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Abstract

Despite advancements in Large Language Mod-001
els (LLMs) and Retrieval-Augmented Genera-002
tion (RAG) systems, their effectiveness is often003
hindered by a lack of integration with entity re-004
lationships and community structures, limiting005
their ability to provide contextually rich and ac-006
curate information retrieval for fact-checking.007
We introduce CommunityKG-RAG (Commu-008
nity Knowledge Graph-Retrieval Augmented009
Generation), a novel zero-shot framework that010
integrates community structures within Knowl-011
edge Graphs (KGs) with RAG systems to en-012
hance the fact-checking process. Capable of013
adapting to new domains and queries with-014
out additional training, CommunityKG-RAG015
utilizes the multi-hop nature of community016
structures within KGs to significantly improve017
the accuracy and relevance of information re-018
trieval. Our experimental results demonstrate019
that CommunityKG-RAG outperforms tradi-020
tional methods, representing a significant ad-021
vancement in fact-checking by offering a ro-022
bust, scalable, and efficient solution.023

1 Introduction024

The occurrence of misinformation and the impera-025

tive of fact-checking are pivotal elements within the026

digital information ecosystem, profoundly affect-027

ing public discourse and shaping societal decisions028

worldwide. Concurrently, the advent of Large Lan-029

guage Models (LLMs) has unveiled remarkable030

capabilities in comprehending and producing hu-031

man languages, presenting a promising avenue for032

bolstering fact-checking endeavors. Prior research033

(Buchholz, 2023; Li et al., 2023b; Caramancion,034

2023; Hoes et al., 2023; Huang and Sun, 2023)035

has delved into directly prompting LLM models to036

identify false information. However, while LLMs037

can be instrumental in combating misinformation,038

their practical application still exposes two critical039

limitations. Firstly, these models are constrained by040

the cut-off date of their training data. Secondly, this041

issue is compounded by the tendency of LLMs to 042

generate incorrect information or “hallucinations” 043

(Huang et al., 2023) which could jeopardize the ac- 044

curacy of claim verification in fact-checking tasks. 045

In response to these challenges, Retrieval- 046

Augmented Generation (RAG) has emerged as a 047

promising approach. By integrating the genera- 048

tive capabilities of LLMs with external data re- 049

trieval, RAG significantly enhances the accuracy 050

and relevance of the responses. For instance, Liao 051

et al. (2023) leverages RAG by employing both 052

the dot product and the BERT-based sequence tag- 053

ging model to identify key evidences. Soleimani 054

et al. (2019) uses the BERT model to retrieve and 055

validate claims. 056

While RAG significantly advances the capabil- 057

ities of LLMs, it, too, faces unique challenges. 058

Firstly, language models suffer from utilizing con- 059

texts in long texts. When crucial information is 060

located in the middle, it is less likely to be effec- 061

tively utilized by language models (Liu et al., 2023). 062

Secondly, when contexts are laden with noise or 063

contradictory information, RAG’s performance can 064

be adversely underscored (Barnett et al., 2024). 065

Thirdly, the retrieval process plays a crucial role. 066

Often, even if the answer to a query is present in the 067

document corpus, it may not rank highly enough to 068

be returned to the user (Barnett et al., 2024). Fur- 069

ther expanding on the challenges in RAG systems, 070

knowledge retrieved by these systems does not al- 071

ways contribute positively (Wang et al., 2023) and 072

can sometimes detrimentally impact the original 073

responses generated by the LLMs. 074

Acknowledging the challenges inherent in RAG 075

systems, Knowledge Graphs (KGs) offer a struc- 076

tured, semantically rich framework that has a long- 077

standing history of enhancing fact-checking efforts. 078

KGs play a crucial role in encapsulating and orga- 079

nizing complex information through their inherent 080

structure which is comprised of triples. Each triple, 081

consisting of a subject, predicate, and object — al- 082
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ternatively framed as a head entity, a relation, and083

a tail entity i.e., (subject entity, relationship, object084

entity) — constitutes the core component of a KG,085

enabling it to represent structural facts and support086

symbolic reasoning effectively.087

KGs represent data in a way that captures in-088

formation about not just the entities but also the089

complex relationships between them. This seman-090

tic web of information allows for a deeper under-091

standing of context, which is essential for verifying092

facts. Furthermore, KGs facilitate the exploration093

of multi-hop information pathways, allowing for094

the elucidation of intricate and indirect relation-095

ships critical for comprehensive fact verification.096

Prior work has shown promising results utilizing097

KGs (Hu et al., 2023; Liu et al., 2020b; Ma et al.,098

2023). However, concurrently integrating both the099

structured knowledge graphs with unstructured text100

as inputs to LLMs is not a trivial enterprise. Prior101

work has tried directly including triples as input102

to LLMs (Baek et al., 2023; Sequeda et al., 2023).103

Yet LLMs are not trained for leveraging triples, and104

this approach does not leverage the community and105

entity relationship. Other approaches (Sun et al.,106

2021; Liu et al., 2020a; Yasunaga et al., 2022; Sun107

et al., 2020; Zhang et al., 2022; Kang et al., 2023)108

require training customized models or joint embed-109

dings that are computationally expensive.110

In light of the distinct advantages of KGs and111

the capabilities of RAG systems and LLMs, the ab-112

sence of research on their combined application for113

fact-checking is notable. Although such integration114

—— melding KGs’ structured, semantic insights115

with RAG’s dynamic retrieval and LLMs’ language116

comprehension —— holds significant promise for117

advancing fact-checking technologies, the specific118

impact of this synergistic approach remains largely119

unexplored.120

To bridge the existing research gap, we introduce121

a pioneering framework: CommunityKG-RAG122

(Community Knowledge Graph-Retrieval Aug-123

mented Generation). This innovative approach124

synergizes Knowledge Graphs with Retrieval-125

Augmented Generation and Large Language Mod-126

els to enhance fact-checking capabilities. By lever-127

aging and preserving the intricate entity relation-128

ships and community structures within KGs, our129

framework provides a contextually enriched and130

semantically aware retrieval mechanism that sig-131

nificantly improves the accuracy and relevance of132

generated responses. Specifically, we construct133

a comprehensive KG from fact-checking articles, 134

employ the Louvain algorithm for community de- 135

tection, and assign embeddings derived from word 136

embeddings to each node. This approach ensures 137

that the identified communities are both structurally 138

coherent within the KG and highly pertinent to 139

the fact-checking task. By harnessing this inte- 140

grated framework, we offer a robust, scalable, and 141

efficient solution to contemporary fact-checking 142

challenges. An example of this integration and its 143

impact on retrieval accuracy is illustrated in Figure 144

1. 145

Our contributions are threefold: 146

1. Utilization of Both Structured and Un- 147

structured Data with Superior Knowledge 148

Graph Integration: By combining the struc- 149

tured data of Knowledge Graphs with the un- 150

structured data handled by LLMs, we achieve 151

a more comprehensive and context-aware fact- 152

checking system. We demonstrate that con- 153

verting knowledge graphs back to sentences 154

within our framework is superior to methods 155

that use triples as context. This approach en- 156

hances the comprehensibility and relevance of 157

the retrieved information, as demonstrated by 158

the significant increase in accuracy. 159

2. Context-Aware Retrieval and Multi-hop 160

Utilization: By leveraging community struc- 161

tures and multi-hop paths within KGs, the 162

framework delivers more precise and relevant 163

information retrieval, enhancing the overall ef- 164

fectiveness of the fact-checking process. We 165

are the first work to propose utilizing and com- 166

bining multi-hop in KGs with RAG systems. 167

3. Scalability and Efficiency: The framework 168

operates in a zero-shot manner, requiring no 169

additional training or fine-tuning, which en- 170

sures high scalability and adaptability to vari- 171

ous LLMs. Additionally, the knowledge graph 172

and community detection processes only need 173

to be performed once, allowing for repeated 174

reuse or rapid updates. 175

2 Related Work 176

KGs in LLM inputs 177

Recent research has explored the integration of 178

KGs with LLMs, where triples are directly fed 179

into LLMs as input (Baek et al., 2023; Sequeda 180

et al., 2023). However, this approach has its lim- 181

itations, particularly in its assumption that LLMs 182
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A: NEI, we need 
specific information 
about Bob

Q: Please evaluate the following 
claim:
”There’s a cat where Bob lives”.
Based on the evidence, should 
the claim
be rated as ’True’, ’False’,
or ’NEI’ (Not Enough 
Information)?

A: NEI, we need 
specific information 
about Bob

Q: Given the evidence provided 
below:
“Bob lives with his sister, Alice. 
She’s the indoor cat.“
Please evaluate the following 
claim:
”There’s a cat where Bob lives”.
Based on the evidence, should 
the claim
be rated as ’True’, ’False’,
or ’NEI’ (Not Enough 
Information)?

A: True

Q: Given the evidence provided 
below:
” Bob lives with his sister, Alice. 
His sister adopted Mina. She’s an 
indoor cat. She’s lived with Alice 
since her adoption.”.
Please evaluate the following 
claim:
”There’s a cat where Bob lives”.
Based on the evidence, should 
the claim
be rated as ’True’, ’False’,
or ’NEI’ (Not Enough 
Information)?

No Retrieval Semantic Retrieval CommunityKG-RAG

Figure 1: Comparison between no retrieval, semantic retrieval, and CommunityKG-RAG. The no retrieval and
semantic retrieval fail to provide sufficient context, while our proposed method, CommunityKG-RAG, is able to by
leveraging multi-hop knowledge graph information in the retrieval process enhancing accuracy and relevance.

can effectively process and utilize triples despite183

their primary training focus on sequential data pro-184

cessing. This could result in an underutilization185

of KG’s structural information, such as subgraph186

structure, community structure, and relationship187

patterns across entities and relations of Knowledge188

Graphs. Addressing this, our proposed method189

leverages community detection results as indices190

for text retrieval, thus harnessing the subgraph and191

entity relationship structures inherent in KGs more192

effectively than in previous work.193

Other approaches to integrating knowledge194

graphs with language models include joint embed-195

ding training or the customization of model archi-196

tectures. This can be done by representing triplets197

as a sequence of tokens and concatenating them198

with text embedding in the pre-training stage (Sun199

et al., 2021; Liu et al., 2020a). For instance, Ya-200

sunaga et al. (2022) propose a cross-modal model201

to fuse text and KG to jointly pre-train the model.202

Sun et al. (2020) present a word-knowledge graph203

that unifies words and knowledge. Zhang et al.204

(2022) fuses representations from pre-trained lan-205

guage models and graph neural networks over mul-206

tiple layers. Models that require additional training207

are computationally expensive and cumbersome.208

Kang et al. (2023) retrieves a relevant subgraph209

composed of triples by utilizing GNN for triple210

embedding. In contrast, our method does not neces-211

sitate additional training, offering a more efficient212

and adaptable solution for integrating KGs with 213

LLMs. 214

3 Problem Statement 215

The goal of fact-checking task formulation is to 216

locate the top n most relevant sentence, in order to 217

classify a given claim as either refuted, supported, 218

or not enough information as the labels by a large 219

language model. Let P represent a corpus of fact- 220

checking articles and C a set of claims. Each claim 221

c ∈ C is associated with a ground-truth label y. 222

There exists a set of top k most relevant sentences 223

Pc = pki from the fact-checking articles P for each 224

claim c. The task is formulated as optimizing the 225

prediction ŷ = f(C,Pc), where f is a large lan- 226

guage model to evaluate the truthfulness of claims 227

based on the evidence provided. 228

4 CommunityKG-RAG 229

In this section, we detail our novel framework 230

CommunityKG-RAG for integrating KGs with 231

RAG systems and LLMs to enhance fact-checking 232

capabilities. We show an overview in Figure 2. 233

Our approach leverages the structural advantages 234

of KGs to provide a contextually enriched, se- 235

mantically aware information retrieval mechanism, 236

which is subsequently used to inform the genera- 237

tion process of LLMs. 238
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Figure 2: Workflow of CommunityKG-RAG

4.1 Knowledge Graph Construction239

We begin by constructing a KG from a corpus of240

fact-checking articles. The construction process241

involves the following three steps:242

4.1.1 Coreference Resolution243

Coreference resolution is a preprocessing step to244

enhance the semantic coherence of the input data245

prior to knowledge graph construction. This pro-246

cess aims to identify and cluster mentions of enti-247

ties and pronouns that refer to the same real-world248

entities across the corpus, thereby resolving ambi-249

guities in entity references.250

We employ a state-of-the-art coreference resolu-251

tion model by Lee et al. (2018), leveraging a deep252

learning approach based on SpanBERT (Joshi et al.,253

2020), which has been pre-trained on a large corpus254

to capture a wide range of syntactic and semantic255

information.256

4.1.2 Graph Construction257

CommunityKG-RAG leverages the relationship258

extraction model, REBEL, proposed by Cabot259

and Navigli (2021) to discern entity relationships260

within the corpus. This process is formalized as261

follows:262

Given the corpus P , we extract a set of enti-263

ties, denoted as E = {e1, e2, ..., en}. We construct264

the entity graph G = (E,R), where R comprises265

the set of relationships between entities. In this266

graph, entities (E) are represented as nodes, and 267

relationships (R) are depicted as edges that link 268

these nodes. This graph represents the intricate net- 269

work of connections among entities derived from 270

the corpus, forming the foundation of the KG. 271

This structured approach facilitates a compre- 272

hensive representation of the factual relationships 273

within articles, thereby enabling advanced analysis 274

and application in fact-checking and misinforma- 275

tion identification tasks. 276

4.1.3 Node Feature Embedding 277

For each node in the KG, we assign it with word em- 278

beddings derived from a pre-trained BERT model 279

(Devlin et al., 2018a). This embedding serves as 280

the node feature vector, encapsulating the semantic 281

information of the entity. 282

4.2 Community Detection 283

To leverage the community structures inherent 284

within the Knowledge Graph (KG) for enhanced 285

fact retrieval, we employ the Louvain algorithm 286

(Blondel et al., 2008) as a foundational tool. This 287

algorithm is instrumental in detecting and delineat- 288

ing communities within the graph G, by focusing 289

on the optimization of modularity. Modularity is a 290

scalar value between −1 and 1 that measures the 291

density of links inside communities compared to 292

links between communities. The algorithm initially 293

treats each node as its own community and itera- 294
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tively merges communities to maximize the gain295

in modularity. This optimization continues until296

no further improvement in modularity is possible,297

resulting in a partition of the graph into distinct298

communities.299

From graph G, we extract a set of communities300

denoted by M , where each community m ∈ M301

represents a cluster of nodes more interconnected302

among themselves than with the rest of the graph.303

This structured approach allows us to focus our304

retrieval efforts on specific segments of the KG that305

are more likely to contain relevant and contextually306

rich information for fact-checking tasks.307

4.3 Community Retrieval308

Each community m is considered as a subgraph309

Gm = (Em, Rm) comprising a subset of entity310

nodes Em and their relationships Rm. The embed-311

ding representation of each community denoted as312

φ(m) is derived by averaging the BERT embed-313

dings of the nodes within Em:314

φ(m) =
1

|Em|
∑
i∈Em

BERT(ei)315

where |Em| is the number of nodes in a commu-316

nity m and ei represents the word embedding of317

node i derived from BERT model (Li et al., 2023a)318

as described in the section 4.1.3. This approach319

aggregates the collective semantic attributes of the320

community, encapsulating a comprehensive seman-321

tic representation.322

To convert claims into embeddings for similarity323

comparisons, we utilize the BERT-base Sentence324

Transformer model, Sentence-BERT (Reimers and325

Gurevych, 2019). Sentence-BERT is specifically326

optimized for generating high-quality sentence em-327

beddings, making it ideally suited for comparing328

the semantic similarities between claims and com-329

munity descriptions.330

The relevance score r(c,m) between claim c331

and community m is calculated as the dot product332

between their embeddings:333

r(c,m) = φ(c)Tφ(m)334

4.4 Top Community Selection335

To efficiently prioritize communities for deeper336

analysis, the top δ percent of communities, ranked337

by their relevance scores r(c,m), are selected. The338

selection threshold N is determined as follows:339

N =
⌈

δ
100 × |M |

⌉
, where |M | represents the total340

number of communities. Consequently, the subset 341

of most relevant communities M∗
c to claim c is 342

defined as: 343

M∗
c = {m ∈ M : rank(r(c,m)) ≤ N} 344

This selection criterion ensures that our analysis 345

is concentrated on the communities most likely to 346

contain relevant and substantive information perti- 347

nent to the verification of a claim c, thus facilitating 348

efficient and focused fact-checking. 349

4.5 Top Community-to-Sentence Selection 350

To identify the most pertinent sentences, a rele- 351

vance score r(M∗
c , p) is computed for each sen- 352

tence p within the top communities M∗
c . Sentences 353

are then ranked by relevance, and the top λ percent 354

are selected, resulting in a subset P ∗
c of the most 355

relevant sentences. 356

This structured approach allows for systematic 357

filtering and selection of significant information, a 358

process which is crucial for robust and focused fact- 359

checking. We use CommunityKG-RAGδ
λ to repre- 360

sent the synergistic application of two distinct fil- 361

ters: the top δ percent for community relevance and 362

the top λ percent for sentence significance within 363

the context of validating community-to-sentence 364

relevance. This refined designation underscores a 365

strategic methodological synthesis aimed at opti- 366

mizing the fact-checking process by methodically 367

concentrating on the most pivotal communities and 368

their essential corresponding sentences. 369

5 Experimental Details 370

5.1 Datasets 371

MOCHEG This multimodal fack-checking dataset 372

(Menglong Yao et al., 2022) consists of 15,601 373

claims annotated with a truthfulness label collected 374

from PolitiFact and Snopes, two popular websites 375

for fact-checking articles. The articles and results 376

of claim verification were produced by journalists 377

manually. The truthfulness is labeled into three cat- 378

egories: supported, refuted, and NEI (not enough 379

information). More details are included in the Ap- 380

pendix A. 381

5.2 Baselines 382

No Retrieval This is a naive baseline where an- 383

swers are generated from the language model 384

through prompts without context or retrieval. 385

5



Semantic Retrieval Following Nie et al. (2019),386

we extract context based on semantic similarity.387

Specifically, we use cosine similarity in embed-388

dings between the prompt and the context. BERT389

(Devlin et al., 2018b) is used to produce the embed-390

ding.391

Knowledge-Augmented language model392

PromptING (KAPING) We implement KAPING393

proposed by Baek et al. (2023). The KAPING394

is a zero-shot RAG framework that proposes395

basing retrieval on sentence similarity between396

the input text and triples. The output prompt397

of the KAPING framework includes the orig-398

inal text prompt with triples as the context.399

Specifically, the triples are in the format of400

(subjectentity, relationship, objectentity).401

We equip KAPING with the same set of articles402

for retrieval.403

5.3 Implementation Details404

We conducted our experiments using the LLaMa2405

7 billion model as our primary Large Language406

Model (Touvron et al., 2023). The LLaMa2 models407

are open-source and widely accessible. We chose408

these models because they were trained on trillions409

of tokens, including publicly available datasets like410

Wikipedia, and demonstrated state-of-the-art re-411

sults at the time when the texts were published.412

This capability enabled a thorough evaluation of413

our method’s zero-shot performance when applied414

to previously unseen corpora.415

The availability of these models in multiple sizes416

enabled a comparative analysis of our proposed417

framework, assessing how model scale impacts418

performance. Furthermore, since Wikipedia was419

integral to their training datasets, we were able to420

explore the efficacy of our approach on corpora421

familiar to the models. The utility of this retrieval422

approach has been substantiated in prior research423

(Khandelwal et al., 2020).424

To quantitatively assess the LLMs, we measured425

their performance in verifying claims using accu-426

racy as our metric. More details of the LLMs and427

the corresponding prompt are included in Appen-428

dices B and C.429

We use CommunityKG-RAG25
100 as the baseline.430

In other words, we use the top δ = 25 percent431

of the most relevant communities and λ = 100432

percent of the sentences that the community maps433

to as the context.434

Model LLaMa2 7B
No Retrieval 39.79%

Semantic Retrieval 43.84 %
KAPING 39.41 %

CommunityKG-RAG25
100 56.24%

Table 1: Comparison of claim verification accu-
racy for various retrieval methods: No Retrieval,
Semantic Retrieval, KAPING, and our approach,
CommunityKG-RAG25

100, which selects the top 25 per-
cent of relevant communities and uses 100 percent of
their mapped sentences as context.

6 Results 435

6.1 Main Results 436

Overall, our proposed method, 437

CommunityKG-RAG25
100, not only achieves 438

the best results but also surpasses all baselines, 439

as detailed in Table 1. The No Retrieval baseline 440

recorded an accuracy of 39.79 percent. Employ- 441

ing the Semantic Retrieval strategy yielded an 442

improvement, elevating accuracy to 43.84 percent. 443

This increase underscores the advantages of 444

integrating semantic context, thereby enhancing 445

the proficiency of the language model in claim 446

verification. 447

Conversely, the KAPING method did not en- 448

hance performance, registering a slight decline in 449

accuracy to 39.41 percent. This outcome indicates 450

that a language model such as LLaMa2 may strug- 451

gle with retrieval contexts formatted as triples (i.e., 452

(subject entity, relationship, object entity) ). Such 453

structuring appears to impede the model’s capacity 454

to effectively utilize information. This is likely due 455

to its foundational training on sequential word pre- 456

diction rather than on processing structured data 457

like triples. 458

However, the performance of our approach, 459

CommunityKG-RAG25
100, was markedly superior, 460

achieving an accuracy of 56.24 percent. This signif- 461

icant increase not only confirms the effectiveness of 462

integrating community-derived knowledge into the 463

retrieval process but also demonstrates substantial 464

gains over conventional retrieval methods. These 465

results validate the substantial impact that tailored, 466

community-focused retrieval mechanisms can have 467

on the operational effectiveness of language mod- 468

els in complex verification scenarios. This marked 469

improvement reiterates the critical role of precise, 470

context-aware retrieval strategies in augmenting 471

the functional capabilities of language models. 472
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6.2 Ablation473

We conducted a series of ablation studies to un-474

derstand the significance of various factors within475

the CommunityKG-RAG framework. Specifically,476

these ablation studies are designed to evaluate the477

impact of different backbone language models, the478

selection of top communities, and the extent of479

community-to-sentence selection.480

6.2.1 Performance With Different Backbone481

Models482

To demonstrate the robustness and adaptability of483

the proposed CommunityKG-RAG framework, we484

conducted an ablation study to assess how differ-485

ent backbone language models affect the perfor-486

mance on the MOCHEG fact-checking dataset.487

Considering the computational costs, which in-488

crease with the number of communities and489

community-to-sentences selection using the com-490

munity (Appendix E), we conduct this ablation491

with CommunityKG-RAG25
25. We selected the top492

δ = 25 percent of the most relevant communi-493

ties and the top λ = 25 percent of the sentences494

mapped to these communities to serve as the con-495

textual input.496

In this analysis, we compared the performance497

of two different backbone models: LLaMa2 7B498

and LLaMa3 8B. Table 2 illustrates the outcomes,499

showing that CommunityKG-RAG significantly500

enhances performance across both models. Specif-501

ically, when employing the CommunityKG-RAG502

framework, there is a notable improvement of 6.18503

percentage points with LLaMa2 7B and an increase504

of 3.21 percentage points with LLaMa3 8B com-505

pared to the no retrieval baseline. However, we506

observed that the LLaMa3 8B showed a lesser507

improvement and accuracy over the no retrieval508

baseline than the 7B model despite its larger size.509

This may be attributed to the 8B model’s capabil-510

ity to explore various facets of a given issue more511

comprehensively, which, while generally benefi-512

cial, might lead to a less precise matching in sce-513

narios demanding exact binary evaluations, such as514

our fact-checking tasks. This characteristic could515

also contribute to the slightly lower improvement516

observed with the 8B model.517

These results underscore the effectiveness of518

our framework in leveraging structured commu-519

nity knowledge, thereby improving the accuracy520

of fact-checking across diverse language model521

architectures.522

Model LLaMa2 LLaMa3
7B 8B

No Retrieval 39.79% 26.03%
CommunityKG-RAG25

25 45.97% 29.24%

Table 2: Performance comparison of no retrieval and
CommunityKG-RAG with δ = 25 and λ = 25 set-
tings across different backbone models, LLaMa2 7B
and LLaMa3 8B.

6.2.2 Influence of Community-to-Sentence 523

Selection 524

This section examines the influence of varying 525

community-to-sentence selection thresholds within 526

a consistently held community threshold of 25 per- 527

cent on the performance of the CommunityKG- 528

RAG framework using the LLaMa2 7B model. 529

Community-to-sentence selection thresholds were 530

adjusted to 25 percent, 50 percent, 75 percent, and 531

100 percent to identify the optimal level for enhanc- 532

ing fact-checking performance. 533

Model LLaMa2 7B
CommunityKG-RAG25

25 45.97%
CommunityKG-RAG25

50 27.83%
CommunityKG-RAG25

75 41.93%
CommunityKG-RAG25

100 56.24%

Table 3: Performance variations of the LLaMa2 7B
model under the CommunityKG-RAG framework with
consistent community threshold (top 25 percent) and
variable community-to-sentence selection.

The results presented in Table 3 demonstrate 534

variable model performance as community-to- 535

sentence selection thresholds change. Initially, the 536

performance slightly decreases to 27.83 percent 537

when the inclusion rate of sentences is increased 538

from 25 percent to 50 percent. This might indicate 539

that the top 25 percent of sentences contain the 540

most crucial information for verifying the claim, 541

and including additional sentences up to 50 percent 542

introduces noise or less relevant data that temporar- 543

ily hinder the model’s accuracy. However, as the 544

inclusion rate continues to increase to 75 percent 545

and then to 100 percent, the performance improves, 546

ultimately achieving the highest accuracy at a full 547

100 percent inclusion rate. This suggests that be- 548

yond the 50 percent threshold, the additional sen- 549

tences contribute positively, possibly by providing 550

necessary context that supports more accurate fact- 551

checking. 552

This pattern highlights the critical role of exten- 553

7



sive contextual engagement in the CommunityKG-554

RAG framework, demonstrating that access to a555

wider array of sentences associated with a carefully556

selected group of communities markedly improves557

the model’s effectiveness in accurately identify-558

ing truth and falsehood. These results underscore559

the nuanced balance needed in selection strategies560

to provide adequate context for accurate analysis561

without inundating the model with extraneous data.562

6.2.3 Combined Effects of Top Community563

and Community-to-Sentence Selection564

To further explore the efficacy of the565

CommunityKG-RAG framework, we conducted an566

analysis to understand the impact of varying the top567

community and community-to-sentence selection568

thresholds on the performance of the model. We569

adjusted the thresholds of both δ and λ to 25570

percent, 50 percent, 75 percent, and 100 percent571

to examine how the extent of considered context572

in both community and community-to-sentence573

selection affect the fact-checking capabilities of574

the CommunityKG-RAG framework. We show575

the knowledge graph community statistics in576

Appendix E.577

The results, as shown in Table 4, reveal inter-578

esting trends. Initially, the increase of thresholds579

from 25 percent to 75 percent led to a slight de-580

crease in performance, suggesting that adding more581

communities and sentences might introduce noise582

or less relevant information, thus compromising583

the model’s effectiveness. However, a significant584

improvement is observed when the thresholds are585

expanded to 100 percent. This enhancement at the586

highest threshold suggests that the model benefits587

from a more comprehensive view of the available588

data, possibly capturing essential contextual nu-589

ances that are otherwise missed at lower thresh-590

olds. This pattern aligns with observations from591

previous ablation studies concerning community-592

to-sentence selection.593

Interestingly, when comparing the effects594

of top community selection, an increase in595

the number of top communities results in596

improved accuracy while holding community-597

to-sentence selection constant. This observation598

emerges from comparing CommunityKG-RAG25
50599

versus CommunityKG-RAG50
50,600

and CommunityKG-RAG25
75 to601

CommunityKG-RAG75
75.602

However, increasing both the community603

selection and community-to-sentence selection604

Model LLaMa2 7B
CommunityKG-RAG25

25 45.97%
CommunityKG-RAG50

50 43.64%
CommunityKG-RAG75

75 43.60%
CommunityKG-RAG100

100 54.62%

Table 4: Performance metrics of the LLaMa2 7B model
within the CommunityKG-RAG framework across var-
ied thresholds of top community and community-to-
sentence selection. The table details the model’s ac-
curacy percentages at incremental selection thresholds
of 25, 50, 75, and 100 percent for both community
and community-to-sentence selection, illustrating how
varying levels of context inclusion impact the model’s
performance.

to 100 percent does not yield further im- 605

provements. As illustrated by the com- 606

parison between CommunityKG-RAG25
100 and 607

CommunityKG-RAG100
100, this finding implies that 608

a targeted selection of highly relevant communi- 609

ties, along with a comprehensive examination of 610

their associated sentences, strikes an ideal balance. 611

It enables the model to access detailed and per- 612

tinent information effectively without being over- 613

whelmed by extraneous data. This method provides 614

a nuanced approach to information retrieval that 615

maximizes accuracy while avoiding information 616

overload. 617

7 Conclusion 618

We have introduced CommunityKG-RAG, a novel 619

framework that integrates Knowledge Graphs with 620

Retrieval-Augmented Generation and Large Lan- 621

guage Models to enhance fact-checking. This ap- 622

proach leverages the structured data of KGs and 623

the generative capabilities of LLMs, significantly 624

improving the accuracy and relevance of responses. 625

CommunityKG-RAG effectively addresses key 626

challenges such as outdated information and hallu- 627

cinations by utilizing multi-hop community struc- 628

tures for refined and accurate retrieval within KGs. 629

This integration enables more precise and contextu- 630

ally rich information retrieval, crucial for effective 631

fact-checking. Our framework achieves superior 632

performance without requiring any fine-tuning or 633

additional training, demonstrating its robustness 634

and efficiency. As the first framework to combine 635

multi-hop community information in KGs with 636

RAG systems, CommunityKG-RAG represents a 637

significant advancement and promising direction 638

for future work. 639
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8 Limitations640

Despite the notable success of the CommunityKG-641

RAG framework in enhancing claim verification642

accuracy, several limitations highlight areas for fu-643

ture research and improvement:644

8.1 Computational Demands645

The CommunityKG-RAG framework places sub-646

stantial demands on computational resources com-647

pared to no retrieval or semantic retrieval. How-648

ever, communities can be pre-computed and reused,649

making the operational phase more lightweight and650

dynamic. This capability enhances the model’s651

responsiveness to new data and trends. Further,652

our method has demonstrated significant accu-653

racy improvements despite the computational de-654

mands, and, besides, our proposed method is more655

lightweight than methods that require training or656

fine-tuning a language model.657

8.2 Dependency on Entity Recognition658

Quality659

Our proposed method’s effectiveness heavily re-660

lies on the quality of entity recognition. There661

are prior works (Edge et al., 2024) that rely on662

utilizing language models to conduct entity recog-663

nition. This could potentially introduce hallucina-664

tions. To avoid such risk, we use REBEL, a seq2seq665

model based on Wikipedia data. If the framework666

is applied to text that is significantly different from667

Wikipedia text, it might hinder performance. In668

such cases, utilizing an entity recognition method669

tailored to the specific domain could be beneficial.670

However, as shown in the Appendix E, our ap-671

proach incorporates a comprehensive dataset with672

up to 48,630 nodes and 202,455 edges, which en-673

sures a robust and extensive knowledge base. This674

comprehensive coverage helps mitigate potential675

quality issues, enhancing the reliability of the entity676

recognition process.677

These limitations, alongside the outlined imple-678

mentation advantages, underscore the need for on-679

going refinement and testing of the CommunityKG-680

RAG framework to optimize its practicality and681

effectiveness in real-world scenarios. The ability to682

pre-compute communities ensures that the method683

remains operationally lightweight and scalable, an684

essential factor for broad application. Additionally,685

future work can consider extending this method686

framework into multimodality, integrating multi-687

modal graphs or tabular data. Such extensions688

could further enhance the model’s capabilities and 689

applicability in more complex and varied data en- 690

vironments, opening new avenues for research and 691

practical implementation. 692
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A Details of Datasets860

The dataset was partitioned into training and test-861

ing subsets, with the training set employed for con-862

structing the knowledge graph and verifying claim863

accuracy. Comprising 18,553 unique claims, each864

is linked to a corresponding fact-checking article865

and label.866

The target variable, "truthfulness," is classified867

into three categories: "Supported," "Refuted," and868

"Not Enough Information" (NEI). The label dis-869

tribution includes 7,137 "Refuted," 6,928 "Sup-870

ported," and 4,488 "NEI."871

Label assignment for "Supported," "Refuted,"872

and "NEI" was performed following a meticu-873

lous cleaning process carried out by the authors874

of Menglong Yao et al. (2022). This process875

was conducted as the original labels derived from876

the fact-checking articles were marred by noise877

and inconsistency. Initially, the labels encom-878

passed a broad spectrum of classifications, includ-879

ing "False," "Mostly False," and "Half True," to-880

taling up to 75 different labels. This refinement881

was crucial as the original articles did not explic-882

itly categorize claims into "Supported," "Refuted,"883

or "NEI." This ambiguity could potentially impair884

the retrieval capabilities of large language models885

(LLMs). To mitigate this, we simplified the labels886

by mapping "Supported" to "True" and "Refuted"887

to "False" during the prompting and preprocessing888

phases.889

B Prompt890

The prompt used for all RAG systems is the follow-891

ing:892
"Given the evidence provided below:
{formatted_evidence}.
Please evaluate the following claim:
{claim}.
Based on the evidence, should the claim
be rated as ’True’, ’False’,
or ’NEI’ (Not Enough Information)?"

893

The prompt used for all baseline zero shot setups 894

is the following: 895
"Please evaluate the following claim:
{claim}.
Based on the evidence, should the claim
be rated as ’True’, ’False’,
or ’NEI’ (Not Enough Information)?"

896

C Language Model Parameters 897

In our experiments, we utilized the meta- 898

llama/Llama-2-7b-chat-hf model from Hugging 899

Face’s model hub. Our generation pipeline was 900

configured to produce coherent and non-repetitive 901

text. Key settings included a temperature of 0.3 to 902

encourage predictability, a repetition penalty of 1.1 903

to avoid redundant content, and a limit of 200 new 904

tokens per output to maintain focus. Custom stop- 905

ping criteria were implemented to end text genera- 906

tion at specific tokens, ensuring outputs remained 907

within the scope of our conversational framework. 908

D Computing Infrastructure 909

All computational experiments were conducted on 910

a server configured with two NVIDIA RTX A6000 911

GPUs, each with 48 GB of GDDR6 memory, and 912

two AMD EPYC 7513 32-core processors. The 913

system also included 512 GB of DDR4 ECC RAM 914

and a 960 GB Samsung PM983 NVMe SSD for 915

storage. 916

E Community Statistics 917

We provide the knowledge graph community statis- 918

tics with various top δ percent communities in Ta- 919

ble 5. These statistics demonstrate the multi-hop 920

nature of our knowledge graphs through the metrics 921

of average shortest path length and diameter. The 922

average shortest path length, ranging from 4.03 to 923

4.28 across different community percentages, indi- 924

cates that on average, multiple hops are required 925

to traverse between nodes. The diameter values, 926

ranging from 13 to 17, suggest the presence of 927

long paths within the graphs, further supporting the 928

existence of multi-hop pathways. These metrics 929

confirm that our CommunityKG-RAG framework 930

effectively leverages multi-hop connections, cru- 931

cial for retrieving contextually rich and relevant 932

information in fact-checking tasks. 933
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Metric Value
Top 25 Percent

Number of Nodes 20,092
Number of Edges 60,770
Avg. Degree 6.05
Avg. Communities per
Claim

2.05

Avg. Nodes per Claim 5.62
Avg. Shortest Path Length 4.28
Diameter 17

Top 50 Percent
Number of Nodes 32,428
Number of Edges 117,677
Avg. Degree 7.26
Avg. Communities per
Claim

4.57

Avg. Nodes per Claim 11.63
Avg. Shortest Path Length 4.13
Diameter 13

Top 75 Percent
Number of Nodes 40,669
Number of Edges 159,703
Avg. Degree 7.85
Avg. Communities per
Claim

6.85

Avg. Nodes per Claim 16.60
Avg. Shortest Path Length 4.07
Diameter 14

Top 100 Percent
Number of Nodes 48,630
Number of Edges 202,455
Avg. Degree 8.33
Avg. Communities per
Claim

9.64

Avg. Nodes per Claim 22.25
Avg. Shortest Path Length 4.03
Diameter 13

Table 5: Community Statistics
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