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Abstract

One of the central skills that language learn-001
ers need to practice is speaking the language.002
Currently, students in school do not get enough003
speaking opportunities and lack conversational004
practice. Recent advances in speech technol-005
ogy and natural language processing allow for006
the creation of novel tools to practice their007
speaking skills. In this work, we tackle the008
first component of such a pipeline, namely, the009
automated speech recognition module (ASR),010
which faces a number of challenges: first, state-011
of-the-art ASR models are often trained on012
adult read-aloud data by native speakers and do013
not transfer well to young language learners’014
speech. Second, most ASR systems contain015
a powerful language model, which smooths016
out mistakes made by the speakers. To give017
corrective feedback, which is a crucial part018
of language learning, the ASR systems in our019
setting need to preserve the mistakes made020
by the language learners. In this work, we021
build an ASR system that satisfies these re-022
quirements: it works on spontaneous speech023
by young language learners and preserves their024
mistakes. For this, we collected a corpus con-025
taining around 85 hours of English audio spo-026
ken by Swiss learners from grades 4 to 6 on dif-027
ferent language learning tasks, which we used028
to train an ASR model. Our experiments show029
that our model benefits from direct fine-tuning030
on children’s voices and has a much higher er-031
ror preservation rate than other models.032

1 Introduction033

Speaking is one of the core competencies to be de-034

veloped in foreign language classes and the second035

most widely used skill in everyday-life commu-036

nication (Hedge, 2001). For students to success-037

fully acquire speaking competencies, they must038

be trained from an early stage in the language039

learning process and in a systematic manner. How-040

ever, speech production is a highly complex pro-041

cess that is often not addressed adequately in class-042

rooms. The main issue is that students often do not 043

get enough speaking opportunities (Kleinschroth 044

and Oldham, 2014; Grimm et al., 2015), and lack 045

extended conversational practice (Pfenninger and 046

Lendl, 2017). The recent advancements in both 047

speech processing (Malik et al., 2021), and con- 048

versational dialogue systems (Deriu et al., 2021; 049

Ni et al., 2023) provide an opportunity to increase 050

the speaking practice of language learners using 051

automated tools. 052

The work presented in this paper is part of a 053

larger effort to develop an interactive, voice-driven 054

chatbot with which learners can practice their in- 055

teractive speaking skills. The bot is designed as a 056

conversation partner that adjusts to the skill level 057

and interests of the students and provides corrective 058

feedback to support their language development. 059

One key issue is the automated speech recog- 060

nition (ASR) module, which transcribes the ut- 061

terances of the language learners into text to be 062

processed in downstream tasks (e.g., speaker-error 063

analysis, dialogue systems, inter alia). The focus 064

of this work is to adapt the ASR module to handle 065

children’s speech in a language learning environ- 066

ment. The core challenge for the ASR system in 067

this setting is not only to transcribe the speech but 068

to make sure that the mistakes made by the lan- 069

guage learners are transcribed faithfully. This is 070

needed to provide language learners with corrective 071

feedback, which is a key component of second and 072

foreign language development. It prompts learners 073

to notice errors and is likely to lead to utterance 074

repair, which, in turn, facilitates language develop- 075

ment (Ellis, 2021). Our investigations showed that 076

current state-of-the-art ASR models tend to cor- 077

rect the speakers’ mistakes, which renders giving 078

corrective feedback impossible. 079

The second challenge for the ASR system is han- 080

dling spontaneous children’s speech since most of 081

these systems are trained on adult read-aloud error- 082

free corpora recorded by native speakers (Panay- 083
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otov et al., 2015; Ardila et al., 2020). Chil-084

dren’s speech, especially spontaneous speech of085

language learners, differs significantly from read-086

aloud speech of native adult speakers (Shivakumar087

and Georgiou, 2020). Children’s’ speech has a dif-088

ferent range of sound frequencies (Potamianos and089

Narayanan, 2003), a high within-subjects variabil-090

ity (Gerosa et al., 2006) and a high inter-speaker091

variability in different age groups (Lee et al., 1999).092

These challenges yield three research questions,093

which we address in this work:094

1. How can we measure error preservation, i.e.095

the "verbatimness" of an ASR transcript?096

2. How well do current pre-trained ASR systems097

perform on learners’ spontaneous English pro-098

ductions, with respect to error preservation099

and in general?100

3. Does fine-tuning pre-trained systems with101

data from young learners lead to improved102

error preservation in the ASR transcripts?103

Contributions In order to answer these ques-104

tions, we first collected a dataset of young Swiss105

learners speaking English, consisting of 85 hours of106

recordings corresponding to 45’004 individual ut-107

terances by 327 distinct speakers. We subsequently108

created verbatim transcriptions of these recordings,109

in which learner errors are annotated using specific110

symbols. This dataset can be accessed as described111

in Section 3.4.2 below. We next developed a met-112

ric for error preservation, called Word-Based Er-113

ror Preservation Rate (WEPR), which takes into114

account only those reference words that contain115

an error annotation. Using WEPR and standard116

ASR metrics, we compared 7 pre-trained ASR sys-117

tems with a custom fine-tuned model. Our results118

show that a) there are large differences between119

the pre-trained models both in terms of standard120

metrics and in terms of WEPR and b) fine-tuning121

significantly improves error preservation of learn-122

ers’ speech.123

2 Related Work124

Children’s Speech Corpora. Corpora of chil-125

dren’s speech can be divided into two types: i)126

corpora for native speaking children intended for127

building virtual tutors for non-language subjects,128

ii) corpora for young language learners that support129

building virtual tutors for language learning.130

The MyST Children’s Speech Corpus (Pradhan131

et al., 2016; Ward et al., 2019) contains 499 hours132

of conversational speech (out of which 233 hours133

are manually transcribed) for a virtual tutor for 134

science topics targeted at young English native 135

speakers. The OGI Kids’ Speech Corpus (Shobaki 136

et al., 2000) contains spontaneous speech from 137

1100 American children from kindergarten through 138

grade 10, mainly consisting of scripted speech in 139

the form of words and utterances, and a small sam- 140

ple of spontaneous speech. The AusKidTalk cor- 141

pus (Ahmed et al., 2021) contains speech from 142

Australian children ages 3 to 12 consisting of sin- 143

gle words, utterances, and narrative speech. Other, 144

smaller, datasets of native speaking children are 145

available for different purposes such as read-aloud 146

support (Eskenazi, 1996) or general analysis of 147

English children’s speech (Lee et al., 1999; Ha- 148

gen et al., 2003). For German, the KidsTalk cor- 149

pus (Rumberg et al., 2022) contains 25 hours of 150

transcribed continuous speech from children aged 151

3 to 11. All these corpora are devised for settings 152

with native speakers. 153

For language learners, there are far fewer 154

datasets of children’s speech. The TLT-school col- 155

lection (Gretter et al., 2020) aims at assessing the 156

proficiency of 9- to 16-year old Italian native speak- 157

ers in English and German. TLT was recorded with 158

a pool of 3000 students, resulting in approximately 159

275h of English and 265h of German data, out of 160

which 16h for English and 8h for German have 161

been transcribed. The corpus closest to our dataset 162

is the CALL corpus (Baur et al., 2018), consisting 163

of English utterances by Swiss German second and 164

third year learners, where the task is to label the 165

correctness of each utterance. In total, the corpus 166

contains 38k utterances of students interacting with 167

an online dialogue system, where they receive var- 168

ious prompts to produce speech. Across a series 169

of shared tasks, subsets of around 6k annotated 170

utterances have been released. The setting differs 171

significantly from ours as we are interested in spon- 172

taneous speech with transcriptions to train an ASR 173

system which can automatically transcribe learners’ 174

speech verbatim. 175

ASR for children’s speech and language learn- 176

ers. The literature on ASR models for children’s 177

speech, especially for non-native language learners, 178

is sparse. Most notably, Lu et al. (2022) inves- 179

tigated the performance of fine-tuning wav2vec 180

2.0 (Baevski et al., 2020) on children’s speech 181

(both native MyST and OGI), as well as non-native 182

speech (TLT) compared to fine-tuning on adult- 183

only data. The results show that ASR models 184

trained on children’s speech significantly outper- 185

2



form those models trained on adult-speech only,186

even in the case of non-native speakers. Similarly,187

Shivakumar and Narayanan (2022) investigated188

the impact of using children’s data for fine-tuning189

ASR models. The conclusion is similar to Lu et al.190

(2022): adding children’s data yields better perfor-191

mance; however, the performance of an adult ASR192

model on adult data is higher than the performance193

of an ASR model trained and applied on children’s194

data. While both Lu et al. (2022) and Shivakumar195

and Narayanan (2022) are interested in the overall196

performance in terms of WER, our work focuses197

on the preservation of mistakes made by non-native198

children.199

3 Dataset: Spontaneous Speech of Young200

Learners of English201

We now describe the dataset that we collected for202

the purpose of this research. It contains 85 hours of203

audio recordings of spontaneous speech by young204

Swiss learners of English. Each recording is paired205

with a verbatim transcript that contains error anno-206

tations.207

3.1 Audio Recording208

The recording setup was designed such that the209

collected speech resembled the kind of conversa-210

tions intended for the learners to hold with the211

chatbot. We used playful and engaging activities212

targeted to elicit extended authentic communica-213

tion from young learners. Activities included role214

plays with problem-solving components (e.g. ‘go-215

ing shopping for a school trip’), guessing games216

(e.g. riddles), TV interviews with imaginary charac-217

ters and asking/answering personal questions (e.g.218

‘if you could go into space, what would you take219

with you?’). All activities were piloted with a220

grade 4 class and maintained, adjusted (to yield221

more data) or rejected (e.g. because the task led to222

students communicating non-verbally and/or with223

much noise) for the main data collection period.224

To support learners, each activity further included225

visual and language support (e.g. cartoon char-226

acters they could choose from, sample dialogues,227

language chunks) as well as a preparation phase228

during which the students could familiarise them-229

selves with the tasks by use of example sentences230

and model dialogues.1231

1Note: for the camera-ready version, we will share the
descriptions of the speaking activities in the supplementary
material. At this point, it is not possible to share them because
the set of materials is very large and some questions, e.g.

Speaker recruitment and consent After receiv- 232

ing permission to collect audio data with minors 233

from key government institutions that act as ethics 234

review boards in Switzerland concerning research 235

with schools and their learners, we recruited 20 236

primary school teachers interested in participating 237

in our project with their classes (via personal and 238

university networks, newsletters and direct contact 239

with schools). Participation was entirely voluntary 240

and could be withdrawn at any time. Participation 241

further necessitated the approval of the school prin- 242

cipal and the written consent of each student’s legal 243

caretaker.2 244

In the span of 9 months (March-November 245

2023), 337 primary school students aged 9 to 246

14 years (4th to 6th graders) enrolled in 8 differ- 247

ent schools in German-speaking Switzerland per- 248

formed our activities in pairs, trios or alone (if 249

necessary) in three different settings: at school 250

recorded by project members; on the university 251

campus recorded by project members and student 252

assistants; and at school recorded by teachers and 253

sent to us via safe weblinks. School principals, 254

teachers and students were not remunerated for par- 255

ticipation but received small tokens of appreciation 256

such as flowers and chocolates. 257

Metadata Each recording is associated with the 258

following metadata: 259

• School area code: an integer between 1 and 8 260

(inclusive) 261

• School grade of the speakers: 4gr, 5gr, 6gr as 262

well as combinations (4/5gr, 5/6gr, 4/6gr) 263

• Recording Device 264

• Recording Application 265

• Speaking activities 266

• Background Noise: a boolean indicating 267

whether background noise is audible in the 268

recording (set manually by project members). 269

3.2 Transcription and Error Annotation 270

The transcription of our voice data was outsourced 271

to a transcription agency. Services included both 272

the transcription of the voice data and the anno- 273

tation of lexical, grammatical and pronunciation 274

regarding copyright, have to be clarified first.
2Note: for the camera-ready version, we will share the

consent forms in the supplementary material. At this point, it
is not possible because they cannot be anonymised easily (they
contain a lot of information about the participating institutions
and people).
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errors, as well as usage of German words. We de-275

veloped a comprehensive data transcription guide-276

line for the transcription agency which was first277

piloted on a small number of transcripts and then278

adjusted where necessary. Transcription guidelines279

included information about spelling conventions280

(British English), the frequency and nature of times-281

tamps (start and end time of each word, in millisec-282

onds), error codes (@! for errors of any kind and283

@g for German words) and disfluency markers (e.g.284

a hyphen "–" for verbatim repetitions, such as ‘he’s285

– he’s really tall’). The complete transcription guide-286

lines are provided in the supplementary material of287

this paper.288

3.3 Data Aggregation and Filtering289

The recording stage resulted in 1039 audio record-290

ings. Of these, 23 were removed due to missing291

metadata or missing/retracted consent, so a total of292

1016 recordings and their associated metadata and293

transcriptions were available for our experiments.294

These recordings were split into individual ut-295

terances by a single speaker using the word-level296

timestamps provided in the transcripts, resulting in297

49’608 utterances.We removed utterances shorter298

than 0.5 seconds and utterances attributed to adults299

(e.g. short interventions by teachers), creating a300

final dataset of 45’004 utterances corresponding to301

85 hours of audio. Each utterance was paired with302

its reference transcription and metadata.303

3.4 Final Dataset304

The final dataset contains 45’004 utterances by 327305

distinct speakers. Figure 1 shows the number of306

recordings and audio duration by school grades and307

school area codes. Almost half the data in terms of308

both utterances and hours comes from 6th graders,309

while the other half is split among the other grades.310

The dataset contains 485,770 tokens and 10,203311

distinct types. There are 14,396 error-annotated312

tokens with 2,004 underlying types. Thus, our data313

contains a large amount of tokens and a relatively314

large amount of token diversity.315

The length distribution is shown in Figure 2. It316

can be seen that most utterances are between 0.5317

and 20 seconds long.318

3.4.1 Data Folds319

For the experiments in this paper, we split the320

dataset into five distinct folds of similar duration321

(about 16h each), where each class (and therefore322

also each speaker) occurs in only one fold. To323

simulate the use case of the ASR system being 324

confronted with a new class of learners, each fold 325

contains data from a mix of grades. Figure 3 visu- 326

alises the duration and grade distribution of each 327

fold. 328

3.4.2 Data Availability 329

The dataset that we collected contains sensitive 330

data of minors and thus cannot be shared publicly. 331

The data can, however, be accessed as part of a 332

joint project with one or several of the original 333

project partners, subject to a collaboration agree- 334

ment.3 Before sharing, all transcripts will undergo 335

complete anonymisation such that any names and 336

other personal information are removed. 337

4 Error-Preserving Automatic Speech 338

Recognition 339

This section presents the metrics used for measur- 340

ing error preservation and evaluating systems (Sec- 341

tion 4.1), as well as the approaches to comparing 342

pre-trained ASR systems (Section 4.2) and to fine- 343

tuning existing systems using our learner dataset 344

(Section 4.3). The qualitative results are presented 345

and discussed in Section 4.4 and a qualitative eval- 346

uation is shared in 4.5. 347

4.1 Metrics 348

In order to measure error preservation, we use the 349

error annotations that were manually added to each 350

utterance (cp. Section 3.2) and a custom phonetic 351

word-level alignment algorithm. This algorithm 352

aligns two or more sequences (e.g., a reference and 353

one or multiple hypotheses), identifying matches, 354

substitutions (S), insertions (I), and deletions (D) 355

at the word level. Our metric, WEPR (Word-Based 356

Error Preservation Rate), considers only those word 357

pairs where the reference word contains an error 358

annotation. WEPR is calculated according to equa- 359

tion 1: A is the set of annotations that are consid- 360

ered (e.g. A = {@!,@}}), S and D are the number 361

of substitutions and deletions, respectively, where 362

the reference word contains an error annotation, 363

and N is the total number of reference words that 364

contain an error annotation. 365

WEPR(A) = (S+D)
N (1) 366

In addition to WEPR, we also compute the fol- 367

lowing general ASR metrics using all words in the 368

3Note: For anonymisation purposes, details regarding data
access will only be shared upon acceptance, i.e., in the camera-
ready version.
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Figure 1: Number of utterances (outer ring) and audio hours (inner ring) by school grade (a) and school area code
(b).

Figure 2: Distribution of utterance lengths.

Figure 3: Duration and grade distribution of the data
folds.

utterance: Word Error Rate (WER)4, Character Er-369

ror Rate (CER)5, and character n-gram F-Score370

(chrF)6 (Popović, 2015).371

We evaluate all models on our dataset’s five folds372

4https://github.com/huggingface/evaluate/blob/
main/metrics/wer/wer.py

5https://github.com/huggingface/evaluate/blob/
main/metrics/cer/cer.py

6https://www.nltk.org/api/nltk.translate.chrf_
score.html#nltk.translate.chrf_score.corpus_chrf

(cp. Section 3.4.1) and report for each model the 373

mean and standard deviation across all folds. 374

For evaluation, all texts are normalised using the 375

Whisper normalizer for English 7. 376

4.2 Pre-trained ASR Systems 377

We compare the performance of state-of-the-art 378

ASR systems trained on datasets of adult En- 379

glish speakers. For this, we select seven differ- 380

ent models, four based on a CTC decoding strat- 381

egy, and three based on an encoder-decoder ar- 382

chitecture. Our hypothesis is that CTC models 383

are better at preserving speaker-errors as they do 384

not rely on a language model, which potentially 385

corrects such errors. Therefore, we do not use a 386

n-gram language model during the CTC decod- 387

ing phase, which is usually added for better WER 388

performance. For the CTC-based models, we 389

use the original Wav2VWec 2.0 large and base 390

models (Baevski et al., 2020) fine-tuned on 960h 391

of Librispeech (Panayotov et al., 2015) (English 392

adult read-aloud data). We also use the fine-tuned 393

Wav2Vec 2.0 models provided by Grosman (2021, 394

2022), which are based on the XLSR pretrain- 395

ing (Babu et al., 2021), and were fine-tuned on 396

the CommonVoice 6.1 data (Ardila et al., 2020) 397

consisting of approximately 2100 hours of English 398

adult read-aloud data. For the encoder-decoder ar- 399

chitecture, we used the Whisper medium, large, 400

and large-v3 models provided by OpenAI (Radford 401

et al., 2022). 402

7https://github.com/openai/whisper/blob/main/
whisper/normalizers/english.py
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System Name #Param. WER CER chrF WEPR
Wav2Vec Base 95M 0.55± 0.02 0.34± 0.02 0.35± 0.02 0.57± 0.02
Wav2Vec Large 317M 0.49± 0.02 0.29± 0.01 0.41± 0.02 0.50± 0.02
XLSR-53 + CommonVoice 6.1 317M 0.38± 0.01 0.26± 0.01 0.59± 0.01 0.50± 0.03
XLSR-1B + CommonVoice 6.1 1B 0.31± 0.01 0.21± 0.01 0.61± 0.01 0.44± 0.03
Whisper Medium 769M 0.26± 0.02 0.20± 0.03 0.70 ± 0.02 0.46± 0.04
Whisper Large 1.5B 0.25 ± 0.02 0.19± 0.01 0.70 ± 0.01 0.47± 0.03
Whisper Large-v3 1.5B 0.30± 0.04 0.23± 0.03 0.70 ± 0.02 0.45± 0.03

ChaLL-300M (ours) 300M 0.30± 0.01 0.16 ± 0.01 0.68± 0.01 0.38 ± 0.03

Table 1: Results of the 5-fold evaluation. We report for each model the mean and standard deviation (mean±std) of
the scores on each of the 5 folds. The bottom row shows the scores of our fine-tuned model.

TARGET PREDICTION CHALL-300M WHISPER-LARGE XLSR-1B
de@! the 0.946 0.869 0.805
a@! _ 0.114 0.327 0.347
a@! an 0.026 0.398 0.257
have@! has 0.015 0.231 0.052
have@! _ 0.034 0.128 0.129
you@! your 0.244 0.306 0.099
it’s@! it 0.068 0.116 0.136
it’s@! _ 0.043 0.119 0.146
is@! _ 0.05 0.125 0.136
it’s@! is 0.055 0.133 0.103
are@! _ 0.072 0.162 0.144
dis@! this 0.854 0.83 0.717
it@! _ 0.094 0.311 0.193
he@! _ 0.175 0.254 0.356
de@! _ 0.029 0.123 0.143
the@! _ 0.046 0.24 0.183
in@! _ 0.027 0.127 0.107
you@! _ 0.077 0.113 0.117
i@! _ 0.133 0.248 0.294
on@! _ 0.019 0.129 0.105

Mean (n=20) 0.156 0.265 0.229

Table 2: System comparison on 20 most frequent incorrectly transcribed speaker-errors. For each system, the
number indicates the fraction of cases in which the system incorrectly transcribes the error TARGET as PREDICTION
(where "_" denotes deletion of TARGET). The lowest value of each row is set in boldface. The final row shows the
mean across the 20 samples.

4.3 Fine-tuning Pre-trained ASR Systems403

Using Learner Data404

To evaluate the impact of fine-tuning, we fine-tune405

the Wav2Vec-XLSR-300M model 8 (Babu et al.,406

2021) on our collected language learner data.407

Data Preprocessing. For fine-tuning, we split408

longer utterances into chunks of a maximum of409

12 seconds and removed trailing pauses. The tran-410

scripts were preprocessed as follows:411

• Remove error annotations and other transcript412

conventions413

• Convert to lowercase414

• Standardise text (Remove text between brack-415

ets and parentheses. Standardise apostrophes416

by removing spaces before them. Remove417

commas between digits and periods not fol-418

8Due to the high computational cost, we decided to use the
300M model instead of the 1B model.

lowed by numbers.) 419

• Clean and standardise whitespace 420

• Normalise/remove special characters. 421

• Transform numbers into words using 422

num2words 423

Approach. We apply 5-fold cross-validation (cf. 424

3.4.1), that is, we train on four folds, and evaluate 425

on the held-out fold. We trained each run on 6 426

nVidia Tesla V100 GPUs for 4000 steps using a 427

learning rate of 3e-5, a per-device batch size of 428

14, and 15 gradient accumulation steps (for a total 429

batch size of 1260, which corresponds to approx. 430

2 hours of audio per batch), and we used the 8-bit 431

AdamW optimizer (Loshchilov and Hutter, 2017; 432

Dettmers et al., 2021). Our fine-tuned model, called 433

ChaLL-300M, is available on HuggingFace.9 434

9Note: for anonymisation purposes, the link will only be
shared upon acceptance, i.e. in the camera-ready version.
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TARGET PREDICTION CHALL-300M WHISPER-LARGE XLSR-1B
have@! have 0.875 0.587 0.699
a@! a 0.804 0.215 0.325
is@! is 0.79 0.667 0.769
in@! in 0.897 0.773 0.807
it’s@! it’s 0.703 0.568 0.482
are@! are 0.739 0.688 0.699
on@! on 0.917 0.749 0.79
of@! of 0.922 0.705 0.848
the@! the 0.815 0.632 0.678
you@! you 0.606 0.55 0.735
she@! she 0.867 0.713 0.774
it@! it 0.772 0.579 0.659
has@! has 0.825 0.775 0.774
make@! make 0.95 0.746 0.808
do@! do 0.82 0.744 0.748
much@! much 0.98 0.96 0.96
he@! he 0.679 0.627 0.561
not@! not 0.89 0.75 0.777
at@! at 0.811 0.612 0.759
don’t@! don’t 0.885 0.826 0.811

Mean (n=20) 0.827 0.673 0.723

Table 3: System comparison on 20 most frequent correctly preserved speaker-errors. For each system, the number
indicates the fraction of cases in which the system correctly transcribes the error TARGET as PREDICTION. The
highest value of each row is set in boldface. The final row shows the mean across the 20 samples.

4.4 Quantitative Results435

Performance Metrics. The scores achieved by436

the different models are summarised in Table 1.437

Among the pre-trained models, Whisper-Large438

achieves the best overall WER and chrF scores.439

However, the best CERand WEPR scores were440

achieved by the XLSR-1B models fine-tuned on441

CommonVoice 6.1. This aligns with our expecta-442

tions, as Whisper models are currently the most443

powerful ASR models, and we expected them to444

perform best in terms of WER. However, for our445

use-case, we are more interested in error preser-446

vation, thus, CTC-based models without language447

models are best for preserving the errors. The fine-448

tuning step on our dataset consisting of learner449

data yielded a significant boost in performance. It450

achieves the best WEPR score, which measures451

the error retention capability. The most compa-452

rable model in terms of number of parameters is453

the XLSR-53 model trained on adult read-aloud454

data. In comparison to this model, Chall-300M455

achieves an improvement of 8 points in WER and a456

12-point improvement in WEPR. It is generally the457

case that larger models perform better. Thus, the458

interpretation of the results needs to factor this in.459

As most models are larger than ours, it becomes ev-460

ident that fine-tuning on learner data increases the461

performance on this data in general, and the CTC462

architecture yields a better out-of-the-box preserva-463

tion of speaker-errors .464

WEPR Analysis. To show in more detail the re- 465

duction in WEPR, we compare the handling of 466

specific speaker errors. Table 2 shows the confu- 467

sion for the 20 most frequent examples, that is, the 468

cases where the ASR system corrects a mistake 469

it should have preserved. For each type of con- 470

fusion, we report the rate at which it occurs. For 471

instance, when the speaker mistakenly said "have" 472

(denoted "have@!"), Chall-300M corrected it to 473

"has" in 1.5% of cases, Whisper-Large corrected it 474

in 23.1% of cases, and XLSR-1B in 12.9% of cases. 475

Thus, Chall-300M preserved this particular kind 476

of error the best. In total, it mistakenly corrected 477

15% of the 20 most frequent speaker-errors, while 478

Whisper-Large corrected 26%, and XLSR-1B cor- 479

rected 22.9%. It is interesting to note that two out 480

of total three cases where XLSR-1B has the lowest 481

rate of mis-correction is for pronunciation errors 482

("de@!" and "dis@!"). We also note that a majority 483

of the most frequent unwanted error-corrections 484

are deletions. 485

On the other hand, Table 3 shows the frequency 486

at which the ASR systems correctly preserved the 487

mistakes made by the speakers. For instance, when 488

the speaker mistakenly says "have" (denoted as 489

"have@!"), then Chall-300M preserves this mis- 490

take in 87.5% of cases, while Whisper-Large pre- 491

serves it in only 58.7% and XLSR-1B in only 69.9% 492

of cases. In total, Chall-300M is able to preserve 493

82.7% of the of the 20 most frequent mistakes made 494
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Utterance Err. Type.
TARGET Yeah. Uhm it’s – It have a Lampe. Uhm you can – has/have, German
CHALL300M e uhm it’s it’s have a lampe you can has/have, German
WHISPER-LARGE it has a lamp -
TARGET (...) What you’re rather be a (...)- able for fly or be invisible- invisible? for/to
CHALL300M wuld your reader be be aabble for fly or be invisible invisible for/to
WHISPER-LARGE would your reader be able to fly or be invisible -
TARGET Do you have a enemy? a/an
CHALL300M do you have a enemey a/an
WHISPER-LARGE do you have an enemy -
TARGET What do you favourite food? do/is
CHALL300M what do you favorite food do/is
WHISPER-LARGE what’s your favorite food -

Table 4: Manually selected examples.

by speakers, while Whisper-Large only preserved495

67.3% of speaker mistakes and XLSR-1B preserved496

72.3%.497

Thus, Chall-300M displays a strong ability to498

preserve the mistakes made by speakers, which499

is crucial for the downstream task of providing500

automated corrective feedback.501

4.5 Qualitative Results502

Table 4 shows four manually selected exam-503

ples, highlighting some mistakes which the best-504

performing pre-trained model, Whisper-Large, cor-505

rects, and our model preserves. In the first example,506

it shows the mistake of using "have" instead of507

"has", as well as using the German pronunciation508

of the word "lamp" (i.e., "Lampe"). Whisper-Large509

corrects these mistakes, and creates a grammati-510

cally correct English utterance. The ChaLL-300M511

model preserves these errors as desired. The second512

error is a prepositional error, where the learner said513

"for fly" instead of "to fly". The Chall-300M model514

correctly preserved this error, while the language515

model used in Whisper-Large smoothed out the er-516

ror. The third example is an error of the indefinite517

article: the learner used "a" instead of "an", which518

ChaLL-300M correctly preserved while Whisper-519

Large corrected the error. The final example con-520

tains the usage of the wrong verb "do" instead521

of "is", which again is correctly preserved by our522

model while Whisper corrects the mistake.523

5 Conclusion and Outlook524

Our work shows that state-of-the-art ASR systems525

have difficulties handling young learners’ speech;526

furthermore, they tend to correct the mistakes made527

by the speakers, which makes the downstream iden-528

tification of speaker mistakes and provision of cor-529

rective feedback impossible. Thus, we collected530

around 85 hours of children’s language learner531

speech data, which we used to fine-tune a custom 532

model. Our model outperforms all the others (in- 533

cluding Whisper-Large) in terms of error preserva- 534

tion (Word-Based Error Preservation Rate, WEPR) 535

and surpasses the English models of comparable 536

size (≈ 300M parameters) by a large margin in 537

terms of Word Error Rate. Thus, our research 538

shows the necessity of using targeted data (in this 539

case, children who learn a foreign language) to 540

fine-tune an ASR module, which is useful in down- 541

stream tasks. The focus of this work lies in a) 542

investigating the utility of existing systems and b) 543

creating an adequate ASR system that can be used 544

as part of a language learning support tool to in- 545

crease the students’ speaking opportunities. As a 546

next step, we will investigate how to enhance error 547

preservation. For this, training larger models is 548

the most straightforward approach. However, we 549

also plan to train the ASR system jointly with er- 550

ror annotations. For this, we started the creation 551

of more detailed error annotations. Initial results 552

have shown that verbal errors are the largest error 553

category for young Swiss learners of English (with 554

about 22% of all errors) , and within these, wrong 555

subject-verb agreement is most frequent. Simi- 556

larly, investigating how to handle frequent code- 557

switching to German words or sentence fragments 558

is an unsolved issue that needs to be addressed to 559

improve downstream tasks. Even Whisper-Large, 560

which can handle multiple languages in principle, 561

did not perform well in detecting code-switching. 562

Finally, we aim to evaluate ASR models in the 563

context of integrating them with a conversational 564

agent and corrective feedback. 565

Limitations 566

While offering a unique tool for error-preserving 567

ASR of young language learners, this work presents 568

itself with a few limitations. 569
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Limited Demographic. The dataset stems from570

a specific demographic of Swiss school children571

learning English in grades 4 to 6. An extension572

of the work would include language learners with573

different native languages or a larger range of ages.574

Thus, the transferability of our results must be con-575

firmed with a different dataset.576

Outsourcing Error Annotation. The outsourc-577

ing of transcription and error annotations always578

poses a risk of yielding erroneous data, since most579

transcribers are not trained in error annotation. We580

mitigated this risk by providing comprehensive581

guidelines and a steady exchange with the tran-582

scription agency. However, we plan to enhance the583

error annotations with a more detailed label set and584

annotators trained in this task.585

Small Model. Due to the high computational586

cost of fine-tuning a 1B parameter model, we lim-587

ited ourselves to fine-tuning the 300M parameter588

XLSR model. Most research indicates that the589

usage of larger models yields better results; thus,590

there is still potential in terms of increasing WER591

and WEPR. However, our results showed that even592

a small model can preserve errors better than state-593

of-the-art pre-trained models, which was the main594

scope of this work.595

No Performance Tuning. Since the scope of this596

work is to understand if the usage of young learners’597

speech data is beneficial for our purposes, we did598

not tune the performance of our model. That is, we599

did not perform any hyper-parameter tuning or any600

other methods to increase performance (e.g., joint601

prediction of errors using a language model). Thus,602

there is still a large margin of improvement using603

our dataset.604

Data Availability. Since our data consists of chil-605

dren’s spontaneous speech, we must ensure its pro-606

tection. Thus, we cannot make it freely available.607

While we publicly release the models trained on608

the data, access to the transcripts and recordings609

can only be granted in the scope of a joint project,610

subject to a collaboration agreement.611

Ethical Considerations612

The main risks in this project have to do with data613

protection: all speakers are minors between 9 and614

14 years of age, so their personal data must be615

very well safeguarded. Therefore, key govern-616

ment institutions approved the data collection be-617

fore speakers were recruited, and informed consent 618

was obtained from each speaker’s legal caretaker 619

(cp. details in Section 3.1). Consent forms entailed 620

information about the nature of the project and 621

data collection procedures, as well as a comprehen- 622

sive description of the legal principles we followed 623

to collect, use, and store voice data, transcripts, 624

and annotations. The data protection measures 625

we implemented for security and confidentiality 626

were fully disclosed (e.g. password-protected doc- 627

uments, pseudonymisation, firewalls etc.) and risks 628

to participants (e.g. potential voice recognition by 629

project members) were outlined. Voice data and 630

transcripts were pseudonymised by those project 631

members who act as data owners before sharing 632

them with other research partners and third parties. 633

Third-party access to the collected data will be en- 634

abled in a closely controlled setting consisting of a 635

joint project with a collaboration agreement. 636

Use of AI Assistants 637

ChatGPT was used to support the creation of some 638

figures. No AI assistants were used for writing the 639

text of this paper. 640
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