LLaVA-Mob: Efficient Large Language and Vision Assistant for Mobile

Anonymous ACL submission

Abstract

Recent advancements in mobile GUI automa-
tion have leveraged multimodal large language
models (MLLMs) for task automation. How-
ever, deploying these models on mobile devices
poses significant challenges, including high
computational costs, suboptimal performance,
and limited adaptability to mobile-specific con-
texts. In this paper, we propose LLaVA-Mob,
a lightweight multimodal agent designed for
efficient smartphone GUI automation. LLaVA-
Mob features a compact 1B-parameter lan-
guage model and a GUI-optimized vision en-
coder, specifically tailored for mobile environ-
ments. Additionally, we introduce a synthetic
data generation approach to produce high-
quality, domain-aligned datasets, enhancing
alignment between visual and textual modali-
ties. Experiments on the AITW dataset demon-
strate that LLaVA-Mob achieves performance
comparable to larger models while significantly
reducing computational costs, making it well-
suited for resource-constrained mobile plat-
forms. We will release our code, model, and
datasets upon publication.

1 Introduction

Multimodal Large Language Models (MLLMs)
have recently emerged as powerful agents capable
of interacting with both real and virtual environ-
ments (Wang et al., 2023b; Zhang et al., 2023c;
Yao et al., 2022; Xi et al., 2023; Li et al., 2023a).
Among these, autonomous agents stand out for
their ability to dynamically interact with their sur-
roundings, creating feedback loops that influence
successive states (Wang et al., 2023a; Richards,
2023; Liu et al., 2023b; Rawles et al., 2023). For
practical applications such as graphical user inter-
face (GUI) automation, these agents must combine
precise perception with reliable action execution,
demonstrating significant potential to manage tasks
traditionally performed by humans. With multi-
modal capabilities, these agents can serve as robust

GUI assistants, effectively perceiving and interact-
ing with digital environments.

On resource-constrained mobile devices, achiev-
ing a balance between performance and efficiency
is crucial. Most existing MLLMs face challenges
that hinder their deployment in such environments,
including high computational demands, complex
inference, and limited adaptability to the mobile
domain. These challenges can be summarized as
follows: (1) Dependency on Large-Scale MLLMs:
Many existing models rely on powerful, closed-
source LLMs like GPT-4V (OpenAl, 2023), which
require refined prompt and post-processing strate-
gies (Richards, 2023; Shen et al., 2023; Yan et al.,
2023). Such models, like Mobile-Agent, frequently
call APIs for complex inference tasks, introduc-
ing privacy risks and limiting customization. By
contrast, models built on open-source LLMs (e.g.,
LLaMA, Vicuna (Touvron et al., 2023a; Chiang
et al., 2023)) offer greater flexibility and control, al-
lowing direct training in the GUI domain while en-
hancing privacy through local deployment. (2) Mul-
timodal Perception Challenges: GUI agents need
robust multimodal perception to navigate complex,
information-dense environments. Visual language
models have shown promise in aligning visual and
linguistic modalities (Dai et al., 2023; Ye et al.,
2023; Zhao et al., 2023), but GUI environments
involve nuanced details that general approaches
fail to capture. For example, a small magnifier
icon suggests a "search” function—an implicit se-
mantic meaning that standard image captioning
often misses. Recent methods use OCR and icon
detectors to convert visual data into textual repre-
sentations (e.g., XML layouts) (Zhang et al., 2021;
Sunkara et al., 2022), but these approaches have
significant limitations: (1) lengthy textual inputs
slow down inference, and (2) reliance on parsed
elements restricts adaptability, making them depen-
dent on the accuracy of the parsing process.

To address these challenges, we propose LLaVA-



Mob, a model featuring a compact 1B-parameter
LLM and a vision encoder pre-trained on GUI-
specific tasks (Cheng et al., 2024). This archi-
tecture reduces fine-tuning and deployment costs
while enhancing visual perception and action pre-
diction for mobile environments. We also introduce
a synthetic data approach that utilizes specialized
models to generate high-quality, domain-aligned
synthetic datasets. This improves feature alignment
between visual and textual modalities, enabling
more efficient and accurate action prediction.
Our contributions are summarized as follows:

* We propose LLaVA-Mob, a cognitive LLM
agent tailored for GUI automation tasks. It uti-
lizes a more lightweight model with lower train-
ing costs while achieving performance compara-
ble to larger models.

* We introduce a new synthetic data approach that
combines multiple expert models to generate
high-quality synthetic datasets.

* Experiments show that our new mobile agent,
built on a 1B model, achieves performance com-
parable to larger models on the AITW dataset.

2 Related Work

This section introduces studies on autonomous lan-
guage agents and multimodal perception of LLMs.

2.1 Autonomous Language Agents

Recent work has highlighted the potential of lan-
guage agents—language models capable of inter-
acting with environments or other agents to solve
complex tasks (Li et al., 2023a; Richards, 2023;
Wu et al., 2024a). These agents either leverage
large language models (LLMs) like GPT-4 for
reasoning and planning through prompt engineer-
ing (Richards, 2023; Shen et al., 2023; Yan et al.,
2023) or focus on trainable, open-source models
for greater customization and privacy (Shao et al.,
2023).

While GPT-based agents like AutoGPT and Hug-
gingGPT showcase strong generalization abilities,
they lack adaptability for specific environments. To
overcome this, trainable approaches have been de-
veloped, such as m-BASH (Sun et al., 2022), which
used ROI pooling for GUI tasks, Auto-UI (Zhang
and Zhang, 2023), which reformulated GUI interac-
tions into a VQA framework, and CogAgent (Hong
et al., 2023), which added a high-resolution visual
module with alignment pertaining. We follows the

trainable approach, focusing on open-source lan-
guage agents better suited for customizable and
privacy-conscious applications.

2.2 Multimodal Integration in LLMs

The integration of multiple modalities with lan-
guage models has become a key area of research,
driven by the advancements in large language mod-
els (LLMs). Most current approaches adopt a
language-centric framework, where data from other
modalities is encoded into the language embed-
ding space. These models typically consist of
three components: a pre-trained encoder for the
non-language modality, a language model, and an
adapter (or projector) to bridge the two. Different
designs of adapters have been proposed to achieve
this fusion. For instance, BLIP-2 (Li et al., 2023b)
employs a Q-former to generate query vectors that
represent image features, while LLaVA (Liu et al.,
2023a) uses a linear layer to map visual encod-
ings from CLIP into the language space. These
innovations have led to the development of various
multimodal LL.Ms, including Flamingo (Alayrac
et al., 2022), MiniGPT-4 and its v2 version (Zhu
et al., 2023; Chen et al., 2023), mPLUG (Ye et al.,
2023), Video-LLaMA (Zhang et al., 2023b), and
SpeechGPT (Zhang et al., 2023a). By leveraging
pre-trained encoders and sophisticated adapters,
these models effectively align information across
modalities, enabling applications that extend be-
yond traditional language modeling.

3 Methodology

Our approach introduces two primary innovations:
(1) a lightweight model architecture optimized for
mobile devices, and (2) a synthetic data approach
that robustly aligns visual and textual modalities
within GUI environments. Together, these advance-
ments enhance the accuracy of GUI element percep-
tion and enable more efficient and effective com-
mand prediction tailored to mobile-specific tasks.

3.1 Model

Architecture We adapt the LLaVA framework
(Liu et al., 2023a), extending it with components
specifically optimized for GUI automation tasks.
Our architecture integrates:

e Text Module: A lightweight Llama-3.2-1B
(Dubey et al., 2024) model serves as the decoder,
optimized for mobile tasks where simplicity and
efficiency are prioritized.
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Figure 1: The architecture of LLaVA-Mob. It consists of a vision encoder with a pre-trained ViT from SeeClick
(Cheng et al., 2024), two linear projection layers, and an advanced LLaMA-3.2-1B (Dubey et al., 2024) large

language model.

* Vision Encoder: The SeeClick visual encoder
(Cheng et al., 2024), based on a 48-layer ViT-
bigG model, is pre-trained on GUI-specific data
to enhance element recognition in dense GUI
interfaces.

* Projection Module: A two-layer linear projec-
tion (PRJ) maps visual features to the language
embedding space, ensuring effective alignment
between modalities.

As shown in Figure 1, Our model architecture
builds upon the LLaVA framework (Liu et al.,
2023a), extending its capabilities for GUI automa-
tion. The adapted LLaVA structure in LLaVA-Mob
integrates Llama-3.2-1B (Dubey et al., 2024) as
the text module (DECODER), a SeeClick (Cheng
et al., 2024) vision encoder (ENCODER,44¢), and
a two-layer linear projection module (PRJ) to map
image features to the language embedding space
(EMBEDy¢;¢). The input X consists of both text
(Xtext) and image (Ximage), With the output repre-
sented as Y. The process begins with embedding
the text and encoding the image:

O-0:t—1
Hicpt = EMBEDyeg( Xiegt 0 Y )7
Zimage = ENCODERimage( Ximage )’ (1)
Himage = PRJ( Zimage )
Here, o denotes the concatenation operation, al-
lowing text and historical action outputs to be em-

bedded together. The two-layer linear projection
module PR7J is defined as:

Himage - W2 ReLU (WIZimage + bl) + b27

where W1, Wa, by, and by are learnable weights and
biases, and ReLU is the activation function used
between the two linear layers. The text module in-
terprets instructions, while the vision encoder pro-
cesses GUI screenshots to extract relevant visual
features. The projection module bridges the visual
and textual modalities, enhancing multimodal un-
derstanding and improving accuracy in command
predictions for mobile-specific tasks.

This adapted architecture is specifically opti-
mized for mobile GUI automation challenges, al-
lowing LLaVA-Mob to maintain efficiency and
achieve precise action prediction, despite the re-
source constraints typical of mobile devices.

Visual Encoder The core focus of mobile agent
tasks is the visual encoder’s ability to locate ele-
ments within GUI interfaces, especially when rely-
ing solely on screenshots. To address the challenge
of accurate GUI element recognition, SeeClick
(Cheng et al., 2024) introduced a GUI grounding
pre-training strategy. This strategy involves auto-
mated data collection from diverse web and mobile
sources, such as web layouts, mobile widget de-
scriptions, and Ul summaries, enabling the model
to generalize across different GUI environments.
Following the setup in SeeClick, which initializes
from the visual encoder of Qwen-VL (Bai et al.,
2023), we directly adopt this visual encoder—a
48-layer ViT-bigG (Ilharco et al., 2021) pre-trained
on GUI grounding tasks—allowing LL.aVA-Mob
to leverage its robust ability to interpret visual in-
formation accurately.
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Figure 2: The workflow of our synthetic data approach: The Caption Module performs image captioning to generate
descriptive summaries of the GUI. The Analysis Module provides textual elements within the GUI to extract
meaningful insights and context. The Grounding Module identifies interactive elements such as buttons, icons, and
links while determining their precise locations for interaction.

Small Large Language Model To optimize
large language model deployment on mobile de-
vices, balancing performance and efficiency, we
selected Llama 3.2 1B (Dubey et al., 2024) as the
new text decoder. Mobile tasks don’t require the
same complexity in language fluency and diversity
as tasks like reading comprehension or dialogue.
Instead, the priority is to understand task require-
ments within a fixed instruction format, make accu-
rate judgments, and locate key features effectively.
Therefore, a simpler text decoder is sufficient for
mobile agents. Given the limited computing re-
sources on mobile devices, tightly controlling the
model’s parameter size is also crucial for successful
on-device deployment.

Training As shown in Figure 1, following the
LLaVA settings, the training is divided into two
stages. In the first stage, alignment data is used
to align the representations between the visual en-
coder and the text decoder. During this stage, only
the projector layers are trained. In the second stage,
the agent is trained through visual instruction tun-
ing using action prediction data, and this stage in-
volves full fine-tuning of the text decoder.

3.2 Data

We train our model using a combination of estab-
lished datasets including AITW and AMEX, and a
newly introduced, GUI-focused synthetic dataset,
specifically designed for alignment augmentation.
Together, these resources span a range of comple-
mentary tasks, including action prediction, element
grounding, and screen description, providing a ro-
bust foundation for comprehensive model training.

* AITW Dataset (Rawles et al., 2023): Compris-
ing 1 million samples, AITW covers an exten-
sive array of GUI-action prediction scenarios.
Tasks include mobile-specific commands such
as opening applications, typing text, and per-
forming scrolling actions.

* AMEX Dataset (Chai et al., 2024): AMEX prior-
itizes detailed screen descriptions, functionality
explanations, and element grounding tasks. It
includes 30k screen description samples, 199k
element grounding samples, and 280k function-
ality descriptions.

* Synthetic Dataset: Designed explicitly for GUI
environments and derived from AITW images
using our synthetic data approach, this dataset
enriches the training process through automated
data generation.

VLMs like LLaVA (Liu et al., 2023a) follow
a two-stage training process, with the first stage
aligning representations between two pre-trained
models on different modalities. While this process
has been extensively studied in general domains,
creating high-quality alignment data for mobile
platforms remains a challenge. Initially, we used
500k VQA samples from the AMEX (Chai et al.,
2024) dataset for alignment. However, the use
of visual information in this data is very limited,
the descriptions of image content are not detailed
enough, and there is a lack of correspondence be-
tween image elements and location information.
Moreover, this data involves local descriptions of
coordinate positions rather than performing ground-
ing tasks. Additionally, our analysis shows that



55.2% of AITW dataset involves DUAL_POINT
tasks, which require regression of coordinate data.
Therefore, high-quality grounding data becomes
even more crucial for such tasks. To address this,
we develop a synthetic data approach to leverage
existing models and build a robust pipeline for gen-
erating high-quality alignment data through syn-
thetic data construction.

Synthetic Data Approach Our synthetic data ap-
proach consists of three modules, each performing
a specific step to extract and refine information, as
shown in Figure 2. First, MiniCPM-V-2.5 (Yao
et al., 2024), with strong perceptual capabilities,
generates detailed image descriptions and effec-
tively captures ICON information due to its under-
standing of GUI elements. Second, LLaMA2-70B
(Touvron et al., 2023b), known for its strong rea-
soning abilities, analyzes on these descriptions to
extract interactive ICON elements from the text. Fi-
nally, SeeClick (Cheng et al., 2024), which special-
izes in grounding tasks, maps the ICON elements
extracted by LLaMA2-70B (Touvron et al., 2023b)
to their corresponding locations.

For the synthetic data, we randomly selected
8,000 images from the AITW dataset to create
a 24k image-text dataset tailored for mobile plat-
forms. The dataset includes detailed image descrip-
tions, element descriptions, and precise location
annotations, with 8,000 samples in each category.
This 24k dataset was used for the first stage of
training on LLaVA-Mob, enhancing the alignment
of visual and textual representations for mobile-
specific tasks. Unlike AMEX data, our Caption
section generates a small paragraph of text rather
than a simple sentence. Also, for the ICON posi-
tion information, we give the coordinates of the
content, contrary to AMEX.

4 Experiments

Our implementation builds on LLaVA (Liu et al.,
2023a), incorporating the LLaMA-3.2-1B (Dubey
et al., 2024) model and the SeeClick (Cheng et al.,
2024) vision encoder (Cheng et al., 2024). First,
we validated the model structure described in Sec-
tion 3.1 by conducting fair comparisons of different
vision encoders. This was done by keeping Stage
1 training on the AMEXS500K (Chai et al., 2024)
dataset and Stage 2 training and evaluation using
the instruction format from the Auto-UI (Zhang
and Zhang, 2023) version of the AITW (Rawles
et al., 2023) data. After finalizing the vision mod-

ule and model structure, as mentioned in Section
3.2, we enhanced model alignment by performing
ablation experiments on alignment data, with Stage
2 settings remaining consistent.

Hyperparameter =~ AMEX Synthetic Synthetic AiTW
Training Stage 1 1 1 2
Data Size 500K 24K 163K 1000K
Learning Rate le-3 le-3 le-3 2e-5
Epoch 1 3 3 3
Training Time 8 2 8 150
Batch Size 64

Optimizer AdamW

Lr Schedule cosine decay

Lr Warmup Ratio 0.03

Table 1: LLaVA-Mob’s hyperparameters differ across
training stages and datasets. The training time is mea-
sured in hours on a single A100 GPU.

4.1 Implementation

In stage 1 of aligning the vision encoder and lan-
guage encoder, we respectively used the AMEX
(Chai et al., 2024) data and the synthetic data.
AMEX (Chai et al., 2024) is a comprehensive
benchmark for Android OS GUI, containing
over 104K high-resolution screenshots and 711K
element-wise functionalities under real-world app
contexts. We converted the AMEX (Chai et al.,
2024) data into a VQA format suitable for in-
struction understanding to embed GUI-specific
knowledge in the MLLM. AMEX (Chai et al.,
2024) designed four distinct VQA tasks, three of
which—Screen Description, Element Grounding,
and Functionality Description—detail image fea-
tures and related GUI elements, making them ideal
for aligning the visual and text encoders. Therefore,
we packaged these three tasks into a S00K dataset
for the first-phase alignment training. Additionally,
as shown in Tabel 2, we also processed different
versions of synthetic data into VQA format for use
in the first-phase alignment training.

In stage 2, only AiTW data is used, following
the Auto-UI (Zhang and Zhang, 2023) settings. As
shown in Figure 3, AiTW (Rawles et al., 2023)
is a benchmark for smartphone GUI, containing
715K operation episodes under 30K reality inten-
tions. Each entry includes a goal in natural lan-
guage, screenshots, and actions. Humans collect
data on various devices and operation systems in
various screen resolutions. According to the ap-
plications domain, AITW consists of five subsets:
General, Install, GoogleApps, Single, and Web-
Shopping. This dataset, referencing LLaVA (Liu



Tasks

Source

Quantity

Examples of Task Templates

GUI-Action Prediction

AITW

1000k

User: Goal: open app Google Play Music
Agent: Action Decision: action type: PRESS HOME, touch point:
[-1.0, -1.0], lift point: [-1.0, -1.0], typed text: "".

Screen Description

Element Grounding

Functionality Description

AMEX

AMEX

AMEX

30k

199k

280k

User: Provide a one-sentence caption for the provided GUI image.
Agent: This page is a film section of the IMDb app, displaying a
list of movies or shows with sorting and filtering options.

User: Identify all clickable elements and provide their 2D BBox.
Agent: List of Elements with BBoxes.

User: What is the function of the icon at the coordinates: BBox.
Agent: Click to expand or collapse the sort options.

Caption

Analysis

Grounding

Synthetic data

Synthetic data

Synthetic data

163k

8k

8k

User: Could you please describe the details of the picture?
Agent: The image shows a screenshot of an online shopping
platform, specifically a product listing for a MacBook Air ...
User: Could you describe the elements in the image that can be
interacted with?

Agent: The image shows interactive elements within the Best Buy
app interface, allowing users to engage with various features ...
User: Could you please describe the location of the elements in
the image that can be interacted with?

Agent: Icon: Costco.com is at [0.06, 0.26]; Icon: My Warehouse
is at [0.23, 0.09]; Icon: Delivery Location is at [0.23, 0.5]...

Table 2: Task template examples. The AMEX and synthetic data were used in the first phase of training, while the

AITW data was used in the second phase.

et al., 2023a), was processed into the format of
visual instruction tuning, totaling 1,000k instruc-
tions. All entries were used in the second phase
of training to help the model understand instruc-
tion generation tasks. Leveraging the experience
from Auto-UI (Zhang and Zhang, 2023), our text
data is based on versions that incorporate historical
instructions. Inspired by the latest research (Ma
et al., 2024; Cheng et al., 2024), we have made
appropriate adjustments to the instructions. For
detailed information, please refer to the table 6 in
the appendix.

4.2 Setup

Training We implemented four versions of align-
ment training: one using only the AMEX dataset
and the other using a different version synthetic
dataset. As shown in Tabel 1 .The AMEX version
was trained on 500K samples for 1 epoch, while
the synthetic data versions, with only 24K sam-
ples and 163k samples, were trained for 3 epochs.
The performance differences between these two
alignment strategies are analyzed in detail in our
ablation experiments. Meanwhile, for both stages,
we follow LLaVA’s settings, using AdamW as the
optimizer, a cosine decay learning rate schedule,
and a warmup ratio of 0.03. The learning rate is

set to 1e-3 for alignment and 2e-5 for fine-tuning,
with a consistent batch size of 64 and 3 training
epochs. DeepSpeed Stage 3 is applied throughout
to enhance training efficiency.

Evaluation In our experiments on AITW subsets,
we primarily trained on the entire dataset in a uni-
fied manner. Accuracy, measured at each time step
across all parameters, serves as our main metric.
Refactored actions are parsed into JSON format,
with each parameter compared to the action label,
following (Rawles et al., 2023). A predicted co-
ordinate is considered correct if it falls within the
labeled element’s bounding box or within 7% of
the screen distance from the labeled point. A scroll
action is considered correct if its main direction
is accurate. For other parameters, exact matches
are required, except for typed text or dialogue re-
sponses. In AITW, typed text is correct if the label
appears in the predicted text.

4.3 Baselines

For AITW, we compare our proposed approach
with several baselines. Uni-modal API-based meth-
ods, such as those by Rawles et al. (2023) and
Zhang and Zhang (2023), evaluate 5-shot perfor-
mance on PalLM-2 (Anil et al., 2023) and Chat-
GPT(Ouyang et al., 2022), using pseudo-HTML



Model Params Overall General Install GoogleApps Single WebShop.
ChatGPT-COT (Ding, 2024) - 7.72 5.93 4.38 10.47 9.39 8.42
GPT-4V ZS+HTML (Ding, 2024) - 50.54 41.66 42.64  49.82 72.83 45.73
GPT-4V ZS+History (Ding, 2024) - 5296 43.01 46.14 49.18 78.29 48.18
GPT-40 (Wu et al., 2024b) - 55.02 47.06 49.12 5230 80.28 46.42
MobileAgent (Wang et al., 2024a) - 66.92  55.8 7498  63.95 76.27 63.61
InternVL +History (Wu et al., 2024b) 6B 2.63 1.95 2.88 2.94 3.03 2.71
Qwen-VL +History (Wu et al., 2024b) 7B 3.23 2.71 4.11 4.02 3.89 2.58
PalLM-2 (Zhang and Zhang, 2023) 340B  39.6 - - - - -
MM-Navigator (Yan et al., 2023) - 50.54 41.66 42.64 49.82 72.83 45.73
MM-Navigatory, ex (Yan et al., 2023) - 5192 4244  49.18 48.26 76.34 43.35
MM-Navigatory, nistory (Yan et al., 2023) - 5296 43.01 46.14 49.18 78.29 48.18
OmniParser (Wan et al., 2024) - 50.54 41.66 42.64  49.82 72.83 45.73
BC (Rawles et al., 2023) 1B 68.7 - - - - -

BC w/nistory (Rawles et al., 2023) 1B 73.1 63.7 77.5 75.7 80.3 68.5
Qwen-2-VL (Wang et al., 2024b) 2B 6720 6140 71.80 62.60 73.70 66.70
Show-UI (Qinghong Lin et al., 2024) 2B 70.00 6390 7250 @ 69.70 77.50 66.60
Llama 2 (Zhang and Zhang, 2023) 7B 2840 28,56  35.18  30.99 27.35 19.92
Llama 2+Plan+Hist (Zhang and Zhang, 2023) 7B 62.86 53.77 69.1 61.19 73.51 56.74
Auto-UI (Zhang and Zhang, 2023) 5B 7427 6824 76.89  71.37 84.58 70.26
MobileVLM (Wu et al., 2024b) 7B 7494  69.58 79.87 74.72 81.24 71.70
SphAgent (Chai et al., 2024) 7B 76.28 6820 80.50  73.30 85.40 74.00
CoCo-LLAVA (Ma et al., 2024) 7B 70.37 5893 7241  70.81 83.73 65.98
SeeClick (Cheng et al., 2024) 9.6B 76.20  67.60 79.60  75.90 84.60 73.10
CogAgent (Hong et al., 2023) 18B 76.88 6538 78.86  74.95 93.49 71.73
LLaVA-Mob 1B 77.52 71.61 80.01 7545 87.15 73.41

Table 3: Results on AITW: Action accuracy across main setups, highlighting overall performance in decision-making
tasks. # means, CoCo-Agent relies on layout data to retrieve icon positions, making it not directly comparable
to other end-to-end methods that do not depend on API or system-level data. However, we include this result for

reference.

code to represent images and predicting action tar-
gets by item names or indices without verifying
coordinates. Multimodal methods include MM-
Navigator (Yan et al., 2023), a GPT-4V-based agent
achieving few-shot state-of-the-art. Training-based
methods feature models like Behavioral Cloning
(Rawles et al., 2023), a Transformer-based agent
with BERT (Devlin et al., 2019), LLaMA-2 for
uni-modal tasks with pseudo HTML inputs (Zhang
and Zhang, 2023), and Auto-UI (Zhang and Zhang,
2023), a multimodal encoder-decoder with T5 and
BLIP. Finally, CogAgent (Hong et al., 2023), a 9B-
parameter visual LLM with a high-resolution cross
module, excels in GUI understanding and achieves
top performance on AITW. OmniPhrser (Wan et al.,
2024) employs OCR for text extraction and Blip2
for improved multimodal comprehension.

4.4 Main Results

Table 3 presents action accuracy across primary
setups, including various task subsets such as over-
all performance, general tasks, installation tasks,
Google Apps, single-action tasks, and web shop-
ping. Notably, LLaVA-Mob demonstrates excep-
tional efficiency, achieving an overall accuracy

of 77.52 percent with only 1 billion parameters.
It performs particularly well in the General and
Single task subsets, with accuracies of 71.61 per-
cent and 87.15 percent, highlighting its robust-
ness across diverse scenarios. Despite its smaller
size, LLaVA-Mob approaches the performance of
larger models like SphAgent (Chai et al., 2024) and
LLaVA (Ma et al., 2024) and surpasses many in
efficiency. Unlike models such as MobileAgent
(Wang et al., 2024a) and CogAgent (Hong et al.,
2023), which benefits from additional data and long
memory, LLaVA-Mob relies solely on end-to-end
data to achieve an excellent balance between per-
formance and resource efficiency. This makes it an
ideal choice for mobile applications and resource-
constrained environments. Its strong performance
across all subsets underscores its effectiveness and
efficiency in handling GUI-related perception and
decision-making tasks.

4.5 Ablation Study

Our ablation study evaluated the contributions of
different components of the model, focusing on
Pre-Training Vision Encoder and Synthetic Data.
All ablation experiments were trained with origin



format of AITW dataset and tested on General data
with accuracy metric.

Model  Layers Resolution Pretrain Task General
ViT-large 24 336 CLIP 61.51
ViT-bigG 48 224 CLIP 62.85
SeeClick 48 224 Grounding 64.51

Table 4: Comparison of vision encoders within the same
structure on action accuracy, using AMEX 500K as
Stage 1 data and the Origin format of AITW as Stage 2
data.

Pre-Training we conduct an ablation study on
the visual decoder, comparing model performance
initialized with bigG and SeeClick. As shown in
table 4, comparing the first and second lines, the
performance of the model can be further improved
by choosing a more powerful visual encoder. Mean-
while, SeeClick, pre-trained on large-scale GUI
data, significantly enhances adaptation to GUI ac-
tion prediction task.

Data Size Cost/$ Epoch Train/h  General
AMEX 500K 0 1 8 64.51
Caption 24K 0 3 2 66.32
Caption 163K 0 3 7 66.99
Mixing 8K+8K+8K 15 3 2 67.25

Table 5: Comparison of alignment datasets in Stage 1
within the same structure using SeeClick as the vision
encoder, with the Origin format of AITW as Stage 2
data. The cost reflects the use of LLaMA2-70B through
an API, resulting in incurred expenses.

Synthetic Data Table 5 demonstrates the effec-
tiveness of the Synthetic dataset in improving
model performance. Despite having significantly
fewer samples than AMEX (Chai et al., 2024) ,
both 24k and 164k caption data can outperform
AMEX (Chai et al., 2024) , achieving higher ac-
curacy on General action prediction task. Given
that the caption data in the synthetic dataset is
much longer and more detailed than the brief con-
tent summaries in the AMEX dataset, this demon-
strates that in alignment tasks, richer detailed de-
scriptions lead to better alignment outcomes and
data quality. The comparison between the third
and fourth rows emphasizes that data quality is
more important than data size for alignment tasks.
The synthetic pipeline’s ability to capture detailed
ICON information has greatly enhanced data qual-
ity. This demonstrates the importance of high-
quality, domain-specific data for alignment, with

the synthetic pipeline achieving strong and efficient
results, even with smaller sample sizes.

5 Conclusion

In this paper, we introduced LLaVA-Mob, a com-
pact and efficient multimodal large language model
tailored for smartphone GUI automation tasks. By
addressing the unique challenges of mobile environ-
ments, LLaVA-Mob demonstrates how lightweight
architectures can effectively balance performance
and computational efficiency.

Our approach features two main innovations:
a specialized model architecture leveraging a 1B-
parameter language model and a pre-trained vision
encoder optimized for GUI tasks, and a synthetic
data generation strategy to enhance visual-textual
alignment through high-quality domain-specific
datasets. These advancements ensure LLaVA-Mob
delivers robust performance while maintaining low
resource requirements, making it suitable for de-
ployment on mobile devices.

The experimental results validate the efficacy
of our approach, with LLaVA-Mob achieving
competitive accuracy compared to larger models
on the AITW benchmark, highlighting its ability
to manage diverse GUI-related tasks effectively.
This work underscores the potential of lightweight
MLLMs to serve as practical, scalable solutions
for mobile automation, bridging the gap between
resource constraints and advanced functionality.

6 Future Work

GUI agents based on instruction fine-tuning only
perform basic representation transfer, narrowing
the prediction action space within the entire in-
struction generation task. While still far from real-
world application, they serve as cost-effective base
models. Recent studies have explored combining
reinforcement learning strategies, such as Proxi-
mal Policy Optimization (Schulman et al., 2017),
with MLLMs, with significant efforts made in re-
cent works Digirl (Bai et al., 2024) and RL4VLM
(Zhai et al., 2024). Future research should focus on
integrating instruction fine-tuned models with rein-
forcement learning to build GUI automation agents
that can be deployed in real-world environments.
Further exploration is needed to develop mobile-
friendly reinforcement learning environments that
better adapt to MLLMs.



Limitations

Detailed ablation studies across multiple sub-tasks
can highlight the differences between methods
more effectively. However, due to the extensive
size of the AITW test set, conducting these tests
is very time-consuming, with some tasks taking
over 20 hours. As a result, ablation experiments
were only performed on the General task. Future re-
search should focus on acquiring standardized test
subsets to speed up inference and testing, which
would help optimize further explorations in this
area.
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Figure 3: Distribution of Task Types in AiTW dataset:
This chart shows the frequency distribution of different
task types across the entire training dataset, consisting
of approximately 1 million data points.
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Origin Instruction Template

InsCom Middle Template

Action Decision: action type: PRESS_HOME, touch point: [-1.0, -1.0], lift
point: [-1.0, -1.0], typed text: "".

The action is <PRESS_HOME->.

Action Decision: action type: PRESS_BACK, touch point: [-1.0, -1.0], lift
point: [-1.0, -1.0], typed text: "".

The action is <PRESS_BACK>.

Action Decision: action type: PRESS_ENTER, touch point: [-1.0, -1.0], lift
point: [-1.0, -1.0], typed text: "".

The action is <PRESS_ENTER>.

Action Decision: action type: STATUS_TASK_COMPLETE, touch point: [-
1.0, -1.0], lift point: [-1.0, -1.0], typed text: "".

The action is <STATUS_TASK_COMPLETE>.

Action Decision: action type: TYPE, touch point: [-1.0, -1.0], lift point: [-1.0,
-1.0], typed text: "{string}".

The action is <TYPE>, "typed_text": "{string}".

Action Decision: action type: Scrolling_Up, touch point: [0.8, 0.5], lift point:
[0.2, 0.5], typed text: "".

The action is <Scrolling_Up>.

Action Decision: action type: Scrolling_Down, touch point: [0.2, 0.5], lift
point: [08, 0.5], typed text: "".

The action is <Scrolling_Down>.

Action Decision: action type: DUAL_POINT, touch point: {coordinate}, lift
point: {coordinate}, typed text: "".

The action is <DUAL_POINT>, "touch_point": "{coordinate}", "lift_point":
"{coordinate}".

Table 6: Examples of transformations between origin data format and Our formats for all task types.
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