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Abstract

Dempster’s rule of combination allows us to com-
bine various independent pieces of evidence that
each have a certain degree of uncertainty. This pro-
vides a useful way for dealing with uncertain evi-
dence, but the rule is computationally intractable.
In this paper, we analyze the complexity of this
rule for differently structured bodies of evidence
and we consider a known algorithm by Shafer and
Logan to compute this rule efficiently over a hi-
erarchical set of evidence. We show that one can
check in polynomial time whether an arbitrary set
of evidence has a hierarchical shape, enabling the
use of Shafer and Logan’s algorithm. Moreover,
we consider two different approaches to deal with
non-hierarchical sets of evidence: (i) considering
hierarchical subsets and (ii) taking advantage of in-
ternal hierarchical structures in the overall set. For
the former case, we conclude that getting different
hierarchies from an arbitrary set of pieces of evi-
dence corresponds to the VERTEX-COVER prob-
lem and we present algorithms for obtaining these
hierarchies based on this correspondence. For the
latter case, we present a fixed-parameter tractable
algorithm which computes the belief function of
any piece of evidence included in the set.

1 INTRODUCTION

Dempster-Shafer Theory (DST) [Shafer, 1976, Yager and
Liu, 2008, Liu and Yager, 2008] provides a toolbox for
modelling evidence with different forms of uncertainty and
for merging such evidence. The theory originated in the
context of inferential statistics, where there are other widely
used methods for modelling evidence, such as Bayesian
statistics. An important technical property of DST is that
it rejects the additivity principle, which lies at the basis of

probability theory: given two disjoints events A and B, the
likelihood assigned to A ∪B is not required to be equal to
that of A plus that of B—but greater or equal. This aspect
is closely tied to the following two facts: (i) DST is a direct
generalization of Bayesian probability theory, and (ii) DST
provides an expressive and powerful way of representing
ignorance.

In particular, one can directly express for which proposi-
tions any piece of evidence provides support, and for which
propositions this piece of evidence does not provide sup-
port. This explicit representation of ignorance is in strong
contrast to the case of Bayesian probability, where evidence
for some proposition p is, by design, evidence against its
complement ¬p. DST has been argued to be particularly use-
ful in cases where incomplete evidence plays an important
role—see, e.g., [Barnett, 1981].

We can illustrate these properties with a differential diagno-
sis of having a red eye (Table 1). According to this symptom,
a physician can establish a universe of five possible causes:
hyposphagmus (H), acute conjunctivitis (C), acute glau-
coma (G), keratitis (K) and anterior uveitis (U ). 1 Then, if
the patient reports to have pain in the eyes, in DST, some
value of likelihood can be associated to {G,K,U}. How-
ever, this evidence does not point towards any of the three
individual possibilities G, K and U . In addition, if the pa-
tient tells that she does not know whether she has lower
visual acuity, in DST, we can express that this is very weak

H C G K U

Pain no no yes yes yes
Foreign body sens. no yes no yes no
Pupil size norm. norm. mydr. mios. mios.
Lower visual acuity no no yes no yes

Table 1: Background knowledge about eye diseases

1Here, we make the assumption that exactly one of these causes
the symptom.
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evidence both against H , C and K, and against G and U
without considering it as (strong) evidence for any proposi-
tion.

Given these theoretical advantages for representing uncer-
tainty, DST has been used to combine human opinions [Al-
tieri et al., 2017, Agreh and Ghaffari-Hadigheh, 2019] or
to merge data [Wu et al., 2002, 2003], for example. How-
ever, the disadvantage is that combining evidence in DST—
using Dempster’s rule of combination—is #P-hard [Orpo-
nen, 1990], presenting an obstacle for wider use of DST.
Some results have been established on restricted cases where
evidence can be combined in a computationally efficient
way [Barnett, 1981, Shafer and Logan, 2008, Shafer et al.,
1987, Bergsten and Schubert, 1993], but a structured com-
putational complexity analysis has been missing from the
literature.

Contributions In this paper, we address this gap by initi-
ating a structured and detailed complexity analysis of using
Dempster’s rule of combination. In particular, we show
that the problem remains #P-hard when restricted to sim-
ple support functions, and when restricted to evidence for
propositions containing limited information (i.e., the set
representing the proposition is nearly the entire universe).
We also point out some cases that admit polynomial-time
algorithms—most prominently the case where the propo-
sitions for (or against) which we have evidence form a hi-
erarchical structure (in this case, a polynomial-time algo-
rithm by Shafer and Logan [2008] can be used). We give
a polynomial-time algorithm for deciding when such hi-
erarchical structure is present. Moreover, we analyze the
complexity of several problems related to removing some
pieces of evidence in order to obtain a hierarchy structure.
We show that these problems are NP-complete, but can be
solved in fixed-parameter tractable time in cases where only
a few pieces of evidence need to be removed. Finally, we
generalize the algorithm of Shafer and Logan to arbitrary
sets, and we show that this generalized algorithm runs in
fixed-parameter tractable time when parameterized by a cer-
tain notion of how much hierarchical structure is present in
the evidence.

Outline First, we will recall some definitions of Dempster-
Shafer Theory (in Section 2). We will provide a complexity
analysis of the problem of using Dempster’s rule in Sec-
tion 3. Then, in Section 4, we will study the problem of
deciding if a given body of evidence forms a hierarchy. Sec-
tions 5 and 6 are reserved to explore different possibilities
for combining evidence that does not form a hierarchy.

Due to space reasons, for some statements in the paper, we
defer the proof to the appendix—we use the symbol ⋆ to
indicate this.

2 PRELIMINARIES

In this section, we will give a brief overview of the main
technical elements appearing in Dempster-Shafer Theory
(DST). The theory revolves around belief functions, which
assigns to each proposition—i.e., each subset of possible
states—a degree of belief. Moreover, the main focus is on
belief functions that are supported by objective pieces of
evidence—these are called support functions. The atomic
building blocks to construct support functions are called sim-
ple support functions, which express evidence for a single
proposition, and which can be combined using Dempster’s
rule of combination into more complex support functions.
And the other way around, any support function can be
decomposed into simple support functions [Smets, 1995].

Definition 2.1. The frame Θ of discernment is the set of all
different possible states in a given context. A basic probabil-
ity assignment (b.p.a.) over the frame Θ is a function m :
2Θ → [0, 1] such that m(∅) = 0 and

∑
A⊆Θ m(A) = 1.

Definition 2.2 (Focal element). Given a frame of discern-
ment Θ and a b.p.a. m, a subset A ⊆ Θ is a focal element
of m if m(A) > 0. Any focal element A ̸= Θ we will call a
proper focal element. In addition, we will say that two focal
elements A,B ⊆ Θ are complementary if A = B = Θ \B.

Definition 2.3 (Simple b.p.a.). A b.p.a. is called simple if it
has exactly one proper focal element A. That is, if m(A) >
0, and for all B ∈ 2Θ \ {A,Θ} it holds that m(B) = 0.

Definition 2.4 (Dempster’s rule of combination; DRC).
Let m1 and m2 be b.p.a.’s over the same frame Θ
of discernment with focal elements A1, . . . , Ak

and B1, . . . , Bℓ, respectively. Moreover, suppose
that

∑
Ai∩Bj=∅ m1(Ai)m2(Bj) < 1. Then the following

b.p.a. m, also denoted by m1⊕m2, is the result of applying
Dempster’s rule of combination to m1 and m2: m(∅) = 0
and m(C) =

∑
Ai∩Bj=C m1(Ai)m2(Bj)/K, where K is the

normalization factor 1 −
∑

Ai∩Bj=∅ m1(Ai)m2(Bj), for
all nonempty sets C ⊆ Θ.

Basic probability assignments provide a useful way of repre-
senting all the evidence that is available in a given situation,
but one is typically interested in summary measures such as
belief and plausibility functions.

Definition 2.5 (Belief and plausibility). Let Θ be a frame
of discernment, and let m : 2Θ → [0, 1] be a basic prob-
ability assignment. Then Belm : 2Θ → [0, 1] is called the
belief based on m, and is defined by letting Belm(A) =∑

B⊆A m(B) for each A ⊆ Θ. Moreover, Plaum : 2Θ →
[0, 1] is called the plausibility based on m, and is defined
by letting Plaum(A) =

∑
B⊆Θ,B∩A̸=∅ m(B). As a result,

for each A ⊆ Θ it holds that Plaum(A) = 1 − Belm(A)
and that Belm(A) ≤ Plaum(A). When m is clear from
the context, we will write Bel to denote Belm and Plau to
denote Plaum.



In the remainder of the paper, we will focus on apply-
ing DRC to simple support functions and dichotomous
support functions—which have two proper focal elements
that are complementary—and we will assume that sep-
arate pieces of evidence are given in the form of (sim-
ple) b.p.a.’s m1, . . . ,mn over some finite frame Θ of dis-
cernment, which are combined by using DRC into m =⊕n

i=1 mi.

3 THE COMPLEXITY OF USING
DEMPSTER’S RULE OF
COMBINATION

One of the main obstacles for using Dempster’s rule of
combination (DRC) is its high computational complexity.
Orponen proved that computing beliefs based on the appli-
cation of DRC to arbitrary support functions is #P-hard
by giving a reduction from the well-known #SAT problem
for CNF formulas [Orponen, 1990]. In this section, we will
provide a complexity analysis that builds forth on Orponen’s
hardness result. In particular, we will identify various restric-
tions under which the problem remains #P-hard, and we
will identify some restrictions that allow polynomial-time
algorithms.

3.1 HARDNESS FOR SIMPLE SUPPORT
FUNCTIONS

Throughout the paper, we make the assumption that the
individual pieces of evidence are all given as simple support
functions—that is, support functions with a single proper
focal element. In principle, it could be the case that the
hardness result of Orponen does not apply to the case where
DRC is only applied to simple support functions—as the
reduction used to show hardness involves belief functions
with multiple proper focal elements. We begin with showing
that, in fact, computing beliefs based on the application of
DRC to simple support functions is #P-hard.

The reduction that we give is very much similar to the re-
duction given by Orponen [1990, Theorem 3.1]—the main
difference being that we take a restricted variant of #SAT
to reduce from. Nevertheless, we give a description of this
reduction—to make this paper self-contained, allowing the
reader to understand and appreciate the various complex-
ity results in this section that are based on (variations of)
this proof. Moreover, our presentation of (the correctness
argument in) the proof differs from that of Orponen, pro-
viding the reader with another entry into understanding the
argument.

We begin with laying out the precise statements of two
computational problems related to the application of DRC.
The difference between these to problems is whether the
required output is (1) the mass value m(A) or (2) the be-

lief Belm(A)—both based on the combined mass func-
tion m =

⊕n
i=1 mi.

DRC-COMPUTE-MASS
Input: A frame of discernment Θ, b.p.a.’s m1, . . . ,mn

over Θ, and a set A ⊆ Θ.
Output: m(A) = (

⊕n
i=1 mi)(A).

DRC-COMPUTE-BELIEF
Input: A frame of discernment Θ, b.p.a.’s m1, . . . ,mn

over Θ, and a set A ⊆ Θ.
Output: Belm(A) for m =

⊕n
i=1 mi.

Both variants of the problem are #P-hard, even when re-
stricted to simple support functions.

Theorem 3.1. DRC-COMPUTE-MASS is #P-complete.
Moreover, #P-hardness holds even when restricted to the
case where m1, . . . ,mn are simple b.p.a.’s and |A| = 1.

Proof (sketch). We show #P-hardness by providing a re-
duction from the #P-complete problem #MON-SAT, which
concerns counting the number of satisfying truth assign-
ments of a propositional CNF formula that is monotone
(variables occur only positively) [Valiant, 1979]. We reit-
erate that this reduction is entirely similar to the reduction
used to show #P-hardness of DRC-COMPUTE-MASS in gen-
eral [Orponen, 1990]—i.e., without the restriction to simple
support functions.

Let φ = c1 ∧ · · · ∧ ck be a monotone propositional
CNF formula over the variables x1, . . . , xn. We define
Θ = {1, . . . , k, ∗} and A = {∗}, and we construct n simple
basic probability assignments m1, . . . ,mn. Each b.p.a. mi

has as single focal element Ti = {∗} ∪ { j | clause cj does
not contain literal xi} where:

mi(Ti) = mi(Θ) = 1/2, and

mi(B) = 0 for each B ∈ 2Θ \ {Ti,Θ}.

Now, let m =
⊕n

i=1 mi. We will show that m(A) =
m({∗}) = q2−n, where q is the number of satisfying
truth assignments of φ. Firstly, observe that each mi as-
signs non-zero mass only to sets that include ∗, and there-
fore there is no sequence of sets in the Cartesian prod-
uct A =×n

i=1
{Ti,Θ} that has an empty intersection. As a

result, we get that m(A) equals the sum of
∏n

i=1 mi(Ai) for
all sequences (A1, . . . , An) ∈ A such that

⋂n
i=1 Ai = {∗}.

Moreover, for each sequence (A1, . . . , An) ∈ A, it holds
that

∏n
i=1 mi(Ai) = 2−n.

Consider the following bijection σ between truth as-
signments α : {x1, . . . , xn} → {0, 1} and se-
quences (A1, . . . , An) ∈ A, where for each α, we let
σ(α) = (A1, . . . , An) such that Ai = Ti if α(xi) = 1,
and Ai = Θ if α(xi) = 0.



We argue that for each α : {x1, . . . , xn} → {0, 1} it holds
that α satisfies φ if and only if, for σ(α) = (A1, . . . , An)
it holds that

⋂n
i=1 Ai = {∗}. This suffices to show

that m(A) = q2−n.

Note that in the proof of Theorem 3.1 we can define the
b.p.a.’s mi with only a single proper focal element for the
exact reason that φ is monotone. If φ were not monotone,
we would have to assign a non-zero mass to the sets Fi =
{∗} ∪ { j | clause cj does not contain literal ¬xi} to make
the reduction work, as in the original #P-hardness proof for
DRC-COMPUTE-MASS [Orponen, 1990]. Put differently,
due to the fact that φ is monotone, we get that Fi = Θ.

Now, because for any singleton set A it holds that m(A) =
Belm(A), we can conclude #P-hardness also for the prob-
lem DRC-COMPUTE-BELIEF under the same restrictions.

3.2 SIZE BOUNDS ON FOCAL ELEMENTS

In the previous subsection, we saw that restricting our atten-
tion to simple support functions is not enough to guarantee
that we can use DRC in polynomial time. In this subsection,
we will consider two additional restrictions—both based on
additional constraints on the size of (proper) focal elements.

The first additional restriction that we consider is that the
size of the proper focal elements of the belief functions are
bounded by some fixed constant. This restriction allows us
to use DRC in polynomial time.

Proposition⋆ 3.2. Let c ∈ N be a fixed constant. DRC-
COMPUTE-MASS and DRC-COMPUTE-BELIEF can be com-
puted in polynomial time if the b.p.a.’s m1, . . . ,mn only
have proper focal elements of size ≤ c.

Restricting proper focal elements to be of bounded size cor-
responds to the requirement that all pieces of evidence are
highly informative—or in other words, that each piece of
evidence assigns zero mass to all but a few possibilities.
Arguably, this occurs only in a very limited set of circum-
stances, limiting the practical value of the tractability result
of Proposition 3.2. Moreover, it has been argued that in vari-
ous circumstances—e.g., in cases where the different pieces
of evidence are to a large extent contradictory—DRC might
not be the most appropriate way to combine evidence (see,
e.g., Yager, 1987, Pearl, 1990, Jøsang and Pope, 2012).

Another restriction, that is perhaps more promising for prac-
tical applications, consists of restricting pieces of evidence
to be of limited informativeness: allowing only simple sup-
port functions whose single proper focal element consists
of Θ with only a constant number of possibilities removed.
Unfortunately, this restriction does not alleviate the compu-
tational intractability of using DRC.

Proposition 3.3. Let c ≥ 3 be a fixed constant. DRC-
COMPUTE-MASS and DRC-COMPUTE-BELIEF are #P-

hard even when restricted to the case where the b.p.a.’s
m1, . . . ,mn all have a single proper focal element that is
of size ≥ |Θ| − c, and where |A| = 1.

Proof (sketch). Similarly to the proof of Theorem 3.1, we
adapt the reduction by Orponen [1990]. This time, we
take as starting point for the reduction the restriction of
#MON-SAT where each variable appears in at most 3
clauses. The problem remains #P-complete under this re-
striction [Greenhill, 2000]. The resulting instance then has
the property that each of m1, . . . ,mn has a single proper
focal element that is of size ≥ |Θ|−c, and that |A| = 1.

3.3 HIERARCHICALLY STRUCTURED FOCAL
ELEMENTS

Nevertheless, there are some cases where it is possible to
avoid the worst-case computational complexity of using
DRC. Concretely, Shafer and Logan [2008] proved that
given a hierarchical structure of focal elements, we can
compute the total belief, commonality and plausibility of
certain sets in polynomial time.

In this subsection, we will introduce this algorithm, and in
Sections 4 and 5, we will investigate how to decide if this
algorithm can be used to efficiently aggregate (a subset of)
the evidence in a given situation. Moreover, in Section 6, we
will study a way to extend this algorithm to arbitrary sets of
evidence.

Definition 3.4 (Hierarchy). Let Θ be a frame of discernment.
A set H = {A1, . . . , Am} of focal elements Ai ⊆ Θ is a
hierarchy over Θ if there exists a tree where the root node
is labelled with Θ, and all other nodes are labelled with an
element Ai ∈ H such that: (1) if a node labelled with Aj is
the child of a node labelled with Ai, then Aj ⊆ Ai, and (2) if
two nodes labelled with Ai and Aj are siblings, then Ai ∩
AJ = ∅. In other words, a set H = {A1, . . . , Am} ⊆ 2Θ

is a hierarchy if and only if for all Ai and Aj ∈ H it holds
that: if Ai ∩Aj ̸= ∅, then Aj ⊆ Ai or Ai ⊆ Aj .

Example 3.5. Consider Θ =
{a, b, c, d, e}. Then H = {A1, . . . ,
A6}, for A1 = {a, b, c}, A2 =
{d, e}, A3 = {a, b}, A4 = {a},
A5 = {e} and A6 = {d}, is a
hierarchy. A corresponding tree is
shown on the right.

•Θ

•{a, b, c} •{d, e}

•{a, b} •{d} •{e}

•{a}

Theorem 3.6 (Shafer and Logan, 2008). Given a hierarchy
H and given simple b.p.a.’s m1, . . . ,mn each of whose
single proper focal element is either an element of H or the
complement of one, then Belm(A), Belm(A), Plaum(A)
and Plaum(A), for m =

⊕n
i=1 mi, can be computed in

polynomial time for all A ∈ H.



The algorithm provided by Theorem 3.6 does not allow us
to efficiently compute the belief (or plausibility) of arbitrary
sets A ⊆ Θ, but only for sets A ∈ H (or their complements).
Nevertheless, it is plausible to assume that if the available
evidence in a given application domain forms a hierarchy
(as specified in Definition 3.4), then sets A ⊆ Θ of interest
also match this hierarchy. This is the case, for example, in
the setting of diagnostic reasoning in medicine, where hier-
archical evidence naturally appears [Gordon and Shortliffe,
2008].

4 PLACING ALL EVIDENCE IN A
HIERARCHY

Suppose that a researcher has performed different experi-
ments that provide evidence for various subsets of a frame of
discernment Θ and is interested in knowing which elements
of Θ have the most support according to it.

It would be very useful to know whether these focal ele-
ments form a hierarchy, in which case they could use the
Shafer-Logan algorithm (Theorem 3.6) to efficiently com-
pute beliefs based on the combination of all the evidence.

In this section, we will study the problem of deciding if
a given set of evidence is in line with a single hierarchy.
The Shafer-Logan algorithm works for the case where for
each set A in the hierarchy a dichotomous b.p.a. is given—
which assigns weight to A and to its complement Θ \ A.
Therefore, we take as starting point for this problem a set A
with m pairs of sets, each consisting of a focal element and
its complement—one per each dichotomous b.p.a.

In particular, we will give a polynomial-time algorithm that
decides, given a set A of such pairs of sets, whether we can
form a hierarchy H by taking exactly one set from each
pair—in which case we say that A admits a hierarchy—and
that computes what this hierarchy would look like.

Definition 4.1 (Conflict). We will say that there exists a
conflict between two focal elements Ai and Aj if Ai ̸⊆ Aj ,
Aj ̸⊆ Ai, and Ai ∩Aj ̸= ∅.

We will denote such a conflict with Ai−⇀↽−Aj .

Theorem 4.2. Let Θ be a frame of discernment. Given a
set A = {(Bi, Bi)}mi=1 of pairs, where for each 1 ≤ i ≤ m,
Bi and Bi = Θ \ Bi are complementary sets over Θ, the
following are equivalent:

(a) There exists a hierarchy H consisting of exactly one
set from each pair in A.

(b) There exists a set {A1, . . . , Am} of focal elements
formed by exactly one element of each pair in A such
that for each two distinct Ai, Aj ∈ {A1, . . . , Am} it
holds that Ai −̸⇀↽−Aj .

(c) The following propositional 2CNF formula φ =
φ1 ∧ φ2 over the variables x1, . . . , xm, y1, . . . , ym

is satisfiable. For each 1 ≤ i ≤ m, let ν(Bi) =
xi and ν(Bi) = yi. Then φ1 consists of the
clauses (ν(Bi) ∨ ν(Bi)) and (¬ν(Bi) ∨ ¬ν(Bi))
for each 1 ≤ i ≤ m, and φ2 consists of the
clauses (¬ν(Ai) ∨ ¬ν(Aj)) for each Ai ∈ {Bi, Bi}
and Aj ∈ {Bj , Bj} such that Ai−⇀↽−Aj .

Proof. One can straightforwardly show that (a) and (b) are
equivalent by using Definitions 3.4 and 4.1. For space rea-
sons, we omit further details on this.

We then show that (b) implies (c). Suppose that there is
a set {A1, . . . , Am} of focal elements formed by exactly
one element of each pair in A such that for each two
distinct Ai, Aj ∈ {A1, . . . , Am} it holds that Ai −̸⇀↽−Aj .
We then define a truth assignment α that satisfies φ. For
each 1 ≤ i ≤ m, let α(xi) = 1 and α(yi) = 0 if Bi ∈
{A1, . . . , Am} and let α(xi) = 0 and α(yi) = 1 if Bi ̸∈
{A1, . . . , Am}. This assignment satisfies φ1 because for
each 1 ≤ i ≤ m there is exactly one of Bi, Bi in the
set {A1, . . . , Am}. The clauses in φ2 are also satisfied by α
because there are no two distinct Ai, Aj ∈ {A1, . . . , Am}
such that Ai−⇀↽−Aj .

Finally, we show that (c) implies (b). Take a truth as-
signment α that satisfies φ. For each 1 ≤ i ≤ m, we
let Ai = Bi if α(xi) = 1 and Ai = Bi if α(xi) = 0.
Then {A1, . . . , Am} contains exactly one element of each
pair in A. Now, to derive a contradiction, suppose that there
were two distinct Ai, Aj ∈ {A1, . . . , Am} with Ai−⇀↽−Aj .
Then φ would contain the clause (¬ν(Ai) ∨ ¬ν(Aj)),
and α(ν(Ai)) = α(ν(Aj)) = 1, and so α would not
satisfy φ, which contradicts our assumption. Therefore,
we can conclude that there are no two distinct Ai, Aj ∈
{A1, . . . , Am} such that Ai−⇀↽−Aj .

In fact, the proof of Theorem 4.2 also shows that we can
efficiently construct a hierarchy H containing exactly one
element from each pair in A from a truth assignment for the
2CNF formula.

Corollary 4.3. Let Θ be a frame of discernment and A be
a set of complementary focal elements. Moreover, let φ be
the 2CNF formula described in Theorem 4.2. Then from any
satisfying assignment α for φ, we can in polynomial time
construct a hierarchy H containing exactly one element
from each pair in A.

Since one can in linear time decide whether a given 2CNF
formula is satisfiable (and if so, find a satisfying truth as-
signment) [Aspvall et al., 1979], we can in polynomial time
decide whether the pairs in A admit a hierarchy, and com-
pute such a hierarchy if this is the case.



5 PLACING AS MUCH EVIDENCE AS
POSSIBLE IN A HIERARCHY

In the previous section we studied how to efficiently decide
if a given set of evidence can all be placed in a single hierar-
chy. Of course, this is not always possible. In this section, we
will study algorithms to form hierarchies that accommodate
much (but not all) of a given set A of evidence.

Again, as in the previous section, we suppose that we are
given a set A with m pairs (Bi, Bi) of sets, each consisting
of a focal element and its complement—with the underlying
idea that we have evidence in the form of simple b.p.a.’s
whose proper focal elements are Ai or Ai. Then, if there is
no single hierarchy in line with all of this evidence, we can
only obtain a hierarchy by selecting one set from some (but
not all) pairs (Bi, Bi).

One way to make such a selection is the following. We
take the 2CNF formula φ from Theorem 4.2, and adapt
it into φ′ = φ′

1 ∧ φ2, where φ′
1 consists only of the

clauses (¬ν(Bi) ∨ ¬ν(Bi)). Then, any satisfying truth as-
signment for φ′ corresponds to a hierarchy that fits a subset
of the evidence. However, by taking this crude approach, we
have no influence on how much of the evidence is accom-
modated by the resulting hierarchy—for example, one can
satisfy φ′ by setting all variables to false, which corresponds
to the trivial, empty hierarchy.

5.1 STRUCTURE IN THE SET OF CONFLICTS

We will start with distinguishing some structure in the set
of conflicts between focal elements, that will turn out to
be useful to develop algorithms for finding (large) partial
hierarchies. In the remainder, we will assume that a set A
with m pairs Pi = (Bi, Bi) of complementary sets is given.

Definition 5.1 (Conflict between pairs of focal elements).
Let P1 = (A1, A1) and P2 = (A2, A2) be two pairs of
complementary sets. Moreover, let ℓ be the number of con-
flicts between the sets appearing in P1 and P2—that is, ℓ =
|{(B1, B2) | B1 ∈ {A1, A1}, B2 ∈ {A2, A2}, B1−⇀↽−B2}|.
We then say that there are ℓ conflicts between P1 and P2, and
we denote this by P1−⇀↽−ℓ P2. We write P1−⇀↽−P2 if P1−⇀↽−ℓ P2

for some ℓ > 0. If P1−⇀↽−1 P2, we say that there is a single
conflict and if P1−⇀↽−4 P2, we say that there is a total conflict
between P1 and P4.

Moreover, we define CA = {(Pi, Pj) | Pi, Pj ∈
A, Pi−⇀↽−Pj} and CA

ℓ = {(Pi, Pj) | Pi, Pj ∈ A, Pi−⇀↽−ℓ Pj}.

By establishing that between any two pairs P1 and P2 of
complementary focal elements, there is either a single con-
flict or there is a total conflict, we can characterize the
existence of a hierarchy in terms of single conflicts.

Lemma⋆ 5.2. For each frame Θ and each set A of pairs of
complementary focal elements, CA = CA

1 ∪ CA
4 .

Proposition 5.3. Let Θ be a frame of discernment, and
let A be a set with pairs Pi = (Bi, Bi) of complementary
sets over Θ. Then there exists a hierarchy containing exactly
one of Bi and Bi for each pair Pi if and only if CA = CA

1 .

Proof. Firstly, suppose that CA = CA
1 . We argue that the

formula φ from Theorem 4.2 is satisfied by the following
truth assignment α, which suffices to show the existence of a
suitable hierarchy. For each i, let α(xi) = 1 and α(yi) = 0
if |Bi| ≤ |Bi|, and let α(xi) = 0 and α(yi) = 1 otherwise.
For space reasons, we omit a detailed proof of this.

Conversely, suppose that there exists a suitable hierarchy.
Then the 2CNF formula φ from Theorem 4.2 is satisfiable.
We argue that no pair (Pi, Pj) can belong to CA

4 . To derive a
contradiction, suppose that this were the case, and that Pi =
(Bi, Bi) and Pj = (Bj , Bj). Then, by construction, φ
would contain the following clauses: (ν(Bi) ∨ ν(Bi)),
(¬ν(Bi)∨¬ν(Bi)), (ν(Bj)∨ν(Bj)), (¬ν(Bj)∨¬ν(Bj)),
(¬ν(Bi) ∨ ¬ν(Bj)), (¬ν(Bi) ∨ ¬ν(Bj)), (¬ν(Bj) ∨
¬ν(Bi)), and (¬ν(Bj) ∨ ¬ν(Bi)). Thus φ would be un-
satisfiable, which contradicts Theorem 4.2. Then, one can
show φ to be unsatisfiable, contradicting Theorem 4.2. By
Lemma 5.3, we then know that CA = CA

1 .

5.2 MAXIMIZING THE SIZE OF A HIERARCHY

In this section, we study the problem of finding partial
hierarchies—among a given set A of pairs of complemen-
tary focal elements—that are as large as possible. In par-
ticular, we will show that this problem is closely related
to the classical problem VERTEX-COVER, that consists of
deciding if a graph has a vertex cover of a given size. Con-
cretely, we show that there is a polynomial-time reduction
from VERTEX-COVER to the problem of finding a partial
hierarchy of a given site—showing that the latter problem
is NP-hard—and also that there is a polynomial-time re-
duction in the other direction—allowing fixed-parameter
tractable algorithms for VERTEX-COVER to be employed
for finding hierarchies.

We start with giving a formal definition for the (decision)
problem of finding large partial hierarchies, and showing
that this problem is NP-complete.

PARTIAL-HIERARCHY
Input: A frame Θ of discernment, a set A =

{(Bi, Bi)}mi=1 of complementary pairs of focal
elements over Θ, and a positive integer ℓ ∈ N.

Question: Is there a hierarchy H ⊆ {Bi, Bi | 1 ≤ i ≤ m}
of size at least ℓ, such that H∩{Bi, Bi} ≤ 1 for
each i?

Theorem 5.4. PARTIAL-HIERARCHY is NP-complete.

Proof (sketch). It is straightforward to show that the prob-
lem is in NP, and we omit further details on this. To



show NP-hardness, we give a reduction from VERTEX-
COVER. Let G = (V,E) be an undirected graph with V =
{v1, . . . , vm}, and let k ∈ N. We construct an instance of
PARTIAL-HIERARCHY. We let Θ = {⋆}∪V ∪E. Moreover,
we define A = {(Bi, Bi)}mi=1 by letting Bi = {vi} ∪ {e ∈
E | vi ∈ e} and Bi = Θ \Bi. Finally, we let ℓ = m− k.

Then G has a vertex cover of size k if and only if there
is a hierarchy H ⊆ {Bi, Bi | 1 ≤ i ≤ m} of size ℓ. In
particular, for any C ⊆ V it holds that C is a vertex cover
of G if and only if AC = {(Bi, Bi) | vi ∈ V \ C} admits
a hierarchy (in the sense of Theorem 4.2).

To show this, the following claim is central. For
each vi, vj ∈ V such that i ̸= j, if {vi, vj} ∈
E, then (Bi, Bi)−⇀↽−4 (Bj , Bj), and if {vi, vj} ̸∈ E,
then (Bi, Bi)−⇀↽−1 (Bj , Bj). The above correspondence be-
tween vertex covers C of G and partial hierarchies AC

is straightforward to show, using this claim and Proposi-
tion 5.3.

Proposition⋆ 5.5. There is a polynomial-time reduction
from PARTIAL-HIERARCHY to VERTEX-COVER that maps
instances (Θ,A, ℓ) to instances with k = |A| − ℓ.

The result of Proposition 5.5 shows that we can use fixed-
parameter tractable algorithms for VERTEX-COVER to find
partial hierarchies, and that such algorithms can be expected
to run efficiently in cases where we can obtain a hierarchy
from A by removing only few items. In particular, we can
find vertex covers of size k in time O(1.2738k + kn) [Chen
et al., 2010], which is a running time that is manageable
whenever k = m − ℓ is reasonably small. Additionally,
one could employ approximation algorithms for finding
minimum-size vertex covers (see, e.g., Arora and Barak,
2009) to get partial hierarchies that approximate those of
maximum size.

6 USING HIERARCHICAL STRUCTURE
IN ARBITRARY BODIES OF
EVIDENCE

In Sections 4 and 5 we studied the problem of determining
in what situations—possibly after disregarding some pieces
of evidence—evidence is entirely aligned with a hierarchy.
Of course, there are also situations where this is not the case
(and where disregarding evidence is undesirable or inappro-
priate). In this section, we take some initial steps towards
algorithmically using hierarchical structure to combine evi-
dence also in cases where the evidence is not entirely in line
with any hierarchy.

In particular, we introduce a measure of how much (of a
particular type of) hierarchical structure there is in any set A
of focal elements, and we give an algorithm to compute the
combined belief of a given set—based on applying DRC

to simple support functions with focal elements in A—that
works efficiently when there is a high degree of hierarchical
structure in A.

The main idea behind this measure (and the algorithm) is as
follows. Whenever there are focal elements A1, A2 ∈ A that
are conflicting—in the sense of Definition 5.1—we merge
them together. We do this merging iteratively until there are
no conflicts remaining, and thus until we have a hierarchy.
The algorithm, roughly, works in a two-step fashion: first,
(i) for all focal elements in the hierarchy that are the result
of such a merging operation, we compute the combined
belief using a brute-force algorithm; then, (ii) we use the
algorithm of Theorem 3.6 to combine these intermediate
results—for the merged focal elements—with the evidence
for focal elements that are not the result of any merging
operation.

Step (i) of this algorithm takes exponential time, but this is
only exponential in the size of the merged focal elements.
As measure of the amount of hierarchical structure in the
set A of focal elements we take the size k of the largest
focal element resulting from this iterative merging process.
The smaller this number k, the more hierarchical structure
the set A contains, and in fact, if A is already a hierar-
chy, then k = 0. The running time of the algorithm then
is 2k · poly(|x|), where x denotes the size of the problem
input. In other words, the algorithm runs in fixed-parameter
tractable time, when we consider as parameter the amount
of hierarchical structure.

6.1 MEASURING HIERARCHICAL STRUCTURE

Let us now work out this idea in more detail, and let us begin
with the measure of the amount of hierarchical structure in
any given set of focal elements.

Definition 6.1 (Corresponding merged hierarchy). Let Θ be
a frame of discernment and let A = {A1, . . . , Am} be a set
of focal elements Ai ⊆ Θ. Then the merged hierarchy HA
corresponding to A is defined by the following procedure.
Initially, let Aorigin = A and Amerged = ∅, and then iter-
atively update (Aorigin,Amerged) using the following rules
until no rule applies anymore.

• If there are Ai, Aj ∈ Aorigin such that both (i) Ai ∩
Aj ̸= ∅ and (ii) neither Ai ⊆ Aj nor Aj ⊆ Ai, then
replace Aorigin by Aorigin \ {Ai, Aj} and add Ai ∪Aj

to Amerged.

• If there is some Ai ∈ Aorigin and some Aj ∈ Amerged

such that Ai∩Aj ̸= ∅, then replace Aorigin by Aorigin \
{Ai} and replace Amerged by Amerged \ {Aj} ∪ {Ai ∪
Aj}.

• If there are Ai, Aj ∈ Amerged such that Ai ∩ Aj ̸= ∅,
then replace Amerged by Amerged\{Ai, Aj}∪{Ai∪Aj}.

Finally, let HA = Aorigin ∪ Amerged.



If A is already a hierarchy, then none of these rules ever
applies, and thus HA = A.

No matter in which order you apply the rules in this iterative
procedure, the result does not change. In other words, for
any A, the hierarchy HA is uniquely defined.

Proposition 6.2. For each set A of focal elements, the
procedure in Definition 6.1 yields a unique HA, regardless
of the order in which rules are applied. Moreover, HA is a
hierarchy, and for each A ∈ A there is some H ∈ HA such
that A ⊆ H .

Proof (sketch). Each of the rules only merges sets, which
directly gives us termination and the property that for
each A ∈ A there is some H ∈ HA such that A ⊆ H .
If the resulting HA were not a hierarchy, then one could
still apply a rule, which proves that HA must be a hierarchy.
Uniqueness can be proved with the observation that the ef-
fects of the rules only strictly increase the sets in Amerged,
and the preconditions of the rules are monotone—in the
sense that making sets in Amerged larger will not make a
previously applicable rule not applicable anymore.

Having the notion of corresponding merged hierarchies
in place, we introduce the level of merging needed to go
from A to HA as a way to measure the amount of hierarchi-
cal structure in A.

Definition 6.3 (Level of merging). Let Θ be a frame of
discernment, and let A = {A1, . . . , Am} be a set of focal
elements Ai ⊆ Θ. We define the level of merging needed
to go from A to its corresponding merged hierarchy HA
to be k = maxA∈Amerged |A|, where Aorigin and Amerged are
given by the procedure described in Definition 6.1.

The procedure described in Definition 6.1 gives us a
polynomial-time algorithm to compute both HA and k.

Proposition 6.4. For each A, we can in polynomial time
compute its corresponding hierarchy HA and compute the
level k of merging needed to go from A to HA.

Proof (sketch). The procedure described in Definition 6.1
terminates in polynomial time and produces HA and k.

Example 6.5. Consider Θ = {a, b, c, d, e} and A =
{{a}, {a, b}, {b, c}, {a, b, c, d}, {d}, {e}}. Then HA =
{{a, b, c}, {a, b, c, d}, {d}, {e}} and the level k of merging
needed to go from A to HA is 3, as {a, b, c} is the largest
element in the set Amerged resulting from the procedure de-
scribed in Definition 6.1.

6.2 USING HIERARCHICAL STRUCTURE

We now have everything in place to present our fixed-
parameter tractable algorithm that extends the result of

Shafer and Logan [2008] (Theorem 3.6) to arbitrary sets A
of focal elements.

Theorem 6.6. Let Θ be a frame of discernment and let A =
{A1, . . . , Am} be a set of focal elements Ai ⊆ Θ. Moreover,
let HA be the hierarchy corresponding to A, and let k be
the level of merging needed to go from A to HA.

Then, given simple b.p.a.’s m1, . . . ,mn, each of whose sin-
gle proper focal element is an element of A, for each A ∈
A we can compute Belm(A), Belm(A), Plaum(A) and
Plaum(A), for m =

⊕n
i=1 mi, in time 2k · poly(|x|)

where x denotes the problem input.

Proof (sketch). We describe how to compute Belm(A).
This procedure can be straightforwardly modified to com-
pute Belm(A), Plaum(A) and Plaum(A) as well. We may
assume without loss of generality, that for each A ∈ A,
there is exactly one b.p.a. among m1, . . . ,mn that has A as
proper focal element—call this b.p.a. mA.

We will use the following procedure. Firstly, we con-
struct HA, together with Aorigin and Amerged, as described
in Definition 6.1. Then, for each A ∈ Amerged, we use a
brute-force approach to compute mA =

⊕
A′∈A,A′⊆A mA′ ,

and we construct the simple b.p.a. m′
A with proper focal

element A such that m′
A(A) = BelmA

(A). Then we use
Theorem 3.6, using mA for each A ∈ Aorigin and m′

A for
each A ∈ Amerged, to compute Belm(H) for each H ∈ HA.
By Lemma 6.7, we can safely replace mA by m′

A in this
computation, for each A ∈ Amerged. What remains is to com-
pute Belm(A) for each A ∈ A \ HA. Lemma 6.8 gives us
a direct way to do this using values that we have already
computed.

The computation of m(A) and m′(A) for A ∈ Amerged
can be done in time 2k · poly(|x|). Moreover, given m(A)
and m′(A) for each A ∈ Amerged, the remainder of the
algorithm can be carried out in polynomial time.

The proof of Theorem 6.6 uses the following two lemmas,
which can be established straightforwardly using the defini-
tion of Dempster’s rule of combination.

Lemma 6.7. Let Θ be a frame of discernment,
let m1,m2,m3 be b.p.a.’s over Θ, and let A ⊆ Θ be such
that Belm1

(A)+m1(Θ) = 1, Belm2
(A)+m2(Θ) = 1, and

Belm3
(Θ\A)+m3(Θ) = 1. Moreover, let m1,3 = m1⊕m3

and let m2,3 = m2 ⊕m3. Then Belm1,3(A) = Belm2,3(A)
and Belm1,3(B) = Belm2,3(B) for each B ⊆ Θ \A.

Lemma 6.8. Let Θ be a frame of discernment, let m1,m2

be b.p.a.’s over Θ, and let A ⊆ Θ be such that
Belm1(A)+m1(Θ) = 1, and Belm2(Θ\A)+m2(Θ) = 1.
Then Belm1

(B)/Belm1
(A) = Belm1,2

(B)/Belm1,2
(A) for

each B ⊆ A, where m1,2 = m1 ⊕m2.



6.3 EXTENSIONS

The result of Theorem 6.6 provides a starting point for
investigating how best to algorithmically use hierarchical
structure to combine arbitrary sets of evidence. By itself,
the result is restricted in various ways. In this section, we
discuss several suggestions for how to extend Theorem 6.6
to more general and practically useful settings.

Including complementary focal elements The algorithm
of Theorem 6.6 can straightforwardly be adapted also to
the case where you additionally have simple b.p.a.’s whose
focal element is the complement of some A ∈ HA—as
is the case for Theorem 3.6. Therefore, one might be able
to compute Belm(A) for some A ∈ A more efficiently
by constructing a set A′ ⊆ A such that for each focal
element D of a given simple b.p.a., either (i) HA′ contains
a set in Amerged that is a superset of D, or (ii) D is the
complement of some set in HA′ .

For example, take A = {{a, b}, {b, c}, {a, b, c, d},
{d, e}, {e}}, and suppose you have simple b.p.a.’s with
proper focal elements in A. Then HA = {{a, b, c, d, e}}.
However, you can also consider the hierarchy H =
{{a, b, c}, {a, b, c, d}, {e}} to use (the extended variant)
of the algorithm of Theorem 6.6 to compute Belm(A) for
sets A ∈ A, and this would be more efficient. An interesting
direction for future research would be to develop (efficient)
algorithms for finding a set A′ ⊆ A that enables the most
efficient use of the algorithm of Theorem 6.6.

Improved distance measures The notion of a merged
hierarchy HA corresponding to a set A of focal elements is
conceivable that in many situations one is forced to merge
(nearly) all sets in A. In such situations, the algorithm of
Theorem 6.6 would boil down to combining all available
evidence using a brute force algorithm.

It would be interesting to study more refined notions of
distance to a hierarchy. One possible approach for finding a
more fine-grained notion of distance that could strike such a
balance would be to count the number of steps needed to go
from an arbitrary set A of focal elements to a hierarchy H
using operations on the sets in A that do not force one to
use a brute force algorithm to deal with the resulting sets.

7 CONCLUSION

We have presented different solutions for combining pieces
of evidences through Dempster’s rule of combination in
polynomial (or fixed-parameter tractable) time. We showed
that one can check in polynomial time if a given set of evi-
dence admits a hierarchy, in which case one can combine
evidence in polynomial time. For the non-hierarchical case,
we considered two variants of the problem of finding a par-
tial hierarchy, and showed that both variants are NP-hard

but admit fixed-parameter tractable algorithm (where the
parameter is the number of sets to delete). In addition, we
provided a fixed-parameter tractable algorithm for combin-
ing evidence where the parameter in some sense measures
how hierarchical the body of evidence is. Our work points
to several interesting open problems. One example is to
study how filtering the original set of evidence (e.g., to get
a hierarchy structure) affects the final result and how this
relates to the notion of relevance for evidence. Another di-
rection would be to explore algorithms that use hierarchical
structure in arbitrary sets of evidence in a more efficient
way.
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