
Exploring Simulators for Particle Picking in
Cryo-Electron Tomography

Serena M. Arghittu1,2∗ Lars Dingeldein2,3 Geoffrey Woollard4 LingLi Kong5

Magnus Petersen2 Sonya Hanson6, Roberto Covino2,7 Pilar Cossio6,8†

Abstract

To understand how proteins function, we need to know the conformations that they
adopt and with what they interact in their native cellular environment. Cryo-electron
tomography (cryo-ET) offers a powerful tool by enabling in situ imaging of proteins.
But high noise levels and the need for expertise in particle identification limit its
scalability. In this study, we present a machine learning framework for automated
recognition and localization of particles in cryo-ET data. We treat particle picking
as an object recognition task and employ a U-Net-based architecture for multi-class
segmentation. To overcome the scarcity of annotated data, we train our model on
synthetic tomograms generated by a simulator that incorporates empirical noise
from publicly available cryo-ET datasets. Our results show that training on a
mixed dataset containing both synthetic and empirical backgrounds provides the
most effective particle-picking performance, enhancing the model’s robustness to
different background types. Furthermore, we demonstrate that training exclusively
on simulated particles enables the model to reliably distinguish particles from
background in real tomograms, highlighting the potential of simulation-based
training strategies in cryo-ET.

1 Introduction

Biomolecules function within cells forming complexes with other biomolecules in different envi-
ronments characterized by different physio-chemical conditions. To understand their roles, it is
essential to identify their spatial localization, structural arrangements, and binding partners in situ.
Cryo-electron tomography (cryo-ET) images thin slices of frozen biological specimens, offering
detailed tomograms and revealing diverse cellular architectures.

Cryo-ET involves the extraction of one or more thin layers of a vitrified specimen that is then
imaged by an electron microscope. The sample is tilted within the microscope to obtain multiple
2D projections at different angles. The obtained tilt-series of images is then used to reconstruct the
tomogram (i.e., 3D volume). This process comes with inherent limitations. To limit radiation damage,
only a minimal electron dose can be utilized during imaging, resulting in a low signal-to-noise
ratio (SNR). In addition, both the structured background and the lamella thickness reduce particle
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contrast. Thicker lamellae broaden the spread of the electron beam, while the background exhibits
scattering strengths comparable to those of the particles. Furthermore, hardware limitations inherent
to electron microscopes impede complete angular sampling, leading to the missing wedge effect.
The missing projections introduce anisotropic resolution that distorts the fidelity of the particles’
structural features. Lastly, the crowded and heterogeneous nature of cellular environments further
obscures individual macromolecules. As a result, the dense and noisy backgrounds in cryo-ET
tomograms present significant challenges for particle localization and segmentation, which are crucial
for analyzing macromolecular structures within the cell [1].

Recent advancements in deep learning, particularly U-Net and CNN models, have shown promise
for particle picking in cryo-ET by training on highly curated particle datasets [2, 3, 4]. Few-shot
learning addresses some of the challenges of costly tomogram annotation [4, 5] but still requires a set
of partial annotations for training. On the other hand, training with simulated data alleviates manual
annotation burdens and allows the representation of complex biological structures. Simulation-based
inference has been successful in extracting mechanistic information from complex experimental data
in areas ranging from astrophysics to neuroscience [6] and single-particle cryo-EM [7]. However,
developing realistic simulators for in situ environments and for the cryo-ET imaging process remains
challenging [8, 9, 10]. In this work, we aim to develop a tool that utilizes simulation-based training
to identify and locate macromolecules in situ, with particular focus on exploring various background
models in cryo-ET data simulations.

2 Methods

Simulator We simulate small cubic volume crops, e.g., 32 voxels per edge at a magnification
of 5-15 Å per voxel edge (Table 1), instead of a full tomogram, to improve memory handling and
facilitate parallelization during training, testing, and inference. The simulation pipeline consists
of four steps (Fig. 1A). First, we (i) sample the particle types that will populate the volume crop,
assuming that each particle adopts a single known structure (i.e., the template). Each volume crop may
contain from zero to an arbitrary number of particles. Then, we (ii) rotate and shift the particles, and
simulate the volume with the appropriate voxel size. We then (iii) add the noise rescaled according to
a given SNR and (iv) remove the missing wedge. Fig. 1B shows an example simulated volume. To
provide our model with a diverse and comprehensive training set, we train it using simulations with a
broad range of voxel sizes, rotations, shifts, SNRs, crowding per crop, and missing wedge angles
(Table 1). Directly simulating the reconstructed volume crops enables us to bypass the simulation of
aberration corrections and tilt-series alignment, making the simulator computationally more efficient.
To explore the performance of different noise background simulators, we test three noise models: i)
pure Gaussian white noise (synthetic), ii) empirical background taken from experimental tomograms
(Table 1), and iii) a mixed simulator that simulates batches of volumes, with half containing synthetic
noise and the other half containing an empirical background. For the empirical background crops, we
rescale the voxel size accordingly. The experimental noise tomograms were obtained from in vitro
samples and hippocampal tissue, and the samples differed between the training and testing sets.

Architecture State-of-the-art computer vision techniques for life science applications utilize U-
Nets to perform multiclass segmentation of images and volumes [2, 4, 5, 11]. We build on this
methodological framework to carry out particle picking in tomograms. We set up a dynamic U-Net
with a number of pooling and upsampling layers, depending on the chosen crops’ edge size (Fig.
1C). In addition, we implemented a deep supervision scheme on the U-Net latent representation by
training a classifier head. This particle classifier comprises a 3-layer multilayer perceptron (MLP) and
serves as a projector head in the context of object recognition tasks. These choices aim to improve the
model’s generalization performance by enhancing the learning of meaningful latent representations,
and are not used for inference [12].

Training Training relies on supervision from the U-Net for multiclass semantic segmentation and
from the MLP projector head for particle classification. We trained it exclusively on data simulated
on the fly. We trained a model for each of the three different background simulators. For the mixed
simulator case, we used a curriculum training (CT) schedule: we started with synthetic noise for the
first third of training, then switched to the mixed simulator. To improve the model’s classification
performance in distinguishing between particles and background, we force our model to identify an
additional ‘background’ class along with the other classes, such that the number of class channels
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becomes Nclasses = Ntemplates + 1 [13].
The U-Net produces pixel-level logits for each class. Thus, to supervise its output, we utilize the
ground-truth (GT) segmentation maps generated along with the simulated data. Each particle is
segmented as a sphere centered on the particle with a fixed radius. These are compared pixel-wise
with the predicted segmentation maps using a multiclass focal loss; we refer to Appendix 3.1 for
further details.
To supervise the particle classification head, we designed a loss function that accounts for the
permutation invariance of particle entries within each crop, since multiple particles in the same
crop may belong to the same class. The classification head returns the logits for each class channel,
particle-wise, which we supervise using a cross-entropy loss; we refer to Appendix 3.1 for further
details. To enforce permutation invariance, we use an implementation of a variant of the Jonker-
Volgenant algorithm with no initialization [14] to match the target and predicted particle label strings
prior to evaluating the cross-entropy loss.
We use the AdamW optimizer [15] with a learning rate of 3× 10−4 and a weight decay of 1× 10−5.
We train each model for 650,000 iterations and use a relative weight between the losses of 1.0. We
use a batch size of 64. The ablation studies in Appendix Table 2 support our architectural choices.

Testing To evaluate the model’s predictions, we chose the F1 score [16], which provides a measure
of the model’s inference performance, accounting for both its precision and recall (Appendix 3.2).
To evaluate the F1 score on segmentation predictions, we first filter the segmentation maps to keep
only voxels with class probabilities above 0.6. We then post-process these maps using the connected-
components-3d algorithm [17] to extract centroids of segmented objects (Fig. 2A, B). Connected
components with voxel counts below 0.01 or above the 0.8 percentiles are excluded to avoid spurious
centroid predictions arising either from the background class (higher end), or from single- or few-
voxel connected components (lower end). We apply this procedure to both the GT segmentation
maps and the predictions, then compare the centroids for each class per crop, allowing a tolerance of
5-voxel distance in each direction.

Training and Testing data Following the cryo-ET segmentation Kaggle challenge [18], we chose
a similar task to test the background simulators. The tomograms for the empirical background model
and the templates used during training and testing are found in Table 1. Note that training and testing
empirical backgrounds differ.

Results

The model can pick particles in synthetic tomogram crops. We start by visually inspecting the
segmentation maps predicted by the model when using different background training strategies. We
find that the model can correctly identify the particles when evaluated on test volumes using the same
type of background as used for training, namely, either Gaussian noise or empirical background (Fig.
2A, B, respectively). Notably, the empirical background samples used for testing were never seen by
the model during training, suggesting that these models can learn to discern the particles from the
background irrespective of the tomogram used.

The U-Net bottleneck’s latent space shows separation between the classes. Next, we examined
the model’s performance in representation learning. We applied dimensionality reduction to the U-Net
bottleneck latent space, which has a dimensionality of 512. The latent space principal component
analysis (PCA) is partially structured with the background class being well-differentiated from the
others and the VLP class and the β-galactosidase class diverging in opposite directions (blue and
pink, respectively, in Fig.2C top). Moreover, particle classification appears not to be strongly affected
by differences in SNR values: values in the experimental range do not necessarily translate into class
mixing (Fig. 2C, bottom).

Training with mixed background makes the model’s performance robust to background types.
We evaluated the particle-picking performance of our models trained on different background types
(synthetic, real, and mixed; Fig. 1D, and Figs. 3, ??A, B). The model trained with a synthetic
background performs satisfactorily only when evaluated on particles in a Gaussian background.
Similarly, the model trained using the empirical background scored satisfactorily only when evaluated
on particles in empirical background samples. This suggests that training only on one type of
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Figure 1: (A) The simulator pipeline. From left to right, we select the particle structures to populate
the volumes, apply rotation and translation to each, rescale the background according to the SNR,
and remove the missing wedge in Fourier space. (B) An example of a simulated volume with
Gaussian background noise and its ground truth (GT) segmentation map (left), shown as 2D slices
along the imaging axis. 3D representations of the volume (background not shown) and its GT
segmentation (right). Red indicates a ribosome and magenta β-galactosidase. (C) The model’s
architecture. We input templates (maps or PDBs) and experimental or Gaussian background crops
into the simulator (left), which combines them and passes them to the UNet (center), which finally
outputs the segmentation maps of the tomogram crops (right). (D) Model performance when training
with mixed background simulators. The line plots show F1 score, precision, and recall at different
SNR levels (Appendix 3.2). We report the range mid-value.

background does not allow the model to generalize across background types. Conversely, when
trained using the simulator with mixed backgrounds, the model achieved an excellent performance in
both tasks with an F1 score up to 1.0, demonstrating generalization across different backgrounds.

Training on synthetic data is sufficient to distinguish particles from background in real tomo-
grams. To assess whether the simulator can reproduce cryo-ET-like data for training, we passed
experimental crops through our best-performing model (trained with mixed backgrounds) and pro-
jected their latent embedding onto the PCA space spanned by the embedded simulated crops. We
observed that the embeddings overlap (Fig. 5A, B), thereby substantiating our hypothesis. Next, we
investigated the representation learning performance of our best model on real tomogram crops. To
do this, we performed a PCA directly on the embeddings of the empirical crops. Our observations
revealed that, in the latent space, crops with no particle (only background) are positioned separately
from those that contain particles (Fig. 5C). This indicates that training the model solely on simulated
data enables discrimination between crops containing particles and background-only crops in real
tomograms. However, when we visualized the predicted segmentations, we noticed that the model
struggles to accurately segment the crop (Fig. 5D).

Conclusions and Discussion

In this study, we sought to identify optimal training strategies for background simulators in cryo-
ET. Using a U-Net–based architecture, we show that a mixed background simulator is key to
achieving robustness, compelling the model to distinguish particles from diverse backgrounds rather
than memorizing background-specific features. While this strategy enabled distinguishing particles-
containing from background-only crops in real tomograms, the model still struggles with classification.
Misclassification of real particles cannot be attributed to low SNR, as the model performs well in
equally noisy simulations (Fig. 5C, D, 2C). Moreover, the overlap between the simulated and
experimental latent embeddings indicates that the simulator captures most experimental conditions
(Fig. 5A, B). Thus, we believe the main pitfall lies in the templates. Although templates seem a
straightforward choice for particle picking, they poorly represent molecular heterogeneity [19]. Using
a single template for a particle creates bias in our training dataset. Also, the simulator does not account
for particle distortions caused by tilt-series misalignment or aberration corrections, which could affect
performance. In conclusion, while challenges related to particle distortions and heterogeneity remain,
this work highlights the importance of mixed background simulators for advancing particle-picking
annotation in cryo-ET.
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3 Appendix

3.1 Losses: Focal and Cross-entropy Loss

Focal loss:
FL =

∑
c

∑
v

αc(1− pv,c)
γ log pv,c , (1)

where pv,c is the predicted probability per voxel v and class c. With this choice, we reweight each
class by its frequency of appearance (αc), which is dynamically computed from the GT segmentation
maps at each training step. The hyperparameter γ controls the model’s focus area. A smaller γ will
force the model to focus on areas that are harder to classify, while a larger γ will push the model to
focus on higher-confidence areas.

Cross-entropy loss:
CE = −EP (logQ) , (2)

where P is the target distribution and Q is the prediction distribution, both parametrised as an
Nclasses-dimensional simplex.

3.2 Metrics: Precision, Recall and F1 Score

The precision is defined as the fraction of true positives (TP) over all the predicted samples predicted
as positive:

Precision =
TP

TP + FP
,

where FP is the number of false positives. The recall is defined as the fraction of true positives over
all the target positive samples

Recall =
TP

TP + FN
.

The F1 score is defined as

F1 = 2
Precision · Recall
Precision + Recall

=
TP

TP + 0.5(FP + FN)
.
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3.3 The Model can Classify and Identify Particles in the Simulated Tomogram Crops

Figure 2: The model classifies and identifies particles in the simulated tomogram crops with Gaussian
noise (A) and empirical background (B). Examples of the GT volumes and segmentation are compared
to the predictions; the 2D slices are indicated by dashed lines on the 3D volumes. The bottom row
shows the predictions when training with a Gaussian background (bkg) or with the mixed bkg. (C)
PCA of the UNet bottleneck latent space, evaluated on Gaussian bkg volumes, coloured according to
the particle classes (top) and SNR values (bottom) for the model trained with Gaussian bkg.

Trained \w Gaussian bkg Trained \w empirical bkg Trained \w mixed bkg
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Figure 3: Comparison of model performance between training with synthetic, empirical, and mixed
background simulators. The line plots show F1 score, precision, and recall at different SNR levels
(Appendix 3.2). We report the range mid-value.
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Figure 4: Statistical analysis of the model trained with mixed backgrounds. (A) Metrics of the models
depending on the allowed distance (in voxels) between the predicted centroids and the ground truth.
(B) average model metrics across different SNR intervals. The error bars correspond to the standard
deviation of the mean.
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3.4 Training on Synthetic Particles is Sufficient to Distinguish Particles from Background in
Real Tomograms

Figure 5: The model’s latent representation distinguishes pure background from particles in real
tomograms. (A) PC4 to 7 of the UNet bottleneck latent space representation (original dimensionality
512) of mixed backgrounds tomograms. (B) PC4 to PC7 plots showing the reduced representation
of the latent space of simulated and empirical data. After passing the empirical data through the
model, we projected them onto the same PCA space as the simulated data. (C) First four PCs of the
UNet bottleneck latent-space representation of real tomogram crops. The datapoints are coloured
according to the combination of class objects in the crops. Note that class 5 is the background class.
(D) Example of a real tomogram crop (left and center) and its predicted segmentation map (right).
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3.5 Input Configuration Parameters of the Simulator used during Training and Testing

The tomograms used can be found on the Cryo-ET Data Portal at https://cryoetdataportal.
czscience.com/browse-data/datasets [20]. The maps used as templates can be found on
EMPIAR at https://www.ebi.ac.uk/empiar. With an edge length of 32 voxels, the U-Net has a

Table 1: Simulator configuration parameters

Parameter Value

Batch size 64
Crop edge 32 (vxl)
Obj per crop 5
SNR [0.0005-0.3]
Shift [0-20] (vxl)
Voxel size [5.0-15.0] (Å)
Sphere radius 12 (vxl)
Tomograms used as bkg (Train) TS_103_5.mrc

TS_102_2.mrc
TS_100_3.mrc
TS_73_6.mrc
TS_5_4.mrc
24nov01d_Position_38.mrc
24nov01d_Position_42.mrc
24nov01d_Position_43.mrc

Tomograms used as bkg (Test) TS_6_6.mrc
Templates emd_3883.map (Ribosome, class 0, red)

emd_24181.map (Thyroglobulin, class 1, green)
emd_41917.map (VLP, class 2, blue)
emd_41923.map (Apoferritin, class 3, yellow)
emd_0153.map (β-galactosidase, class 4, magenta)

depth of 5 layers, comprising 5 pooling layers (for downsampling) and 5 transposed convolutional
layers (for upsampling). Each up- or down-sampling operation is followed by a double convolution.
Before the first downsampling layer, we perform a double convolution. Each convolution includes
a 3D batch normalization operation followed by a ReLU activation. Each run used 1 A100 Nvidia
GPU, 4 CPUs per node, and 16 GB of memory per CPU.

3.6 Ablation Studies

We conducted ablation studies to evaluate the projector head’s impact on centroid prediction accuracy.
Additionally, we examined the impact of using spheres with a fixed radius for each class, rather
than a different radius for each class, when creating the GT segmentation maps for segmentation
supervision. We performed ablation studies based on our most effective training strategy, which used
a mixed background simulator. For testing on real backgrounds, we used different tomograms than
those used during training. We report the average precision, recall, and F1 score, with a tolerance of
5 voxels for centroid comparison.

Table 2: Ablation studies. The "Loss weight" field indicates the relative weight applied to the
projector loss. P, R and F1 stand for Precision, Recall and F1 score, respectively

Ablation Loss weight Gaussian bkg Empirical bkg

P R F1 P R F1

Same sized spheres 1.0 0.7 0.8 0.8 0.8 0.9 0.9
Same sized spheres 0.1 0.7 0.7 0.8 0.7 0.7 0.8
Same sized spheres 0.0 0.7 0.8 0.9 0.7 0.8 0.8

Different sized spheres 1.0 0.5 0.5 0.5 0.4 0.6 0.5
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract discusses the exploration of various background models in cryo-
ET simulators for particle picking, which is the primary focus of our experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the conclusion, we explicitly discuss the pitfalls of our approach.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We do not explore any theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all the necessary information concerning the architecture and
training strategies to reproduce our experiments in the methods section and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if te contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: We provide detailed instructions to reproduce the experimental results shown.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the data IDs and source URLs of the databases we used in Appendix

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide the results obtained on a large simulated data sample to ensure
statistical significance (10000 simulated crops per experiment)

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We comment on the resources needed for training in the Appendix

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We do follow NeurIPS code of ethics and preserve anonymity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We briefly comment on the importance of cryo-ET technology.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

14

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper cites all the relevant literature and assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We are not releasing new assets as the work reported is part of an ongoing
project.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The use of LLMs is not scientifically relevant in this work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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