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Abstract

Recent advancements in mobile GUI automa-001
tion have leveraged multimodal large language002
models (MLLMs) for task automation. How-003
ever, deploying these models on mobile devices004
poses significant challenges, including high005
computational costs, suboptimal performance,006
and limited adaptability to mobile-specific con-007
texts. In this paper, we propose LLaVA-Mob,008
a lightweight multimodal agent designed for009
efficient smartphone GUI automation. LLaVA-010
Mob features a compact 1B-parameter lan-011
guage model and a GUI-optimized vision en-012
coder, specifically tailored for mobile environ-013
ments. Additionally, we introduce a synthetic014
data generation approach to produce high-015
quality, domain-aligned datasets, enhancing016
alignment between visual and textual modali-017
ties. Experiments on the AITW dataset demon-018
strate that LLaVA-Mob achieves performance019
comparable to larger models while significantly020
reducing computational costs, making it well-021
suited for resource-constrained mobile plat-022
forms. We will release our code, model, and023
datasets upon publication.024

1 Introduction025

Multimodal Large Language Models (MLLMs)026

have recently emerged as powerful agents capable027

of interacting with both real and virtual environ-028

ments (Wang et al., 2023b; Zhang et al., 2023c;029

Yao et al., 2022; Xi et al., 2023; Li et al., 2023a).030

Among these, autonomous agents stand out for031

their ability to dynamically interact with their sur-032

roundings, creating feedback loops that influence033

successive states (Wang et al., 2023a; Richards,034

2023; Liu et al., 2023b; Rawles et al., 2023). For035

practical applications such as graphical user inter-036

face (GUI) automation, these agents must combine037

precise perception with reliable action execution,038

demonstrating significant potential to manage tasks039

traditionally performed by humans. With multi-040

modal capabilities, these agents can serve as robust041

GUI assistants, effectively perceiving and interact- 042

ing with digital environments. 043

On resource-constrained mobile devices, achiev- 044

ing a balance between performance and efficiency 045

is crucial. Most existing MLLMs face challenges 046

that hinder their deployment in such environments, 047

including high computational demands, complex 048

inference, and limited adaptability to the mobile 049

domain. These challenges can be summarized as 050

follows: (1) Dependency on Large-Scale MLLMs: 051

Many existing models rely on powerful, closed- 052

source LLMs like GPT-4V (OpenAI, 2023), which 053

require refined prompt and post-processing strate- 054

gies (Richards, 2023; Shen et al., 2023; Yan et al., 055

2023). Such models, like Mobile-Agent, frequently 056

call APIs for complex inference tasks, introduc- 057

ing privacy risks and limiting customization. By 058

contrast, models built on open-source LLMs (e.g., 059

LLaMA, Vicuna (Touvron et al., 2023a; Chiang 060

et al., 2023)) offer greater flexibility and control, al- 061

lowing direct training in the GUI domain while en- 062

hancing privacy through local deployment. (2) Mul- 063

timodal Perception Challenges: GUI agents need 064

robust multimodal perception to navigate complex, 065

information-dense environments. Visual language 066

models have shown promise in aligning visual and 067

linguistic modalities (Dai et al., 2023; Ye et al., 068

2023; Zhao et al., 2023), but GUI environments 069

involve nuanced details that general approaches 070

fail to capture. For example, a small magnifier 071

icon suggests a "search" function—an implicit se- 072

mantic meaning that standard image captioning 073

often misses. Recent methods use OCR and icon 074

detectors to convert visual data into textual repre- 075

sentations (e.g., XML layouts) (Zhang et al., 2021; 076

Sunkara et al., 2022), but these approaches have 077

significant limitations: (1) lengthy textual inputs 078

slow down inference, and (2) reliance on parsed 079

elements restricts adaptability, making them depen- 080

dent on the accuracy of the parsing process. 081

To address these challenges, we propose LLaVA- 082
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Mob, a model featuring a compact 1B-parameter083

LLM and a vision encoder pre-trained on GUI-084

specific tasks (Cheng et al., 2024). This archi-085

tecture reduces fine-tuning and deployment costs086

while enhancing visual perception and action pre-087

diction for mobile environments. We also introduce088

a synthetic data approach that utilizes specialized089

models to generate high-quality, domain-aligned090

synthetic datasets. This improves feature alignment091

between visual and textual modalities, enabling092

more efficient and accurate action prediction.093

Our contributions are summarized as follows:094

• We propose LLaVA-Mob, a cognitive LLM095

agent tailored for GUI automation tasks. It uti-096

lizes a more lightweight model with lower train-097

ing costs while achieving performance compara-098

ble to larger models.099

• We introduce a new synthetic data approach that100

combines multiple expert models to generate101

high-quality synthetic datasets.102

• Experiments show that our new mobile agent,103

built on a 1B model, achieves performance com-104

parable to larger models on the AITW dataset.105

2 Related Work106

This section introduces studies on autonomous lan-107

guage agents and multimodal perception of LLMs.108

2.1 Autonomous Language Agents109

Recent work has highlighted the potential of lan-110

guage agents—language models capable of inter-111

acting with environments or other agents to solve112

complex tasks (Li et al., 2023a; Richards, 2023;113

Wu et al., 2024a). These agents either leverage114

large language models (LLMs) like GPT-4 for115

reasoning and planning through prompt engineer-116

ing (Richards, 2023; Shen et al., 2023; Yan et al.,117

2023) or focus on trainable, open-source models118

for greater customization and privacy (Shao et al.,119

2023).120

While GPT-based agents like AutoGPT and Hug-121

gingGPT showcase strong generalization abilities,122

they lack adaptability for specific environments. To123

overcome this, trainable approaches have been de-124

veloped, such as m-BASH (Sun et al., 2022), which125

used ROI pooling for GUI tasks, Auto-UI (Zhang126

and Zhang, 2023), which reformulated GUI interac-127

tions into a VQA framework, and CogAgent (Hong128

et al., 2023), which added a high-resolution visual129

module with alignment pertaining. We follows the130

trainable approach, focusing on open-source lan- 131

guage agents better suited for customizable and 132

privacy-conscious applications. 133

2.2 Multimodal Integration in LLMs 134

The integration of multiple modalities with lan- 135

guage models has become a key area of research, 136

driven by the advancements in large language mod- 137

els (LLMs). Most current approaches adopt a 138

language-centric framework, where data from other 139

modalities is encoded into the language embed- 140

ding space. These models typically consist of 141

three components: a pre-trained encoder for the 142

non-language modality, a language model, and an 143

adapter (or projector) to bridge the two. Different 144

designs of adapters have been proposed to achieve 145

this fusion. For instance, BLIP-2 (Li et al., 2023b) 146

employs a Q-former to generate query vectors that 147

represent image features, while LLaVA (Liu et al., 148

2023a) uses a linear layer to map visual encod- 149

ings from CLIP into the language space. These 150

innovations have led to the development of various 151

multimodal LLMs, including Flamingo (Alayrac 152

et al., 2022), MiniGPT-4 and its v2 version (Zhu 153

et al., 2023; Chen et al., 2023), mPLUG (Ye et al., 154

2023), Video-LLaMA (Zhang et al., 2023b), and 155

SpeechGPT (Zhang et al., 2023a). By leveraging 156

pre-trained encoders and sophisticated adapters, 157

these models effectively align information across 158

modalities, enabling applications that extend be- 159

yond traditional language modeling. 160

3 Methodology 161

Our approach introduces two primary innovations: 162

(1) a lightweight model architecture optimized for 163

mobile devices, and (2) a synthetic data approach 164

that robustly aligns visual and textual modalities 165

within GUI environments. Together, these advance- 166

ments enhance the accuracy of GUI element percep- 167

tion and enable more efficient and effective com- 168

mand prediction tailored to mobile-specific tasks. 169

3.1 Model 170

Architecture We adapt the LLaVA framework 171

(Liu et al., 2023a), extending it with components 172

specifically optimized for GUI automation tasks. 173

Our architecture integrates: 174

• Text Module: A lightweight Llama-3.2-1B 175

(Dubey et al., 2024) model serves as the decoder, 176

optimized for mobile tasks where simplicity and 177

efficiency are prioritized. 178
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LLaMA 1B

Projector

ViT

What content are 
present in the image?

This is an account page for a loyalty program, 

showing membership details, miles balance, 

and level progress. It also includes 
navigation options at the bottom.

Projector

ViT

Open a new Chrome 

private window

The action is #PRESS_HOME#
The action is #Scrolling Down#

The action is #DUAL_POINT#; touch_point: 
0.9046, 0.9253, lift_point: 0.9046, 0.9253

Action History

Stage 1：Feature Alignment Stage 2:  Agent SFT

LLaMA 1B

Figure 1: The architecture of LLaVA-Mob. It consists of a vision encoder with a pre-trained ViT from SeeClick
(Cheng et al., 2024), two linear projection layers, and an advanced LLaMA-3.2-1B (Dubey et al., 2024) large
language model.

• Vision Encoder: The SeeClick visual encoder179

(Cheng et al., 2024), based on a 48-layer ViT-180

bigG model, is pre-trained on GUI-specific data181

to enhance element recognition in dense GUI182

interfaces.183

• Projection Module: A two-layer linear projec-184

tion (PRJ) maps visual features to the language185

embedding space, ensuring effective alignment186

between modalities.187

As shown in Figure 1, Our model architecture188

builds upon the LLaVA framework (Liu et al.,189

2023a), extending its capabilities for GUI automa-190

tion. The adapted LLaVA structure in LLaVA-Mob191

integrates Llama-3.2-1B (Dubey et al., 2024) as192

the text module (DECODER), a SeeClick (Cheng193

et al., 2024) vision encoder (ENCODERimage), and194

a two-layer linear projection module (PRJ) to map195

image features to the language embedding space196

(EMBEDtext). The input X consists of both text197

(Xtext) and image (Ximage), with the output repre-198

sented as Y . The process begins with embedding199

the text and encoding the image:200

Htext = EMBEDtext( Xtext ◦ Ŷ 0:t−1 ),

Zimage = ENCODERimage( Ximage ),

Himage = PRJ( Zimage ).

(1)201

Here, ◦ denotes the concatenation operation, al-202

lowing text and historical action outputs to be em-203

bedded together. The two-layer linear projection204

module PRJ is defined as:205

Himage = W2 ReLU (W1Zimage + b1) + b2,206

where W1, W2, b1, and b2 are learnable weights and 207

biases, and ReLU is the activation function used 208

between the two linear layers. The text module in- 209

terprets instructions, while the vision encoder pro- 210

cesses GUI screenshots to extract relevant visual 211

features. The projection module bridges the visual 212

and textual modalities, enhancing multimodal un- 213

derstanding and improving accuracy in command 214

predictions for mobile-specific tasks. 215

This adapted architecture is specifically opti- 216

mized for mobile GUI automation challenges, al- 217

lowing LLaVA-Mob to maintain efficiency and 218

achieve precise action prediction, despite the re- 219

source constraints typical of mobile devices. 220

Visual Encoder The core focus of mobile agent 221

tasks is the visual encoder’s ability to locate ele- 222

ments within GUI interfaces, especially when rely- 223

ing solely on screenshots. To address the challenge 224

of accurate GUI element recognition, SeeClick 225

(Cheng et al., 2024) introduced a GUI grounding 226

pre-training strategy. This strategy involves auto- 227

mated data collection from diverse web and mobile 228

sources, such as web layouts, mobile widget de- 229

scriptions, and UI summaries, enabling the model 230

to generalize across different GUI environments. 231

Following the setup in SeeClick, which initializes 232

from the visual encoder of Qwen-VL (Bai et al., 233

2023), we directly adopt this visual encoder—a 234

48-layer ViT-bigG (Ilharco et al., 2021) pre-trained 235

on GUI grounding tasks—allowing LLaVA-Mob 236

to leverage its robust ability to interpret visual in- 237

formation accurately. 238
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        Synthetic Pipeline

Could you describe 

the elements in the 

text that can be 

interacted with?

 The application that 

can be interacted 

with are:\n1. 

Costco.com ...

Caption Module
MiniCPM

Analysis Module
LLaMA 70B

Grounding Module
SeeClick

Could you please 
describe the 
details of the 

picture?

The image shows a 

screenshot of a 

mobile device 

displaying a web 

from Costco.com ...

Could you describe 

the location of the 

elements in the 

image that can be 

interacted with?

Icon:Costco.com 

is at [0.06, 0.26]

Icon:My Warehouse 

is at [0.23, 0.09]

Figure 2: The workflow of our synthetic data approach: The Caption Module performs image captioning to generate
descriptive summaries of the GUI. The Analysis Module provides textual elements within the GUI to extract
meaningful insights and context. The Grounding Module identifies interactive elements such as buttons, icons, and
links while determining their precise locations for interaction.

Small Large Language Model To optimize239

large language model deployment on mobile de-240

vices, balancing performance and efficiency, we241

selected Llama 3.2 1B (Dubey et al., 2024) as the242

new text decoder. Mobile tasks don’t require the243

same complexity in language fluency and diversity244

as tasks like reading comprehension or dialogue.245

Instead, the priority is to understand task require-246

ments within a fixed instruction format, make accu-247

rate judgments, and locate key features effectively.248

Therefore, a simpler text decoder is sufficient for249

mobile agents. Given the limited computing re-250

sources on mobile devices, tightly controlling the251

model’s parameter size is also crucial for successful252

on-device deployment.253

Training As shown in Figure 1, following the254

LLaVA settings, the training is divided into two255

stages. In the first stage, alignment data is used256

to align the representations between the visual en-257

coder and the text decoder. During this stage, only258

the projector layers are trained. In the second stage,259

the agent is trained through visual instruction tun-260

ing using action prediction data, and this stage in-261

volves full fine-tuning of the text decoder.262

3.2 Data263

We train our model using a combination of estab-264

lished datasets including AITW and AMEX, and a265

newly introduced, GUI-focused synthetic dataset,266

specifically designed for alignment augmentation.267

Together, these resources span a range of comple-268

mentary tasks, including action prediction, element269

grounding, and screen description, providing a ro-270

bust foundation for comprehensive model training.271

• AITW Dataset (Rawles et al., 2023): Compris- 272

ing 1 million samples, AITW covers an exten- 273

sive array of GUI-action prediction scenarios. 274

Tasks include mobile-specific commands such 275

as opening applications, typing text, and per- 276

forming scrolling actions. 277

• AMEX Dataset (Chai et al., 2024): AMEX prior- 278

itizes detailed screen descriptions, functionality 279

explanations, and element grounding tasks. It 280

includes 30k screen description samples, 199k 281

element grounding samples, and 280k function- 282

ality descriptions. 283

• Synthetic Dataset: Designed explicitly for GUI 284

environments and derived from AITW images 285

using our synthetic data approach, this dataset 286

enriches the training process through automated 287

data generation. 288

VLMs like LLaVA (Liu et al., 2023a) follow 289

a two-stage training process, with the first stage 290

aligning representations between two pre-trained 291

models on different modalities. While this process 292

has been extensively studied in general domains, 293

creating high-quality alignment data for mobile 294

platforms remains a challenge. Initially, we used 295

500k VQA samples from the AMEX (Chai et al., 296

2024) dataset for alignment. However, the use 297

of visual information in this data is very limited, 298

the descriptions of image content are not detailed 299

enough, and there is a lack of correspondence be- 300

tween image elements and location information. 301

Moreover, this data involves local descriptions of 302

coordinate positions rather than performing ground- 303

ing tasks. Additionally, our analysis shows that 304
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55.2% of AITW dataset involves DUAL_POINT305

tasks, which require regression of coordinate data.306

Therefore, high-quality grounding data becomes307

even more crucial for such tasks. To address this,308

we develop a synthetic data approach to leverage309

existing models and build a robust pipeline for gen-310

erating high-quality alignment data through syn-311

thetic data construction.312

Synthetic Data Approach Our synthetic data ap-313

proach consists of three modules, each performing314

a specific step to extract and refine information, as315

shown in Figure 2. First, MiniCPM-V-2.5 (Yao316

et al., 2024), with strong perceptual capabilities,317

generates detailed image descriptions and effec-318

tively captures ICON information due to its under-319

standing of GUI elements. Second, LLaMA2-70B320

(Touvron et al., 2023b), known for its strong rea-321

soning abilities, analyzes on these descriptions to322

extract interactive ICON elements from the text. Fi-323

nally, SeeClick (Cheng et al., 2024), which special-324

izes in grounding tasks, maps the ICON elements325

extracted by LLaMA2-70B (Touvron et al., 2023b)326

to their corresponding locations.327

For the synthetic data, we randomly selected328

8,000 images from the AITW dataset to create329

a 24k image-text dataset tailored for mobile plat-330

forms. The dataset includes detailed image descrip-331

tions, element descriptions, and precise location332

annotations, with 8,000 samples in each category.333

This 24k dataset was used for the first stage of334

training on LLaVA-Mob, enhancing the alignment335

of visual and textual representations for mobile-336

specific tasks. Unlike AMEX data, our Caption337

section generates a small paragraph of text rather338

than a simple sentence. Also, for the ICON posi-339

tion information, we give the coordinates of the340

content, contrary to AMEX.341

4 Experiments342

Our implementation builds on LLaVA (Liu et al.,343

2023a), incorporating the LLaMA-3.2-1B (Dubey344

et al., 2024) model and the SeeClick (Cheng et al.,345

2024) vision encoder (Cheng et al., 2024). First,346

we validated the model structure described in Sec-347

tion 3.1 by conducting fair comparisons of different348

vision encoders. This was done by keeping Stage349

1 training on the AMEX500K (Chai et al., 2024)350

dataset and Stage 2 training and evaluation using351

the instruction format from the Auto-UI (Zhang352

and Zhang, 2023) version of the AITW (Rawles353

et al., 2023) data. After finalizing the vision mod-354

ule and model structure, as mentioned in Section 355

3.2, we enhanced model alignment by performing 356

ablation experiments on alignment data, with Stage 357

2 settings remaining consistent. 358

Hyperparameter AMEX Synthetic Synthetic AiTW

Training Stage 1 1 1 2
Data Size 500K 24K 163K 1000K
Learning Rate 1e-3 1e-3 1e-3 2e-5
Epoch 1 3 3 3
Training Time 8 2 8 150
Batch Size 64
Optimizer AdamW
Lr Schedule cosine decay
Lr Warmup Ratio 0.03

Table 1: LLaVA-Mob’s hyperparameters differ across
training stages and datasets. The training time is mea-
sured in hours on a single A100 GPU.

4.1 Implementation 359

In stage 1 of aligning the vision encoder and lan- 360

guage encoder, we respectively used the AMEX 361

(Chai et al., 2024) data and the synthetic data. 362

AMEX (Chai et al., 2024) is a comprehensive 363

benchmark for Android OS GUI, containing 364

over 104K high-resolution screenshots and 711K 365

element-wise functionalities under real-world app 366

contexts. We converted the AMEX (Chai et al., 367

2024) data into a VQA format suitable for in- 368

struction understanding to embed GUI-specific 369

knowledge in the MLLM. AMEX (Chai et al., 370

2024) designed four distinct VQA tasks, three of 371

which—Screen Description, Element Grounding, 372

and Functionality Description—detail image fea- 373

tures and related GUI elements, making them ideal 374

for aligning the visual and text encoders. Therefore, 375

we packaged these three tasks into a 500K dataset 376

for the first-phase alignment training. Additionally, 377

as shown in Tabel 2, we also processed different 378

versions of synthetic data into VQA format for use 379

in the first-phase alignment training. 380

In stage 2, only AiTW data is used, following 381

the Auto-UI (Zhang and Zhang, 2023) settings. As 382

shown in Figure 3, AiTW (Rawles et al., 2023) 383

is a benchmark for smartphone GUI, containing 384

715K operation episodes under 30K reality inten- 385

tions. Each entry includes a goal in natural lan- 386

guage, screenshots, and actions. Humans collect 387

data on various devices and operation systems in 388

various screen resolutions. According to the ap- 389

plications domain, AITW consists of five subsets: 390

General, Install, GoogleApps, Single, and Web- 391

Shopping. This dataset, referencing LLaVA (Liu 392
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Tasks Source Quantity Examples of Task Templates

GUI-Action Prediction AITW 1000k
User: Goal: open app Google Play Music
Agent: Action Decision: action type: PRESS HOME, touch point:
[-1.0, -1.0], lift point: [-1.0, -1.0], typed text: "".

Screen Description AMEX 30k
User: Provide a one-sentence caption for the provided GUI image.
Agent: This page is a film section of the IMDb app, displaying a
list of movies or shows with sorting and filtering options.

Element Grounding AMEX 199k
User: Identify all clickable elements and provide their 2D BBox.
Agent: List of Elements with BBoxes.

Functionality Description AMEX 280k
User: What is the function of the icon at the coordinates: BBox.
Agent: Click to expand or collapse the sort options.

Caption Synthetic data 163k
User: Could you please describe the details of the picture?
Agent: The image shows a screenshot of an online shopping
platform, specifically a product listing for a MacBook Air ...

Analysis Synthetic data 8k

User: Could you describe the elements in the image that can be
interacted with?
Agent: The image shows interactive elements within the Best Buy
app interface, allowing users to engage with various features ...

Grounding Synthetic data 8k

User: Could you please describe the location of the elements in
the image that can be interacted with?
Agent: Icon: Costco.com is at [0.06, 0.26]; Icon: My Warehouse
is at [0.23, 0.09]; Icon: Delivery Location is at [0.23, 0.5]...

Table 2: Task template examples. The AMEX and synthetic data were used in the first phase of training, while the
AITW data was used in the second phase.

et al., 2023a), was processed into the format of393

visual instruction tuning, totaling 1,000k instruc-394

tions. All entries were used in the second phase395

of training to help the model understand instruc-396

tion generation tasks. Leveraging the experience397

from Auto-UI (Zhang and Zhang, 2023), our text398

data is based on versions that incorporate historical399

instructions. Inspired by the latest research (Ma400

et al., 2024; Cheng et al., 2024), we have made401

appropriate adjustments to the instructions. For402

detailed information, please refer to the table 6 in403

the appendix.404

4.2 Setup405

Training We implemented four versions of align-406

ment training: one using only the AMEX dataset407

and the other using a different version synthetic408

dataset. As shown in Tabel 1 .The AMEX version409

was trained on 500K samples for 1 epoch, while410

the synthetic data versions, with only 24K sam-411

ples and 163k samples, were trained for 3 epochs.412

The performance differences between these two413

alignment strategies are analyzed in detail in our414

ablation experiments. Meanwhile, for both stages,415

we follow LLaVA’s settings, using AdamW as the416

optimizer, a cosine decay learning rate schedule,417

and a warmup ratio of 0.03. The learning rate is418

set to 1e-3 for alignment and 2e-5 for fine-tuning, 419

with a consistent batch size of 64 and 3 training 420

epochs. DeepSpeed Stage 3 is applied throughout 421

to enhance training efficiency. 422

Evaluation In our experiments on AITW subsets, 423

we primarily trained on the entire dataset in a uni- 424

fied manner. Accuracy, measured at each time step 425

across all parameters, serves as our main metric. 426

Refactored actions are parsed into JSON format, 427

with each parameter compared to the action label, 428

following (Rawles et al., 2023). A predicted co- 429

ordinate is considered correct if it falls within the 430

labeled element’s bounding box or within 7% of 431

the screen distance from the labeled point. A scroll 432

action is considered correct if its main direction 433

is accurate. For other parameters, exact matches 434

are required, except for typed text or dialogue re- 435

sponses. In AITW, typed text is correct if the label 436

appears in the predicted text. 437

4.3 Baselines 438

For AITW, we compare our proposed approach 439

with several baselines. Uni-modal API-based meth- 440

ods, such as those by Rawles et al. (2023) and 441

Zhang and Zhang (2023), evaluate 5-shot perfor- 442

mance on PaLM-2 (Anil et al., 2023) and Chat- 443

GPT(Ouyang et al., 2022), using pseudo-HTML 444
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Model Params Overall General Install GoogleApps Single WebShop.

ChatGPT-COT (Ding, 2024) - 7.72 5.93 4.38 10.47 9.39 8.42
GPT-4V ZS+HTML (Ding, 2024) - 50.54 41.66 42.64 49.82 72.83 45.73
GPT-4V ZS+History (Ding, 2024) - 52.96 43.01 46.14 49.18 78.29 48.18
GPT-4o (Wu et al., 2024b) - 55.02 47.06 49.12 52.30 80.28 46.42
MobileAgent (Wang et al., 2024a) - 66.92 55.8 74.98 63.95 76.27 63.61

InternVL +History (Wu et al., 2024b) 6B 2.63 1.95 2.88 2.94 3.03 2.71
Qwen-VL +History (Wu et al., 2024b) 7B 3.23 2.71 4.11 4.02 3.89 2.58
PaLM-2 (Zhang and Zhang, 2023) 340B 39.6 – – – – –
MM-Navigator (Yan et al., 2023) - 50.54 41.66 42.64 49.82 72.83 45.73
MM-Navigatorw/ text (Yan et al., 2023) - 51.92 42.44 49.18 48.26 76.34 43.35
MM-Navigatorw/ history (Yan et al., 2023) - 52.96 43.01 46.14 49.18 78.29 48.18
OmniParser (Wan et al., 2024) - 50.54 41.66 42.64 49.82 72.83 45.73

BC (Rawles et al., 2023) 1B 68.7 – – – – –
BC w/ history (Rawles et al., 2023) 1B 73.1 63.7 77.5 75.7 80.3 68.5
Qwen-2-VL (Wang et al., 2024b) 2B 67.20 61.40 71.80 62.60 73.70 66.70
Show-UI (Qinghong Lin et al., 2024) 2B 70.00 63.90 72.50 69.70 77.50 66.60
Llama 2 (Zhang and Zhang, 2023) 7B 28.40 28.56 35.18 30.99 27.35 19.92
Llama 2+Plan+Hist (Zhang and Zhang, 2023) 7B 62.86 53.77 69.1 61.19 73.51 56.74
Auto-UI (Zhang and Zhang, 2023) 5B 74.27 68.24 76.89 71.37 84.58 70.26
MobileVLM (Wu et al., 2024b) 7B 74.94 69.58 79.87 74.72 81.24 71.70
SphAgent (Chai et al., 2024) 7B 76.28 68.20 80.50 73.30 85.40 74.00
CoCo-LLAVA (Ma et al., 2024) 7B 70.37 58.93 72.41 70.81 83.73 65.98
SeeClick (Cheng et al., 2024) 9.6B 76.20 67.60 79.60 75.90 84.60 73.10
CogAgent (Hong et al., 2023) 18B 76.88 65.38 78.86 74.95 93.49 71.73

LLaVA-Mob 1B 77.52 71.61 80.01 75.45 87.15 73.41

Table 3: Results on AITW: Action accuracy across main setups, highlighting overall performance in decision-making
tasks. # means, CoCo-Agent relies on layout data to retrieve icon positions, making it not directly comparable
to other end-to-end methods that do not depend on API or system-level data. However, we include this result for
reference.

code to represent images and predicting action tar-445

gets by item names or indices without verifying446

coordinates. Multimodal methods include MM-447

Navigator (Yan et al., 2023), a GPT-4V-based agent448

achieving few-shot state-of-the-art. Training-based449

methods feature models like Behavioral Cloning450

(Rawles et al., 2023), a Transformer-based agent451

with BERT (Devlin et al., 2019), LLaMA-2 for452

uni-modal tasks with pseudo HTML inputs (Zhang453

and Zhang, 2023), and Auto-UI (Zhang and Zhang,454

2023), a multimodal encoder-decoder with T5 and455

BLIP. Finally, CogAgent (Hong et al., 2023), a 9B-456

parameter visual LLM with a high-resolution cross457

module, excels in GUI understanding and achieves458

top performance on AITW. OmniPhrser (Wan et al.,459

2024) employs OCR for text extraction and Blip2460

for improved multimodal comprehension.461

4.4 Main Results462

Table 3 presents action accuracy across primary463

setups, including various task subsets such as over-464

all performance, general tasks, installation tasks,465

Google Apps, single-action tasks, and web shop-466

ping. Notably, LLaVA-Mob demonstrates excep-467

tional efficiency, achieving an overall accuracy468

of 77.52 percent with only 1 billion parameters. 469

It performs particularly well in the General and 470

Single task subsets, with accuracies of 71.61 per- 471

cent and 87.15 percent, highlighting its robust- 472

ness across diverse scenarios. Despite its smaller 473

size, LLaVA-Mob approaches the performance of 474

larger models like SphAgent (Chai et al., 2024) and 475

LLaVA (Ma et al., 2024) and surpasses many in 476

efficiency. Unlike models such as MobileAgent 477

(Wang et al., 2024a) and CogAgent (Hong et al., 478

2023), which benefits from additional data and long 479

memory, LLaVA-Mob relies solely on end-to-end 480

data to achieve an excellent balance between per- 481

formance and resource efficiency. This makes it an 482

ideal choice for mobile applications and resource- 483

constrained environments. Its strong performance 484

across all subsets underscores its effectiveness and 485

efficiency in handling GUI-related perception and 486

decision-making tasks. 487

4.5 Ablation Study 488

Our ablation study evaluated the contributions of 489

different components of the model, focusing on 490

Pre-Training Vision Encoder and Synthetic Data. 491

All ablation experiments were trained with origin 492
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format of AITW dataset and tested on General data493

with accuracy metric.494

Model Layers Resolution Pretrain Task General

ViT-large 24 336 CLIP 61.51
ViT-bigG 48 224 CLIP 62.85
SeeClick 48 224 Grounding 64.51

Table 4: Comparison of vision encoders within the same
structure on action accuracy, using AMEX 500K as
Stage 1 data and the Origin format of AITW as Stage 2
data.

Pre-Training we conduct an ablation study on495

the visual decoder, comparing model performance496

initialized with bigG and SeeClick. As shown in497

table 4, comparing the first and second lines, the498

performance of the model can be further improved499

by choosing a more powerful visual encoder. Mean-500

while, SeeClick, pre-trained on large-scale GUI501

data, significantly enhances adaptation to GUI ac-502

tion prediction task.503

Data Size Cost/$ Epoch Train/h General

AMEX 500K 0 1 8 64.51
Caption 24K 0 3 2 66.32
Caption 163K 0 3 7 66.99
Mixing 8K+8K+8K 15 3 2 67.25

Table 5: Comparison of alignment datasets in Stage 1
within the same structure using SeeClick as the vision
encoder, with the Origin format of AITW as Stage 2
data. The cost reflects the use of LLaMA2-70B through
an API, resulting in incurred expenses.

Synthetic Data Table 5 demonstrates the effec-504

tiveness of the Synthetic dataset in improving505

model performance. Despite having significantly506

fewer samples than AMEX (Chai et al., 2024) ,507

both 24k and 164k caption data can outperform508

AMEX (Chai et al., 2024) , achieving higher ac-509

curacy on General action prediction task. Given510

that the caption data in the synthetic dataset is511

much longer and more detailed than the brief con-512

tent summaries in the AMEX dataset, this demon-513

strates that in alignment tasks, richer detailed de-514

scriptions lead to better alignment outcomes and515

data quality. The comparison between the third516

and fourth rows emphasizes that data quality is517

more important than data size for alignment tasks.518

The synthetic pipeline’s ability to capture detailed519

ICON information has greatly enhanced data qual-520

ity. This demonstrates the importance of high-521

quality, domain-specific data for alignment, with522

the synthetic pipeline achieving strong and efficient 523

results, even with smaller sample sizes. 524

5 Conclusion 525

In this paper, we introduced LLaVA-Mob, a com- 526

pact and efficient multimodal large language model 527

tailored for smartphone GUI automation tasks. By 528

addressing the unique challenges of mobile environ- 529

ments, LLaVA-Mob demonstrates how lightweight 530

architectures can effectively balance performance 531

and computational efficiency. 532

Our approach features two main innovations: 533

a specialized model architecture leveraging a 1B- 534

parameter language model and a pre-trained vision 535

encoder optimized for GUI tasks, and a synthetic 536

data generation strategy to enhance visual-textual 537

alignment through high-quality domain-specific 538

datasets. These advancements ensure LLaVA-Mob 539

delivers robust performance while maintaining low 540

resource requirements, making it suitable for de- 541

ployment on mobile devices. 542

The experimental results validate the efficacy 543

of our approach, with LLaVA-Mob achieving 544

competitive accuracy compared to larger models 545

on the AITW benchmark, highlighting its ability 546

to manage diverse GUI-related tasks effectively. 547

This work underscores the potential of lightweight 548

MLLMs to serve as practical, scalable solutions 549

for mobile automation, bridging the gap between 550

resource constraints and advanced functionality. 551

6 Future Work 552

GUI agents based on instruction fine-tuning only 553

perform basic representation transfer, narrowing 554

the prediction action space within the entire in- 555

struction generation task. While still far from real- 556

world application, they serve as cost-effective base 557

models. Recent studies have explored combining 558

reinforcement learning strategies, such as Proxi- 559

mal Policy Optimization (Schulman et al., 2017), 560

with MLLMs, with significant efforts made in re- 561

cent works Digirl (Bai et al., 2024) and RL4VLM 562

(Zhai et al., 2024). Future research should focus on 563

integrating instruction fine-tuned models with rein- 564

forcement learning to build GUI automation agents 565

that can be deployed in real-world environments. 566

Further exploration is needed to develop mobile- 567

friendly reinforcement learning environments that 568

better adapt to MLLMs. 569
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Limitations570

Detailed ablation studies across multiple sub-tasks571

can highlight the differences between methods572

more effectively. However, due to the extensive573

size of the AITW test set, conducting these tests574

is very time-consuming, with some tasks taking575

over 20 hours. As a result, ablation experiments576

were only performed on the General task. Future re-577

search should focus on acquiring standardized test578

subsets to speed up inference and testing, which579

would help optimize further explorations in this580

area.581

References582

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,583
Antoine Miech, Iain Barr, Yana Hasson, Karel584
Lenc, Arthur Mensch, Katherine Millican, Malcolm585
Reynolds, et al. 2022. Flamingo: a visual language586
model for few-shot learning. Advances in Neural587
Information Processing Systems, 35:23716–23736.588

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-589
son, Dmitry Lepikhin, Alexandre Passos, Siamak590
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng591
Chen, et al. 2023. Palm 2 technical report. ArXiv592
preprint, abs/2305.10403.593

Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane594
Suhr, Sergey Levine, and Aviral Kumar. 2024. Di-595
girl: Training in-the-wild device-control agents with596
autonomous reinforcement learning. arXiv preprint597
arXiv:2406.11896.598

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,599
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,600
and Jingren Zhou. 2023. Qwen-vl: A versatile601
vision-language model for understanding, localiza-602
tion, text reading, and beyond. arXiv preprint603
arXiv:2308.12966, 1(2):3.604

Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao,605
Liang Liu, Dingyu Zhang, Peng Gao, Shuai Ren,606
and Hongsheng Li. 2024. Amex: Android multi-607
annotation expo dataset for mobile gui agents. arXiv608
preprint arXiv:2407.17490.609

Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechu610
Liu, Pengchuan Zhang, Raghuraman Krishnamoor-611
thi, Vikas Chandra, Yunyang Xiong, and Mohamed612
Elhoseiny. 2023. Minigpt-v2: large language model613
as a unified interface for vision-language multi-task614
learning. ArXiv preprint, abs/2310.09478.615

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu,616
Yantao Li, Jianbing Zhang, and Zhiyong Wu. 2024.617
Seeclick: Harnessing gui grounding for advanced618
visual gui agents. arXiv preprint arXiv:2401.10935.619

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,620
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan621

Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion 622
Stoica, and Eric P. Xing. 2023. Vicuna: An open- 623
source chatbot impressing gpt-4 with 90%* chatgpt 624
quality. 625

Wenliang Dai, Junnan Li, Dongxu Li, Anthony 626
Meng Huat Tiong, Junqi Zhao, Weisheng Wang, 627
Boyang Li, Pascale Fung, and Steven C. H. Hoi. 628
2023. Instructblip: Towards general-purpose vision- 629
language models with instruction tuning. ArXiv 630
preprint, abs/2305.06500. 631

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 632
Kristina Toutanova. 2019. BERT: Pre-training of 633
deep bidirectional transformers for language under- 634
standing. In Proceedings of the 2019 Conference of 635
the North American Chapter of the Association for 636
Computational Linguistics: Human Language Tech- 637
nologies, Volume 1 (Long and Short Papers), pages 638
4171–4186, Minneapolis, Minnesota. Association for 639
Computational Linguistics. 640

Tinghe Ding. 2024. Mobileagent: enhancing mobile 641
control via human-machine interaction and sop inte- 642
gration. arXiv preprint arXiv:2401.04124. 643

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 644
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 645
Akhil Mathur, Alan Schelten, Amy Yang, Angela 646
Fan, et al. 2024. The llama 3 herd of models. arXiv 647
preprint arXiv:2407.21783. 648

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng 649
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang, 650
Yuxiao Dong, Ming Ding, et al. 2023. Cogagent: A 651
visual language model for gui agents. ArXiv preprint, 652
abs/2312.08914. 653

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, 654
Cade Gordon, Nicholas Carlini, Rohan Taori, Achal 655
Dave, Vaishaal Shankar, Hongseok Namkoong, John 656
Miller, Hannaneh Hajishirzi, Ali Farhadi, and Lud- 657
wig Schmidt. 2021. Openclip. If you use this soft- 658
ware, please cite it as below. 659

Guohao Li, Hasan Abed Al Kader Hammoud, Hani 660
Itani, Dmitrii Khizbullin, and Bernard Ghanem. 661
2023a. Camel: Communicative agents for" mind" 662
exploration of large scale language model society. 663
ArXiv preprint, abs/2303.17760. 664

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. 665
2023b. Blip-2: Bootstrapping language-image pre- 666
training with frozen image encoders and large lan- 667
guage models. ArXiv preprint, abs/2301.12597. 668

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae 669
Lee. 2023a. Visual instruction tuning. 670

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu 671
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen 672
Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Ao- 673
han Zeng, Zhengxiao Du, Chenhui Zhang, Sheng 674
Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie 675
Huang, Yuxiao Dong, and Jie Tang. 2023b. Agent- 676
bench: Evaluating llms as agents. arXiv preprint 677
arXiv: 2308.03688. 678

9

https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2310.09478
https://arxiv.org/abs/2310.09478
https://arxiv.org/abs/2310.09478
https://arxiv.org/abs/2310.09478
https://arxiv.org/abs/2310.09478
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2305.06500
https://arxiv.org/abs/2305.06500
https://arxiv.org/abs/2305.06500
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2312.08914
https://arxiv.org/abs/2312.08914
https://arxiv.org/abs/2312.08914
https://doi.org/10.5281/zenodo.5143773
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2304.08485


Xinbei Ma, Zhuosheng Zhang, and Hai Zhao. 2024.679
Coco-agent: A comprehensive cognitive mllm agent680
for smartphone gui automation. In Findings of the681
Association for Computational Linguistics ACL 2024,682
pages 9097–9110.683

OpenAI. 2023. Gpt-4 technical report. ArXiv preprint,684
abs/2303.08774.685

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,686
Carroll Wainwright, Pamela Mishkin, Chong Zhang,687
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.688
2022. Training language models to follow instruc-689
tions with human feedback. Advances in Neural690
Information Processing Systems, 35:27730–27744.691

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan692
Yang, Shiwei Wu, Zechen Bai, Weixian Lei, Lijuan693
Wang, and Mike Zheng Shou. 2024. Showui: One694
vision-language-action model for gui visual agent.695
arXiv e-prints, pages arXiv–2411.696

Christopher Rawles, Alice Li, Daniel Rodriguez, Ori-697
ana Riva, and Timothy P Lillicrap. 2023. An-698
droidinthewild: A large-scale dataset for android de-699
vice control. In Thirty-seventh Conference on Neural700
Information Processing Systems Datasets and Bench-701
marks Track.702

Toran Bruce Richards. 2023. Auto-gpt: An autonomous703
gpt-4 experiment. https://github.com/Significant-704
Gravitas/Auto-GPT.705

John Schulman, Filip Wolski, Prafulla Dhariwal,706
Alec Radford, and Oleg Klimov. 2017. Proxi-707
mal policy optimization algorithms. arXiv preprint708
arXiv:1707.06347.709

Yunfan Shao, Linyang Li, Junqi Dai, and Xipeng Qiu.710
2023. Character-LLM: A trainable agent for role-711
playing. In Proceedings of the 2023 Conference on712
Empirical Methods in Natural Language Process-713
ing, pages 13153–13187, Singapore. Association for714
Computational Linguistics.715

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,716
Weiming Lu, and Yueting Zhuang. 2023. Hugging-717
gpt: Solving ai tasks with chatgpt and its friends in718
huggingface. ArXiv preprint, abs/2303.17580.719

Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai,720
Zichen Zhu, and Kai Yu. 2022. META-GUI: To-721
wards multi-modal conversational agents on mobile722
GUI. In Proceedings of the 2022 Conference on723
Empirical Methods in Natural Language Processing,724
pages 6699–6712, Abu Dhabi, United Arab Emirates.725
Association for Computational Linguistics.726

Srinivas Sunkara, Maria Wang, Lijuan Liu, Gilles727
Baechler, Yu-Chung Hsiao, Jindong Chen, Abhan-728
shu Sharma, and James W. W. Stout. 2022. To-729
wards better semantic understanding of mobile inter-730
faces. In Proceedings of the 29th International Con-731
ference on Computational Linguistics, pages 5636–732
5650, Gyeongju, Republic of Korea. International733
Committee on Computational Linguistics.734

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 735
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 736
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 737
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard 738
Grave, and Guillaume Lample. 2023a. Llama: Open 739
and efficient foundation language models. ArXiv 740
preprint, abs/2302.13971. 741

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 742
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 743
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 744
Bhosale, et al. 2023b. Llama 2: Open founda- 745
tion and fine-tuned chat models. ArXiv preprint, 746
abs/2307.09288. 747

Jianqiang Wan, Sibo Song, Wenwen Yu, Yuliang Liu, 748
Wenqing Cheng, Fei Huang, Xiang Bai, Cong Yao, 749
and Zhibo Yang. 2024. Omniparser: A unified frame- 750
work for text spotting key information extraction and 751
table recognition. In Proceedings of the IEEE/CVF 752
Conference on Computer Vision and Pattern Recog- 753
nition, pages 15641–15653. 754

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man- 755
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and An- 756
ima Anandkumar. 2023a. Voyager: An open-ended 757
embodied agent with large language models. ArXiv 758
preprint, abs/2305.16291. 759

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, 760
Weizhou Shen, Ji Zhang, Fei Huang, and Jitao Sang. 761
2024a. Mobile-agent: Autonomous multi-modal 762
mobile device agent with visual perception. arXiv 763
preprint arXiv:2401.16158. 764

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao 765
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang, 766
Xu Chen, Yankai Lin, et al. 2023b. A survey on large 767
language model based autonomous agents. ArXiv 768
preprint, abs/2308.11432. 769

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi- 770
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin 771
Wang, Wenbin Ge, et al. 2024b. Qwen2-vl: Enhanc- 772
ing vision-language model’s perception of the world 773
at any resolution. arXiv preprint arXiv:2409.12191. 774

Biao Wu, Yanda Li, Meng Fang, Zirui Song, Zhi- 775
wei Zhang, Yunchao Wei, and Ling Chen. 2024a. 776
Foundations and recent trends in multimodal mobile 777
agents: A survey. arXiv preprint arXiv:2411.02006. 778

Qinzhuo Wu, Weikai Xu, Wei Liu, Tao Tan, Jianfeng 779
Liu, Ang Li, Jian Luan, Bin Wang, and Shuo Shang. 780
2024b. Mobilevlm: A vision-language model for bet- 781
ter intra-and inter-ui understanding. arXiv preprint 782
arXiv:2409.14818. 783

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen 784
Ding, Boyang Hong, Ming Zhang, Junzhe Wang, 785
Senjie Jin, Enyu Zhou, et al. 2023. The rise and 786
potential of large language model based agents: A 787
survey. ArXiv preprint, abs/2309.07864. 788

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, 789
Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu Zhong, 790

10

https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=j4b3l5kOil
https://openreview.net/forum?id=j4b3l5kOil
https://openreview.net/forum?id=j4b3l5kOil
https://openreview.net/forum?id=j4b3l5kOil
https://openreview.net/forum?id=j4b3l5kOil
https://doi.org/10.18653/v1/2023.emnlp-main.814
https://doi.org/10.18653/v1/2023.emnlp-main.814
https://doi.org/10.18653/v1/2023.emnlp-main.814
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.17580
https://aclanthology.org/2022.emnlp-main.449
https://aclanthology.org/2022.emnlp-main.449
https://aclanthology.org/2022.emnlp-main.449
https://aclanthology.org/2022.emnlp-main.449
https://aclanthology.org/2022.emnlp-main.449
https://aclanthology.org/2022.coling-1.497
https://aclanthology.org/2022.coling-1.497
https://aclanthology.org/2022.coling-1.497
https://aclanthology.org/2022.coling-1.497
https://aclanthology.org/2022.coling-1.497
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2308.11432
https://arxiv.org/abs/2308.11432
https://arxiv.org/abs/2308.11432
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2309.07864


Julian McAuley, Jianfeng Gao, et al. 2023. Gpt-791
4v in wonderland: Large multimodal models for792
zero-shot smartphone gui navigation. ArXiv preprint,793
abs/2311.07562.794

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak795
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.796
ReAct: Synergizing reasoning and acting in language797
models. volume abs/2210.03629.798

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang,799
Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,800
Weilin Zhao, Zhihui He, et al. 2024. Minicpm-v:801
A gpt-4v level mllm on your phone. arXiv preprint802
arXiv:2408.01800.803

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming804
Yan, Yiyang Zhou, Junyang Wang, Anwen Hu,805
Pengcheng Shi, Yaya Shi, Chaoya Jiang, Chenliang806
Li, Yuanhong Xu, Hehong Chen, Junfeng Tian,807
Qi Qian, Ji Zhang, and Fei Huang. 2023. mplug-808
owl: Modularization empowers large language mod-809
els with multimodality.810

Yuexiang Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Sheng-811
bang Tong, Yifei Zhou, Alane Suhr, Saining Xie,812
Yann LeCun, Yi Ma, et al. 2024. Fine-tuning813
large vision-language models as decision-making814
agents via reinforcement learning. arXiv preprint815
arXiv:2405.10292.816

Dong Zhang, Shimin Li, Xin Zhang, Jun Zhan,817
Pengyu Wang, Yaqian Zhou, and Xipeng Qiu. 2023a.818
Speechgpt: Empowering large language models with819
intrinsic cross-modal conversational abilities.820

Hang Zhang, Xin Li, and Lidong Bing. 2023b. Video-821
llama: An instruction-tuned audio-visual language822
model for video understanding. ArXiv preprint,823
abs/2306.02858.824

Xiaoyi Zhang, Lilian de Greef, Amanda Swearngin,825
Samuel White, Kyle Murray, Lisa Yu, Qi Shan, Jef-826
frey Nichols, Jason Wu, Chris Fleizach, et al. 2021.827
Screen recognition: Creating accessibility metadata828
for mobile applications from pixels. In Proceedings829
of the 2021 CHI Conference on Human Factors in830
Computing Systems, pages 1–15.831

Zhuosheng Zhang, Yao Yao, Aston Zhang, Xiangru832
Tang, Xinbei Ma, Zhiwei He, Yiming Wang, Mark833
Gerstein, Rui Wang, Gongshen Liu, and Hai Zhao.834
2023c. Igniting language intelligence: The hitch-835
hiker’s guide from chain-of-thought reasoning to lan-836
guage agents.837

Zhuosheng Zhang and Aston Zhang. 2023. You only838
look at screens: Multimodal chain-of-action agents.839
ArXiv preprint, abs/2309.11436.840

Haozhe Zhao, Zefan Cai, Shuzheng Si, Xiaojian Ma,841
Kaikai An, Liang Chen, Zixuan Liu, Sheng Wang,842
Wenjuan Han, and Baobao Chang. 2023. Mmicl: Em-843
powering vision-language model with multi-modal844
in-context learning. ArXiv preprint, abs/2309.07915.845

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and 846
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing 847
vision-language understanding with advanced large 848
language models. ArXiv preprint, abs/2304.10592. 849

11

https://arxiv.org/abs/2311.07562
https://arxiv.org/abs/2311.07562
https://arxiv.org/abs/2311.07562
https://arxiv.org/abs/2311.07562
https://arxiv.org/abs/2311.07562
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2304.14178
http://arxiv.org/abs/2304.14178
http://arxiv.org/abs/2304.14178
http://arxiv.org/abs/2304.14178
http://arxiv.org/abs/2304.14178
http://arxiv.org/abs/2305.11000
http://arxiv.org/abs/2305.11000
http://arxiv.org/abs/2305.11000
https://arxiv.org/abs/2306.02858
https://arxiv.org/abs/2306.02858
https://arxiv.org/abs/2306.02858
https://arxiv.org/abs/2306.02858
https://arxiv.org/abs/2306.02858
http://arxiv.org/abs/2311.11797
http://arxiv.org/abs/2311.11797
http://arxiv.org/abs/2311.11797
http://arxiv.org/abs/2311.11797
http://arxiv.org/abs/2311.11797
https://arxiv.org/abs/2309.11436
https://arxiv.org/abs/2309.11436
https://arxiv.org/abs/2309.11436
https://arxiv.org/abs/2309.07915
https://arxiv.org/abs/2309.07915
https://arxiv.org/abs/2309.07915
https://arxiv.org/abs/2309.07915
https://arxiv.org/abs/2309.07915
https://arxiv.org/abs/2304.10592
https://arxiv.org/abs/2304.10592
https://arxiv.org/abs/2304.10592
https://arxiv.org/abs/2304.10592
https://arxiv.org/abs/2304.10592


Figure 3: Distribution of Task Types in AiTW dataset:
This chart shows the frequency distribution of different
task types across the entire training dataset, consisting
of approximately 1 million data points.
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Origin Instruction Template InsCom Middle Template

Action Decision: action type: PRESS_HOME, touch point: [-1.0, -1.0], lift
point: [-1.0, -1.0], typed text: "".

The action is <PRESS_HOME>.

Action Decision: action type: PRESS_BACK, touch point: [-1.0, -1.0], lift
point: [-1.0, -1.0], typed text: "".

The action is <PRESS_BACK>.

Action Decision: action type: PRESS_ENTER, touch point: [-1.0, -1.0], lift
point: [-1.0, -1.0], typed text: "".

The action is <PRESS_ENTER>.

Action Decision: action type: STATUS_TASK_COMPLETE, touch point: [-
1.0, -1.0], lift point: [-1.0, -1.0], typed text: "".

The action is <STATUS_TASK_COMPLETE>.

Action Decision: action type: TYPE, touch point: [-1.0, -1.0], lift point: [-1.0,
-1.0], typed text: "{string}".

The action is <TYPE>, "typed_text": "{string}".

Action Decision: action type: Scrolling_Up, touch point: [0.8, 0.5], lift point:
[0.2, 0.5], typed text: "".

The action is <Scrolling_Up>.

Action Decision: action type: Scrolling_Down, touch point: [0.2, 0.5], lift
point: [08, 0.5], typed text: "".

The action is <Scrolling_Down>.

Action Decision: action type: DUAL_POINT, touch point: {coordinate}, lift
point: {coordinate}, typed text: "".

The action is <DUAL_POINT>, "touch_point": "{coordinate}", "lift_point":
"{coordinate}".

Table 6: Examples of transformations between origin data format and Our formats for all task types.

13


	Introduction
	Related Work
	Autonomous Language Agents
	Multimodal Integration in LLMs

	Methodology
	Model
	Data

	Experiments
	Implementation
	Setup
	Baselines
	Main Results
	Ablation Study

	Conclusion
	Future Work

