landscape is biased towards224
those values. This makes the gradient flow trend in the direction of high Q-values. So, even when ai225
from νi falls in a region of zero gradients for Ψi, in Ψ̂i would provide policy gradient in a higher226
Q-value direction, if it exists. Figure 5 shows Ψ1 and Ψ̂1 in restricted inverted pendulum task.227
Figure 23 analyzes Lapprox over training, demonstrating that Ψ̂i stays close to Ψi while smoothing it.228

4.2.3 Successive Gradient-based Actors for Each Surrogate Optimization229

To effectively reduce local optima using the approximate surrogates Ψ̂1, . . . , Ψ̂k, we design the230
policies νi to optimize their respective Ψ̂i(s, a; a<i). Each νi focuses on regions where Q(s, a) ≥231
maxj<i Q(s, aj), allowing it to find better optima than previous policies. The actor νi is conditioned232
on previous actions {a0, . . . , ai−1}, summarized via deep sets (Zaheer et al., 2017) (see Figure 4).233
The maximizer actor µM (Eq. 5) then selects the best action among these proposals.234

We train each actor νi using gradient ascent on its approximate surrogate Ψ̂i, similarly to DPG:235

∇ϕi
J(ϕi) = Es∼ρµM

[
∇a Ψ̂i

(
s, a; a<i

)∣∣∣
a=νi(s; a<i)

· ∇ϕi
νi
(
s; a<i

)]
. (9)

4.3 SAVO-TD3 Algorithm and Design Choices236

While the SAVO architecture (Figure 4) can be integrated with any off-policy actor-critic algorithm,237
we choose to implement it with TD3 (Fujimoto et al., 2018) due to its compatibility with continuous238
and large-discrete action RL (Dulac-Arnold et al., 2015). Using the SAVO actor in TD3 enhances239
its ability to find better actions in complex Q-function landscapes. Algorithm 1 depicts SAVO240
(highlighted) applied to TD3. We discuss design choices in SAVO and validate them in §6.241

1. Removing policy smoothing: We eliminate TD3’s policy smoothing, which adds noise to the242
target action ã during critic updates. In non-convex landscapes, nearby actions may have significantly243
different Q-values and noise addition might obscure important variations.244

7

Under review for RLC 2025, to be published in RLJ 2025

Algorithm 1 SAVO-TD3

Initialize Q,Q2, µ, Ψ̂1, . . . , Ψ̂k, ν1, . . . , νk
Initialize target networks Q′ ← Q, Q′

2 ← Qtwin

Initialize replace buffer B.
for timestep t = 1 to T do

Select Action:
Evaluate a0 = µ(s), ai = νi(s; a<i)
Add perturbations with OU Noise âi = ai + ϵi
Evaluate µM (s) = argmaxa∈{â0,...,âk} Q

µ(s, a)
Exploration action a = µ̃M (s) = µM (s) + ϵ
Observe reward r and new state s′

Store (s, a, {âi}Ki=0, r, s
′) in B

Update:
Sample N transitions (s, a, {âi}Ki=0, r, s

′) from B
Compute target action ã = µM (s′)
Update Q,Q2 ← r+ γmin{Q′(s′, ã), Q′

2(s
′, ã)}

Update Ψ̂i with Eq. 8 ∀i = 1, . . . k
Update actor µ with Eq. 3
Update actor νi with Eq. 9 ∀i = 1, . . . k

end for

2. Exploration in Additional Actors:245
Successive actors νi explore their surrogate246
landscapes by adding OU (Lillicrap et al.,247
2015) or Gaussian (Fujimoto et al., 2018)248
noise to their outputs, effectively discover-249
ing high-reward regions.250

3. Twin Critics for Surrogates:251
To prevent overestimation bias in surro-252
gates Ψ̂i, we use twin critics to compute the253
target of each surrogate, mirroring TD3.254

4. Conditioning on Previous Actions:255
Actors νi and surrogates Ψ̂i are condi-256
tioned on preceding actions via FiLM lay-257
ers (Perez et al., 2018) as in Fig. 4.258

5. Discrete Action Space Tasks:259
We apply 1-nearest-neighbor fNN before260
the Q-function, so it is only queried at in-261
distribution actions. For gradient flow into262
the actor, a noisy Q-function is added. See263
Q-smoothing in §14.3.264

SAVO-TD3 systematically reduces local265
optima through successive surrogates while266
leveraging TD3 as a robust RL baseline. In the next section, we validate these design choices through267
experiments, demonstrating SAVO-TD3’s effectiveness in complex reinforcement learning tasks268
against alternate actor architectures.269

5 Environments270

We evaluate SAVO on discrete and continuous action space environments with challenging Q-value271
landscapes. More environment details are presented in Appendix 11 and Figure 12.272

Locomotion in Mujoco-v4. We evaluate Mujoco (Todorov et al., 2012) environments of Hopper,273
Walker2D, Inverted Pendulum, and Inverted Double Pendulum.274

Valid Action Space

Original Action Space

Figure 6: Hopper’s 3D visual-
ization of Action Space.

Locomotion in Restricted Mujoco. We create a restricted loco-275
motion suite of the same environments as in Mujoco-v4. A hard276
Q-landscape is realized via high-dimensional discontinuities that re-277
strict the action space. Concretely, a set of predefined hyper-spheres278
(as shown in Figure 6) in the action space are sampled and set to279
be valid actions, while the other invalid actions have a null effect if280
selected. The complete details can be found in Appendix 11.3.1.281

Adroit Dexterous Manipulation (Rajeswaran et al., 2017) Door:282
In this task, a robotic hand is required to open a door with a latch.283
The challenge lies in the precise manipulation needed to unlatch and284
swing open the door using the fingers. Hammer: the robotic hand285
must use a hammer to drive a nail into a board. This task tests the hand’s ability to grasp the hammer286
correctly and apply force accurately to achieve the goal. Pen: This task involves the robotic hand287
manipulating a pen to reach a specific goal position and rotation. The objective is to control the pen’s288
orientation and position using fingers, which demands fine motor skills and coordination.289

Mining Expedition in Grid World. We develop a 2D Mining grid world environment (Chevalier-290
Boisvert et al., 2018) where the agent (Appendix Fig. 12) navigates a 2D maze to reach the goal,291
removing mines with correct pick-axe tools to reach the goal in the shortest path. The action space292

8

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00
Performance Profiles

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>
SAVO
1-Actor (TD3)
1-Actor, k-Samples (Wolpertinger)
Evolutionary Actor (CEM)
k-Actors (Ensemble)

(a) SAVO versus baseline actor architectures.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00
Performance Profiles

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

SAVO (Ours)
SAVO - Approximation
SAVO - Previous Actions
SAVO + Action Smoothing
SAVO + Joint Action

(b) SAVO versus ablations of SAVO

Figure 7: Aggregate performance profiles using normalized scores over 7 tasks and 10 seeds each.

includes navigation and tool-choice actions, with a procedurally-defined action representation space.293
The Q-landscape is non-convex because of the diverse effects of nearby action representations.294

Simulated and Real-Data Recommender Systems. RecSim (Ie et al., 2019) simulates sequential295
user interactions in a recommender system with a large discrete action space. The agent must296
recommend the most relevant item from a set of 10,000 items based on user preference information.297
The action representations are simulated item characteristic vectors in simulated and movie review298
embeddings in the real-data task based on MovieLens (Harper & Konstan, 2015) for items.299

6 Experiments300

6.1 Effectiveness of SAVO in challenging Q-landscapes301

We compare SAVO against the following baseline actor architectures:302

• 1-Actor (TD3): Conventional single actor architecture which is susceptible to local optima.303

• 1-Actor, k=3 samples (Wolpertinger): Gaussian sampling centered on actor’s output. For discrete304
actions, we select 3-NN discrete actions around the continuous action (Dulac-Arnold et al., 2015).305

• k=3-Actors (Ensemble): Each actor (Osband et al., 2016) can find different local optima, improving306
the best action.307

• Evolutionary actor (CEM): Repeated rounds of search with CEM over the action space (Kalash-308
nikov et al., 2018).309

• Greedy-AC: Greedy Actor Critic (Neumann et al., 2018) trains a high-entropy proposal policy and310
primary actor trained from best proposals with gradient updates.311

• Greedy TD3: Our version of Greedy-AC with TD3 exploration and update improvements.312

• SAVO: Our method with 3 successive actors and surrogate Q-landscapes.313

We ablate the crucial components and design decisions in SAVO:314

• SAVO - Approximation: removes the approximate surrogates (Sec. 4.2.2), using Ψi instead of Ψ̂i.315

• SAVO - Previous Actions: removes conditioning on a<i in SAVO’s actors and surrogates.316

• SAVO + Action Smoothing: TD3’s policy smoothing (Fujimoto et al., 2018) adds action noise to317
compute Q-targets.318

• SAVO + Joint Action: trains an actor with a joint action space of 3×D. The k action samples are319
obtained by splitting the joint action into D dimensions. Validates successive nature of SAVO.320

Aggregate performance. We utilize performance profiles (Agarwal et al., 2021) to aggregate results321
across different environments in Figure 7a (evaluation mechanism detailed in Appendix 15.1). SAVO322

9

Under review for RLC 2025, to be published in RLJ 2025

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

0.02

0.18

0.38

0.58

0.78

0.98

Ev
al

 S
uc

ce
ss

 R
at

e

MineWorld

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

1.5

2.3

3.1

3.9

4.7

5.5

6.3

Ev
al

 R
et

ur
n

RecSim

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

10

19

28

37

46

55

Ev
al

 R
et

ur
n

RecSim-Data

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

600

1200

1800

2400

3000

Ev
al

 R
et

ur
n

Hopper (Restricted)

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

200

400

600

800

1000

Ev
al

 R
et

ur
n

Inverted Pendulum (Restricted)

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

2000

4000

6000

8000

10000

Ev
al

 R
et

ur
n

Inv. Dbl Pend. (Restricted)

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

800

1600

2400

3200

4000

Ev
al

 R
et

ur
n

Walker2D (Restricted)

SAVO (Ours) 1-Actor (TD3) 1-Actor, k-Samples (Wolpertinger)

Greedy-AC Greedy-TD3Evolutionary Actor (CEM)

k-Actors (Ensemble)

Figure 8: SAVO against baselines on discrete and continuous tasks. Results averaged over 10 seeds.

<latexit sha1_base64="fZJDo3ToEEYDeeb9hUibg/F5Rwc=">AAACfHicbVDbahNBGJ6spx48pHrZm8FUUNRl1rSx4k1pofRCoYJpC8kSZmf/JEPnsMz8Kw1LnsGn8Vafw5eRzm4jNG1/GObj+/7jlxVKemTsbyu6d//Bw0crq2vrj588fdbeeH7ibekE9IVV1p1l3IOSBvooUcFZ4YDrTMFpdn5Q66c/wHlpzXecFZBqPjFyLAXHQI3ab6ph02TgJllasXh3h3XfURYn271Pzd/tdeeUj5L5qN1hMWuC3gbJAnTIIo5HG63Pw9yKUoNBobj3g4QVmFbcoRQK5mvD0kPBxTmfwCBAwzX4tGrWmdNXgcnp2LrwDNKGvV5Rce39TGchU3Oc+ptaTd6lDUoc76aVNEWJYMTVoHGpKFpaG0Rz6UCgmgXAhZNhVyqm3HGBwcalKUJnTk6mGHrQL5bnnh5YXbd19KvNwRm63+hLRRf/76OH4TaEi7tuy3Rtd3LT3Nvg5EOc7MTs23Znb39h/ArZJC/Ja5KQj2SPHJFj0ieC/CS/yG/yp/Uv2oreRu+vUqPWouYFWYqodwk7+77p</latexit>

a1
<latexit sha1_base64="j6zVUHunWH9J5fT4Qaoa0ebjVq4=">AAACkHicbVBbSxtBGJ1sb9beon3sy9BQSEDCrlQUitQqlFIqGGhUSJYwO/slGZzLMvOtJAz7a/pr+to+9d90dk2hUT+Y4XDOdz1ZIYXDOP7Tih48fPT4ycbTzWfPX7x81d7aPnemtByG3EhjLzPmQAoNQxQo4bKwwFQm4SK7Oqn1i2uwThj9HZcFpIrNtJgKzjBQk/ahHzdNRnaWpT7uxzu0+ZJ+XNExwgL9KVtU3UHXs2oS93aoH1QNTnq9atLuhOwm6F2QrECHrOJsstX6MM4NLxVo5JI5N0riAlPPLAouodoclw4Kxq/YDEYBaqbApb5ZsaLvApPTqbHhaaQN+3+FZ8q5pcpCpmI4d7e1mrxPG5U4PUi90EWJoPnNoGkpKRpam0ZzYYGjXAbAuBVhV8rnzDKOwdq1KVxlVszmGHrQb4bljp4YVbe19NTkYDU9bvS1osW/++jncFtt+j23Zaq2O7lt7l1wvttP9vrx4H3n6Hhl/AZ5Q96SLknIPjkiX8gZGRJOfpCf5Bf5HW1HB9HH6NNNatRa1bwmaxF9/Qv+RMbK</latexit>

Max(Q(a0), Q(a1))
<latexit sha1_base64="1uMOMnv/jepAOFdUEonmvZ330bU=">AAACfHicbVBdaxNBFJ1s/aj1o6k++jIYBUVdZps2tvhSWhAfFCqYtpAsYXb2Jhk6H8vM3dKw5Df01/ja/g7/jDi7jWDaXhjmcM79PFmhpEfGfreilXv3HzxcfbT2+MnTZ+vtjedH3pZOQF9YZd1Jxj0oaaCPEhWcFA64zhQcZ6cHtX58Bs5La37irIBU84mRYyk4BmrUflcNmyYDN8nSisU726z7gbI42ertNn+3151TPtqcj9odFrMm6G2QLECHLOJwtNH6PMytKDUYFIp7P0hYgWnFHUqhYL42LD0UXJzyCQwCNFyDT6tmnTl9E5icjq0LzyBt2P8rKq69n+ksZGqOU39Tq8m7tEGJ4520kqYoEYy4HjQuFUVLa4NoLh0IVLMAuHAy7ErFlDsuMNi4NEXozMnJFEMP+s3y3NMDq+u2jn63OThD9xt9qej83330S7gN4fyu2zJd253cNPc2ONqMk+2Y/djq7O0vjF8lL8kr8pYk5BPZI1/JIekTQS7IL3JJrlp/otfR++jjdWrUWtS8IEsR9f4CPeq+6g==</latexit>

a2

(a) Q(s, a0) (b) Ψ̂1(s, a1; a0) (c) Ψ̂2(s, a2; {a0, a1})

Figure 9: Each successive surrogate learns a Q-landscape with fewer local optima and thus is easier to
optimize by its actor. SAVO helps a single actor escape the local optimum a0 in Inverted Pendulum.

consistently outperforms baseline actor architectures like single-actor (TD3) and sampling-augmented323
actor (Wolpertinger), showing the best robustness across challenging Q-landscapes. In Figure 7b,324
SAVO outperforms its ablations, validating each proposed component and design decision.325

Per-environment results. In Mining Expedition, the action space has semantically different naviga-326
tion and tool-choice actions, while RecSim and RecSim-Data have a large and diverse set of items.327
The Q-landscape is significantly non-convex in such discrete tasks because the continuous action goes328
through a nearest-neighbor step to select a discrete item. Thus, sampling more neighbors in a local329
neighborhood via Wolpertinger is better than TD3’s single action in Figure 8. However, the optimal330
action is not necessarily near the initial guess. Therefore, SAVO achieves the best performance by331
directly addressing global non-convexity. In restricted locomotion with a discontinuous action space,332
SAVO’s actors can search far separated regions to optimize the Q-landscape better than only nearby333
sampled actions. Appendix Figure 22 ablates SAVO in all 7 environments and shows that the most334
critical features are its successive nature, removing policy smoothing, and approximate surrogates.335

6.2 Q-Landscape Analysis: Do successive surrogates reduce local optima?336

In Figure 9, we visualize the surrogate landscapes in Inverted Pendulum-Restricted for one state337
s. Due to successive pruning and approximation, the Q-landscapes become smoother with reduced338
local optima. A single actor gets stuck in a severe local optimum a0. However, surrogate Ψ1 utilizes339
a0 as an anchor and finds a better (global) optimum a1. The maximizer policy selects a0, a1, or a2,340
whichever has the highest Q-value. Appendix Figure 28 shows that convex Q-landscapes are easily341
optimized, while Figure 29 shows how SAVO successfully optimizes the non-convex Q-landscapes in342
all other tasks. Further analysis can be found in Appendix 18.2.343

10

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

0.00 0.75 1.50 2.25 3.00
Env Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

 S
uc

ce
ss

 R
at

e

Adriot Door
TD3 + SAVO
TD3

0.00 0.75 1.50 2.25 3.00
Env Steps 1e6

0.0

0.2

0.4

0.6

Ev
al

 S
uc

ce
ss

 R
at

e

Adriot Pen
TD3 + SAVO
TD3

0.00 0.75 1.50 2.25 3.00
Env Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

 S
uc

ce
ss

 R
at

e

Adriot Hammer
TD3 + SAVO
TD3

Figure 10: TD3 is improved with SAVO on Adroit dexterous manipulation tasks.

0.00 1.25 2.50 3.75 5.00
Env Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

 S
uc

ce
ss

 R
at

e

MineWorld
Length=10
Length=5
Length=4
Length=3
Length=2
Length=1

0 125000 250000 375000 500000
Env Steps

0

2000

4000

6000

8000

10000

Ev
al

 R
et

ur
n

Inv. Dbl Pend. (Restricted)
Length=15
Length=10
Length=5
Length=3
Length=1

0.0 0.5 1.0 1.5 2.0

Env Steps ×106

0

600

1200

1800

2400

3000

E
va

l
R

et
ur

n

Hopper (Restricted)
Length=15

Length=10

Length=5

Length=3

Length=1

0.00 0.75 1.50 2.25 3.00

Env Steps ×106

0

1200

2400

3600

4800

6000

E
va

l
R

et
ur

n

Adriot Door

Length=15

Length=10

Length=5

Length=3

Length=1

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

2

3

4

5

6

7
Ev

al
 R

et
ur

n
RecSim

Length=25
Length=15
Length=10
Length=5
Length=3
Length=1

Figure 11: SAVO’s improvement scales well when additional actor-surrogates are added until its
performance saturates and completely mitigates the suboptimality of TD3. While the gains are
diminishing beyond 3-5 actors in the environments we considered, 10 actors are mostly enough
to produce optimal performance (shown in red). For RecSim, which is an especially non-convex
Q-landscape because of 10,000 actions and a 45-D action representation space, we note that increasing
to 15 actors achieves the optimal performance.

6.3 Challenging Dexterous Manipulation (Adroit)344

In Adroit (Rajeswaran et al., 2017) dexterous manipulation on Door, Pen, and Hammer, we compared345
SAVO to TD3 (Fujimoto et al., 2018) and observed that SAVO successfully addressed the Q-landscape346
challenges in TD3 algorithm (Figure 10) and TD3 has been improved with SAVO.347

6.4 Quantitative Analysis: The Effect of Successive Actors and Surrogates348

We investigate the effect of increasing the number of successive actor-surrogates in SAVO in Figure 11.349
Additional actor-surrogates significantly help to reduce severe local optima initially. However, the350
improvement saturates as the suboptimality gap reduces. While we still report main SAVO results351
using 3 actors, SAVO significantly improves with 10 actors (Figure 11, Figure 26) across tasks.352

6.5 Further experiments to validate SAVO353

• Baseline Optimization. Figure 15 shows that baselines are fairly optimized, on par with SAVO on354
tasks with a simple Q-landscape. Hyperparameter optimization details are discussed in §15.3.355

11

Under review for RLC 2025, to be published in RLJ 2025

• SAVO orthogonal to SAC. Figure 18 shows that SAVO+TD3 > SAC > TD3; thus, SAC’s stochastic356
policy does not address TD3’s non-convexity. In fact, SAC also suffers from local optima (§17,357
Figure 27) that SAVO+SAC mitigates successfully in unrestricted Ant-v4 and Half-Cheetah-v4.358

• Design Choices. Figure 20 shows that LSTM, DeepSet, and Transformers are all valid choices359
as summarizers of successive actions a<i in SAVO. Figure 21 shows that FiLM conditioning360
on a<i helps in discrete action spaces, but affects continuous action space less. For exploration,361
we compared Ornstein-Uhlenbeck (OU) noise and Gaussian noise and found them to be largely362
equivalent across all baselines (Figure 17). In §14.7, we tried specialized initializations to enforce363
diversity in the SAVO’s actors and surrogates but did not observe major gains.364

• Massive Discrete Actions. SAVO also improves in RecSim-100k and RecSim-500k (Figure 19).365

• Resetting baselines. SAVO outperforms resetting techniques (Nikishin et al., 2022; Kim et al.,366
2024) in addressing local optima, as shown in Figure 16.367

7 Limitations and Conclusion368
Method GPU Mem. Return Time

TD3 619MB 1107.795 0.062s
SAVO k=3 640MB 2927.149 0.088s
SAVO k=5 681MB 3517.319 0.122s

Table 1: Compute v/s Performance Gain

Introducing more actors in SAVO has negligible369
influence on GPU memory, but leads to longer370
inference time (Table 1). However, even for371
3 actor-surrogates, SAVO achieves significant372
improvements in all our experiments. Further,373
for tasks with a simple convex Q-landscape, single actors do not get stuck in local optima, reducing374
the improvements with SAVO. In conclusion, we improve Q-landscape optimization in actor-critic RL375
with Successive Actors for Value Optimization (SAVO) in both continuous and large discrete action376
spaces. We demonstrate with quantitative and qualitative analyses how the improved optimization of377
Q-landscape with SAVO leads to better sample efficiency and performance.378

References379

Monireh Abdoos, Nasser Mozayani, and Ana LC Bazzan. Traffic light control in non-stationary380
environments based on multi agent q-learning. In 2011 14th International IEEE conference on381
intelligent transportation systems (ITSC), pp. 1580–1585. IEEE, 2011.382

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.383
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural information384
processing systems, 34:29304–29320, 2021.385

Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International386
conference on machine learning, pp. 146–155. PMLR, 2017.387

Leemon C Baird and A Harry Klopf. Reinforcement learning with high-dimensional continuous388
actions. Wright Laboratory, Wright-Patterson Air Force Base, Tech. Rep. WL-TR-93-1147, 15,389
1993.390

Yotam Barnoy, Molly O’Brien, Will Wang, and Gregory Hager. Robotic surgery with lean391
reinforcement learning. arXiv preprint arXiv:2105.01006, 2021.392

Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.393

Lukas Biewald. Experiment tracking with weights and biases. Software available from wandb. com,394
2:233, 2020.395

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and396
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.397

12

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

Gang Chen and Yiming Peng. Off-policy actor-critic in an ensemble: Achieving maximum general398
entropy and effective environment exploration in deep reinforcement learning. arXiv preprint399
arXiv:1902.05551, 2019.400

Xinshi Chen, Shuang Li, Hui Li, Shaohua Jiang, Yuan Qi, and Le Song. Generative adversarial user401
model for reinforcement learning based recommendation system. In International Conference on402
Machine Learning, pp. 1052–1061. PMLR, 2019.403

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W Ross. Randomized ensembled double q-404
learning: Learning fast without a model. In International Conference on Learning Representations,405
2020.406

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment407
for openai gym. https://github.com/maximecb/gym-minigrid, 2018.408

Anna Choromanska, MIkael Henaff, Michael Mathieu, Gerard Ben Arous, and Yann LeCun. The409
Loss Surfaces of Multilayer Networks. In Guy Lebanon and S. V. N. Vishwanathan (eds.), Proceed-410
ings of the Eighteenth International Conference on Artificial Intelligence and Statistics, volume 38 of411
Proceedings of Machine Learning Research, pp. 192–204, San Diego, California, USA, 09–12 May412
2015. PMLR. URL https://proceedings.mlr.press/v38/choromanska15.html.413

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on the414
cross-entropy method. Annals of operations research, 134(1):19–67, 2005.415

Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap, Jonathan416
Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. Deep reinforcement417
learning in large discrete action spaces. arXiv preprint arXiv:1512.07679, 2015.418

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam419
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with420
importance weighted actor-learner architectures. In International conference on machine learning,421
pp. 1407–1416. PMLR, 2018.422

Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs, Adrian423
Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. In424
Conference on Robot Learning, pp. 158–168. PMLR, 2022.425

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in426
actor-critic methods. In International conference on machine learning, pp. 1587–1596. PMLR,427
2018.428

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural429
networks. In Proceedings of the thirteenth international conference on artificial intelligence and430
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.431

Fred Glover. Tabu search: A tutorial. Interfaces, 20(4):74–94, 1990.432

Fred Glover and Manuel Laguna. Tabu search. Springer, 1998.433

Ian Goodfellow. Deep learning, 2016.434

Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. A survey of actor-critic435
reinforcement learning: Standard and natural policy gradients. IEEE Transactions on Systems, Man,436
and Cybernetics, part C (applications and reviews), 42(6):1291–1307, 2012.437

Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep q-learning438
with model-based acceleration. In International conference on machine learning, pp. 2829–2838.439
PMLR, 2016.440

13

https://github.com/maximecb/gym-minigrid
https://proceedings.mlr.press/v38/choromanska15.html

Under review for RLC 2025, to be published in RLJ 2025

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy441
maximum entropy deep reinforcement learning with a stochastic actor. In International conference442
on machine learning, pp. 1861–1870. PMLR, 2018.443

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm444
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015.445

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,446
Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements447
in deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,448
volume 32, 2018.449

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are450
universal approximators. Neural networks, 2(5):359–366, 1989.451

Jiaqiao Hu, Michael C Fu, and Steven I Marcus. A model reference adaptive search method for452
global optimization. Operations research, 55(3):549–568, 2007.453

Zhewei Huang, Shuchang Zhou, BoEr Zhuang, and Xinyu Zhou. Learning to run with actor-critic454
ensemble. arXiv preprint arXiv:1712.08987, 2017.455

Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models for sequence tagging, 2015.456

Eugene Ie, Chih-wei Hsu, Martin Mladenov, Vihan Jain, Sanmit Narvekar, Jing Wang, Rui Wu, and457
Craig Boutilier. Recsim: A configurable simulation platform for recommender systems. arXiv458
preprint arXiv:1909.04847, 2019.459

Ayush Jain, Andrew Szot, and Joseph Lim. Generalization to new actions in reinforcement460
learning. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference461
on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 4661–462
4672. PMLR, 13–18 Jul 2020. URL http://proceedings.mlr.press/v119/jain20b.463
html.464

Ayush Jain, Norio Kosaka, Kyung-Min Kim, and Joseph J Lim. Know your action set: Learning ac-465
tion relations for reinforcement learning. In International Conference on Learning Representations,466
2021.467

Sham Machandranath Kakade. On the sample complexity of reinforcement learning. University of468
London, University College London (United Kingdom), 2003.469

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre470
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforcement471
learning for vision-based robotic manipulation. In Conference on Robot Learning, pp. 651–673.472
PMLR, 2018.473

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,474
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic reinforce-475
ment learning at scale. arXiv preprint arXiv:2104.08212, 2021.476

Woojun Kim, Yongjae Shin, Jongeui Park, and Youngchul Sung. Sample-efficient and safe deep477
reinforcement learning via reset deep ensemble agents. Advances in Neural Information Processing478
Systems, 36, 2024.479

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint480
arXiv:1412.6980, 2014.481

Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing.482
science, 220(4598):671–680, 1983.483

14

http://proceedings.mlr.press/v119/jain20b.html
http://proceedings.mlr.press/v119/jain20b.html
http://proceedings.mlr.press/v119/jain20b.html

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

Kuang-Huei Lee, Ted Xiao, Adrian Li, Paul Wohlhart, Ian Fischer, and Yao Lu. Pi-qt-opt: Predictive484
information improves multi-task robotic reinforcement learning at scale. In Conference on Robot485
Learning, pp. 1696–1707. PMLR, 2023.486

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,487
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv488
preprint arXiv:1509.02971, 2015.489

Michael Lederman Littman. Algorithms for sequential decision-making. Brown University, 1996.490

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan491
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint492
arXiv:1312.5602, 2013.493

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-494
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level495
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.496

Samuel Neumann, Sungsu Lim, Ajin Joseph, Yangchen Pan, Adam White, and Martha White.497
Greedy actor-critic: A new conditional cross-entropy method for policy improvement. arXiv498
preprint arXiv:1810.09103, 2018.499

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring general-500
ization in deep learning. Advances in neural information processing systems, 30, 2017.501

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The502
primacy bias in deep reinforcement learning. In International conference on machine learning, pp.503
16828–16847. PMLR, 2022.504

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via505
bootstrapped dqn. Advances in neural information processing systems, 29, 2016.506

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor507
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,508
high-performance deep learning library. Advances in neural information processing systems, 32,509
2019.510

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual511
reasoning with a general conditioning layer. In Proceedings of the AAAI conference on artificial512
intelligence, volume 32, 2018.513

Aloïs Pourchot and Olivier Sigaud. Cem-rl: Combining evolutionary and gradient-based methods514
for policy search. arXiv preprint arXiv:1810.01222, 2018.515

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel516
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement517
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.518

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region519
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,520
2015.521

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy522
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.523

Lin Shao, Yifan You, Mengyuan Yan, Shenli Yuan, Qingyun Sun, and Jeannette Bohg. Grac:524
Self-guided and self-regularized actor-critic. In Conference on Robot Learning, pp. 267–276.525
PMLR, 2022.526

15

Under review for RLC 2025, to be published in RLJ 2025

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.527
Deterministic policy gradient algorithms. In International conference on machine learning, pp.528
387–395. Pmlr, 2014.529

Riley Simmons-Edler, Ben Eisner, Eric Mitchell, Sebastian Seung, and Daniel Lee. Q-learning for530
continuous actions with cross-entropy guided policies. arXiv preprint arXiv:1903.10605, 2019.531

Edward Jay Sondik. The optimal control of partially observable Markov processes. Stanford532
University, 1971.533

Yanjie Song, Ponnuthurai Nagaratnam Suganthan, Witold Pedrycz, Junwei Ou, Yongming He,534
Yingwu Chen, and Yutong Wu. Ensemble reinforcement learning: A survey. Applied Soft535
Computing, pp. 110975, 2023.536

Mandavilli Srinivas and Lalit M Patnaik. Genetic algorithms: A survey. computer, 27(6):17–26,537
1994.538

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. 1998.539

Gerald Tesauro et al. Temporal difference learning and td-gammon. Communications of the ACM,540
38(3):58–68, 1995.541

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.542
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033. IEEE,543
2012.544

Hado Van Hasselt and Marco A Wiering. Using continuous action spaces to solve discrete problems.545
In 2009 International Joint Conference on Neural Networks, pp. 1149–1156. IEEE, 2009.546

Pin Wang, Hanhan Li, and Ching-Yao Chan. Quadratic q-network for learning continuous control547
for autonomous vehicles. arXiv preprint arXiv:1912.00074, 2019.548

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3):279–292, 1992.549

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement550
learning. Machine learning, 8:229–256, 1992.551

Qingyun Wu, Hongning Wang, Liangjie Hong, and Yue Shi. Returning is believing: Optimizing552
long-term user engagement in recommender systems. In Proceedings of the 2017 ACM on553
Conference on Information and Knowledge Management, pp. 1927–1936, 2017.554

Mengyuan Yan, Adrian Li, Mrinal Kalakrishnan, and Peter Pastor. Learning probabilistic multi-555
modal actor models for vision-based robotic grasping. In 2019 International Conference on Robotics556
and Automation (ICRA), pp. 4804–4810. IEEE, 2019.557

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and558
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.559

Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang Tang. Deep560
reinforcement learning for page-wise recommendations. Proceedings of the 12th ACM Conference561
on Recommender Systems, Sep 2018. DOI: 10.1145/3240323.3240374. URL http://dx.doi.562
org/10.1145/3240323.3240374.563

Zhuobin Zheng12, Chun Yuan, Zhihui Lin12, and Yangyang Cheng12. Self-adaptive double564
bootstrapped ddpg. In International Joint Conference on Artificial Intelligence, 2018.565

Tao Zhou, Zoltán Kuscsik, Jian-Guo Liu, Matúš Medo, Joseph Rushton Wakeling, and Yi-Cheng566
Zhang. Solving the apparent diversity-accuracy dilemma of recommender systems. Proceedings of567
the National Academy of Sciences, 107(10):4511–4515, 2010.568

16

http://dx.doi.org/10.1145/3240323.3240374
http://dx.doi.org/10.1145/3240323.3240374
http://dx.doi.org/10.1145/3240323.3240374

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, and Dawei Yin. Reinforcement569
learning to optimize long-term user engagement in recommender systems. In Proceedings of570
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.571
2810–2818, 2019.572

17

Under review for RLC 2025, to be published in RLJ 2025

Supplementary Materials573

The following content was not necessarily subject to peer review.574
575

576

8 Reproducibility577

With the aim of promising the reproducibility of our results, We have also included all relevant578
hyperparameters and additional details on how we tuned each baseline method in Appendix Table 3.579

9 Proof of Convergence of Maximizer Actor in Tabular Settings580

Theorem 9.1 (Convergence of Policy Iteration with Maximizer Actor). Consider a modified policy581
iteration algorithm where, at each iteration, we have a set of k + 1 policies {ν0, ν1, . . . , νk}, with582
ν0 = µ being the current policy learned with DPG. We define the maximizer actor µM as:583

µM (s) = arg max
a∈{ν0(s),ν1(s),...,νk(s)}

Q(s, a). (10)

In the tabular setting, the modified policy iteration algorithm using the maximizer actor converges to584
the optimal policy.585

Proof. 9.1 Policy Iteration with Maximizer Actor586

9.2 Policy Evaluation Converges587

Given a deterministic policy π (in our case π = µM), the policy evaluation computes the action-value588
function Qπ , which satisfies the Bellman equation:589

Qπ(s, a) = R(s, a) + γ
∑
s′

P (s, a, s′)Qπ(s′, π(s′)).

In the tabular setting, the Bellman operator T π defined by590

[T πQ](s, a) = R(s, a) + γ
∑
s′

P (s, a, s′)Q(s′, π(s′))

is a contraction mapping with respect to the max norm ∥ · ∥∞ with contraction factor γ:591

∥T πQ− T πQ′∥∞ ≤ γ∥Q−Q′∥∞.

Thus, iteratively applying T π starting from any initial Q0 converges to the unique fixed point Qπ .592

9.3 Policy Improvement with DPG and Maximizer Actor593

At iteration n, suppose we have a policy µn.594

Step 1: Policy Evaluation595

Compute Qµn by solving:596

Qµn(s, a) = R(s, a) + γ
∑
s′

P (s, a, s′)Qµn(s′, µn(s
′)).

18

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

Step 2: Policy Improvement597

(a) DPG Update598

Perform a gradient ascent step using the Deep Policy Gradient (DPG) method to obtain an improved599
policy µ̃k+1:600

µ̃k+1(s) = µn(s) + α∇aQ
µn(s, a)

∣∣
a=µn(s)

,

where α > 0 is a suitable step size.601

This DPG gradient step leads to local policy improvement following over µn (Silver et al., 2014):602

V µ̃k+1(s) ≥ V µn(s), ∀s ∈ S.

(b) Maximizer Actor603

Given additional policies ν1, . . . , νk, define the maximizer actor µn+1 as:604

µn+1(s) = arg max
a∈{µ̃k+1(s),ν1(s),...,νk(s)}

Qµn(s, a).

Since µn+1(s) selects the action maximizing Qµn(s, a) among candidates, we have:605

Qµn(s, µn+1(s)) = max
a

Qµn(s, a) ≥ Qµn(s, µ̃k+1(s)) ≥ V µn(s).

By the Policy Improvement Theorem, since Qµn(s, µn+1(s)) ≥ V µn(s) for all s, it follows that:606

V µn+1(s) ≥ V µn(s), ∀s ∈ S.

Thus, the sequence {V µn} is monotonically non-decreasing.607

Convergence of Policy Iteration608

Since {V µn} is bounded above by V ∗ (the optimal value function), it converges. In a finite MDP,609
there are only finitely many possible policies. Thus, the sequence {µn} must eventually repeat, and610
because each policy improvement is non-decreasing, the policies stabilize at an optimal policy µ∗.611

612

10 Proof of Reducing Number of Local Optima in Successive Surrogates613

Theorem 10.1. Consider a state s ∈ S, Q in Eq. 1, and Ψi in Eq. 7. Let Nopt(f) be the number of614
local optima (assumed countable) of a function f : A → R, where A is the action space. Then,615

Nopt(Q(s, a)) ≥ Nopt(Ψ0(s, a; {a0})), . . . ,≥ Nopt(Ψk(s, a; {a0, . . . , ak}))

Proof. Consider two consecutive surrogate functions Ψi(s, a; {a0, . . . , ai}) and616
Ψi+1(s, a; {a0, . . . , ai+1}),617

Ψi(s, a; a<i) = max

{
Q(s, a),max

j<i
Q(s, aj)

}
,

Ψi+1(s, a; a<i+1) = max

{
Q(s, a), max

j<i+1
Q(s, aj)

}
,

Let τi = maxj<i Q(s, aj) and τi+1 = maxj<i+1 Q(s, aj).618

Consider a given state s and any particular local optimum in Ψi at a′, there can be two cases:619

19

Under review for RLC 2025, to be published in RLJ 2025

1. If Q(s, a’) > τi+1, then Ψi+1(s, a
′; a<i+1) = Q(s, a′).620

Since, a’ is a local optimum of Ψi, there exists ϵ > 0 Ψi(s, a
′ ± ϵ; a<i) = Q(s, a′ ± ϵ) <621

Ψi(s, a
′; a<i) = Q(s, a′)622

Therefore, Ψi+1(s, a
′ ± ϵ; a<i+1) = Q(s, a′ ± ϵ) < Ψi+1(s, a

′; a<i+1) = Q(s, a′) Thus, a’ is623
also a local optimum of Ψi+1.624

2. If Q(s, a′) ≤ τi+1, then Ψi+1(s, a
′; a<i+1) = τi+1, and there exists ϵ > 0, such that Ψi+1(s, a

′±625
ϵ; a<i+1) = τi+1. Thus, a’ is not a local optimum of Ψi+1626

Finally, Ψi+1 does not add any new local optima, because τi+1 ≥ τi and thus all points where627
Ψi+1(s, a; a<i+1) = Q(s, a), we have Ψi(s, a; a<i) = Q(s, a). Therefore ∀i ≥ 1,628

Nopt(Ψi(s, a; {a0, . . . , ai})) ≥ Nopt(Ψi+1(s, a; {a0, . . . , ai+1})

The same analysis extends for Q and Ψ1, by substituting τ0 < minQ to be a very small value. Thus,629
by induction, we have,630

Nopt(Q(s, a)) ≥ Nopt(Ψ0(s, a; {a0})), . . . ,≥ Nopt(Ψk(s, a; {a0, . . . , ak}))

631

11 Environment Details632

(b) Recommender Systems

Simulated
Data Movielens

Movie

Click or Not

↓

↓ ↓

↓

x100
(a) Mine World (c) Continuous Control

Figure 12: This figure provides the visual description of the environment setup.

11.1 MiningEnv633

The grid world environment, introduced in Sec. 5, requires an agent to reach a goal by navigating a634
2D maze as soon as possible while breaking the mines blocking the way.635

State: The state space is an 8+K dimensional vector, where K equals to mine-category-size. This636
vector consists of 4 independent pieces of information: Agent Position, Agent Direction, Surrounding637
Path, and Front Cell Type.638

1. Agent Position: Agent Position occupies two dimensional of the vector. The first dimension639
represents the x-axis value, and the second one represents the y.640

2. Agent Direction: It only takes one channel with value [0, 1, 2, 3]. Each number represents one641
direction, and they are 0-right, 1-down, 2-left, and 3-up.642

3. Surrounding Path: This information takes four channels. Each represents whether the cell in that643
direction is an empty cell or a goal.644

4. Front Cell Type: This information is in one-hot form and occupies the last K + 1-dimensional645
vector, which provides the information of which kind of mine is in front of the agent. If the front646
cell is an empty cell or the goal, the (K + 1)th channel will be one, and others remain to be zero647

20

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

Ultimately, we will normalize each dimension to [0, 1] with each dimension’s minimum/maximum648
value. Each time we reset the environment, the layout of the whole grid world will be changed, except649
for the agent start position and the goal position.650

Termination: An episode is terminated in success when the agent reaches the goal or after a total of651
100 timesteps.652

Actions: The base action set combines two kinds of actions: navigation actions and pick-axe(tool)653
actions. The navigation action set is a fixed set, which contains four independent actions: going up,654
down, left, and right, corresponding with the direction of the agent. They will change the agent’s655
direction first and then try to make the agent take one step forward. Note that, different from the656
empty cell, the agent cannot step onto the mine, which means that if the agent is trying to take a step657
towards a mine or the border of the world, then the agent will stay in the same location while the658
direction will still be changed. Otherwise, the agent can step onto that cell. An agent will succeed659
if it reaches the goal position. The size of the pick-axe action set is equal to 50. Each tool has a660
one-to-one mapping, which means they can and only can be successfully applied to one kind of mine,661
and either transform that kind of mine into another type of mine or directly break it.662

Reward: The agent receives a large goal reward for reaching the goal. The goal reward is discounted663
based on the number of action steps taken to reach that location, thus rewarding shorter paths. To664
further encourage the agent to reach the goal, a small exploration reward is added whenever the agent665
gets closer to the goal, and a negative equal penalty is added whenever the agent gets further to the666
goal. And also, when the agent successfully applies a tool, it will gain a small reward. When the667
agent successfully breaks a mine, it will also gain a small bonus.668

R(s, a) = 1Goal ·RGoal

(
1− λGoal

Ncurrent steps

Nmax steps

)
+

RStep (Ddistance before −Ddistance after) +

1correct tool applied ·RTool +

1successfully break mine ·RBonus

(11)

where RGoal = 10, RStep = 0.1, RTool = 0.1, RBonus = 0.1, λGoal = 0.9, Nmax steps = 100669

Action Representations: The action representations are 4-dimensional vectors manually defined670
using a mix of number ids, and each dim is scaled to [0, 1]. as shown in Graph 13. Dimensions 1671
identifies the category of skills (navigation, pick-axe), 2 distinguishes movement skills (right, down,672
left, up), 3 denotes the mine on which this tool can be successfully applied, and 4 shows the result of673
applying this tool. We will normalize the action embedding space to [0, 1] for each dimension.674

Basic Tools
x8

Select All

Complex Tools
x63

Select 42

Agent

Mine

Empty

Goal

Mining World
Overview Action Overview

Navigation actions
x4

Select All

Action
Type

Navigation
Number

Mine-ID
Before

Mine-ID
After

0 0 [7, 8, …,
14]

15

0 0 [0, 1, …, 6] [7, 8, …,
14] or 15

1 [0, 1, 2, 3] 0 0

Basic
Mines

Empty
(No mine)

Complex
Mines

Figure 13: Mining Env Setting Description

21

Under review for RLC 2025, to be published in RLJ 2025

11.2 RecSim675

The simulated RecSys environment requires an agent to select an item that match the user’s interest676
out of a large item-set. We simulate users with a dynamically changing preference upon clicks. Thus,677
the agent’s task is to infer this preference from user clicks and recommend the most relevant item to678
maximize a total number of clicks.679

State: The user interest embedding (eu ∈ Rn where n denotes the number of categories of items)680
represents the user interest in categories that transitions over time as the user consumes different681
items upon click. So, when the user clicks an item with the corresponding item embedding(ei ∈ Rn;682
the same n as the one for the user embedding) then the user interest embedding(eu) will be updated683
as follows;684

∆(eu) = (−y|eu|+ y) · (1− eu), for y ∈ [0, 1]

ei ← eu +∆(eu) with probability[eTu ei + 1]/2

eu ← eu −∆(eu) with probability[1− eTu ei]/2

This essentially pulls the user’s preference towards the item that was clicked.685

Action: The action set contains many recommendable items. So, the agent has to find the most686
relevant item to a user given the item-set. See below regarding how these items are represented.687

Reward: The base reward is a simulated user feedback (e.g., clicks). The user model (Ie et al., 2019)688
stochastically skips or clicks the recommended item based on the present user interest embedding689
(eu). Concretely, the user model computes the following score on the recommended item;690

scoreitem = ⟨eu, ei⟩

pitem =
escoreitem

esitem + escoreskip

pskip =
escoreskip

esitem + escoreskip

where, eu, ei ∈ Rn are the user and item embedding, respectively, ⟨·, ·⟩ is the dot product notation691
and scoreskip is a empirically decided hyper-parameter. So, given the score scoreitem of an item, the692
user model computes the click likelihood through a softmax function over the recommended item693
and a predefined skip score. Finally, the user model stochastically selects either click(reward=1) or694
skip(reward=0) based on the categorical distribution on [pitem, pskip].695

Action Representations: Following Jain et al. (2021), we implement continuous item representations696
sampled from a Gaussian Mixture Model (GMM) with centers around each item category. In this697
work, we did not use the sub-category in the category system.698

11.3 Continuous Control699

The MuJoCo (Todorov et al., 2012) benchmarking tasks are a set of standard reinforcement learning700
environments provided by the MuJoCo physics engine. elow is a brief description of some of the701
commonly used MuJoCo benchmarking tasks:702

Hopper: In the Hopper task, you control a one-legged robot that must learn to hop forward while703
maintaining balance. The agent needs to find an optimal hopping strategy to maximize forward704
progress.705

Walker2d: This task features a two-legged robot that must learn to walk forward. Similar to the706
Hopper, the agent must maintain balance while moving efficiently.707

HalfCheetah: The HalfCheetah task involves a four-legged cheetah-like robot. The objective is for708
the robot to learn a coordinated gait that allows it to move forward as rapidly as possible.709

22

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

Ant: In the Ant task, you control a four-legged ant-like robot. The challenge is for the robot to learn710
to walk and navigate efficiently through its environment.711

11.3.1 Restricted Locomotion in Mujoco712

Figure 6 demonstrates "Restricted" locomotion. And here we provide the complete description and713
justification of the Restricted Mujoco Locomotion tasks below.714

Justification: The restricted locomotion setting in Mujoco limits the range of actions the agent is715
allowed to perform in each dimension. For instance, the wear and tear of an agent’s hardware can716
easily cause action space to behave like the one visualized in the attached PDF for Hopper. The717
mixture-of-hypersphere action space is just one way to simulate such asymmetric restrictions. These718
restrictions apply to the range of torques applied to the joints of hopper and walker, and on the range719
of forces applied to pendulums.720

Complete Description:721

• Restricted Hopper & Walker722

Invalid action vectors are replaced with 0. Change to environment’s step function code:723

1 def step(action):724
2 ...725
3 if check_valid(action):726
4 self.do_simulation(action)727
5 else:728
6 self.do_simulation(np.zeros_like(action))729
7 ...730

For reference, the Hopper action space is 3-dimensional, with torque applied to731
[thigh, leg, foot], while the Walker action space is 6-dimensional, with torque applied to732
[right thigh, right leg, right foot, left thigh, left leg, left foot]. The implication is that zero torques733
are exerted for the ∆t duration between two actions, meaning no torques are applied for 0.008734
seconds. This effectively slows down the agent’s current velocities and angular velocities due to735
friction.736

• Inverted Pendulum & Inverted Double Pendulum737

Invalid action vectors are replaced with -1. Change in code:738

1 def step(action):739
2 ...740
3 if not check_valid(action):741
4 action[:] = -1.742
5 self.do_simulation(action)743
6 ...744

For reference, the action space is 1-dimensional, with force applied on the cart. The implication is745
that the cart is pushed in the left direction for 0.02 (default) seconds. Note that the action vectors746
are not zeroed because a 0-action is often the optimal action, particularly when the agent starts747
upright. This would make the learning task trivial, with the optimal strategy being: “learn to select748
invalid actions”.749

12 Additional Results750

12.1 Experiment: Continuous control on Unrestricted Mujoco751

In Mujoco-v4 tasks, the Q-landscape is likely to be easier to optimize than Mujoco-Restricted tasks,752
and we find that baseline models consistently perform well in all the tasks, unlike Mujoco-Restricted.753
Based on the performance of SAVO and baselines in Figure 15, we can infer that,754

23

Under review for RLC 2025, to be published in RLJ 2025

Valid Action Space

Original Action Space

Figure 14: Hopper’s 3D visualization of Action Space.

1. The baseline models have sufficient capacity and are well-tuned, as they can solve the standard755
Mujoco-v4 tasks optimally.756

2. SAVO performs on par with other methods in Mujoco-v4 tasks where the Q-landscape is easier to757
optimize.758

3. Since SAVO outperforms baseline methods only in Mujoco-Restricted, it demonstrates that the759
reason of SAVO doing better is the presence of a challenging Q-landscape, such as those shown in760
Figure 1.761

12.2 Resetting Baselines762

In this section, we clarify the distinction between primacy bias and the challenge of getting stuck in763
local optima within Q-landscapes. Primacy bias, as addressed in Nikishin et al. (2022); Kim et al.764
(2024), occurs when an agent is trapped in suboptimal behaviors from early training, and solutions765
like resetting (reinitializing the parameters of last few layers) and re-learning from the replay buffer766
mitigate this by avoiding reliance on initially collected samples.767

However, these methods do not reduce the probability of an actor getting stuck in Q-function local768
optima (the issue we consider in this work). In fact resetting could cause an otherwise optimal actor769
to get stuck in suboptima during retraining. To demonstrate this, we conducted a reset baseline770
experiment, following Nikishin et al. (2022), on TD3 in MineEnv. Here, Full-reset refers to the771
reset all strategy proposed by Kim et al. (2024), while Last-layer-OOO corresponds to the approach772
in Nikishin et al. (2022). Finally, TD3 (no reset) represents the standard TD3 algorithm without773
these extensions. We observed no performance improvements over the standard TD3. In contrast,774
our method, SAVO, directly addresses this problem by employing an actor architecture specifically775
designed to navigate non-convex Q-landscapes, making it more robust to local optima.776

12.3 Exploration Noise comparison: OUNoise vs Gaussian777

The choice of Ornstein-Uhlenbeck (OU) noise or Gaussian noise for exploration does not make a778
significant difference and we select OU noise for its better overall performance in initial experiments.779
This comparison is shown in Figure 17. This finding is consistent with TD3 Fujimoto et al. (2018),780
which also finds no significant difference between OU and Gaussian noise.781

24

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

0.000 0.375 0.750 1.125 1.500
Env Steps 1e6

0

1200

2400

3600

4800

6000

Ev
al

 R
et

ur
n

Ant-v4

0.000 0.375 0.750 1.125 1.500
Env Steps 1e6

0

2400

4800

7200

9600

12000

Ev
al

 R
et

ur
n

HalfCheetah-v4

0.00 0.25 0.50 0.75 1.00
Env Steps 1e6

0

800

1600

2400

3200

4000

Ev
al

 R
et

ur
n

Hopper-v4

0.00 0.25 0.50 0.75 1.00
Env Steps 1e6

0

800

1600

2400

3200

4000

Ev
al

 R
et

ur
n

Walker2D-v4

SAVO (Ours) 1-Actor (TD3) 1-Actor, k-Samples (Wolpertinger)

Greedy-AC Greedy-TD3Evolutionary Actor (CEM)

k-Actors (Ensemble)

Figure 15: TD3 is not suboptimal in Unrestricted Mujoco. We evaluate SAVO against all baselines
in the Unrestricted Mujoco continuous control tasks and show that SAVO is competitive with the
baselines that already perform optimally. The reason is investigated in §18, where tasks like Inverted
Pendulum-v4 and Hopper-v4 have visibly convex Q-landscapes. Thus, SAVO is not expected to
significantly outperform TD3 in these benchmarks.

12.4 SAC does not address non-convex Q-landscapes782

We compare the performance of SAC, TD3, and TD3 + SAVO across three Mujoco-Restricted tasks.783
The results (Figure 18) indicate that TD3 + SAVO consistently outperforms the other methods,784
demonstrating the effectiveness of SAVO in Hopper and Walker2D. In Inverted Pendulum, TD3 +785
SAVO also shows faster convergence, further highlighting its advantages.786

25

Under review for RLC 2025, to be published in RLJ 2025

Figure 16: Performance comparisons of Resetting baselines averaged over 5 random seeds, and the
seed variance is shown with shading.

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

600

1200

1800

2400

3000

Ev
al

 R
et

ur
n

Hopper (Restricted)
OU-TD3
Gaussian-TD3

Figure 17: OU versus Gaussian Noise. We do not see a significant difference due to this choice, and
select OU noise due to better overall performance in experiments

13 Network Architectures787

13.1 Successive Actors788

The whole actor has a successive format and each successive actor will receive two pieces of infor-789
mation: the state observation and the action list generated by previous successive actors. Given the790
concatenation of the input components above, a 4-layer MLP with ReLU will process this information791
and generate one action for one single successive actor. And this action will be concatenated with792
the previous action list. After being transformed by an optional action-list-encoder, together with793
the state information, they become the input of next successive actor’s input. In the end, the action794
list will be processed with 1-NN to find the nearest discrete action. After this, this action list will be795
delivered to the selection Q-network.796

13.2 Successive Critics797

The critic has a one-to-one mapping relationship with the actor. The whole critic consists of a798
list of successive critics and each successive critic will receive three pieces of information: the799
state observation, the action list generated by previous successive actors, and the action provided800
by the corresponding successive actor. Given the concatenation of the input components above, a801

26

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

600

1200

1800

2400

3000

Ev
al

 R
et

ur
n

Hopper (Restricted)

SAVO
TD3
SAC

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

800

1600

2400

3200

4000

Ev
al

 R
et

ur
n

Walker2D (Restricted)

SAVO
TD3
SAC

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

200

400

600

800

1000

Ev
al

 R
et

ur
n

Inverted Pendulum (Restricted)

SAVO
TD3
SAC

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

2000

4000

6000

8000

10000

Ev
al

 R
et

ur
n

Inv. Dbl Pend. (Restricted)

SAVO
TD3
SAC

Figure 18: SAC is orthogonal to the effect of SAVO. While SAC is a stochastic extension of TD3
with entropy regularization, SAVO is a plug-in actor architecture that mitigates the challenge of
the actor getting stuck in local optima. Thus, tasks where SAC outperforms TD3 differ from tasks
where SAVO outperforms TD3. Also, TD3 outperforms SAC in Restricted Hopper and Inverted-
Double-Pendulum. However, SAVO+TD3 guarantees improvement over TD3. As we show in §17,
SAVO+SAC also mitigates the local optima challenges in SAC.

2-layer MLP with ReLU will process this information and generate the action’s value for one single802
successive actor. This value will be used to update itself and the actor with TD-error.803

13.3 List Summarizers804

In order to extract meaningful information from the list of candidate actions, following Jain et al.805
(2021) we employed the sequential models and the list-summarizer as follows;806

Bi-LSTM: The raw action representations of candidate actions are passed on to the 2-layer MLP807
followed by ReLU. Then, the output of the MLP is processed by a 2-layer bidirectional LSTM (Huang808
et al., 2015). Another 2-layer MLP follows this to create the action set summary to be used in the809
following successive actor.810

DeepSet: The raw action representations of candidate actions are passed on to the 2-layer MLP811
followed by ReLU. Then, the output of the MLP is aggregated by the mean pooling over all the812
candidate actions to compress the information. Finally, the 2-layer MLP with ReLU provides the813
resultant action summary to the following successive actor.814

Transformer: Similar to the Bi-LSTM variant of the summarizer, we employed the 2-layer MLP815
with ReLU before inputting the candidate actions into a self-attention and feed-forward network to816
summarize the information. Afterward the summarization will be part of the input of the following817
successive actor.818

27

Under review for RLC 2025, to be published in RLJ 2025

13.4 Feature-wise Linear Modulation (FiLM)819

Feature-wise Linear Modulation (Perez et al., 2018), is a technique commonly applied in neural820
networks for tasks like image recognition. It enhances adaptability by dynamically adjusting inter-821
mediate feature representations. Using learned parameters from one layer, FiLM linearly modulates822
features in another layer, allowing the network to selectively emphasize or de-emphasize aspects of823
the input data. This flexibility is beneficial for capturing complex and context-specific relationships,824
improving the model’s performance in various tasks.825

13.5 Selection Q-network826

The selection Q-network sequentially evaluates the Q-value of the retrieved candidate actions by the827
cascading actors. Thus, it receives a concatenated information of state and an action embedding for828
each candidate action. Then, it selects the action with the largest Q-value amongst candidate actions829
to act on the environment.830

14 More experimental results831

14.1 More Complex RecSim: Increasing Size of Action Space832

We test the robustness of our method to more challenging Q-value landscapes in Figure 19 in833
Appendix 14.1. In RecSim, we vary the action space size, from 100K to 500K. The results show that834
SAVO outperforms the baselines, maintaining its robust performance even as the action complexity835
increases. In contrast, the baselines experienced performance deterioration as action sizes grew larger.836

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

1.5

2.3

3.1

3.9

4.7

5.5

6.3

Ev
al

 R
et

ur
n

RecSim
SAVO
TD3+Sampling
Joint

0 2 4 6 8
Env Steps 1e6

1.5

2.3

3.1

3.9

4.7

5.5

6.3

Ev
al

 R
et

ur
n

RecSim
SAVO
TD3+Sampling
Joint

Figure 19: Increasing RecSim action set size: (Left) 100K items, (Right) 500K items (6 seeds).

14.2 Design Choices: Action summarizers837

In the exploration of action summarizer design choices, three key architectures were considered:838
Deepset, LSTM, and Transformer models, each represented by SAVO, SAVO-lstm, and SAVO-839
transformer in Fig.20, respectively. In the discrete tasks, the comparison revealed a preference for the840
deepset architecture over LSTM and Transformer. In the continuous domain, however, the results841
were rather varied, indicating that the effectiveness of the action summarizer depends on the specific842
use case. The nuanced differences among these architectures contribute to the complexity of the843
task, and further research is needed to determine the optimal design for action summarization in both844
discrete and continuous contexts.845

14.3 Conditioning on previous actions: FiLM v/s MLP846

In the examination of conditioning on previous actions, two distinct approaches, Feature-wise847
Linear Modulation (FiLM) and Multi-Layer Perceptron (MLP), represented by FiLM and non-FiLM848
variants in Fig.21, were scrutinized for their efficacy. In the discrete tasks, the results unveiled849

28

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

0.000 1.875 3.750 5.625 7.500
Env Steps 1e6

0.02

0.18

0.38

0.58

0.78

0.98

Ev
al

 S
uc

ce
ss

 R
at

e

MineWorld

SAVO-DEEPSET
SAVO-LSTM
SAVO-TRANSFORMER

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

1.5

2.3

3.1

3.9

4.7

5.5

6.3

Ev
al

 R
et

ur
n

RecSim

SAVO-DEEPSET
SAVO-LSTM
SAVO-TRANSFORMER

0 2 4 6 8
Env Steps 1e6

10

19

28

37

46

55

Ev
al

 R
et

ur
n

RecSim-Data

SAVO-DEEPSET
SAVO-LSTM
SAVO-TRANSFORMER

Figure 20: Comparison of action summarizers: the results are averaged over 5 random seeds, and the
seed variance is shown with shading.

a notable preference for FiLM over non-FiLM implementations, highlighting its effectiveness in850
leveraging information from prior actions for improved conditioning. However, in the continuous851
domains, the comparison between FiLM and MLP yielded varied outcomes, suggesting that the choice852
between these approaches is intricately tied to the specific task context. The nuanced performance853
differences observed underscore the need for continued research to ascertain the optimal approach for854
conditioning on previous actions and to enhance model adaptability across diverse applications.855

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

1.5

2.3

3.1

3.9

4.7

5.5

6.3

Ev
al

 R
et

ur
n

RecSim

SAVO-FILM (Ours)
SAVO-No-FILM

0 2 4 6 8
Env Steps 1e6

10

19

28

37

46

55

Ev
al

 R
et

ur
n

RecSim-Data

SAVO-FILM (Ours)
SAVO-No-FILM

0.000 1.875 3.750 5.625 7.500
Env Steps 1e6

0.02

0.18

0.38

0.58

0.78

0.98

Ev
al

 S
uc

ce
ss

 R
at

e

MineWorld

SAVO-FILM (Ours)
SAVO-No-FILM

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

600

1200

1800

2400

3000

Ev
al

 R
et

ur
n

Hopper (Restricted)

SAVO-FILM (Ours)
SAVO-No-FILM

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

800

1600

2400

3200

4000

Ev
al

 R
et

ur
n

Walker2D (Restricted)

SAVO-FILM (Ours)
SAVO-No-FILM

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

200

400

600

800

1000

Ev
al

 R
et

ur
n

Inverted Pendulum (Restricted)

SAVO-FILM (Ours)
SAVO-No-FILM

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

2000

4000

6000

8000

10000

Ev
al

 R
et

ur
n

Inverted Double Pendulum (Restricted)

SAVO-FILM (Ours)
SAVO-No-FILM

Figure 21: Comparison of how to condition on previous actions: the results are averaged over 5
random seeds, and the seed variance is shown with shading.

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

0.02

0.18

0.38

0.58

0.78

0.98

Ev
al

 S
uc

ce
ss

 R
at

e

MineWorld

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

1.5

2.3

3.1

3.9

4.7

5.5

6.3

Ev
al

 R
et

ur
n

RecSim

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

10

19

28

37

46

55

Ev
al

 R
et

ur
n

RecSim-Data

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

600

1200

1800

2400

3000

Ev
al

 R
et

ur
n

Hopper (Restricted)

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

800

1600

2400

3200

4000

Ev
al

 R
et

ur
n

Walker2D (Restricted)

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

200

400

600

800

1000

Ev
al

 R
et

ur
n

Inverted Pendulum (Restricted)

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

2000

4000

6000

8000

10000

Ev
al

 R
et

ur
n

Inv. Dbl Pend. (Restricted)

SAVO (Ours) SAVO - Approximation SAVO + Previous ActionsSAVO - Action Smoothing SAVO + Joint Action

Figure 22: Ablation study of SAVO Variations over 5 random seeds shows that every technical
component introduced in SAVO contributes to its performance.

29

Under review for RLC 2025, to be published in RLJ 2025

14.4 Per-Environment Ablation Results856

Figure 22 shows the per-environment performance of SAVO ablations, compiled into aggregate857
performance profiles in Figure 7b. The SAVO - Approximation variant underperforms significantly858
in discrete action space tasks, where traversing between local optima is complex due to nearby actions859
having diverse Q-values (see the right panel of Figure 1). Similarly, adding TD3’s target action860
smoothing to SAVO results in inaccurate learned Q-values when several differently valued actions861
exist near the target action, as in the complex landscapes of all tasks considered.862

Removing information about preceding actions does not significantly degrade SAVO’s performance863
since preceding actions’ Q-values are indirectly incorporated into the surrogates’ training objective864
(see Eq. 8), except for MineWorld where this information helps improve efficiency.865

The SAVO + Joint ablation learns a single actor that outputs a joint action composed of k constituents,866
aiming to cover the action space so that multiple coordinated actions can better maximize the Q-867
function compared to a single action. However, this increases the complexity of the architecture and868
only works in low-dimensional tasks like Inverted-Pendulum and Inverted-Double-Pendulum. SAVO869
simplifies action candidate generation by using several successive actors with specialized objectives,870
enabling easier training without exploding the action space.871

14.5 Surrogate Approximation Error Analysis872

In Figure 23, we analyze the surrogate approximation error across different environments to evaluate873
how well the surrogate Q-functions approximate the true thresholded Q-function during training. The874
surrogate error, i.e., the MSE loss from Equation 8, is expressed as a percentage of the Bellman error875
to measure how closely the surrogate tracks updates to the Q-function. This analysis is important876
because surrogates aim to simplify optimization while still allowing gradients to propagate effectively.877

Low Surrogate Error Across Training. In most environments, the surrogate error converges to878
a relatively low value between 1–10% of the Bellman error, showing that the surrogates provide a879
reliable approximation. This indicates that the surrogate functions are well-suited for actor updates,880
not introducing large errors in the Q-landscape and staying current with new optimal regions. The881
surrogate error stays consistently low across various tasks, including restricted locomotion (e.g., Hop-882
per, Walker2D) and dexterous manipulation (e.g., Adroit Pen, Adroit Hammer). This demonstrates883
that the surrogate functions work well across diverse environments with varying levels of complexity.884

Non-zero loss shows Smoothness in Flat Regions. The surrogate error remains positive throughout885
training, including in flat regions of the Q-landscape. This ensures that gradients can still propagate,886
preventing the actor from getting stuck in areas without gradient information.887

Behavior in the Inverted Double Pendulum (Restricted). For the Inverted Double Pendulum888
(Restricted) environment, the surrogate error increases towards the end of training. This happens889
because the agent has already converged, and the increase in error reflects overtraining, which is890
consistent with the observation of an unstable drop in task performance for certain seeds.891

Overall, this analysis shows that surrogate functions effectively simplify the Q-value landscape,892
closely track Q-function updates, and maintain robustness across different tasks, justifying their893
effectiveness in enabling gradient flow in SAVO. This results in SAVO outperforming the SAVO -894
Approximation baseline, as shown in Figure 7b and Figure 22.895

30

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

0

24

48

72

96

120

Su
rro

ga
te

 E
rr

/ B
el

lm
an

 E
rr

(%
) MineWorld

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

0.0

1.4

2.8

4.2

5.6

7.0

Su
rro

ga
te

 E
rr

/ B
el

lm
an

 E
rr

(%
) RecSim

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

0

3

6

9

12

15

Su
rro

ga
te

 E
rr

/ B
el

lm
an

 E
rr

(%
) RecSim-Data

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

6

12

18

24

30

Su
rro

ga
te

 E
rr

/ B
el

lm
an

 E
rr

(%
) Inverted Pendulum (Restricted)

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

60

120

180

240

300

Su
rro

ga
te

 E
rr

/ B
el

lm
an

 E
rr

(%
) Inv. Dbl Pend. (Restricted)

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

5

10

15

20

25

Su
rro

ga
te

 E
rr

/ B
el

lm
an

 E
rr

(%
) Hopper (Restricted)

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

6

12

18

24

30

Su
rro

ga
te

 E
rr

/ B
el

lm
an

 E
rr

(%
) Walker2D (Restricted)

0.00 0.75 1.50 2.25 3.00
Env Steps 1e6

0

20

40

60

80

100

Su
rro

ga
te

 E
rr

/ B
el

lm
an

 E
rr

(%
) Adriot Door

SAVO

0.00 0.75 1.50 2.25 3.00
Env Steps 1e6

0

2

4

6

8

10

Su
rro

ga
te

 E
rr

/ B
el

lm
an

 E
rr

(%
) Adriot Pen

SAVO

0.00 0.75 1.50 2.25 3.00
Env Steps 1e6

0

40

80

120

160

200

Su
rro

ga
te

 E
rr

/ B
el

lm
an

 E
rr

(%
) Adriot Hammer

SAVO

Figure 23: Surrogate Approximation Error Analysis. The plot shows the surrogate approx-
imation error as a percentage of the Bellman error during training across various environments:
Surrogate Approximation Error

Bellman Error %. In most tasks, the surrogate loss converges to a relatively low value (within
1–10% of the Bellman error), indicating that (i) the surrogates effectively track updates to the Q-
function, and (ii) the surrogate loss remains strictly positive, highlighting the smoothness of the
surrogate landscape, especially in flat regions, where the exact approximation is undesirable to
maintain effective gradient propagation. Notably, for the Inverted Double Pendulum (Restricted)
environment, a rise in approximation error is observed towards the end of training. Upon further
investigation, this was attributed to overtraining after the agent had already converged, corresponding
to an unstable decline in task performance.

31

Under review for RLC 2025, to be published in RLJ 2025

14.6 Q-Smoothing Analysis: Discrete vs. Continuous Action Spaces896

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

0.02

0.18

0.38

0.58

0.78

0.98
Ev

al
 S

uc
ce

ss
 R

at
e

MineWorld

SAVO
TD3; Q-Smoothing
Wolpertinger; Naive
Wolpertinger; Q-Smoothing

(a) MineWorld

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

2

3

4

5

6

7

Ev
al

 R
et

ur
n

RecSim
SAVO
TD3; Q-Smoothing
Wolpertinger; Naive
Wolpertinger; Q-Smoothing

(b) RecSim

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

10

19

28

37

46

55

Ev
al

 R
et

ur
n

RecSim-Data

SAVO
TD3; Q-Smoothing
Wolpertinger; Naive
Wolpertinger; Q-Smoothing

(c) RecSim-Data

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

600

1200

1800

2400

3000

Ev
al

 R
et

ur
n

Hopper (Restricted)
SAVO
TD3; Naive
Wolpertinger; Naive
Wolpertinger; Q-Smoothing

(d) Hopper (Restricted)

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

800

1600

2400

3200

4000

Ev
al

 R
et

ur
n

Walker2D (Restricted)
SAVO
TD3; Naive
Wolpertinger; Naive
Wolpertinger; Q-Smoothing

(e) Walker2D (Restricted)

Figure 24: Impact of Q-smoothing. The plots compare the performance of baselines with and
without Q-smoothing. Results are averaged over 5 random seeds, with shading indicating variance.
Q-smoothing benefits discrete tasks but has negligible impact in continuous action spaces.

Baseline MineWorld RecSim RecSim-Data Hopper Walker2D

TD3 0.6 4.5 42 2100 2700
Wolpertinger [Naive] 0.0 3.9 40 1650 2900
Wolpertinger [Q-Smoothing] 0.9 5.0 46 1850 2400
SAVO (Ours) 0.98 5.5 51 2500 3200

Table 2: Q-smoothing in discrete tasks. We compare the performance of baselines with and
without Q-smoothing across tasks. Underline denotes which variant, naive or Q-smoothing, is used
in the paper results. Wolpertinger [Naive] significantly underperforms in discrete action space tasks
(denoted in red), and thus, we reported results on Wolpertinger [Q-Smoothing] in the paper. In
continuous action space tasks, there was no benefit to Q-smoothing, and thus we chose to report
results on Wolpertinger [Naive] as it is closer to the underlying TD3 algorithm. Note that the same
Q-smoothing principle is applied for TD3 and SAVO, too, i.e., their Q-function is smoothed for better
gradients in discrete action spaces, but unsmoothed Q-function is used in continuous action spaces.

The approximate surrogates introduced in §4.2.2 also have a smoothing effect on the Q-landscape that897
might ease gradient flow. A similar smoothing can be applied to the primary Q-function. We found898
such Q-smoothing, which involves learning an auxiliary Q-function to approximate and smooth the899
primary Q-function, to be essential for discrete action spaces. Q-smoothing facilitates the necessary900
gradient flow in discrete action space tasks because the primary Q-function is only trained on action901
representations corresponding to a finite number of discrete actions, while the intermediate action902
representations might have arbitrary values. By learning an approximate Q-function, the regions903
between the true action representations are smoothed, facilitating gradient flow.904

Thus, in all baselines and SAVO in discrete action space tasks, we included Q-smoothing. However,905
we did not notice any benefit of Q-smoothing in continuous action space tasks, and thus, all baselines906

32

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

and SAVO do not have Q-smoothing. SAVO still has surrogate smoothing in all environments,907
because non-smoothed surrogates do not let gradient flow through flat regions.908

To demonstrate the impact of Q-smoothing in both discrete and continuous action spaces, we909
conducted a detailed analysis across several tasks in Figure 24 and Table 2. This section investigates910
its efficacy and highlights the nuanced differences in its utility across environments.911

Discrete Action Spaces: Importance of Q-Smoothing.912

For discrete tasks, smoothing the Q-function significantly enhances performance by mitigating the913
complexity of local optima in diverse Q-value landscapes. This experiment primarily compares 1-914
Actor k-samples Wolpertinger-Naive and Wolpertinger-Q-smoothing approaches. As shown in Fig. 24,915
Q-smoothing is essential for Wolpertinger to perform well, while the non-smoothed counterparts916
significantly suffer in MineWorld and RecSim tasks. Note that the TD3 and SAVO results also include917
Q-smoothing.918

Continuous Action Spaces: Limited Impact of Q-Smoothing.919

In continuous action spaces, Q-smoothing does not yield a significant performance gain. In Wolper-920
tinger, both the naive and Q-smoothing variants show comparable performance, indicating sufficient921
gradient information is present throughout the action space (unlike discrete action space tasks that922
have missing true Q-values).923

For these tasks, as shown in Fig. 24, the introduction of Q-smoothing neither improves nor degrades924
performance. This justifies its exclusion from our continuous action space experiments and explains925
why we reported results for Wolpertinger [Naive] in these environments, as it is closer to the926
underlying TD3 algorithm. Note that the TD3 and SAVO results also exclude Q-smoothing.927

Conclusion. Q-smoothing is crucial for discrete action space tasks, as demonstrated by its strong928
performance in our results. However, it provides no added value for continuous tasks. Consequently,929
our baselines reflect these observations, ensuring fair comparisons across all evaluated methods.930

14.7 Specialized Initialization Strategies for Diversity in SAVO931

To explore the potential impact of diverse policy and surrogate value function initializations on932
algorithm performance, we tested two specialized initialization strategies beyond the default Xavier933
initialization (Glorot & Bengio, 2010):934

• Xavier (default). Weights are initialized with the default initialization: w ∼Xavier-init935

• Random. Weights are initialized from a standard normal distribution, i.e., w ∼ N (0, 1).936

• Add. Weights are initialized using Xavier initialization, followed by the addition of scaled standard937
normal noise, i.e., x ∼ Xavier-init, y ∼ 0.5 · N (0, 1), and w = x+ y.938

We compare these specialized initialization strategies in various tasks, with reward curves reported in939
Fig. 25 and summarized below:940

• MineWorld: Add ≈ Random ≈ Xavier941

• RecSim: Add ≈ Random ≈ Xavier942

• Hopper (Restricted): Add ≈ Random ≈ Xavier943

• Adroit Door: Add ≈ Random < Xavier944

Findings. The results indicate that specialized initialization strategies aimed at increasing diversity945
do not particularly improve performance. Across most tasks, Add and Random strategies perform946
similarly to standard Xavier initialization. However, in the Adroit Door task, the specialized initial-947
izations underperform compared to Xavier, suggesting that task-specific factors might influence the948
effectiveness of standard initialization strategies.949

33

Under review for RLC 2025, to be published in RLJ 2025

Conclusion. While our experiments show no significant benefit from specialized initialization strate-950
gies, the idea of explicitly incorporating diversity into the optimization process remains promising.951
We believe that designing algorithms with explicit diversity objectives throughout training could952
serve as a valuable heuristic in future work.953

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

0.02

0.18

0.38

0.58

0.78

0.98

Ev
al

 S
uc

ce
ss

 R
at

e
MineWorld

SAVO-XAVIER
SAVO-ADD
SAVO-RANDOM

(a) MineWorld

0.00 0.25 0.50 0.75 1.00
Env Steps 1e7

2

3

4

5

6

7

Ev
al

 R
et

ur
n

RecSim
SAVO-XAVIER
SAVO-ADD
SAVO-RANDOM

(b) RecSim

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

600

1200

1800

2400

3000

Ev
al

 R
et

ur
n

Hopper (Restricted)
SAVO-XAVIER
SAVO-ADD
SAVO-RANDOM

(c) Hopper (Restricted)

0.00 0.75 1.50 2.25 3.00
Env Steps 1e6

0

1200

2400

3600

4800

6000
Ev

al
 R

et
ur

n
Adriot Door

SAVO-XAVIER
SAVO-ADD
SAVO-RANDOM

(d) Adroit Door

Figure 25: Specialized Initialization Strategies. Reward curves compare Random and Add strategies
to standard Xavier initialization across 4 tasks, showing no significant advantage of specialized
initialization for increasing diversity.

15 Experiment Details954

15.1 Aggregated Results: Performance Profiles955

Agarwal et al. (2021) proposed a robust means to rigorously validate the efficacy of our approach.956
Through the incorporation of the suggested performance profile, we have conducted a more thorough957
comparison of our approach against baselines, resulting in a comprehensive understanding of the958
inherent statistical uncertainty in our results. In Figure 7a, the x-axis illustrates normalized scores959
across all tasks, employing min-max scaling to normalize scores based on the initial performance of960
untrained agents aggregated across random seeds (i.e., Min) and the final performance presented in961
Figure 8 (i.e., Max).962

Figure 7a reveals the consistent high performance of our method across various random seeds, with963
its curve consistently ranking at the top of the x-axis changes, while baseline curves exhibit earlier964
declines compared to our approach. This visual evidence substantiates the robustness and reliability965
of our method across different experimental conditions.966

34

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

15.2 Implementation Details967

We used PyTorch (Paszke et al., 2019) for our implementation, and the experiments were primarily968
conducted on workstations with either NVIDIA GeForce RTX 2080 Ti, P40, or V32 GPUs on. Each969
experiment seed takes about 4-6 hours for Mine World, 12-72 hours for Mujoco, and 6-72 hours for970
RecSim, to converge. We use the Weights & Biases tool (Biewald, 2020) for plotting and logging971
experiments. All the environments were developed using the OpenAI Gym Wrapper (Brockman972
et al., 2016). We use the Adam optimizer (Kingma & Ba, 2014) throughout.973

15.3 Hyperparameters974

The environment-specific and RL algorithm hyperparameters are described in Table 3.975

15.4 Common Hyperparameter Tuning976

To ensure fairness across all baselines and our methods, We searched over hyper-parameters that are977
common across baselines;978

• Learning rate of Actor and Critic: (Actor) We searched over {0.01, 0.001, 0.0001, 0.0003} and979
found that 0003 to be the most stable for the actor’s learning across all tasks. (Critic) Similarly to980
actor, we searched over {0.01, 0.001, 0.0001, 0.0003} and found that 0.0003 to be the most stable981
for the critic’s learning across all tasks.982

• Network Size of Actor and Critic: (Critic) In order for the fair comparison, we employed the983
same network size for the Q-network. We individually performed the architecture search on each984
task and found a specific network size performing the best in the task. (Actor) Similarly to critic,985
we employed the same network size for the actor components in the baseline and the cascading986
actors in SAVO. And, likewise, we performed the individual architecture search on each task and987
found a specific network size performing the best in the task.988

35

Under review for RLC 2025, to be published in RLJ 2025

Hyperparameter Mine World MuJoCo/Adroit RecSim

Environment

Total Timesteps 10M 3M 10M
Number of epochs 5K 8K 10K
Envs in Parallel 20 10 16
Episode Horizon 100 1000 20
Number of Actions 104 N/A 10000
True Action Dim 4 5 30
Extra Action Dim 5 N/A 15

RL Training

Batch size 256 256 256
Buffer size 500K 500K 1M
Actor: LR 0.0003 0.0003 0.0003
Actor: ϵstart 1 1 1
Actor: ϵend 0.01 0.01 0.01
Actor: ϵ decay steps 5M 500K 10M
Actor: ϵ in Eval 0 0 0
Actor: MLP Layers 128_64_64_32 256_256 64_32_32_16
Critic: LR 0.0003 0.0003 0.0003
Critic: γ 0.99 0.99 0.99
Critic: ϵstart 1 1 1
Critic: ϵend 0.01 0.01 0.01
Critic: ϵ decay steps 500K 500K 2M
Critic: ϵ in Eval 0 0 0
Critic: MLP Layers 128_128 256_256 64_32
updates per epoch 20 50 20
List Length 3 3 3
Type of List Encoder DeepSet DeepSet DeepSet
List Encoder LR 0.0003 0.0003 0.0003

Table 3: Environment/Policy-specific Hyperparameters

36

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

16 Scaling Number of Actors Needed in SAVO989

0.00 0.25 0.50 0.75 1.00

Env Steps ×107

−0.02

0.18

0.38

0.58

0.78

0.98

E
va

l
S

uc
ce

ss
R

at
e

MineWorld

0.00 0.25 0.50 0.75 1.00

Env Steps ×107

1.5

2.3

3.1

3.9

4.7

5.5

6.3

E
va

l
R

et
ur

n

RecSim

0.0 0.5 1.0 1.5 2.0

Env Steps ×106

0

600

1200

1800

2400

3000

E
va

l
R

et
ur

n

Hopper (Restricted)

0.0 0.5 1.0 1.5 2.0

Env Steps ×106

0

2000

4000

6000

8000

10000

E
va

l
R

et
ur

n

Inv. Dbl Pend. (Restricted)

SAVO (Ours) 1-Actor (TD3) 1-Actor, k-Samples (Wolpertinger)

Greedy-AC Greedy-TD3Evolutionary Actor (CEM)

k-Actors (Ensemble)

Figure 26: SAVO optimized for number of actors against baselines. Comparison with baselines
with SAVO optimized for the hyperparameter of the number of actors (10-15 actors) shows a more
significant improvement than using only 3 actors in Figure 8.

16.1 Benchmarking SAVO with larger number of actors990

While the results in main paper in Figure 8 use only 3 actors, we show in Figure 26 that SAVO’s991
improvement over TD3 and other baselines is even more significant when the number of actors is992
optimized and chosen as 10 (or 15 in RecSim).993

17 Soft Actor-Critic (SAC): Mitigating Suboptimality with SAVO994

We show that SAC (Haarnoja et al., 2018) is susceptible to gradient-descent-based local optima in the995
soft Q-landscape and demonstrate how SAVO improves performance when integrated with SAC.996

SAC is susceptible to local optima in soft Q-landscape. DPG-based methods like TD3 optimize997
deterministic policies using:998

π∗ = argmax
π

Es∼ρπ [Qπ(s, π(s))] ,

where gradient ascent on Qπ(s, π(s)) often results in convergence to local optima due to the non-999
convexity of the Q-landscape.1000

SAC extends this framework by optimizing stochastic policies through entropy regularization, as:1001

π∗ = argmax
π

Es∼ρπ,a∼π [Q
π(s, a) + αH(π(·|s))] ,

37

Under review for RLC 2025, to be published in RLJ 2025

whereH(π(·|s)) = −Ea∼π[log π(a|s)] is the entropy of the policy, weighted by α > 0.1002

However, despite the entropy-regularized objective, SAC’s actor is trained with gradient ascent on1003
the soft Q-function Qπ(s, a), which can be non-convex. Local optima in the (soft) Q-landscape arise1004
from fundamental properties of the MDP and the non-convex relationship of actions and expected1005
environment return. As a result, SAC policies are as prone to being trapped in local optima, in the1006
KL-divergence sense, defined by the soft Q-landscape.1007

0.0 0.5 1.0 1.5 2.0
Env Steps 1e6

0

2000

4000

6000

8000

10000

Ev
al

 R
et

ur
n

Inv. Dbl Pend. (Restricted)
TD3 + SAVO
TD3
SAC + SAVO
SAC

0.000 0.375 0.750 1.125 1.500
Env Steps 1e6

0

1200

2400

3600

4800

6000

Ev
al

 R
et

ur
n

Ant-v4
TD3 + SAVO
TD3
SAC + SAVO
SAC

0.000 0.375 0.750 1.125 1.500
Env Steps 1e6

0

2400

4800

7200

9600

12000

Ev
al

 R
et

ur
n

HalfCheetah-v4
TD3 + SAVO
TD3
SAC + SAVO
SAC

Figure 27: SAVO is complementary to TD3 and SAC. SAVO + SAC outperforms SAC in the three
tasks evaluated: (i) Restricted Inverted Double Pendulum, (ii) Unrestricted Ant-v4, (iii) Unrestricted
HalfCheetah-v4. SAVO improves or matches the performance of TD3 in the severely non-convex
Q-landscape of the Restricted Inverted Double Pendulum and the high-dimensional action spaces of
Ant-v4 and HalfCheetah-v4.

SAVO to mitigate SAC suboptimality. To address this challenge of SAC’s stochastic actor getting1008
stuck in the soft Q-landscape’s local optima, we propose using SAVO as the actor architecture for1009
SAC. In our approach, we introduce a maximizer stochastic actor πM that selects from successive1010
stochastic actors νi(s; a<i) by maximizing:1011

πM (s) := arg max
ν0,...,νk

Es∼ρπ,a∼π [Q
π(s, a) + αH(π(·|s))] .

This SAC+SAVO approach leverages SAVO’s capacity to dynamically select policies that better1012
navigate the soft Q-landscape while preserving SAC’s entropy-regularized exploration.1013

For this preliminary combination of SAC with SAVO, we do not employ the successive surrogates1014
but only utilize successive actors with conditioning on previous actions.1015

Empirical Results. Figure 27 illustrates the relative performance of SAC, TD3, TD3+SAVO, and1016
SAC+SAVO across the three tasks. Key findings include:1017

• Hopper and Walker2D: SAC+SAVO significantly improves performance compared to SAC, demon-1018
strating SAVO’s ability to overcome local optima in the soft Q-landscape.1019

• Inverted Pendulum: SAC+SAVO exhibits faster convergence compared to SAC, further highlighting1020
the synergy between SAVO and entropy-regularized stochastic policies.1021

• Across all tasks, TD3+SAVO consistently outperforms TD3, confirming SAVO’s generalizability1022
to deterministic policy optimization.1023

These results underscore the effectiveness of combining SAVO with both SAC and TD3, providing a1024
robust solution to mitigate local optima and enhance exploration in complex control tasks.1025

18 Q-Value Landscape Visualizations1026

18.1 1-Dimensional Action Space Environments1027

We conducted a Q-space analysis across Mujoco environments to show that successive critics reduce1028
local optima, aiding actors in optimizing actions. The outcomes are depicted in Figures 28 and 29.1029

38

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

Figure 28 illustrates a representative Q landscape from the easy environments, which are uniformly1030
smooth. This uniformity in the primary Q space simplifies the identification of optimal actions.1031

Figure 29 shows that the primary Q landscape (leftmost and rightmost) in challenging environments1032
is clearly uneven with several local optima. However, the Q landscapes learned by successive critics1033
Qi demonstrate a gradual transition toward smoothness by pruning out the locally optimal peaks1034
below the previously selected actions’ Q-values. This aids the actors in identifying improved actions1035
that are better global optima over the primary critic. Finally, when visualized together on the primary1036
critic (rightmost figure) the subsequent actions yield more enhanced Q-values than a0, which would1037
have been the action selected by a single actor.1038

(a) Q0(s, a0) (b) Q1(s, a1|a0) (c) Q2(s, a2|{a0, a1}) (d) Q(s, ai)∀i = 0, 1, 2

Figure 28: Successive Q landscape and primary Q landscape of Inverted Pendulum-v4.

Figure 29: Successive Q landscape and primary Q landscape across different Restricted Environments.

18.2 High-Dimensional Action Space Environments: Hopper-v41039

In Fig.30 and Fig. 31, we visualize Q-landscapes for a TD3 agent across different environments,1040
starting with Hopper-v4. Here, actions from the 3D action space are projected onto a 2D plane using1041
UMAP, with 10,000 actions sampled at equal intervals to ensure adequate coverage. These Q-values1042
are plotted using trisurf, introducing some artificial ruggedness but providing more reliable visualiza-1043
tions than grid-surface plotting. Despite the inherent limitations of dimensionality reduction—where1044
the loss of one dimension distorts distances and relative positions—the Q-landscape for Hopper-v41045

39

Under review for RLC 2025, to be published in RLJ 2025

Figure 30: Hopper-v4: Q landscape visualizations at different states show a path to optimum.

reveals a large globally optimal region (in yellow), offering a clear gradient path that minimizes the1046
risk of the gradient-based actor getting stuck in local optima.1047

In Hopper-Restricted, the Q-landscapes become more complex due to the restriction of actions1048
within a hypersphere, with suboptimal peaks where gradient-based actors can potentially get trapped.1049
Although dimensional reduction limits conclusive analysis, these landscapes appear to have more1050
local optima compared to Hopper-v4. For higher-dimensional environments like Walker2D-v41051
(6D) and Ant-v4 (8D), projecting to 2D leads to significant information loss, making it difficult1052
to assess convexity. Despite this, Walker2D-v4 shows a large optimal region where consecutive1053
actions produce similar outcomes, indicating that contact-based tasks like Walker2D and Hopper1054
do not inherently induce numerous local optima. However, for more complex environments like1055
Ant-v4 and Walker2D-Restricted, the visualizations provide limited insights due to the challenges of1056
dimensionality reduction.1057

40

Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions

Figure 31: Hopper-restricted: Q landscape visualizations at different states show several local optima.

1058

41

