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ABSTRACT

The diversity and complexity of living systems on Earth have presumably emerged
from a single common ancestor and, even before, from the inorganic components
present on the surface of Earth. So far, it is unclear what are the algorithmic
properties of a process that would display a similar trajectory in its state space.
Because living systems are hypothesized to correspond to attractors in chemical
networks, Artificial Chemistries (AC) are well suited to explore this question be-
cause they can simulate the evolution of these networks. Combinatory Chemistry
is an AC in which self-reproducing metabolisms emerge from its dynamics. Here,
I extend it with a set of mutation reactions and argue that said reactions coupled
with the emergent structures in the system enable a more efficient search of com-
plex structures. I conclude that the resulting dynamics constitute an emergent
self-organizing search process that could capture the properties of open-ended
evolutionary processes.

1 INTRODUCTION

What are the necessary conditions for the emergence of living systems? Moreover, how can a
process display analogous levels of creativity and complexity as natural evolution? These are two
fundamental questions that have been at the core of Artificial Life research (Varela & Maturana,
1973; Eigen & Schuster, 1978; Langton, 1989; Dyson, 1999; Pross, 2004; Banzhaf et al., 2016;
Packard et al., 2019; Stanley, 2019). Both are concerned with the fundamental nature of living sys-
tems, but they are often addressed independently, with some studies focused on the emergence of
evolvable units (Bagley & Farmer, 1992; Hutton, 2007; Flamm et al., 2010; Högerl, 2010; Feller-
mann et al., 2017; Baum, 2018; Peng et al., 2020, among others), and others starting from evolvable
units to explore the space of emergent behaviours that follow (Ray, 1991; Lenski et al., 2003; Ofria
& Wilke, 2004; Soros & Stanley, 2014; Williams, 2019; Taylor, 2019, among others). Even though
this distinction is not completely clear-cut (e.g., Koza, 1994; Vasas et al., 2012; Young & Neshatian,
2013), there is a trend rooted in the fact that it is already hard to characterize the emergence of
evolvable units, and thus it can makes sense to “shortcut” to the point where they are already part of
the system (Banzhaf et al., 2016).

Here, I describe an initial attempt at producing an unifying model while focusing on the hypothe-
sized core algorithmic properties of living systems. This model draws on the hypothesis that both
the emergence of evolvable units and their diversification in complex forms can be construed as a
the outcome of an unguided search process over a space of self-organizing chemical networks. As it
has been argued before, localized self-sustaining structures (Varela & Maturana, 1973) can emerge
in these networks as attractors, known as Autocatalytic Sets (Kauffman, 1993). The main observa-
tion of this paper, is that catalyzed reactions involving an element of randomness within them allow
Autocatalytic Sets to explore more efficiently the space of possible organizations, thus boosting
diversification and complexification of forms.

Notably, Artificial Chemistries (AC) (Dittrich et al., 2001) and, in particular, Algorithmic Artifi-
cial Chemistries (Fontana & Buss, 1994a;b; Tominaga et al., 2007; Hutton, 2002; Kruszewski &
Mikolov, 2022) provide a powerful framework to model these phenomena. In particular, here I
focus on Combinatory Chemistry (Kruszewski & Mikolov, 2020; 2022), which is an AC where
self-reproducing metabolisms emerge from the system’s dynamics. The model features a mix of
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random recombination reactions that proceed at a slow rate and (auto-)catalyzed “reduce” reactions
implementing Turing-complete rewrite rules that take place at a much higher rate. In contrast to
some previous models, such as Fontana & Buss (1994a;b), the system features conservation laws
and allows to represent never-ending loops as part of its dynamics1. When the system is initialized
with a tabula rasa state featuring only atomic elements, random recombination reactions produce
a wide diversity of forms, some of which then self-organize into emergent metabolisms. These
take the form of recursive programs that compute themselves (think of “quines”) by following auto-
catalyzed reduce reactions. However, the possibility of these metabolisms undergoing variation is
mostly restricted to the effect of random recombination reactions. If nothing else, because these
reactions proceed at a slow rate the evolutionary potential of such metabolisms is limited.

In this paper, I introduce a new set of mutation reactions that simulate the imperfect application of
some of the reduce reactions. As a result, the emergent structures can compute variants and thus,
they can undergo evolution. I then show that even when very basic metabolisms undergo some of
these mutations, they will inherit part of the structure of the originating metabolisms, and compute
variants with better chances of becoming viable metabolisms. Therefore, the search process that at
the base was only formed by random recombination reactions gets enriched with additional emergent
search units that exploit the structure of viable metabolisms to find new ones. In other words, the
system acquires a prior or inductive bias that allows it to search more efficiently for novel forms.
I speculate that this process can feed into itself, continually improving its efficiency at searching
for new viable forms (Pattee & Sayama, 2019). To distinguish this process from one that features
random recombination on a self-organizing state space, I denote it as an emergent self-organizing
search process, as it is the search process itself that gets updated through self-organization.

2 STOCHASTIC CHEMICAL REACTION SYSTEMS

The name of Artificial Chemistry denotes a wide range of systems in which different elements can
collide with each other to create new components (Dittrich et al., 2001). For the purposes of this arti-
cle, I will restrict to Stochastic Chemical Reaction Systems of the sort introduced by Gillespie (1977;
2007). These systems are formally defined as follows. Let us consider a set of chemical species
S = {S1, . . . ,Si, . . . } which interact through a set of chemical reactions R = {R1, . . . ,Rj , . . . }.
While the original formulation considers finite sets, here I consider a generalization to countably
infinite sets of species and corresponding reactions, which is particularly adequate for defining an
open-ended system. Let also xi(t) denote the number of molecules of species Si at time t and
x(t) = (x1(t), . . . , xi(t), . . . ) be the state vector of the system2. Each reaction Rj is character-
ized by i) a state-change vector vj ≡ (v1j , . . . , vij , . . . ) and ii) a propensity function aj such that
aj(x) dt is the probability that one reaction Rj will occur in the next infinitesimal time interval
[t, t + dt) given that x(t) = x. The state-change vector represents the reactants, products and by-
products of the reaction. For convenience, we can write the reaction Rj with state-change vector vj

containing values −1 on positions k1, . . . , kn, 1 on positions l1, . . . , lm, and 0 everywhere else as
Sk1

+ · · ·+Skn
→ Sl1 + · · ·+Slm . The propensity function depends on the reactants’ concentration

and a constant cj that intuitively corresponds to the “speed” at which the reaction takes place. In
particular, for a unimolecular reaction Sk → · · · , the propensity function takes the form

aj(x) = cjxk, (1)

whereas for a bimolecular reaction Sk1 + Sk2 → · · · it takes the form3

aj(x) = cjxk1
xk2

. (2)

The Gillespie algorithm (Gillespie, 1977) simulates the time evolution of a system with state x(t) =
x by sampling the next reaction Rj with probability p(Rj) = aj(x)/a0(x) where a0 =

∑
j aj(x) is

the partition function, and advancing the time by an exponentially-distributed interval τ ∼ Exp(λ =
a0(x)). Then, a new state is obtained as x(t+ τ) = x+ vj .

1See Kruszewski & Mikolov (2022) for a detailed discussion of how this model relates to previous proposals.
2Even if the vector is infinite, it is possible to tractably operate on it if all but a finite set of elements are 0.
3See (Gillespie, 2007) for a more precise formulation
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3 COMBINATORY CHEMISTRY

Combinatory Chemistry4 (Kruszewski & Mikolov, 2020; 2022) is an Artificial Chemistry endowed
with Turing-complete reactions derived from Combinatory Logic (Schönfinkel, 1924; Curry et al.,
1958) rewriting rules. In particular, chemical species are defined to be the combinators S, K, I,
and, recursively, their combinations through the application operation. More formally, we define
S be the minimal set that both satisfies {S,K, I} ⊂ S and (xy) ∈ S ∀x, y ∈ S, where (xy) de-
notes the application of x onto y. By convention, application is left-associative, and thus ((xy)z)
is equivalent to (xyz). There are three kinds of reactions: condensations (Π ⊂ R), cleavages
(X ⊂ R), and reductions (A ⊂ R), defined as follows. On the one hand, a condensation reaction
(x+ y → (xy)) ∈ Π and a cleavage reaction ((xy) → x+ y) ∈ X are defined for every x, y ∈ S.
These reactions allow the random recombination of elements in the system. On the other hand, re-
duction reactions are defined in an analogous way to Combinatory Logic rewrite rules. Specifically,
given x = (. . . X . . . ) ∈ S with X = (If) or X = (Kfg) or X = (Sfgy) and f, g, y ∈ S, then
there is a corresponding reduce reaction respectively defined as5

(. . . (If) . . . ) ⇒ (. . . f . . . ) + I, (I-reduction)
(. . . (Kfg) . . . ) ⇒ (. . . f . . . ) + g + K, (K-reduction)

(. . . (Sfgy) . . . )︸ ︷︷ ︸
substrate

+y︸︷︷︸
reactant

⇒ (. . . (fy(gy)) . . . )︸ ︷︷ ︸
product

+S︸︷︷︸
by-product

. (S-reduction)

Furthermore, we say that x is reducible and that X is a redex with the additional condition that when
x is the substrate of an S-reduction (see the definition above), then the corresponding reactant must
be present in the state of the system at the current time t so that the reaction can take place.

In contrast to Combinatory Logic’s rewrite rules, these reductions ensure “conservation of mass”,
namely, the total number of combinators in the system does not change over time. Reaction propen-
sities for reduce reactions are chosen to be much larger than for cleavages and condensations (in
other words, reduce reactions are auto-catalyzed): aj(x) ≫ aj′(x) for j ∈ A and j′ ∈ X ∪ Π.
In this way, computation takes precedence over random recombination, allowing for the emergence
of self-organizing structures (see next section). For further details on the system’s definition, see
Kruszewski & Mikolov (2022).

4 EMERGENT SELF-ORGANIZING STRUCTURES

As shown by Kruszewski & Mikolov (2022), the above-described system initialized with only
atomic S, K and I combinators gives rise, first, to a diversity explosion of Combinatory Logic expres-
sions driven by random condensation and cleavages and then, gives way to emergent self-organizing
structures. These structures emerge because many of the new-found expressions by random recom-
bination admit reduce reactions and so, they will often undergo these reactions before additional
condensations or cleavages. In particular, some expressions can follow a chain of reduce reactions
that leads back to the original expression (or an expression which contains the original one), thus
perpetuating their organization in time. In other words, these expressions will tend to recursively
compute themselves via reduce reactions, forming a limit cycle under these dynamics. As argued by
Kruszewski & Mikolov (2022), these limit cycles constitute Autocatalytic Sets (Kauffman, 1993).
For example, one such structure can be identified with the expression Ω = (SII(SII)), which under-
goes the following cycle (or a variation within its basin of attraction):

(SII(SII)) + (SII) ⇒ (I(SII)(I(SII))) + S,

(I(SII)(I(SII)) ⇒ (SII(I(SII))) + I,

(SII(I(SII))) ⇒ (SII(SII)) + I.

Underlined expressions correspond to the reaction’s redex. Note that on each cycle, this structure
will “consume” one copy of (SII), and release back the individual combinators into the environment

4Code and materials can be found in https://germank.github.io/
combinatory-chemistry/.

5The notation using the ⇒ symbol is meant to distinguish reduce reactions from random condensation and
cleavage ones.
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as by-products of each reduction, in close analogy to real-world metabolisms. Furthermore, this
structure is composed of two juxtaposed copies of the same expression A = (SII). This pattern
of an expression applied one or more times to itself is a common factor in the emergent structures
of this system. Another interesting pattern is displayed in Figure 1, also with the form (AA), but
with A = (SI(S(SK)I)). Over a full cycle, it “absorbs” three copies of the expression A: one
is decomposed into the elementary combinators, while the other two are released as (AA) at the
same time as the expression returns to its original (AA) form. In other words, this structure self-
reproduces.

Importantly, if there are no other copies of A in the environment for any the above mentioned
metabolisms, the reduction of the S combinator cannot take place, and the expression could be
cleaved or condensed with another one, probably provoking it to lose its function.

AA

A

r1 IA((S(SK)I)A) r2 A((S(SK)I)A

S I

A

r3 A(SKA(IA)) r4 A(SKAA)

S I

A

r5 A(KA(AA)) r6 AA

S K AA

Figure 1: Cycle of a self-reproducing structure that emerges from the dynamics of Combinatory
Chemistry. Starting from (AA), where A = (SI(S(SK)I)), it acquires three copies of A from its
environment and uses two to create a copy of itself, metabolising the third one to carry out the
process. (Reproduced from Kruszewski & Mikolov (2022).)

5 EMERGENT SEARCH PROCESS

Combinatory Chemistry defines a walk over multisets of Combinatory Logic expressions, some of
them acting as (attracting) fixed-points or limit cycles. While random condensation and cleavages
allow to explore the space of possible expressions, reduce reactions shape the underlying search
landscape, including the fixed points, limit cycles and their basins of attraction. Even though there
are no explicit goals or objectives in this system, we can construe it to be searching for limit cycles,
which constitute the emergent structures of the system.

As it has been previously noted by Kauffman (1993), the search for new structures is made more
efficient by self-organization. In Combinatory Chemistry, this happens in at least two ways. One the
on hand, it will be very unlikely for some of the reducible expressions to be selected in a condensa-
tion or cleavage reaction because reducible expressions are very unstable and short-lived. Consider,
for instance, the expression (IKK). This expression is expected to undergo the reduce reaction
(IKK) ⇒ (KK) + I with much higher probability than any other kind of reaction, and therefore
there will be almost no z + (IKK) → (z(IKK)) or (IKK) → (IK) + K reactions, corresponding
to a condensation and a cleavage, respectively. In this way, the system prunes the space of possible
reactions that it explores.

On the other hand, basins of attraction allow some structures to be more easily discovered. Con-
sider, for instance, that a condensation reaction is produced between the two irreducible expressions
(S(SI(SI)(SI)) and (S(SK)I), to obtain (S(SI(SI)(SI))(S(SK)I)). This new expression does not con-
stitute per se an emergent structure. Yet, following the chain of reduction reactions that it admits, we
see that it leads to the emergence of the self-reproducing expression (AA) with A = (SI(S(SK)I)).
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To see this, let’s denote B = (S(SK)I), and note that A = (SIB), then the following set of reduce
expressions are very likely to follow:

(S(SI(SI))(SI)B) +B ⇒ (SI(SI)BA) + S

(SI(SI)BA) +B ⇒ (IBAA) + S

(IBAA) +B ⇒ (BAA) + I
(BAA) +A ⇒ (SKA(IA)A) + S
(SKA(IA)A) ⇒ (SKAAA) + I

(SKAAA) +A ⇒ (KA(AA)A) + S
(KA(AA)A) ⇒ 2(AA) + K

Therefore, we can see that the system found the self-reproducing structure by first forming a new
expression through random condensation of some of the existing expressions, and then, because the
resulting expression was in the basin of attraction of a limit cycle point, it arrived to it by following
a chain of reduce reactions. Nonetheless, it is worth noting that the search for novel expressions is
exclusively done though random recombination of existing components.

6 MUTATION REACTIONS

Thanks to the self-organizing properties discussed in the previous section, the exploration process
defined by random recombination reactions is more efficient than purely random search, an aspect
that has been hypothesized to be behind the emergence of living systems on Earth (Kauffman, 1993).
Nonetheless, random recombination as discussed so far has its limits. Discovering larger and more
complex structures can quickly become hard as the search space grows exponentially large. Mean-
while, random recombination reactions exploring this exponentially large space occur at a relatively
low rate. Yet, we know that nature has found a way to explore this space, given the evidence of the
living systems we see today on Earth (including ourselves).

I hypothesize that in contrast to the model described thus far, the open-ended evolutionary process
in earth relies on imperfect computation, which allows it to search this space more efficiently. To
this end, I introduce a new set of mutation reactions (µ), defined as follows:

(· · · (Sfgy) · · · ) + z
!
=⇒ (· · · (fy(gz)) · · · ) + S (inner-mutation)

(· · · (Sfgy) · · · ) + z
!
=⇒ (· · · (fz(gy)) · · · ) + S (outer-mutation)

Both of these reduce-like reactions take the shape of S-reductions, but instead of being only defined
for a reactant equal to the third argument y, they are defined for any possible reactant. This “wrong”
reactant is placed in either of the two locations where y is usually located within the product. An
intuitive argument for why such reactions could be a natural choice is that catalyzing a reaction that
requires an exact copy of a sub-expression is an error-prone process and therefore, other reactants in
the system can take its place instead.

These reactions are also catalyzed, even though with lower propensity than regular S-reductions:
a(jX∪Π) < a(jµ) ≪ a(jA) with jµ ∈ µ, jX∪Π ∈ X ∪ Π, and jA ∈ A. In this way, imperfect
non-deterministic computation can happen at a faster rhythm than chance reactions, but not so fast as
to interfere with the regular course of the deterministic computation over which emergent structures
are defined.

7 EMERGENT SELF-ORGANIZING SEARCH

Let’s now examine the result of adding these reactions in the simplest limit cycle, namely, the
Ω = (SII(SII)) combinator introduced in Section 4 . Normally, this structure would react with (SII)
using an S-reduction. However, let’s suppose that it reacts with an expression z from the environ-
ment following an inner-mutation. Then, the ensuing chain of reductions would be as follows.
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(SII(SII)) + z
!
=⇒ (I(SII)(Iz)) + S

(I(SII)(Iz) ⇒ (SII(Iz)) + I

(SII(Iz)) ⇒ (SIIz) + I
(SIIz) + z ⇒ (Iz(Iz)) + S

(Iz(Iz)) ⇒ (Izz) + I
(Izz) ⇒ (zz) + I

Therefore, if an inner-mutation occurred on Ω with reactant z, then the system will very likely
produce the expression (zz)6. This is interesting because of our earlier observation that emergent
structures tend to have the form of an expression applied to itself. Therefore, the system is searching
for new expressions with a given structure, and this structure is expected to be favourable with
respect to other random combinations. Therefore, by introducing inner-mutations with sufficiently
high reaction rate constant cµ, the collision of two arbitrary expressions z will be catalyzed at least
by the following factor:7

a(Ω + z
!
=⇒ · · · )

a(z + z → · · · )
=

cµxΩxz

cΠx2
z

=
cµxΩ

cΠxz
(3)

This means that if z is a rare expression (xz is small), then these reactions could improve the prob-
ability of exploring (zz).

The outer-mutation has a different effect, constructing an expression in which a randomly acquired
reactant from the environment is applied to the expression A = (SII):

(SII(SII)) + z
!
=⇒ (Iz(I(SII))) + S

(Iz(I(SII)) ⇒ (z(I(SII))) + I
(z(I(SII))) ⇒ (z(SII)) + I

Here, it is interesting to note that here we are sending the defining function of the Ω combinator
as an argument to an arbitrary function z, which is in line with the notion of algorithmic mutations
explored by Chaitin (2011).

Yet, some limitations are foreseeable. Particularly, because the empirical distribution of expressions
is heavily skewed towards simpler forms, then, for instance, the application of an inner-mutation,
will often result in very simple forms such as (SS), (KK) or (II). Therefore, it might be worth
exploring ways in which the space of random reactants can be restricted (for instance, limiting their
minimum length) to reduce the amount of time that the system spends in computing these elementary
forms (which are already well covered by random mixing). Otherwise, it might be important to
simulate systems of suficiently large scale for the predicted effects to appear.

8 CONCLUSIONS

In summary, Combinatory Chemistry displays emergent structures, which take the form of (attract-
ing) limit cycles. The system discovers these structures both thanks to the random recombination
of expressions and to the self-organization of the space. When mutation reactions are introduced,
the emergent structures can expand the search process capabilities by catalyzing the formation of
new structures that were unlikely to be found through random condensation alone. The emergence
of new strategies to explore the space of possible chemical organizations defines a self-organizing
search process. Whereas exploration through random recombination alone is expected to stall at

6A similar analysis for the self-reproducing expression (AA) where A = (SI(S(SK)I)) yields a similar
result, but where two copies of (zz) are produced at the end.

7Ignoring the factors corresponding to the chain of reduce reactions following the mutation, which we can
assume almost instantaneous for they will have very high propensity. On the other hand, Ω is not the only
expression that would catalyze this reaction and thus, the factor should probably be considerably larger.
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some point, I speculate that as new structures are discovered they will continue to expand the reper-
toire of exploration strategies, which in turn will lead to other new structures to be found. In other
words, the above described system can potentially display an open-ended evolutionary process over
the space of Combinatory Chemistry organizations. Future work will focus in validating or rebutting
these predictions through empirical explorations.
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