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ABSTRACT

Facial expression datasets remain limited in scale due to privacy concerns, the sub-
jectivity of annotations, and the labor-intensive nature of data collection. This lim-
itation poses a significant challenge for developing modern deep learning-based
facial expression analysis models, particularly foundation models, that rely on
large-scale data for optimal performance. To tackle the overarching and complex
challenge, we introduce SynFER (Synthesis of Facial Expressions with Refined
Control), a novel framework for synthesizing facial expression image data based
on high-level textual descriptions as well as more fine-grained and precise control
through facial action units. To ensure the quality and reliability of the synthetic
data, we propose a semantic guidance technique to steer the generation process
and a pseudo-label generator to help rectify the facial expression labels for the
synthetic images. To demonstrate the generation fidelity and the effectiveness of
the synthetic data from SynFER, we conduct extensive experiments on represen-
tation learning using both synthetic data and real-world data. Experiment results
validate the efficacy of the proposed approach and the synthetic data. Notably, our
approach achieves a 67.23% classification accuracy on AffectNet when training
solely with synthetic data equivalent to the AffectNet training set size, which in-
creases to 69.84% when scaling up to five times the original size. Our code will
be made publicly available.

1 INTRODUCTION

Facial Expression Recognition (FER) is at the forefront of advancing AI’s ability to interpret human
emotions, opening new frontiers for various human-centered applications. From automatic emotion
detection to early interventions in mental health Ringeval et al. (2019), accurate pain assessment
Huang et al. (2024), and enhancing human-computer interaction Abdat et al. (2011), the potential
impact of FER systems is profound Moin et al. (2023); Sajjad et al. (2023); Zhu & Luo (2023). In
recent years, learning-based FER models have gained significant traction due to their promising per-
formances Li & Deng (2020); Zhang et al. (2021); Farzaneh & Qi (2021). However, despite recent
advancements in network architectures and learning methodologies, the progress of existing FER
models has been hindered by the inadequate scale and quality of available training data, underscor-
ing the need to expand datasets with high-quality data to push the boundaries of FER capabilities.

Existing FER datasets, such as CK+ (953 sequences) Lucey et al. (2010), FER-2013 (30,000 48×48
images) Barsoum et al. (2016), RAF-DB (29,672 images) Li et al. (2017), AFEW (113,355 images)
Dhall et al. (2017), and SFEW (1,766 images) Dhall et al. (2011), are small compared to popular
image datasets for general image processing (e.g., ImageNet Deng et al. (2009) with 1.4 million
images and Laion Schuhmann et al. (2022) with billion-level data). While AffectNet Mollahos-
seini et al. (2017) compiles a large number of facial images from the web, it still suffers from vital
drawbacks. A considerable portion of AffectNet’s images are low-quality, and its annotations often
contain incorrect labels, which impairs the training process of FER models Le et al. (2023); Yan
et al. (2022). Consequently, the absence of high-quality and large-scale FER datasets has delayed
the development of FER foundation models. However, collecting a large-scale FER dataset with
high-quality facial images and meticulous annotations is almost an unrealistic endeavor due to sub-
stantial financial and time costs, ethical concerns around facial data collection, and limited resources
for large-scale acquisition. Additionally, the subjective interpretation of facial expressions results in
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Figure 1: (a) Examples of synthetic facial expression data generated by our SynFER model, (b)
Comparison of training paradigms: training with real-world data versus training with synthetic fa-
cial expression data and (c) Performance boost from SynFER generated Data in supervised, self-
supervised, zero-shot, and few-shot (5-shot) learning tasks.

inconsistent labeling by annotators, which exacerbates variability and hinders the creation of reliable
datasets.

To address the challenges in developing FER models, we turn to synthesizing high-quality facial
expression images paired with reliable labels. This approach draws inspiration from successful
strategies employed to expand annotated datasets for other computer vision tasks, such as seman-
tic segmentation Baranchuk et al. (2021); Chen et al. (2019); Li et al. (2022a) and depth estimation
Atapour-Abarghouei & Breckon (2018); Cheng et al. (2020); Guizilini et al. (2022). These advances
leverage powerful generative models such as Stable Diffusion Rombach et al. (2022a) and DALL-E
Betker et al. (2023), which capture intricate natural image patterns. By tapping into these models,
researchers have generated realistic images with their corresponding annotations, thereby boosting
model performance. However, applying diffusion models to synthesize facial expression images
with reliable FER labels presents two major challenges. (1) the training sets used by these gener-
ative models often lack diverse facial expression data, limiting their ability to produce images that
capture subtle and nuanced emotional semantics; and (2) prior approaches to generate annotations
for synthetic images focused on tangible attributes such as pixel-wise layouts, or depth maps. In
contrast, facial expressions convey abstract and subjective emotions, making the generation of pre-
cise and reliable expression labels much more complex. To the best of our knowledge, none of the
existing methods can simultaneously conduct fine-grained control for facial expression generation
and generate robust categorical facial expression labels for face images.

In this paper, we present SynFER, the first framework capable of synthesizing unlimited, diverse
and realistic facial expression images paired with reliable expression labels, to drive advancements
in FER models. To address the shortcomings of existing FER datasets, which often lack expression-
related text paired with facial images, we introduce FEText, a unique hybrid dataset created by
curating and filtering data from existing FER and high-quality face datasets. This vision-language
dataset serves as the foundation for training our generative model to synthesize facial expression
data. To ensure fine-grained control and faithful generation of facial expression images, we inject
facial action unit (FAU) information and semantic guidance from external pre-trained FER models.
Building upon this, we propose FERAnno, the first diffusion-based label calibrator for FER, which
automatically generates reliable annotations for the synthesized images. Together, these innovations
position SynFER as a powerful tool for producing large-scale, high-quality facial expression data,
offering a significant resource for the development of FER models.

We investigate the effectiveness of the synthetic data across various learning paradigms, demonstrat-
ing consistent and modest improvement in model performance. As shown in Fig. 1(c), training with
the synthetic data yields significant performance boosts across various learning paradigms. Notably,
pre-training on the synthetic data (Fig. 1(b)) with MoCo v3 Chen et al. (2021) yields a significant
performance boost of +2.90% on AffectNet, surpassing real-world data pre-training. In supervised
learning, SynFER improves accuracy by +1.55% for the state-of-the-art FER model, POSTER++
Mao et al. (2024), on AffectNet. We further explore performance scaling of the synthetic data,
revealing further gains as dataset size increases.
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Our key contributions are as follows: (1) we introduce FEText, the first dataset of facial expression-
related image-text pairs, providing a crucial resource for advancing FER tasks. (2) we propose
SynFER, the first diffusion-based data synthesis pipeline for FER, integrating FAUs information
and semantic guidance to achieve fine-grained control and faithful expression generation. (3) we
develop FERAnno, a novel diffusion-based label calibrator, designed to automatically refine and
enhance the annotations of synthesized facial expression images. (4) extensive experiments across
various datasets and learning paradigms demonstrate the effectiveness of the proposed SynFER,
validating the quality and scalability of its synthesized FER data.

2 RELATED WORK

Facial Expression Recognition (FER): Recent success in deep learning (DL) has largely boosted
the performance of the FER task, despite the substantial data requirements for training DL models.
To address the limited training data in FER, previous methods mainly focus on developing different
learning paradigms, including semi-supervised learning Li et al. (2022b); Yu et al. (2023); Cho et al.
(2024), transfer learning Li et al. (2022c); Ruan et al. (2022) and multi-task learning Liu et al.
(2023b); Li et al. (2023a). For example, Ada-CM Li et al. (2022b) learns a confidence margin to
make full use of the unlabeled facial expression data in a semi-supervised manner. Despite achieving
performance gains for FER, these methods remain constrained by limited data. Recently, researchers
have explored an alternative data-driven perspective of introducing large-scale face datasets from
other facial analysis tasks (e.g., face recognition Zeng et al. (2022)). Meta-Face2Exp Zeng et al.
(2022) utilizes large-scale face recognition data to enhance FER by matching the feature distribution
between face recognition and FER. However, face data drawn from these datasets lack diverse facial
expressions, and thereby couldn’t fully unlock the potential of large-scale data in FER.

Synthetic Data: Recently, growing attention has been paid to the advanced generative models (e.g.,
Generative Adversarial Networks (GANs) Goodfellow et al. (2020) and Diffusion Models Rombach
et al. (2022b)), which are typically flexible to synthesize training images for a wider range of down-
stream tasks, including classification Frid-Adar et al. (2018); Azizi et al. (2023), face recognition
Kim et al. (2023); Boutros et al. (2023), semantic segmentation Nguyen et al. (2023); Wu et al.
(2024; 2023a) and human pose estimation Feng et al. (2023); Zhou et al. (2023). In particular, some
studies pioneer to investigate the capabilities of powerful pre-trained diffusion generative models on
natural images Nguyen et al. (2023); Wu et al. (2024); Li et al. (2023b). For example, DatasetDM
Wu et al. (2024) further introduces a generalized perception decoder to parse the rich latent space of
the pre-trained diffusion model for various downstream tasks. However, there remains a significant
gap in research on using diffusion models to generate facial expression data, including both images
and corresponding labels. In this paper, we address this gap by exploring diffusion-based synthetic
data for the first time in FER. Specifically, we propose to apply a fine-tuned diffusion model to facial
expression synthesis and introduce the first diffusion-based pseudo-label generator for FER.

3 PRELIMINARIES

Diffusion models include a forward process that adds Gaussian noise ϵ to convert a clean sample
x0 to noise sample xT , and a backward process that iteratively performs denoising from xT to x0,
where T represents the total number of timesteps. The forward process of injecting noise can be
formulated as:

xt =
√
αtx0 +

√
1− αtϵ (1)

xt is the noise feature at timestep t and αt is a predetermined hyperparameter for sampling xt with
a given noise scheduler Song et al. (2020). In the backward process of denoising, given input noise
xt sampled from a Gaussian distribution, a learnable network ϵθ estimates the noise at each timestep
t with condition c. xt−1, the feature at the previous timestep, is then derived as:

xt−1 =

√
αt−1√
αt

xt +
√
αt−1(

√
1

αt−1
− 1−

√
1

αt
− 1)ϵθ(xt, t, c) (2)

During training, the noise estimation network ϵθ is guided to conduct denoising with condition c by
the learning objective:

min
θ

Ex0,ϵ∼N (0,I),c,t∥ϵ− ϵθ(xt, c, t)∥22, (3)
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Figure 2: Overall pipeline of our FER data synthesis process.

With its powerful capability to model complex data distributions, the diffusion model serves as the
foundation for generating high-quality FER data. Our SynFER framework is the pioneering work
that explores the use of diffusion models to synthesize affective modalities.

4 METHODOLOGY

We begin by introducing i) the overall synthetic pipeline for generating facial expression image-
label pairs. Next, we detail ii) our approach for producing high-fidelity facial expression images,
which are controlled through high-level text descriptions (Sec.4.2.1), fine-grained facial action units
corresponding to localized facial muscles (Sec.4.2.3), and a semantic guidance technique (Sec.4.3).
Finally, we introduce iii) the FER annotation crafter (FERAnno), a crucial component that thor-
oughly understands the synthetic facial expression data and automatically generates accurate anno-
tations accordingly(Sec.4.4). This pipeline ensures both precision and reliability in facial expression
generation and labeling.

4.1 OVERALL PIPELINE FOR FER DATA SYNTHESIS

We introduce the overall pipeline for FER data synthesis (Fig. 2). The process starts with a coarse
human portrait description assigned to a specific facial expression. ChatGPT enriches this descrip-
tion with details such as facial appearance, subtle facial muscle movements, and contextual cues.
Simultaneously, facial action unit annotations are generated based on prior FAU-FE knowledge Ek-
man & Friesen (1978), aligning them with emotion categories to serve as explicit control signals
for guiding the facial expression image synthesis. Once the facial expression label, facial action
unit labels, and expanded textual prompt are prepared, these inputs condition our diffusion model to
generate high-fidelity FER images, guided by semantic guidance to ensure accurate FER semantic.
During the denoising process, FERAnno automatically produces pseudo labels for the generated im-
ages. To further improve labeling accuracy, we ensemble our FERAnno with existing FER models,
which collaborate to vote on the accuracy of the predefined FER labels. In cases where discrepan-
cies arise, the predefined label is refined by averaging the predictions from the ensemble experts.
This mechanism effectively reduces the risk of inconsistent or uncertain annotations, ensuring that
the final synthesis data is precise and dependable for downstream applications.

4.2 DIFFUSION MODEL TRAINING FOR FER DATA

4.2.1 FETEXT DATA CONSTRUCTION

To address the lack of facial expression image-text pairs for diffusion model training, we introduce
FEText (Fig. 3), the first hybrid image-text dataset for FER. It combines face images from FFHQ
Karras et al. (2019), CelebA-HQ Karras et al. (2017), AffectNet Mollahosseini et al. (2017) and
SFEW Dhall et al. (2011), each paired with captions generated by a multi-modal large language
model (MLLM). FEText includes 400,000 curated pairs tailored for facial expression tasks.

Resolution Alignment. Due to variations in image resolution across different datasets, we first
utilize a super-resolution model Lin et al. (2023) to standardize the resolutions of images from
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Figure 3: Overview of our FEText data construction pipeline.

AffectNet and SFEW. Specifically, we incorporate high-resolution images from FFHQ and CelebA-
HQ datasets to preserve the model’s capacity for high-fidelity image generation. This dual approach
allows the model to not only maintain the fidelity of the generated images but also to learn and
incorporate the facial expression semantics from AffectNet and SFEW.

Textual Caption Annotation. To generate a textural caption for each face image, we employ the
open-source multi-modal language model ShareGPT-4V Chen et al. (2023b), by guiding it with
carefully crafted instructions. To ensure that the generated captions are both context-aware and
expressive, we clearly define the model’s role and provide examples of detailed facial expression
descriptions within the prompts. This approach enables the model to generate precise, emotion-
reflective captions for the input images.

4.2.2 DIFFUSION MODEL FINE-TUNING

To facilitate our diffusion model to generate high-fidelity facial expressions, a straightforward ap-
proach is to fine-tune the model directly on the proposed FEText using the diffusion loss in Eq.
3. However, since FEText contains images processed through a super-resolution model, this direct
fine-tuning strategy may lead to over-smoothing in the generated images. To address this, we intro-
duce a two-stage fine-tuning paradigm. In the first stage, the diffusion model is trained on the entire
FEText dataset to capture facial expression-related semantics. Then, the second stage mitigates over-
smoothing by specifically fine-tuning our diffusion model on the CelebA-HQ and FFHQ subsets of
FEText, which consist of native high-resolution images. This two-step approach ensures that our
model learns expressive facial details while preserving image sharpness. The fine-tuned model then
serves as the foundation for controllable facial expression generation, incorporating facial action
unit injection (Sec. 4.2.3) and semantic guidance (Sec. 4.3).

4.2.3 EXPLICIT CONTROL SIGNALS VIA FACIAL ACTION UNITS

While fine-tuning the diffusion model using facial expression captions provides general language-
based guidance for facial expression generation, it lacks the precision needed to capture fine-grained
facial details, such as localized muscle movements. To overcome this limitation, we propose to in-
corporate more explicit control signals through Facial Action Units (FAUs), each of which represents
a specific facial muscle movement. Inspired by IP-Adapter Ye et al. (2023), we apply a decoupled
cross-attention module to integrate FAU embeddings with the diffusion model’s generation process.
These embeddings are derived by mapping discrete FAU labels into high-dimensional representa-
tions using a Multi-Layer Perceptron, referred to as the AU adapter. FAU labels for each image in the
FEText dataset are annotated using the widely adopted FAU detection model, OpenGraphAU Luo
et al. (2022). With the diffusion model’s parameters frozen, we train the AU adapter to guide the
model in recovering facial images based on the annotated FAU labels, using the objective in Eq. 3.

4.3 SEMANTIC GUIDANCE FOR PRECISE EXPRESSION CONTROL

Due to the imbalanced distribution of FER labels in the training data and the potential ambiguity
between certain facial expressions Zhang et al. (2024b), such as disgust, relying solely on textual
and FAU conditions might not guarantee the faithful generation of these expressions. To address this
issue, we propose incorporating semantic guidance on the textual embeddings ctext, during the later
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Figure 4: Overview of our FERAnno pseudo-label generator.

stages of the denoising process. We leverage external knowledge from open-source FER models to
steer the generation process, ensuring a more accurate and faithful synthesis of hard-to-distinguish
facial expressions.

Layout Initialization. During inference, we select a random face image xs from FEText and invert
it to initialize the noise sample xs

T (Eq. 1). Since early diffusion stages shape the global layout
of the image Zhang et al. (2023); Pan et al. (2023); Mao et al. (2023), this strategy helps preserve
the natural facial structure, ensuring the generated images are coherent, high-quality, and visually
consistent with real-world expressions.

Semantic Guidance. In the early steps of the diffusion process, the generation process is condi-
tioned on the original textual condition ctext. To further induce the generation of facial expression
images corresponding to their FER labels y, we iteratively update the textual condition in the sub-
sequent time steps. Specifically, a facial expression classifier f(·) is utilized for the injection of
complex semantics.

To guide the generated images towards the specific class y, we propose to do so by updating the
textual embeddings. Given an intermediate denoised sample xt at timestep t, following Eq. 15 in
DDPM Ho et al. (2020), we first estimate the one-step prediction of the original image x̂0 as:

x̂0 = (xt −
√
1− ᾱt)ϵθ(xt, t, c

text, cau)/
√
ᾱt (4)

We then calculate the classification loss with:

Lg = −y log(h(f(x̂0))i) (5)

Given the guidance loss Lg , the textual embedding is updated with the corresponding gradient:

ctext
t−1 = ctext

t + λg

∇ctext
t
Lg

||∇ctext
t
Lg||2

(6)

where λg and ctext
t−1 denote the step size and the updated textual embedding at timestep t− 1, respec-

tively. In the latter steps of the diffusion process, the noise estimator network ϵθ is conditioned on
the updated textual embeddings rather than the original one.

4.4 DIFFUSION-BASED LABEL CALIBRATOR (FERANNO)

To ensure semantic alignment between each synthesized face image and its assigned facial expres-
sion label, we introduce FERAnno, a label calibration framework designed to validate the consis-
tency of the generated data. By analyzing the facial patterns of each synthesized image, FERAnno
categorizes them and compares the post-categorized labels with their pre-assigned facial expres-
sion labels. This verification process helps identify and filter out samples with mismatched labels,
preventing them from negatively impacting downstream FER model training. Specifically, FER-
Anno is a diffusion-based label calibrator equipped with a deep understanding of facial semantics.
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It leverages the multi-scale intermediate features and cross-attention maps inherent in the diffusion
model to predict accurate FER labels, as depicted in Fig. 4. This ensures only high-quality, correctly
labeled samples are included in the training pipeline, leading to more reliable model performance.

Image Inversion. To extract facial features and cross-attention maps with the diffusion model ϵθ,
we first inverse the generated image x0 back to the noise sample xt at a denoising timestep t, follow-
ing a predefined scheduler, as described in Eq. 1. To preserve facial details, we set t = 1 during the
inversion process, ensuring that the facial features remain as close as possible to the original gener-
ated image x0. This partially denoised sample is then passed through the trained denoising network,
allowing us to extract rich facial features and cross-attention maps from intermediate layers, which
are critical for capturing detailed facial patterns.

Feature Extraction. Given the inverted noise sample x1 and the corresponding textual condition
ctext and AU condition cau, we can extract the multi-scale feature representations and textual cross-
attention maps from the U-Net ϵθ as {F ,A} = ϵθ(x1, t1, c

text, cau), where F and A denote the
multi-scale feature representations and the cross-attention maps, respectively. F contains multi-
scale feature maps from different layers of the U-Net ϵθ with four different resolutions. A contains
the cross-attention maps drawn from the 16 cross-attention blocks in ϵθ. Both the feature represen-
tation F and the cross-attention maps A are regrouped according to their resolutions.

Multi-scale Features and Attention Maps Fusion. Given that the multi-scale feature maps F
capture global information essential for image generation, and the cross-attention maps provide
class-discriminative information as well as relationships between object locations Tang et al. (2022);
Caron et al. (2021), FERAnno fuses both features and attention maps within a dual-branch encoder
architecture for pseudo-label annotation. An overview of this architecture is shown in Fig. 4.

We first compute the mean of the regrouped attention maps, denoted as Areg, yielding a set of
averaged attention maps Ā. Both the feature maps F and the averaged attention maps Ā are then
passed through a residual convolution block to prepare them for further processing. To effectively
integrate information at different scales, we introduce a bi-directional cross-attention block to fuse
the features and attention maps. 1×1 convolutions are employed at various stages to adapt the
fusion across multiple resolution layers. Finally, the fused feature maps and attention maps are
concatenated and passed through a linear layer, which outputs a probability vector for predicting
facial expression classes.

5 EXPERIMENTS

We conduct extensive experiments to evaluate both the generation quality of our synthetic data
(Sec. 5.1) and its effectiveness in FER tasks (Sec. 5.2). For more details on experimental setup,
implementation details are provided in the appendix.

5.1 GENERATION QUALITY

Method Objective Metrics User study (Ours vs. )(%)
FID (↓) HPSv2(↑) FS(↑) MPS (↑) FER Acc.(↑) FAU Acc.(↑) EA (↑) FF (↑)

Stable Diffusion 88.40 0.263 2.01 2.00 20.06 87.72 2.86 1.79
PixelArt 145.23 0.271 3.79 5.26 15.52 84.57 24.26 10.00
PlayGround 81.76 0.265 2.86 3.73 21.56 87.28 7.50 5.00
FineFace 74.61 0.268 3.29 1.48 38.05 89.68 5.73 6.41

SynFER 16.32 0.280 4.26 - 55.14 93.31 59.64 76.79

Table 1: Ours vs.’ shows the proportion of users who prefer our method over the alternative. An MPS
above 1.00 and results above 50% in the user study indicate our method outplays the counterpart.
FS, FER Acc., FAU Acc., EA and FF denote FaceScore Liao et al. (2024), FER accuracy, facial
action unit accuracy, expression alignment and face fidelity, respectively.

We present both objective metrics and subjective user studies, comparing our method to existing
state-of-the-art (SOTA) diffusion models Rombach et al. (2022a); Chen et al. (2023a); Li et al.
(2024) and the latest facial expression generation technique, FineFace Varanka et al. (2024).
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Method Pre-train Data RAF-DB AffectNet SFEW
Dataset Scale

MCF Laion-Face 20M 65.22 65.28 32.61
FRA VGGFace2 3.3M 73.89 57.38 -
PCL VoxCeleb 1.8M 74.47 68.35 39.68

SimCLR AffectNet 0.2M 78.65 74.16 46.79
SimCLR Ours 1.0M 80.24 (+1.59) 75.36 (+1.20) 47.62 (+0.83)
SimCLR AffectNet+Ours 1.2M 81.52 (+2.87) 75.64 (+1.48) 48.52 (+1.73)

BYOL AffectNet 0.2M 78.24 73.26 48.70
BYOL Ours 1.0M 80.96 (+2.72) 75.27 (+2.01) 51.35 (+2.65)
BYOL AffectNet+Ours 1.2M 81.25 (+3.01) 75.83 (+2.57) 51.70 (+3.00)

MoCo v3 AffectNet 0.2M 79.05 74.53 49.34
MoCo v3 Ours 1.0M 81.17 (+2.12) 77.43 (+2.90) 50.78 (+1.44)
MoCo v3 AffectNet+Ours 1.2M 81.68 (+2.63) 77.82 (+3.29) 51.26 (+1.92)

Table 2: Linear probe performance comparisons of SSL
models on three FER datasets.

Method RAF-DB AffectNet

ResNet-18 87.48 50.32
ResNet-18 + Ours 87.97 51.65
Ada-DF 90.94 65.34
Ada-DF + Ours 91.21 66.82
POSTER++ 91.59 67.49
POSTER++ + Ours 91.95 69.04
APViT 91.78 66.94
APViT + Ours 92.05 67.26

FERAnno 92.56 70.38

Table 3: Comparison of supervised
learning models (with and without our
synthetic data) and the label calibrator
FERAnno.

Method CFEE C EmotionNet C RAF C
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

InfoPatch 54.19 67.29 48.14 59.84 41.02 57.98
InfoPatch* 55.21 68.73 48.52 61.16 41.88 59.54

LR+DC 53.20 64.18 52.09 60.12 42.90 56.74
LR+DC* 54.65 65.28 51.96 60.14 43.87 57.90

STARTUP 54.89 67.79 52.61 61.95 43.97 59.14
STARTUP* 56.25 69.93 52.87 62.12 45.18 61.23

CDNet 56.99 68.98 55.16 63.03 46.07 63.03
CDNet* 57.74 70.64 56.79 65.63 46.97 64.34

Table 4: Performance comparisons with
SOTA few-shot learning methods on 5-way
few-shot FER tasks with a 95% confidence
interval. (*) indicates training with both real-
world data and our synthesis data.

Method RAF-DB AffectNet FERPlus
UAR WAR UAR WAR UAR WAR

FaRL 24.98 38.53 26.95 26.95 24.27 35.26
FLAVA 14.35 38.69 14.26 14.26 12.50 28.43

CLIP ViT-B/16 38.66 36.16 34.35 34.35 34.33 45.14
Exp-CLIP ViT-B/16 48.96 54.50 39.98 39.98 40.81 53.02

Exp-CLIP* ViT-B/16 51.23 56.32 41.68 41.68 42.33 56.02

CLIP ViT-L/14 47.22 41.13 34.46 34.47 33.82 46.67
Exp-CLIP ViT-L/14 58.70 65.37 44.27 44.27 48.28 55.42

Exp-CLIP* ViT-L/14 60.41 68.34 46.85 46.85 50.26 57.98

Table 5: Zero-shot performance comparison of
CLIP for FER, reporting both Weighted Average
Recall (WAR) and Unweighted Average Recall
(UAR) as in previous works Zhao et al. (2024).
(*) indicates models trained with both real-world
and synthetic data.

We compute FID between the synthesis images and the test set of the AffectNet Mollahosseini et al.
(2017). HPSv2 Wu et al. (2023b) and MPS Zhang et al. (2024a) evaluate the human preferences
of the overall synthesis images, while FaceScore Liao et al. (2024) measures the quality of the
generated faces. Tab. 1 shows that our method outperforms popular diffusion models and the SOTA
facial expression generation method FineFace Varanka et al. (2024), across all metrics of image
quality, human preference and facial expression accuracy. Notably, the advantages of SynFER in
both FE Acc. and AU Acc. indicate its outstanding controllability in facial expression generation.

5.2 EFFECTIVENESS OF SYNTHETIC DATASET

Self-supervised Representation Learning. We trained self-supervised learning (SSL) models, in-
cluding BYOL Grill et al. (2020), MoCo v3 Chen et al. (2021), and SimCLR Chen et al. (2020),
using real-world data, our synthetic data, and a combination of both. The linear probe performance
of these models was evaluated on three widely used facial expression recognition (FER) datasets:
RAF-DB Li et al. (2017), AffectNet Mollahosseini et al. (2017), and SFEW Dhall et al. (2011), with
results reported in Tab. 2. All SSL models were trained with a ResNet-50 architecture He et al.
(2016). Notably, state-of-the-art methods in self-supervised facial representation learning, such as
MCF Wang et al. (2023), FRA Gao & Patras (2024), and PCL Liu et al. (2023c), were pre-trained on
much larger face datasets like LAION-Face Zheng et al. (2022), VGGFace2 Cao et al. (2018), and
VoxCeleb Nagrani et al. (2020). However, these models underperformed on FER tasks compared to
ours, highlighting that existing large-scale face datasets may lack the high-quality and diverse facial
expression patterns required for accurate FER. Results demonstrate that combining real-world and
synthetic data consistently boosts SSL baselines. Remarkably, even when MoCo v3 was trained
solely on our synthetic data, it achieved a 2.12% improvement on RAF-DB, underscoring the effec-
tiveness of our approach in capturing critical facial expression details that are essential for FER.

Supervised Representation Learning. We validate the effectiveness of SynFER for supervised
representation learning by evaluating its performance on RAF-DB and AffectNet (Tab. 3). We com-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

D
i
s
g
u
s
t

F
e
a
r

+FEText +FEText+FAUs +FEText+FAUs+SGStable Diffusion

Figure 5: Generated samples. The first and second
rows are fear and disgust, respectively.

Method HPSv2 FE Acc. AU Acc. RAF-DB AffectNet

Real-world Data - - - 91.59 67.49
SD 0.263 20.06 87.72 89.42 65.36

w/ FEText 0.267 34.62 88.91 90.54 66.62
w/ FEText+FAUs 0.275 48.74 92.37 91.68 67.68

w/ FEText+FAUs+SG 0.280 55.14 93.31 91.95 68.13

Table 6: Ablation study on the influence of
AU injection and semantic guidance (SG) on
both the generation quality and supervised
representation learning. SD denotes Stable
Diffusion , which is used as a baseline.

pare with SOTA FER models, including Ada-DF Liu et al. (2023a), POSTER++ Mao et al. (2024),
and APViT Xue et al. (2022). The results demonstrate that incorporating synthetic data consistently
enhances both baseline models and the latest SOTAs in supervised facial expression recognition.
Notably, APViT benefits from the synthetic data with improvements of 0.27% on RAF-DB and
0.32% on AffectNet. While the improvements in supervised learning are more modest compared to
self-supervised learning, they remain consistent. This is likely due to the stricter distribution align-
ment required in supervised learning between synthetic training data and real-world test data. In the
following section on scaling behavior analysis, we provide further insights, showcasing the use of
the distribution alignment technique, Real-Fake Yuan et al. (2023), to alleviate this problem.

Few-shot Learning. Addressing the challenge of limited labeled FER data across different scenar-
ios, we explore the potential of synthetic data to enhance few-shot learning, as presented in Tab. 4.
Following the protocol established by CDNet Zou et al. (2022), we train models on five basic expres-
sion datasets and evaluate them on three compound expression datasets: CFEE C Du et al. (2014),
EmotionNet C Fabian Benitez-Quiroz et al. (2016), and RAF C Li et al. (2017). To benchmark our
approach, we compare it against SOTA few-shot learning methods, including InfoPatch Liu et al.
(2021), LR+DC Yang et al. (2021), and STARTUP Phoo & Hariharan (2021). The results clearly
demonstrate that integrating synthetic data consistently enhances few-shot FER performance across
key metrics. This highlights the ability of synthetic data, with its broader range of FER patterns, to
bridge the gap in data-limited scenarios, allowing models to better generalize to complex, real-world
expressions in few-shot tasks.

Multi-modal Fine-tuning. The synthesis data encompasses multiple modalities, including gener-
ated images, textual prompts, and FER labels. To assess its impact on multi-modal fine-tuning for
FER, we focus on fine-tuning the vision-language foundation model CLIP Wang et al. (2022), as its
performance on face-related tasks is widely regarded as sub-optimal Guo et al. (2023); Chen et al.
(2024). Building on Exp-CLIP Zhao et al. (2024), we fine-tune the models on CAER-S Lee et al.
(2019) and evaluate their zero-shot performances on the datasets outlined in Tab. 5. Our results show
that the inclusion of detailed textual prompts and a larger training image set significantly enhances
the generalization ability of Exp-CLIP in understanding facial expressions, achieving significant
improvements such as +2.58% UAR on the AffectNet dataset.

5.3 ABLATION STUDY

Effectiveness of FAU Control. We validate the effectiveness of SynFER by examining how Facial
Action Units (FAUs) enhance the generation process and refine facial details. As illustrated in Fig. 5,
samples generated with FAU control (third column) exhibit facial expressions that more accurately
match their assigned labels compared to those generated with only text guidance (second column).
For example, the ’fear’ expression, driven by FAUs like Inner Brow Raiser and Lip Stretcher, be-
comes more distinct (third column, second row), making it easier to differentiate from other emo-
tions such as ’surprise.’ Similarly, ’disgust’ is more pronounced with FAUs like Lid Tightener.
Without FAU control, facial expressions (second column) tend to blur, as different categories show
overlapping features. Quantitative results in Tab. 6 highlight the impact of FAU control: FER accu-
racy increases from 34.62% to 48.74%, and FAU detection accuracy rises from 88.91% to 92.37%.
This also translates into improved downstream performance on RAF-DB and AffectNet.

Effectiveness of Semantic Guidance. We further explore the impact of semantic guidance (SG) on
both generation quality and supervised representation learning, as shown in Fig. 5 and Tab. 6. By
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updating text embeddings to better align with the target facial expression category, SG improves the
accuracy of the generated expressions by 6.4%, compared to static text and FAUs. The samples in
the last column of Fig. 5 show more exaggerated facial expressions than those in the third column,
with SG enhancing the intensity.

Reliability of FERAnno. We assess the reliability of FERAnno as a label calibrator by evaluating its
performance on two FER datasets and visualizing its attention maps in Tab. 3 and Fig. 6. FERAnno
significantly outperforms previous SOTAs, achieving a +0.51% improvement on RAF-DB and a
+1.34% improvement on AffectNet over the second-best models. The attention maps in Fig. 6
further demonstrate FERAnno’s ability to accurately locate facial expression-related facial features,
such as jaw-dropping and furrowed eyebrows, highlighting the diffusion model’s great semantic
understanding and fine-grained facial expression recognition.

A
n

g
ry

F
ea
r

S
a
d

Figure 6: Synthesis images
and attention maps in the fine-
tuned diffusion model.

Synthetic Data Scaling Analysis. Following Tian et al. (2024);
Fan et al. (2024), we investigate the scaling behavior of synthetic
data in both self-supervised and supervised learning paradigms. To
highlight the potential of synthetic FER data, we train models ex-
clusively on synthetic images, without combining real-world data.
The results in Fig. 7 (a)-(b) show a stronger scaling effect in self-
supervised learning compared to supervised learning, where per-
formance improves significantly with more data. This difference is
likely due to the need for better distribution alignment in supervised
learning Yuan et al. (2023). While SynFER focuses on address-
ing FER data scarcity, aligning the synthetic data distribution with
real-world data is crucial for supervised tasks. To further explore
this, we apply the Real-Fake technique Yuan et al. (2023) for real
and synthetic data distribution alignment, and present the results in
Fig. 7 (c). Compared to standard supervised learning, Real-Fake
demonstrates a clear performance boost.

(a) Synthetic Data Scaling in Self-
Supervised Learning

(b) Synthetic Data Scaling in Su-
pervised Learning

(c) Synthetic Data Scaling in
Supervised Learning (with Real-
Fake technique )

Figure 7: Scaling up the synthetic FER dataset. MoCo v3 (ResNet-50) Chen et al. (2021) is used for
SSL pre-training, and linear probe performance is evaluated on AffectNet and RAF-DB. The SOTA
FER model, POSTER++ Mao et al. (2024), is trained using supervised learning (with and without
the Real-Fake technique Yuan et al. (2023)) on our synthetic dataset and evaluated on the same two
target FER datasets. ★ is model’s performance trained on corresponding real data.
6 CONCLUSION

In this paper, we propose a synthesis data framework SynFER for facial expression recognition to
address the data shortage in the field. By consolidating existing FER data and annotating with multi-
modal large language models, we introduce the first facial expression-related image-text pair hybrid
dataset FEText. We further propose to inject facial action unit information and external knowledge
from existing FER models to ensure both fine-grained control and faithful generation of the facial
expression images. To incorporate the generated images into training, we propose a diffusion-based
label calibrator to help rectify the robust facial expression annotations for the synthesized images.
After constructing the data synthesis methodology, we investigate the effectiveness of the synthesis
data across different learning paradigms, demonstrating consistent and superior performances. We
further study the scaling behavior of the synthesis data for FER.
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A APPENDIX

A.1 HYPER-PARAMETER STUDIES

Step Size λ in Semantic Guidance. For hyper-parameter analysis, we consider five configurations
of the step size λ in semantic guidance. Due to computational resource constraints, we provide
results of self-supervised learning with MoCo v3 Chen et al. (2021) on 0.2M synthetic data for pre-
training and report the linear probe performances on RAF-DB Li et al. (2017). Experiment results
are shown in Fig. 8. It can be seen that when λ is relatively small, its influence on the performance
is relatively small. However, as λ continues to increase, the downstream performance is severely
degraded. This is because an excessive λ would lead to severely disrupted images, as shown in Fig.
9.

Figure 8: Hyper-parameter study on the λ in semantic guidance. We report the linear probe perfor-
mances of MoCo v3 Chen et al. (2021) pre-trained with 0.2M synthetic data on RAF-DB Li et al.
(2017).

λ=0.4 Excessive: λ=0.8 Excessive: λ=1.0

Figure 9: Visualizations of images generated with different values of λ.

A.2 EXPERIMENT SETTING AND IMPLEMENTATION DETAILS

Self-Supervised Learning. We use the widely adopted self-supervised learning library solo-learn
Da Costa et al. (2022) for experiments and follow the default settings in solo-learn for various
methods. Detailed settings are shown in the tables below:

Others. As all the methods for comparisons in supervised learning (Tab. 3), few-shot learning
(Tab. 4) and multi-modal fine-tuning (Tab. 5) are open-source, we thus only need to rewrite the
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Config Pre-Training Linear Probe
SimCLR BYOL MoCo v3 SimCLR BYOL MoCo v3

batch size 64 64 64 32 32 32
optimizer Lars Lars Lars SGD SGD SGD
base learning rate 0.3 0.1 0.3 1e-3 1e-3 1e-3
weight decay 1e-4 1e-6 1e-6 1e-4 1e-4 1e-4
learning rate schedule warmup cosine warmup cosine warmup cosine step (60,80) steps (60,80) steps (60,80)
epochs 200 200 200 100 100 100
augmentation RRC RRC RRC RRC+RHF RRC+RHF RRC+RHF

Table 7: Implementation details on self-supervised pre-training. RRC and RHF denote random
resize crop and random horizontal flip, respectively.

corresponding code for dataset reading to incorporate the synthetic data. We follow the default
setting in each open-source code of the compared methods.

Facial Action Unit Setting. We use pre-defined facial action unit (FAU) labels to generate images
corresponding to specific facial expressions as shown below:

Facial Expression FAU
Happy AU6 + AU12
Sad AU1 + AU4 + AU15
Surprise AU1 + AU2 + AU5 + AU26
Fear AU1 + AU2 + AU4 + AU5 + AU7 + AU20 + AU26
Angry AU4 + AU5 + AU7 + AU23
Disgust AU9 + AU15 + AU16

Table 8: FAU annotations to generate specific classes of facial expression images.

Step of Performing Semantic Guidance. During the synthesis process, the total denoising steps
of the diffusion model are set as 50. Semantic guidance requires backward gradient computation,
which would cost a large amount of GPU hours. Thereby, we only perform semantic guidance in
the latter steps, which is set as the last 5 steps of the denoising. Another reason to perform semantic
guidance at the latter steps is that estimated results at early steps tend to be blurry and degraded
facial images, performing semantic guidance on such images might to incorrect results.
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Figure 10: Synthetic images comparison between the over-smoothing images and the natural images.
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A.3 OVER-SMOOTHING OF SUPER RESOLUTION TRAINING DATA

As shown in Fig. 10, we provide comparisons between the over-smoothing synthetic images and
the more natural ones. Due to the large amount of super-resolution data in FEText, it can be seen
that solely performing fine-tuning on the entire FEText significantly degrades the realism of the
images, while the proposed two-stage fine-tuning strategies in Sec. 4.2.2 could effectively prevent
over-smoothing.

A.4 LIMITATIONS AND FUTURE WORK

While the effectiveness of the proposed synthetic data framework has been demonstrated through
extensive experiments, its current use is limited to augmenting the training set. A more efficient and
optimized approach for leveraging synthetic data remains unexplored and warrants further investiga-
tion. Additionally, the generation process remains relatively slow, particularly when incorporating
semantic guidance, which is crucial for ensuring accurate and faithful data generation. Moreover,
this work focuses exclusively on facial expression recognition. However, it is important to note that
the synthetic data framework has potential applications in other areas of facial affective computing,
such as facial action unit detection and affective valence and arousal recognition. These avenues are
left for future exploration.

A.5 FETEXT

More examples from FEText are shown in Fig. 11.

The woman in the image is displaying a neutral facial 

expression. Her eyes are open and focused, and her nose is 

straight. Her cheeks are slightly puffed out, and her lips are 

slightly parted, giving her a slight smile. Her eyebrows are 

relaxed, and her gaze is directed straight ahead. The neutral 

expression suggests that she is neither happy nor sad, but rather 

in a state of calm or neutrality.

The man in the image is displaying a Happy facial expression. 

His eyes are open and looking directly at the camera, indicating 

that he is engaged and attentive. His nose is straight, and his 

cheeks are slightly puffed out, adding to the overall cheerfulness 

of his expression. His mouth is slightly open, and his teeth are 

visible, which is a common feature of a happy smile. The mans 

gaze is directed straight at the camera, suggesting that he is 

comfortable and at ease.

The woman in the image is displaying a neutral facial 

expression. Her eyes are open, and her gaze is directed to the 

left. Her nose is straight, and her lips are slightly parted as if she 

is about to speak. The cheeks of her face are slightly puffed out, 

and her eyebrows are arched, giving her a thoughtful 

appearance. The background of the image is blurred, but it 

appears to be a yellowish-green color, which contrasts with the 

womans skin tone.

The man in the image is displaying a sad facial expression. His 

eyes are closed, and his nose is prominent. His cheeks are 

slightly puffed out, and his eyebrows are furrowed. The mouth 

is slightly open, and the lips are slightly parted. The gaze is 

directed downwards, and the overall expression conveys a sense 

of sadness or melancholy.

Figure 11: Examples from FEText.
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