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As complex machine learning models continue to be used in high-stakes decision
settings, understanding their predictions is crucial. Post-hoc explanation methods
aim to identify which features of an input x are important to a model’s prediction
f(x). However, explanations often vary between methods and lack clarity, limiting
the information we can draw from them. To address this, we formalize two pre-
cise concepts—sufficiency and necessity—to quantify how features contribute to a
model’s prediction. We demonstrate that, although intuitive and simple, these two
types of explanations may fail to fully reveal which features a model deems impor-
tant. To overcome this, we propose and study a unified notion of importance that
spans the entire sufficiency-necessity axis. Our unified notion, we show, has strong
ties to notions of importance based on conditional independence and Shapley val-
ues. Lastly, through various experiments, we quantify the sufficiency and necessity
of popular post-hoc explanation methods. Furthermore, we show that generating
explanations along the sufficiency-necessity axis can uncover important features
that may otherwise be missed, providing new insights into feature importance.

1. Introduction
Over recent years, modern machine learning (ML) models, mostly deep learning-based, have
achieved impressive results across several complex domains. Models can now solve difficult
problems in computer vision, perform accurate text and sentiment analysis, predict the three-
dimensional conformation of proteins, and more [1, 2]. Despite their success, the rapid integration
of thesemodels into society requires caution [3]. ModernML systems are black-boxes, comprised of
millions of parameters and non-linearities that obscure their prediction-making mechanisms from
everyone. This lack of clarity raises concerns about explainability, transparency, and accountability
[4, 5]. Thus, understanding how these models work is essential for their safe deployment.

The lack of explainability has spurred research efforts in eXplainable AI (XAI). One major focus is
on developing post-hoc methods to explain black-box model predictions, especially at a local level.
For a model f and input x, these methods aim to identify which features in x are important for the
prediction, f(x). They do so by estimating a notion of importance for each feature (or groups),
which allows for a ranking of importance. Popular methods include CAM [6], LIME [7], gradient-
based approaches [8–10], rate-distortion techniques [11], Shapley value-based explanations [12–
14], perturbation-based methods [15–17], among others [18–22]. Unfortunately, many of these ap-
proaches lack rigor, as the meaning of their computed scores is often ambiguous. For example, it’s
not always clear what large or negative gradients signify or what high Shapley values reveal about
feature importance. To address these concerns, otherwork has focused onmethods based on propo-
sitional logic [23–26], conditional hypothesis testing [27, 28], among formal notions. While these
methods are a step towards rigor, they havedrawbacks, including reliance on complex reasoners and
limited ability to communicate their results in an understandable way to human decision-makers.

In thiswork, we advance XAI research by providing formalmathematical definitions of sufficient and
necessary features for explaining complexMLmodels. First, we illustrate how, although informative,
sufficient and necessary explanations offer incomplete insights into feature importance. To address
this, we propose and study a more general unified framework for explaining models. Finally, we
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offer two novel perspectives on our framework through the lens of conditional independence and
Shapley values, and crucially, show how it can reveal new insights into feature importance.

1.1. Summary of our Contributions
We propose and study two approaches, sufficiency, and necessity, which evaluate the contribution
of a set of features in x toward a model prediction f(x). A sufficient set preserves the model’s
output, while a necessary set, when removed, renders the output uninformative. Although the
two concepts appear complementary, their precise relationship remains unclear. How similar are
sufficient and necessary subsets? How different? To address these questions, we study the two
concepts and propose a unification of both. Our contributions are summarized as follows:

1. We formalize precise mathematical definitions of sufficient and necessary features for model
predictions that are related but complementary to those in previous works.

2. We propose a unified approach that combines sufficiency and necessity, exploring when and
how they align or differ. Additionally, we motivate its utility by highlighting its connections to
conditional independence and Shapley values, a game-theoretic measure of feature importance.

3. Through experiments of increasing complexity, we demonstrate how a unified perspective un-
covers new, significant, and more comprehensive insights into feature importance.

2. Sufficiency and Necessity
Notation & Setting. We use boldface uppercase letters to denote random vectors (e.g., X) and
lowercase for their values (e.g., x). For a subset S ⊆ [d] := {1, . . . , d}, we denote its cardinality by
|S| and its complement Sc = [d] \S. Subscripts index features; e.g., xS represents x restricted to the
entries indexed by S. We consider a supervised learning setting with an unknown distribution D
over featuresX ⊆ Rd and labels Y ⊆ R and assume access to a model f : X 7→ Y trained on samples
from D. For an input x = (x1, . . . , xd) ∈ Rd, the goal is to identify the important features in x for
the prediction f(x). To define importance, we use the average restricted prediction [29, 30]

fS(x) = E
XSc∼VSc

[f(xS ,XSc)] (1)

where xS is fixed and XSc is a random vector drawn from an arbitrary reference distribution VSc

(which may or may not depend on Sc). Two common choices for VSc are the marginal p(XSc) and
conditional distribution p(XSc | xS). With fS(x) we can query f , which only takes inputs in Rd,
and analyze its behavior when sets of features are retained or removed.

Definitions. We now present our proposed definitions of sufficiency and necessity. At a high level,
these definitions were formalized to align with the following guiding principles:

P1. S is sufficient if it is enough to generate the original prediction, i.e. fS(x) ≈ f(x).
P2. S is necessary if we cannot generate the original prediction without it, i.e. fSc(x) ̸≈ f(x).
P3. The set S = [d] should be maximally sufficient and necessary for f(x).

The principles P1 and P2 are natural and agree with the logical notions of sufficiency and neces-
sity. Furthermore, because the full set of features provides all the information needed to make the
prediction f(x), it should thus be regarded as maximally sufficient and necessary (P3). With these
principles laid out, we now formally define sufficiency and necessity.
Definition 2.1 (Sufficiency). Let ϵ ≥ 0 and let ρ : R × R 7→ R be a metric on R. A subset S ⊆ [d] is
ϵ-sufficient with respect to a distribution V for f at x if

∆suf
V (S, f,x) ≜ ρ(f(x), fS(x)) ≤ ϵ. (2)

Furthermore, S is ϵ-super sufficient if all supersets S̃ ⊇ S are ϵ-sufficient.

This notion of sufficiency is straightforward and aligns with P1. A subset S is ϵ-sufficient with
respect to reference distribution V if, with xS fixed, the average restricted prediction fS(x) is within

2



ϵ from the original f(x). Furthermore, S is ϵ-super sufficient if ρ(f(x), fS(x)) ≤ ϵ and, ∀S̃ ⊇ S,
ρ(f(x), fS̃(x)) ≤ ϵ. Namely, including more features in S keeps fS(x) ϵ close to f(x). Note this
definition aligns with P3, since the set S = [d] is 0-sufficient (maximally sufficient). To find a small
sufficient subset S of small cardinality τ > 0, we can solve the following optimization problem:

arg min
S⊆[d]

∆suf
V (S, f,x) subject to |S| ≤ τ (Psuf)

We will refer to this problem as the sufficiency problem, or (Psuf). Using analogous ideas, we also
define necessity and formulate an optimization problem to find small necessary subsets.
Definition 2.2 (Necessity). Let ϵ ≥ 0 and denote ρ : R × R 7→ R to be metric on R. A subset S ⊆ [d] is
ϵ-necessary with respect to a distribution V for f at x if

∆nec
V (S, f,x) ≜ ρ(fSc(x), f∅(x)) ≤ ϵ. (3)

Furthermore, S is ϵ-super necessary if all supersets S̃ ⊇ S are ϵ-necessary.

Here, a subset S is ϵ-necessary if marginalizing out the features in S with respect to VS , results in
an average restricted prediction fSc(x) that is ϵ close to f∅(x) – the average baseline prediction of
f over V[d]. Furthermore, S is ϵ-super necessary if ρ(fS(x), f(x)) ≤ ϵ and all super sets of S are
ϵ-necessary. Note, our definition of differs from alternatives [31, 32] which state that S is necessary
if ρ(f(x), fSc(x)) ≥ γ for some γ > 0. Our notion is more general in that it implies this condition.
Intuitively, if f∅(x) and f(x) differ, and fSc(x) is close to f∅(x), then fSc(x) and f(x)will also differ.
Furthermore, for S = [d], we have ∆nec

V (S, f,x) ≜ ρ(f∅(x), f∅(x)) = 0, indicating that S = [d] is
0-necessary (maximally necessary) as desired. To identify a necessary subset S of small cardinality
τ > 0, one can solve the following problem, which we refer to as the necessity problem or (Pnec).

arg min
S⊆[d]

∆nec
V (S, f,x) subject to |S| ≤ τ (Pnec)

Having presented our definitions, we nowdiscuss relatedworks before presenting ourmain results.

3. Related Work
Notions of sufficiency, necessity, their duality and connections with other feature attribution meth-
ods have been studied to varying degrees. We comment on the main related works in this section.

Sufficiency. The notion of sufficient features has gained significant attention in recent research.
Shih et al. [26] explore a symbolic approach to explain Bayesian network classifiers and introduce
prime implicant explanations, which are minimal subsets S that make features in the complement
irrelevant to the prediction f(x). For models represented by a finite set of first-order logic (FOL)
sentences, Ignatiev et al. [23] refer to prime implicants as abductive explanations (AXp’s). For
classifiers defined by propositional formulas and inputs with discrete features, Darwiche andHirth
[24] refer to prime implicants as sufficient reasons and define a complete reason to be the disjunction
of all sufficient reasons. They present efficient algorithms, leveraging Boolean circuits, to compute
sufficient and complete reasons and demonstrate their use in identifying classifier dependence on
protected features that should not inform decisions. For more complex models, Ribeiro et al. [22]
propose high-precision probabilistic explanations called anchors, which represent local, sufficient
conditions. For x positively classified by f , Wang et al. [21] propose a greedy approach to solve
(Psuf), I Amoukou and Brunel [33] extend this work to regression settings using tree-based models,
and Fong and Vedaldi [15] introduce the preservation method which relaxes S to [0, 1]d.

Necessity. There has also been significant focus on identifying necessary features – those that, when
altered, lead to a change in the prediction f(x). For models expressible by FOL sentences, Ignatiev
et al. [34] define prime implicates as the minimal subsets that when changed, modify the prediction
and relate these to adversarial examples. For Boolean models and samples xwith discrete features,
Ignatiev et al. [23] and [24] refer to prime implicates as contrastive explanations (CXp’s) and nec-
essary reasons, respectively. Beyond boolean functions, for x positively classified by a classifier f ,
Fong et al. [16] relax S to [0, 1]d and propose the deletion method to approximately solve (Pnec).

3



Duality Between Sufficiency andNecessity. Dabkowski andGal [17] characterize the preservation
and deletionmethods as discovering the smallest sufficient and destroying region (SSR and SDR). They
propose combining the two but do not explore how solutions to this approach may differ from indi-
vidual SSR and SDR solutions. Ignatiev et al. [23] show that AXp’s and CXp’s are minimal hitting
sets of another by using a hitting set duality result between minimal unsatisfiable and correction
subsets. The result enables the identification of AXp’s from CXp’s and vice versa.

Sufficiency, Necessity, and General Feature Attribution Methods. Precise connections between
sufficiency, necessity, and other popular feature attributionmethods (such as Shapley values [12, 29,
35]) remains unclear. To our knowledge, Covert et al. [36] provide the only work examining these
approaches [15–17] in the context of general removal-based methods, i.e., methods that remove
certain input features to evaluate different notions of importance. The work of Watson et al. [37] is
also relevant to our work, as it formalizes a connection between notions of sufficiency and Shapley
values. With the specific payoff function defined as v(S) = E[f(xS ,XSc)], they show how each
summand in the Shapley value measures the sufficiency of feature i to a particular subset.

4. Unifying Sufficiency and Necessity
Given a model f and sample x, we can identify a small set of important features S by solving either
(Psuf) or (Pnec). While both methods are popular [11, 15, 19, 38]. identifying small sufficient or nec-
essary subsets may not provide a complete picture of how f uses x tomake a prediction. To seewhy,
consider the following scenario: for a fixed τ > 0, let S∗ be a ϵ-sufficient solution to (Psuf), so that
∆suf

V (S, f,x) ≤ ϵ. While S∗ is ϵ-sufficient, it can also be true that∆nec
V (S, f,x) > ϵ indicating S∗ is not

ϵ-necessary: indeed, this can simply happenwhen its complement, Sc∗, contains important features.
This scenario raises two questions: 1) How different are sufficient and necessary features? 2) How
does varying the levels of sufficiency and necessity affect the optimal set of important features?

To answer these important questions (and avoid the scenario above) we propose studying a unifi-
cation of (Psuf) and (Pnec). Consider ∆uni

V (S, f,x, α) = α · ∆suf
V (S, f,x) + (1 − α) · ∆nec

V (S, f,x), a
convex combination of ∆suf

V (S, f,x) and ∆nec
V (S, f,x), where α ∈ [0, 1] controls the extent to which

S is sufficient vs. necessary. Our unified problem, (Puni), can be expressed as:
arg min

S⊆[d]

∆uni
V (S, f,x, α) subject to |S| ≤ τ (Puni)

When α is 1 or 0, ∆uni
V (S, f,x, α) reduces to ∆suf

V (S, f,x) or ∆nec
V (S, f,x), respectively. In these ex-

treme cases, S is only sufficient or necessary. In the remainder of this work we will analyze (Puni),
characterize its solutions, and provide different interpretations ofwhat properties the solutions have
through the lens of conditional independence and game theory. In the experimental section, wewill
show that solutions to (Puni) provide insights that neither (Psuf) nor (Pnec) offer.

4.1. Solutions to the Unified Problem
Webeginwith a simple lemma that demonstrateswhy (Puni) enforces both sufficiency and necessity.
Lemma 4.1. Let α ∈ (0, 1). For τ > 0, denote S∗ to be a solution to (Puni) for which ∆uni

V (S, f,x, α) = ϵ.
Then, S∗ is ϵ

α -sufficient and ϵ
1−α -necessary.

Theproof of this result, and all others, is includedAppendixA.1. This result illustrates that solutions
to (Puni) satisfy varying definitions of sufficiency and necessity. Furthermore, as α increases from 0
to 1, the solution shifts from being highly necessary to highly sufficient. In the following results, we
will show when and how solutions to (Puni) are similar (and different) to those of (Psuf) and (Pnec).
To start, we present the following lemma, which will be useful in subsequent results.

Lemma 4.2. For 0 ≤ ϵ < ρ(f(x),f∅(x))
2 , denote S∗

suf and S∗
nec to be ϵ-sufficient and ϵ-necessary sets. Then, if

S∗
suf is ϵ-super sufficient or S∗

nec is ϵ-super necessary, we have S∗
suf ∩ S∗

nec ̸= ∅.

This lemma demonstrates that, given ϵ-sufficient and necessary sets S∗
suf and S∗

nec, if either addition-
ally satisfies the stronger notions of super sufficiency or necessity, they must share some features.
This proves useful in characterizing a solution to (Puni), which we now do in the following theorem.
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Theorem 4.1. Let τ1, τ2 > 0 and 0 ≤ ϵ < 1
2 · ρ(f(x), f∅(x)). Denote S∗

suf and S∗
nec to be ϵ-super sufficient

and ϵ-super necessary solutions to (Psuf) and (Pnec), respectively, such that |S∗
suf | = τ1 and |S∗

nec| = τ2.
Then, there exists a set S∗ such that

∆uni
V (S∗, f,x, α) ≤ ϵ and max(τ1, τ2) ≤ |S∗| < τ1 + τ2. (4)

Furthermore, if S∗
suf ⊆ S∗

nec or S∗
nec ⊆ S∗

suf. then S∗ = S∗
nec or S∗ = S∗

suf, respectively.

This result demonstrates that when there are ϵ-super sufficient and ϵ-super necessary solutions to
(Psuf) and (Pnec), then one can identify a set S∗ with small ∆uni. As an example, consider features
that are ϵ-super sufficient, S∗

suf. If we have domain knowledge that S∗
suf ⊆ S∗

nec, and S∗
nec is ϵ-super

necessary, then S∗
nec will have a small ∆uni Conversely, if we know that S∗

suf is ϵ-super necessary
along with being a subset of ϵ-super sufficient set S∗

suf, then S∗
suf will have a small ∆uni.

5. Two Perspectives of the Unified Approach
In the previous section, we characterized solutions to (Puni) and their connections to those of (Psuf)
and (Pnec). To furthermotivate and the unified approach, we now offer two alternative perspectives
of our framework through the lens of conditional independence and Shapley values.

5.1. A Conditional Independence Perspective
Here we demonstrate how sufficiency, necessity, and their unification, can be understood as condi-
tional independence relations between features X and label Y .
Corollary 5.1. Suppose ∀S ⊆ [d], VS = p(XS |XSc = xSc). Let α ∈ (0, 1), ϵ ≥ 0, and denote ρ : R×R 7→
R to be a metric. Furthermore, for τ > 0 and f(X) = E[Y | X], let S∗ be a solution to (Puni) such that
∆uni

V (S, f,x, α) = ϵ. Then, S∗ satisfies the follow conditional independencies,

ρ (E[Y | x], E[Y | XS∗ = xS∗ ]) ≤ ϵ

α
and ρ

(
E[Y | XS∗

c
= xS∗

c
], E[Y ]

)
≤ ϵ

1− α
. (5)

The assumption here is that fS(x) is evaluated using the conditional distribution p(XSc | XS = xS)
as the reference VS . Given the recent advancements in generative models [39–41], this assumption
is (approximately) reasonable in many settings, as we will demonstrate in our experiments. For
this choice of VS and model f(X) = E[Y | X], the result shows that minimizing (Puni) identifies
an S∗ that approximately satisfies two conditional independence properties. First, S∗ is sufficient
as conditioning on S∗ leaves the complement Sc∗ with minimal additional information about Y .
Second, S∗ is necessary because when we only rely on the complement Sc∗, the information gained
about Y is minimal and similar to E[Y = 1].

5.2. A Shapley Value Perspective
In the previous section, we detailed the conditional independence relations being optimized for
when demanding sufficiency, necessity, or both. We now present an arguably less intuitive result
that shows that solving (Puni) is equivalent to maximizing the lower bound of the Shapley value.
Before presenting our result, we provide a brief background on this game-theoretic quantity.

Shapley Values. Shapley values use game theory to measure the importance of players in a game.
Let the tuple ([n], v) represent a cooperative game with players [n] = {1, 2, . . . , n} and denote a
characteristic function v(S) : P([n]) → R, The Shapley value [35] for player j in the game ([n], v)

is ϕshap
j ([n], v) =

∑
S⊆[n]\{j} wS · [v(S ∪ {j})− v(S)] where wS = |S|!(n−|S|−1)!

n! . In the context of
XAI, Shapley values are widely used to measure local feature importance by treating input features
as players in a game [12, 13, 29, 42]. Given a sample x and a model f , the importance of xj to the
prediction f(x) is measured by computing ϕshap

j for a game ([d], v), where v(S) quantifies how the
features in S contribute to f(x). Different choices of v(S) can be found in [29, 43, 44]. Although
computing ϕshap

j is computationally intractable, several practical methods for estimation have been
developed [13, 30, 45, 46]. While Shapley values are popular across various domains [47–49], few
works, aside fromWatson et al. [37], explore their connections to sufficiency and necessity.
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With this background, we now present our result. Recall solving (Puni) finds a small subset S with
low∆uni

V (S, f,x, α). Notice that (Puni) naturally partitions the features into two sets, S and Sc. In the
following theoremwe demonstrate that finding a small S withminimal∆uni

V (S, f,x, α) is equivalent
to maximizing a lower bound on the Shapley value in a two player game.
Theorem 5.1. Consider an input x for which f(x) ̸= f∅(x). Denote by Λd = {S, Sc} the partition of
[d] = {1, 2, . . . , d}, and define the characteristic function to be v(S) = −ρ(f(x), fS(x)). Then,

ϕshap
S (Λd, v) ≥ ρ(f(x), f∅(x))−∆uni

V (S, f,x, α). (6)

This result motivates minimizing ∆uni through a game-theoretic interpretation. The tuple (Λd, v)
defines a game, andwith 2d−1 ways to partition [d], there are 2d−1 games, with the inequality holding
for all of them. Thus, Theorem 5.1 shows that finding the S with minimal ∆uni is equivalent to
identifying the the game (i.e. partition) where S has the largest lower bound on its Shapley value.

6. Solving the Unified Problem
Before presenting our results, we briefly discuss approaches to solving (Puni). While the problem
is NP-hard, exact solutions can be efficiently computed or approximated using tractable relaxations
in certain settings [11, 16, 50]. We provide an overview here and defer details to Appendix A.3.

Exhaustive Search. When the feature space dimension d or the choice of τ ∈ Z>0 is small, an ex-
haustive search can compute exact solutions to (Puni) by evaluating∆uni

V (S, f,x, α) for all
(
d
τ

)
subsets

S of cardinality τ and selecting the minimizer.

Instance-wise Optimization. When d is large, rendering (Puni) intractable, one can generate ap-
proximate solutions by solving the relaxed problem1

arg min
S⊆[0,1]d

∆uni
V (S, f,x, α) + λ1 · ||S||1 + λTV · ||S||TV . (7)

This approach is common in computer vision and natural language problems [11, 16, 50, 51] to
generate instance-specific solutions.

ParametricModelApproach. Another approachwe to generate solutions to (Puni) is to learnmodels
gθ : X 7→ [0, 1]d that (approximately) solve the following optimization problem:

arg min
θ∈Θ

E
X∼DX

[
∆uni

V (gθ(X), f,X, α) + λ1 · ||gθ(X)||1 + λTV · ||gθ(X)||TV
]
. (8)

This method is also popular [18, 19, 50] as it handles structured data well and requires training a
singlemodel gθ(x) that outputs explanations rather than repeatedly solving Eq. (7) for each sample.

7. Experiments
We showcase different aspects of our theoretical findings across multiple settings: a synthetic
example, sentiment analysis on the SemEval Twitter corpus [52], and high-dimensional image
classification using the CelebA-HQ [53] and RSNA CT scan [54] datasets. The code to re-
produce these experiments is available at https://github.com/Sulam-Group/Sufficient-vs.
-Necessary-Explanations

7.1. Synthetic Setting
We consider features X ∈ R7, where Xi ∼ N (0, 1) for i ∈ {1, 4, 5, 6, 7}. The remaining Xi and
response Y follow, X2 = X1 + ϵ1, Y = X2 + ϵ2, X3 = 5 · Y + 5 · X4 + ϵ3 for ϵi ∼ N (0, 1). The
data-generating process is represented by the directed acyclic graph (DAG) shown in Fig. 1 (note
X5, X6 and X7 are omitted since they share no dependencies with any other Xi or Y ). In this
setting, Y ⊥⊥ X{1,5,6,7}|X2,3,4 and Y ⊥⊥ X{4,5,6,7}. Thus, for f(X) = E[Y | X] and reference
VS = p(XSc | xS), the solutions to (Psuf) and (Pnec) for τ = 3 are S∗

suf = {2, 3, 4} and S∗
nec = {1, 2, 3}.

1Here, λ1, ||S||1 and λTV, ||S||TV are the ℓ1 and Total Variation norms and hyperparamters, respectively,
promoting sparsity and smoothness.
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Figure 2: Prevalence of differ-
ent solutions to Puni in syn-
thetic setting.

Table 1: Performance of com-
mon post-hoc methods on
synthetic setting.

Most
Prevalent S̃

%
of Samples

IG {2,3,4} 100
GS {2,3,4} 100

LIME {2,3,4} 100
SV {1,3,4} 72

Validation of Solutions. For 1000 samples x, we compute solu-
tions to (Psuf), (Pnec), and (Puni) (α = 1/2) for τ = 3 via an ex-
haustive search. We denote the solutions Ŝsuf, Ŝnec and Ŝuni. For
all x, Ŝsuf = S∗

suf and Ŝnec = S∗
nec, as expected. However, Ŝuni

varies. In Fig. 2, we plot the prevalence of the three most reoccur-
ring solutions Ŝuni: {1, 2, 3}, {2, 3, 4}, or {1, 3, 4}. For most x, S∗

suf
or S∗

nec are also solutions to (Puni), however for ≈ 7% of samples,
Ŝuni = {1, 3, 4} is the optimal solution to Puni, which illustrates
how solutions to these problems are highly input specific.

Analysis of Post-hoc Methods. For all x with Ŝuni = {1, 3, 4}, we
compute importance scores for each feature using Shapley values
(SV), Integrated Gradients (IG) [55], GradientSHAP (GS) [29],
and LIME [8]. For each method, we construct sets S̃ by picking
the three highest scoring features. In Table 1, we report the S̃
returned by different methods. We see that all methods, except
the Shapley value, assign high scores to features in S∗

suf. Thus,
many methods effectively identify sufficient sets. On the other
hand, for approximately 70% of samples, the Shapley value as-
signs high scores to features in S∗

uni. Therefore, the Shapley value
often identifies sufficient and necessary features. This suggests
that measuring how much a feature contributes to all subsets, as
Shapley does, implicitly measures whether a feature is a member
of a sufficient and necessary set.

7.2. Natural Language Sentiment Classification
We consider a sentiment analysis task on tweets in the SemEval-
2017 dataset [52]. The model is a RoBERTa language model [56]
that predicts a tweet’s sentiment as positive, negative, or neutral.
We work in the token space thus our features are text tokens pro-
duced by the RoBERTa tokenizer.

Analysis of Post-hoc Methods. For a holdout set of tweets classified with either a positive or neg-
ative sentiment and containing at most 25 tokens, we solve (Psuf), (Pnec), and (Puni) via exhaustive
search for τ = ⌈dρ⌉, where d is the number of tokens in the tweet and ρ ∈ {0.05, 0.10, . . . , 0.45}.
Additionally, we use Integrated Gradients (IG) [55] and GradientSHAP (GS) [29] to generate im-
portance scores for each token. To identify if these methods identify features that are sufficient, nec-
essary, or both, we compare how similar the set of features Ŝ, generated by selecting features with
the top ⌈dρ⌉ scores, is to the optimal sets S∗

suf, S∗
nec, and S∗

uni. In Table 2, for ρ ∈ {0.20, 0.25, 0.30},
we report the Jaccard Index [57], J , between the sets generated by Integrated Gradients and Gradi-
entShap and the optimal sets. Here, we see that both Integrated Gradients and GradientShap rank
features based on their sufficiency and necessity, as indicated by the Jaccard Index between Ŝ and
S∗

uni being the highest across different values of ρ.

Table 2: Jaccard Index between the sets generated by Integrated Gradients and GradientShap and
the optimal solutions S∗

suf, S∗
nec, and S∗

uni for tweets from the SemEval-2017 dataset.

ρ = 0.20 ρ = 0.25 ρ = 0.30
IG GS IG GS IG GS

J(Ŝ, S∗
suf) 0.65 ± 0.06 0.58 ± 0.05 0.63 ± 0.05 0.58 ± 0.05 0.57 ± 0.03 0.55 ± 0.04

J(Ŝ, S∗
nec) 0.64 ± 0.06 0.57 ± 0.06 0.59 ± 0.06 0.54 ± 0.05 0.53 ± 0.05 0.51 ± 0.05

J(Ŝ, S∗
uni) 0.69 ± 0.05 0.62 ± 0.06 0.64 ± 0.05 0.59 ± 0.06 0.60 ± 0.04 0.57 ± 0.04
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Table 3: Comparison of solutions S∗
suf, S∗

nec, and S∗
uni on the SemEval-2017 dataset.

ρ = 0.20 ρ = 0.25 ρ = 0.30 ρ = 0.35
J(S∗

suf, S
∗
nec) 0.55 ± 0.05 0.54 ± 0.05 0.54 ± 0.05 0.55 ± 0.05

J(S∗
suf, S

∗
uni) 0.71 ± 0.06 0.68 ± 0.06 0.66 ± 0.05 0.64 ± 0.05

J(S∗
nec, S

∗
uni) 0.73 ± 0.07 0.71 ± 0.07 0.67 ± 0.07 0.65 ± 0.07

Sufficient Solution: S∗
suf

Time warner is the devil. Worst possible time for the Internet to go out .

Necessary Solution: S∗
nec

Time warner is the devil . Worst possible time for the Internet to go out.

Unified Solution: S∗
uni

Time warner is the devil . Worst possible time for the Internet to go out.

Figure 3: Solutions (ρ = 0.10), S∗
suf, S∗

nec, and S∗
uni, for a tweet from the SemEval-2017 dataset.

Sufficiency vs Necessity. We also quantiy the difference between S∗
suf, S∗

nec, and S∗
uni. In Table 3, we

report the Jaccard Index between these sets for various values of ρ. Observe that for all ρ, S∗
suf and

S∗
nec exhibit the lowest Jaccard Index, indicating that these sets are highly dissimilar. On the other

hand, as expected, the Jaccard Index between S∗
uni and S∗

suf or S∗
nec is much higher, as the solutions

S∗
uni, by construction, balance sufficiency and necessity. In Fig. 3, we present example solutions

for a tweet classified with a negative sentiment to highlight the differences. The solutions differ:
S∗

suf consists of the words Worst and is as sufficient. However, S∗
nec and S∗

uni both contain Worst
and devil, as removing both words is necessary for the tweet to lose its negative sentiment. This
example illustrates how sufficient and necessary sets can differ while providing equally valuable
insights into howmodels make predictions. Additional results and examples are in Appendix A.4.

7.3. Image Classification
We consider two image classification tasks on the CelebA-HQ [58] andRSNA2019 Brain CTHemor-
rhageChallenge [54] datasets. The RSNA results are deferred toAppendixA.2. In both experiments
the features are pixel values and so a subset S corresponds to a binary mask that identifies a set pix-
els. With these experiments, we will analyze the ability of popular explanation methods–including
Integrated Gradients [55], GradientSHAP [29], Guided GradCAM [8], and h-Shap [13]–to iden-
tify small sufficient and necessary subsets. To ensure consistent analysis, all attribution scores are
normalized to the interval [0, 1]. This is done by setting the top 1% of nonzero scores to 1 and divid-
ing the remaining by the minimum score from the top 1% nonzero scores, which is common prac-
tice [59]. Binary masks are then generated by thresholding the normalized scores using thresholds
t ∈ (0, 1). For a test set of images and normalized attribution scores, we report the average (across all
binary masks)− log(∆suf),− log(∆nec), and− log(L0)where L0 is the relative size of S for t ∈ (0, 1)
to analyze the sufficiency, necessity and size of the explanations. Additionally, we will demonstrate
and visualize the similarities and differences between sufficient and necessary sets.

7.3.1. CelebA-HQ
We use a modified version of the CelebA-HQ dataset with 30,000 celebrity faces resized to 256×256.
The model is a ResNet18 that predicts whether a celebrity is smiling with ≈ 94% test accuracy. To
generate sufficient and necessary masks, we use the model based approach and learn sufficient and
necessary explainer models. Given the structured nature of the data and the similarity of features
across images, we use this approach because it prevents overfitting to spurious signals [50], an issue
that can arise with per-example methods. Implementation details are included in Appendix A.3.

Analysis of Post-hoc Methods. For 100 images correctly classified by the ResNet model, we apply
multiple post-hoc methods and our explainers to identify important features associated with smil-
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Figure 4: Comparison of different explanation methods on the CelebA-HQ dataset.

ing. Fig. 4 illustrates that for a wide range of thresholds t ∈ [0, 1], many methods identify sufficient
subsets, as− log(∆suf) for many of them is comparable to that of the sufficient explainer. The neces-
sary explainer, in fact, identifies subsets that are more sufficient than those found by the sufficient
explainer. The reason is that the sufficient explainer identifies subsets that are, on average, smaller
for all t ∈ [0, 1], while the necessary explainer finds subsets that are constant in size for all t but
slightly larger since, to be necessary, they must contain more features that provide additional infor-
mation. For other methods, as t increases, subset size decreases, and the sufficiency and necessity
of the solutions decline. Meanwhile, the necessary explainer naturally identifies necessary subsets,
indicated by large − log(∆nec), whereas other methods fail to do so. In conclusion, many methods
can identify sufficient sets, but not necessary ones and directly optimizing for these criterion leads
to identifying small, constant-sized subsets across thresholds.

Sufficiency vs. Necessity. In Fig. 5, we observe that sufficient subsets alone may miss important
features, whereas solutions to (Puni) offer deeper insights. As stated earlier, the sufficient explainer
identifies sets that are sufficient but not necessary. On the other hand, the necessary explainer ex-
hibits high − log(∆suf) and − log(∆nec), indicating that it identifies both sufficient and necessary
sets, i.e. solutions to (Puni). In Fig. 5, we visualize the reasons for this phenomenon. Notice that S∗

suf
precisely highlights (only) the smile. When S∗

suf is kept, one can generate new images (as done in
[46]) on which the model also predicts smile. On the other hand, we see why S∗

suf is not necessary:
by keeping its complement, (S∗

suf)c, we preserve important features that lead to new images with
smiles, leading themodel to produce the same prediction as it did for the original image. Conversely
solutions to (Pnec) (also solutions to (Puni) here) generate different explanations that provide amore
complete picture of feature importance. Notice that S∗

nec is sufficient because S∗
suf ⊆ S∗

nec, with the
additional features mainly being the dimples and eyes, which aid in determining the presence of a
smile. More importantly, Fig. 6 illustrates why S∗

nec is necessary: when we fix the complement of
S∗

nec and generate new samples, the face may lack a smile, leading the model to predict no smile.
Additional images and details on sample generation are in Appendices A.3 and A.4.

8. Limitations & Broader Impacts
While this work provides a novel theoretical contribution to the XAI community, there are some
limitations that require careful discussion. The choice of reference distribution VS is crucial. For
example, only with the conditional distribution can one obtain the independence results that our
theory provides. Naturally, there are computational trade-offs that must be studied; the ability to
learn and sample from accurate conditional distributions to generate explanations with clear sta-
tistical meaning comes with a computational and statistical cost, particularly in high-dimensional
settings. Thus, a direction for future work is to explore the impact of different VS and provide a
principled framework for selecting one that balances practical utility and computational feasibility.

Another relevant question is how well our proposed notions align with human intuition. While we
aim to understand which features are sufficient and necessary for a given model, these explanations
may not always align with how humans perceive importance. This can be an issue in settings where
interpretability is essential for trust and accountability. On the one hand, our approach provides
useful insights to further evaluate models (e.g. by verifying if the sufficient and necessary features
correlate with the correct ones as informed by human experts). On the other hand, bridging the gap

9



Prediction = 1.0

Original Image Keeping S *
suf

Prediction = 0.99

Sample 1

Prediction = 1.0

Sample 2

Prediction = 1.0

Sample 3

Prediction = 1.0

Sample 4

Prediction = 1.0

Original Image Removing S *
suf

Prediction = 0.99

Sample 1

Prediction = 1.0

Sample 2

Prediction = 1.0

Sample 3

Prediction = 1.0

Sample 4

Figure 5: Images and model predictions by keeping and removing the sufficient subset S∗
suf.
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Figure 6: Images and model predictions by keeping and removing the necessary subset S∗
nec.

between our definitions and other human notions of importance is an area for further investigation.
User studies and collaboration with domain experts will be critical in determining how our formal
notions can be adapted to better meet real-world interpretability needs. Finally, the societal impact
of this workwarrants discussion. While we offer a rigorous framework to understandmodel predic-
tions, these are oblivious to notions of demographic bias [60–62]. There is a risk that an “incorrect"
choice of sufficient vs. necessary explanation could reinforce biases or obscure the causal reasons
behind predictions. Future work will study how our framework can incorporate these biases.

9. Conclusion
This work formalizes notions of sufficiency and necessity as tools to evaluate feature importance
and explain model predictions. We demonstrate that sufficient and necessary explanations, while
insightful, often provide incomplete while complementary answers to model behavior. To address
this limitation, we propose a unified approach that offers a new and more nuanced understanding
of model behavior. Our unified approach expands the scope of explanations and reveals trade-offs
between sufficiency and necessity, giving rise to new interpretations of feature importance. Through
our theoretical contributions, we present conditions under which sufficiency and necessity align or
diverge, and provide two perspectives of our unified approach through the lens of conditional inde-
pendence and Shapley values. Our experimental results support our theoretical findings, providing
examples of how adjusting sufficiency-necessity trade-off via our unified approach can uncover al-
ternative sets of important features that would be missed by focusing solely on sufficiency or neces-
sity. Furthermore, we evaluate common post-hoc interpretability methods showing that many fail
to reliably identify features that are necessary or sufficient. In summary, our work contributes to a
more complete understanding of feature importance through sufficiency and necessity. We believe,
and hope, our framework holds potential for advancing the rigorous interpretability of MLmodels.

10



Acknowledgements
This research was supported in part by NSF CAREER Award CCF 2239787 and NIH award
R01CA287422.

References
[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,

2015.

[2] Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chan-
dak, Shengchao Liu, Peter Katwyk, Andreea Deac, Anima Anandkumar, Karianne Bergen,
Carla P. Gomes, and Shir. Scientific discovery in the age of artificial intelligence. Nature, 620
(7972):47–60, August 2023.

[3] The White House. Executive order on the safe, secure, and trustworthy development and use
of artificial intelligence, 2023.

[4] Carlos Zednik. Solving the black box problem: a normative framework for explainable artificial
intelligence. Philosophy & Technology, 34(2):265–288, 2021.

[5] Richard Tomsett, Dave Braines, Dan Harborne, Alun Preece, and Supriyo Chakraborty. Inter-
pretable to whom? a role-based model for analyzing interpretable machine learning systems.
arXiv preprint arXiv:1806.07552, 2018.

[6] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning
deep features for discriminative localization. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2921–2929, 2016.

[7] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i trust you?" explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pages 1135–1144, 2016.

[8] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-
based localization. In Proceedings of the IEEE international conference on computer vision, pages
618–626, 2017.

[9] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features
through propagating activation differences. In International conference on machine learning,
pages 3145–3153. PMLR, 2017.

[10] Peng-Tao Jiang, Chang-Bin Zhang, Qibin Hou, Ming-Ming Cheng, and Yunchao Wei. Layer-
cam: Exploring hierarchical class activation maps for localization. IEEE Transactions on Image
Processing, 30:5875–5888, 2021.

[11] Stefan Kolek, Duc Anh Nguyen, Ron Levie, Joan Bruna, and Gitta Kutyniok. A rate-distortion
framework for explaining black-box model decisions. In International Workshop on Extending
Explainable AI Beyond Deep Models and Classifiers, pages 91–115. Springer, 2022.

[12] Jianbo Chen, Le Song, Martin J Wainwright, and Michael I Jordan. L-shapley and c-shapley:
Efficient model interpretation for structured data. arXiv preprint arXiv:1808.02610, 2018.

[13] Jacopo Teneggi, Alexandre Luster, and Jeremias Sulam. Fast hierarchical games for image
explanations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4):4494–4503,
2022.

[14] Edoardo Mosca, Ferenc Szigeti, Stella Tragianni, Daniel Gallagher, and George Louis Groh.
Shap-based explanation methods: A review for nlp interpretability. In COLING, 2022.

11



[15] Ruth C Fong and Andrea Vedaldi. Interpretable explanations of black boxes by meaningful
perturbation. In Proceedings of the IEEE international conference on computer vision, pages 3429–
3437, 2017.

[16] Ruth Fong, Mandela Patrick, and Andrea Vedaldi. Understanding deep networks via extremal
perturbations and smooth masks. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 2950–2958, 2019.

[17] Piotr Dabkowski and Yarin Gal. Real time image saliency for black box classifiers. Advances in
neural information processing systems, 30, 2017.

[18] Jianbo Chen, Le Song, Martin Wainwright, and Michael Jordan. Learning to explain: An
information-theoretic perspective on model interpretation. In International conference on ma-
chine learning, pages 883–892. PMLR, 2018.

[19] Jinsung Yoon, James Jordon, and Mihaela van der Schaar. Invase: Instance-wise variable se-
lection using neural networks. In International Conference on Learning Representations, 2018.

[20] Neil Jethani, Mukund Sudarshan, Yindalon Aphinyanaphongs, and Rajesh Ranganath. Have
we learned to explain?: How interpretability methods can learn to encode predictions in their
interpretations. In International Conference on Artificial Intelligence and Statistics, pages 1459–
1467. PMLR, 2021.

[21] Eric Wang, Pasha Khosravi, and Guy Van den Broeck. Probabilistic sufficient explanations.
arXiv preprint arXiv:2105.10118, 2021.

[22] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-
agnostic explanations. In Proceedings of the AAAI conference on artificial intelligence, volume 32,
2018.

[23] Alexey Ignatiev, Nina Narodytska, Nicholas Asher, and Joao Marques-Silva. From contrastive
to abductive explanations and back again. In International Conference of the Italian Association
for Artificial Intelligence, pages 335–355. Springer, 2020.

[24] Adnan Darwiche and Auguste Hirth. On the reasons behind decisions. In ECAI 2020, pages
712–720. IOS Press, 2020.

[25] Adnan Darwiche and Chunxi Ji. On the computation of necessary and sufficient explanations.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 5582–5591, 2022.

[26] Andy Shih, Arthur Choi, and Adnan Darwiche. A symbolic approach to explaining bayesian
network classifiers. arXiv preprint arXiv:1805.03364, 2018.

[27] Jacopo Teneggi, Beepul Bharti, Yaniv Romano, and Jeremias Sulam. Shap-xrt: The shapley
value meets conditional independence testing. Transactions on Machine Learning Research, 2023.

[28] Wesley Tansey, Victor Veitch, Haoran Zhang, Raul Rabadan, and David M Blei. The hold-
out randomization test for feature selection in black box models. Journal of Computational and
Graphical Statistics, 31(1):151–162, 2022.

[29] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Ad-
vances in neural information processing systems, 30, 2017.

[30] Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin, Bala Nair,
Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local explanations to
global understandingwith explainable ai for trees.Naturemachine intelligence, 2(1):56–67, 2020.

[31] Amit Dhurandhar, Pin-YuChen, Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan Shan-
mugam, and Payel Das. Explanations based on the missing: Towards contrastive explanations
with pertinent negatives. Advances in neural information processing systems, 31, 2018.

12



[32] Martin Pawelczyk, Klaus Broelemann, and Gjergji Kasneci. On counterfactual explanations
under predictive multiplicity. In Conference on Uncertainty in Artificial Intelligence, pages 809–
818. PMLR, 2020.

[33] Salim I Amoukou and Nicolas Brunel. Consistent sufficient explanations and minimal local
rules for explaining the decision of any classifier or regressor. Advances in Neural Information
Processing Systems, 35:8027–8040, 2022.

[34] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. On relating explanations and
adversarial examples. Advances in neural information processing systems, 32, 2019.

[35] Lloyd S Shapley. Notes on the N-person Game. Rand Corporation, 1951.

[36] Ian Covert, Scott Lundberg, and Su-In Lee. Explaining by removing: A unified framework for
model explanation. Journal of Machine Learning Research, 22(209):1–90, 2021.

[37] David S. Watson, Limor Gultchin, Ankur Taly, and Luciano Floridi. Local explanations via
necessity and sufficiency: unifying theory and practice. In Cassio de Campos and Marloes H.
Maathuis, editors, Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelli-
gence, volume 161 of Proceedings of Machine Learning Research, pages 1382–1392. PMLR, 27–30
Jul 2021.

[38] Usha Bhalla, Suraj Srinivas, and Himabindu Lakkaraju. Verifiable feature attributions: A
bridge between post hoc explainability and inherent interpretability. Advances in neural in-
formation processing systems, 2023.

[39] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data dis-
tribution. Advances in neural information processing systems, 32, 2019.

[40] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[41] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generativemodeling through stochastic differential equations. In Inter-
national Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=PxTIG12RRHS.

[42] Ian Covert, ScottMLundberg, and Su-In Lee. Understanding global feature contributionswith
additive importance measures. Advances in Neural Information Processing Systems, 33:17212–
17223, 2020.

[43] Mukund Sundararajan and Amir Najmi. The many shapley values for model explanation. In
International conference on machine learning, pages 9269–9278. PMLR, 2020.

[44] David Watson, Joshua O’Hara, Niek Tax, Richard Mudd, and Ido Guy. Explaining predictive
uncertainty with information theoretic shapley values. Advances in Neural Information Process-
ing Systems, 36, 2024.

[45] Hugh Chen, Ian C Covert, Scott M Lundberg, and Su-In Lee. Algorithms to estimate shapley
value feature attributions. Nature Machine Intelligence, pages 1–12, 2023.

[46] Guanhua Zhang, Jiabao Ji, Yang Zhang, Mo Yu, Tommi Jaakkola, and Shiyu Chang. Towards
coherent image inpainting using denoising diffusion implicit models. In International Confer-
ence on Machine Learning, pages 41164–41193. PMLR, 2023.

[47] Arturo Moncada-Torres, Marissa C van Maaren, Mathijs P Hendriks, Sabine Siesling, and Gijs
Geleijnse. Explainable machine learning can outperform cox regression predictions and pro-
vide insights in breast cancer survival. Scientific Reports, 11(1):1–13, 2021.

13

https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS


[48] Yazeed Zoabi, Shira Deri-Rozov, and Noam Shomron. Machine learning-based prediction of
covid-19 diagnosis based on symptoms. npj digital medicine, 4(1):1–5, 2021.

[49] Ruishan Liu, Shemra Rizzo, SamuelWhipple, Navdeep Pal, Arturo Lopez Pineda, Michael Lu,
Brandon Arnieri, Ying Lu, William Capra, Ryan Copping, et al. Evaluating eligibility criteria
of oncology trials using real-world data and ai. Nature, 592(7855):629–633, 2021.

[50] Johannes Linder, Alyssa La Fleur, Zibo Chen, Ajasja Ljubetič, David Baker, Sreeram Kannan,
and Georg Seelig. Interpreting neural networks for biological sequences by learning stochastic
masks. Nature machine intelligence, 4(1):41–54, 2022.

[51] Marc Brinner and Sina Zarrieß. Model interpretability and rationale extraction by input mask
optimization. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Findings of
the Association for Computational Linguistics: ACL 2023, Toronto, Canada, July 2023. Association
for Computational Linguistics.

[52] Sara Rosenthal, Noura Farra, and Preslav Nakov. SemEval-2017 task 4: Sentiment analysis
in Twitter. In Steven Bethard, Marine Carpuat, Marianna Apidianaki, Saif M. Mohammad,
Daniel Cer, andDavid Jurgens, editors, Proceedings of the 11th InternationalWorkshop on Semantic
Evaluation (SemEval-2017), Vancouver, Canada, August 2017. Association for Computational
Linguistics.

[53] Cheng-Han Lee, Ziwei Liu, LingyunWu, and Ping Luo. Maskgan: Towards diverse and inter-
active facial image manipulation. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

[54] Adam E Flanders, Luciano M Prevedello, George Shih, Safwan S Halabi, Jayashree Kalpathy-
Cramer, Robyn Ball, John T Mongan, Anouk Stein, Felipe C Kitamura, Matthew P Lungren,
et al. Construction of a machine learning dataset through collaboration: the rsna 2019 brain ct
hemorrhage challenge. Radiology: Artificial Intelligence, 2(3):e190211, 2020.

[55] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks.
In International conference on machine learning, pages 3319–3328. PMLR, 2017.

[56] Zhuang Liu, Wayne Lin, Ya Shi, and Jun Zhao. A robustly optimized bert pre-training ap-
proachwith post-training. InChina national conference on Chinese computational linguistics, pages
471–484. Springer, 2021.

[57] AllanHMurphy. The finley affair: A signal event in the history of forecast verification. Weather
and forecasting, 11(1):3–20, 1996.

[58] Tero Karras. Progressive growing of gans for improved quality, stability, and variation. arXiv
preprint arXiv:1710.10196, 2017.

[59] Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh, Jonathan
Reynolds, AlexanderMelnikov, Natalia Kliushkina, Carlos Araya, Siqi Yan, and Orion Reblitz-
Richardson. Captum: A unified and generic model interpretability library for pytorch, 2020.
URL https://arxiv.org/abs/2009.07896.

[60] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning.
Advances in neural information processing systems, 29, 2016.

[61] Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkata-
subramanian. Certifying and removing disparate impact. In proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, pages 259–268, 2015.

[62] Beepul Bharti, Paul Yi, and Jeremias Sulam. Estimating and controlling for equalized odds via
sensitive attribute predictors. Advances in neural information processing systems, 36, 2024.

14

https://arxiv.org/abs/2009.07896


[63] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

15



A. Appendix

A.1. Proofs
A.1.1. Proof of Lemma 4.1

Lemma 4.1. Letα ∈ (0, 1). For τ > 0, denote S∗ to be a solution to (Puni) forwhich∆uni
V (S∗, f,x, α) =

ϵ. Then, S∗ is ϵ
α -sufficient and ϵ

1−α -necessary. Formally,

0 ≤ ∆suf
V (S∗, f,x) ≤ ϵ

α
and 0 ≤ ∆nec

V (S∗, f,x) ≤ ϵ

1− α
. (9)

Proof. Let τ > 0 and α ∈ (0, 1) and denote S∗ to be a solution to (Puni) such that

∆uni
V (S∗, f,x, α) = ϵ. (10)

Then, by definition of being a solution to (Puni),

|S∗| ≤ τ. (11)

Furthermore, recall that

∆uni
V (S∗, f,x, α) = α ·∆suf

V (S∗, f,x) + (1− α) ·∆nec
V (S∗, f,x) (12)

which implies

α ·∆suf
V (S∗, f,x) = ϵ− (1− α) ·∆nec

V (S∗, f,x) (13)
≤ ϵ ((1− α), ∆nec

V (S∗, f,x) ≥ 0) (14)

=⇒ ∆suf
V (S∗, f,x) ≤ ϵ

α
. (15)

Similarly,

(1− α) ·∆nec
V (S∗, f,x) = ϵ− α ·∆suf

V (S∗, f,x) (16)
≤ ϵ (α, ∆suf

V (S∗, f,x) ≥ 0) (17)

=⇒ ∆nec
V (S∗, f,x) ≤ ϵ

1− α
. (18)

A.1.2. Proof of Lemma 4.2

Lemma 4.2. For 0 ≤ ϵ < ρ(f(x),f∅(x))
2 , denote S∗

suf and S∗
nec to be ϵ-sufficient and ϵ-necessary sets.

Then, if S∗
suf is ϵ-super sufficient or S∗

nec is ϵ-super necessary,

S∗
suf ∩ S∗

nec ̸= ∅. (19)

Proof. We will prove the result via contradiction. First recall that,

fS(x) = E
XSc∼VSc

[f(xS ,XSc)] (20)

and, for any metric ρ : R× R 7→ R,

∆suf
V (S, f,x) ≜ ρ(f(x), fS(x)) (21)

∆nec
V (S, f,x) ≜ ρ(fSc(x), f∅(x)). (22)

Since ρ is a metric on R, it satisfies the triangle inequality. Thus, for a, b, c ∈ R

ρ(a, c) ≤ ρ(a, b) + ρ(b, c). (23)

Now, let S∗
suf be ϵ-super sufficient and suppose

S∗
suf ∩ S∗

nec = ∅. (24)
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This implies

S∗
suf ⊆ (S∗

nec)c. (25)

Subsequently, since S∗
suf is ϵ-super sufficient,

∆suf
V ((S∗

nec)c, f,x) ≤ ϵ. (26)

As a result, observe

ρ(f(x), f∅(x)) ≤ ρ(f(x), f(S∗
nec)c(x)) + ρ(f(S∗

nec)c(x), f∅(x)) triangle inequality (27)
= ∆suf

V ((S∗
nec)c, f,x) + ∆nec

V ((S∗
nec), f,x) (28)

≤ ϵ+∆nec
V ((S∗

nec), f,x) S∗
suf is ϵ-super sufficient (29)

≤ 2ϵ S∗
nec is ϵ-necessary (30)

=⇒ ϵ ≥ ρ(f(x), f∅(x))

2
(31)

which is a contradiction because 0 ≤ ϵ < ρ(f(x),f∅(x))
2 . Thus S∗

suf ∩ S∗
nec ̸= ∅. The proof of this result

assuming S∗
nec is ϵ-super necessary follows the same argument.

A.1.3. Proof of Theorem 4.1

Theorem 4.1. Let τ1, τ2 > 0 and 0 ≤ ϵ < 1
2 · ρ(f(x), f∅(x)). Denote S∗

suf and S∗
nec to be ϵ-super

sufficient and ϵ-super necessary solutions to (Psuf) and (Pnec), respectively, such that |S∗
suf | = τ1

and |S∗
nec| = τ2. Then, there exists a set S∗ such that

∆uni
V (S∗, f,x, α) ≤ ϵ and max(τ1, τ2) ≤ |S∗| < τ1 + τ2. (32)

Furthermore, if S∗
suf ⊆ S∗

nec or S∗
nec ⊆ S∗

suf. then S∗ = S∗
nec or S∗ = S∗

suf, respectively.

Proof. Consider the set S∗ = S∗
suf ∪ S∗

nec. This set has the following properties:

(P1) S∗ is ϵ-sufficient because S∗
suf is ϵ-super sufficient

(P2) S∗ is ϵ-necessary because S∗
suf is ϵ-super necessary

(P3) |S∗| ≥ max(τ1, τ2)with |S∗| = τ1 when S∗
nec ⊂ S∗

suf and with |S∗| = τ2 when S∗
suf ⊂ S∗

nec

(P4) Via Lemma 4.1, we know S∗
suf ∩ S∗

nec ̸= ∅ thus |S∗| < τ1 + τ2

Then by (P1) and (P2)

∆uni
V (S∗, f,x, α) = α ·∆suf

V (S∗, f,x) + (1− α) ·∆nec
V (S∗, f,x) (33)

≤ α · ϵ+ (1− α) · ϵ = ϵ (34)

and by (P3) and (P4) we have max(τ1, τ2) ≤ |S∗| < τ1 + τ2,

A.1.4. Proof of Corollary 5.1

Corollary 5.1. Suppose for any S ⊆ [d], VS = p(XS | XSc = xSc). Let α ∈ (0, 1), ϵ ≥ 0, and denote
ρ : R×R 7→ R to be a metric on R. Furthermore, for f(X) = E[Y | X] and τ > 0, let S∗ be a solution
to (Puni) such that ∆uni

V (S, f,x, α) = ϵ. Then, S∗ satisfies the following conditional independence
relations,

ρ (E[Y | x], E[Y | XS∗ = xS∗ ]) ≤ ϵ

α
and ρ

(
E[Y | XS∗

c
= xS∗

c
], E[Y ]

)
≤ ϵ

1− α
. (35)

Proof. All we need to show is that when VS = p(XS | XSc = xSc) and f(X) = E[Y | X], we have

fS(x) = E[Y | XS = xS ]. (36)
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Once this is proven, we can simply apply Lemma 4.1.

To this end, we have by assumption that f(x) = E[Y | X = x] and, for any S ⊆ [d], VS = p(XS |
XSc = xSc). Then by definition

fS(x) = EVSc [f(xS ,XSc)] =

∫
X
f(xS ,XSc) · p(XSc | XS = xS) dXSc (37)

=

∫
X
E[Y | XS = xS ,XSc ] · p(XSc | XS = xS) dXSc (38)

=

∫
X

(∫
Y
y · p(y | XS = xS ,XSc) dy

)
· p(XSc | XS = xS) dXSc (39)

=

∫
Y
y

(∫
X
p(y,XSc | XS = xS) dXSc

)
dy (40)

=

∫
Y
y · p(y | XS = xS) dy (41)

= E[Y | XS = xS ]. (42)

By applying Lemma 4.1, we have the desired result.

A.1.5. Proof of Theorem 5.1

Theorem 5.1. Consider an input x for which f(x) ̸= f∅(x). Denote by Λd = {S, Sc} the partition of
[d] = {1, 2, . . . , d}, and define the characteristic function to be v(S) = −ρ(f(x), fS(x)). Then,

ϕshap
S (Λd, v) ≥ ρ(f(x), f∅(x))−∆uni

V (S, f,x, α). (43)

Proof. Before we prove the result, recall the following properties of a metric ρ in the reals:

(P1) ∀a, b ∈ R, ρ(a, b) = 0 ⇐⇒ a = b

(P2) for a, b, c ∈ R, ρ(a, c) ≤ ρ(a, b) + ρ(b, c).

Now, for the partition Λd = {S, Sc} of [d] = {1, 2, . . . , d} and characteristic function v(S) =

−ρ(f(x), fS(x)), ϕshap
S (Λd, v) is defined as

ϕshap
S (Λd, v) =

1

2
· [v(S ∪ Sc)− v(Sc)] +

1

2
· [v(S)− v(∅)] (44)

=
1

2
· [ρ(f(x), fSc(x))− ρ(f(x), f(x))] +

1

2
· [ρ(f(x), f∅(x))− ρ(f(x), fS(x))] (45)

=
1

2
· [ρ(f(x), fSc(x))] +

1

2
· [ρ(f(x), f∅(x))− ρ(f(x), fS(x))] by (P1) (46)

By (P2)

ρ(f(x), f∅(x)) ≤ ρ(f(x), fSc(x)) + ρ(fSc(x), f∅(x)) (47)
=⇒ ρ(f(x), fSc(x)) ≥ ρ(f(x), f∅(x))− ρ(fSc(x), f∅(x)). (48)

Thus

ϕshap
S (Λd, v) =

1

2
· [ρ(f(x), fSc(x))] +

1

2
· [ρ(f(x), f∅(x))− ρ(f(x), fS(x))] (49)

≥ 1

2
· [ρ(f(x), f∅(x))− ρ(fSc(x), f∅(x))] +

1

2
· [ρ(f(x), f∅(x))− ρ(f(x), fS(x))] (50)

= ρ(f(x), f∅(x))−∆uni
V (S, f,x, α). (51)
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Figure 7: Comparison of different methods on RSNA dataset

A.2. Additional Experiments
A.2.1. RSNA CT Hemorrhage
We use the RSNA 2019 Brain CT Hemorrhage Challenge dataset comprised of 752,803 scans. Each
scan is annotated by expert neuroradiologists with the presence and type(s) of hemorrhage (i.e.,
epidural, intraparenchymal, intraventricular, subarachnoid, or subdural). We use a ResNet18 [63]
classifier that was pretrained on this data [13]. Since the dataset consists of highly complex and di-
verse images, we employ the per-example approach in Eq. (7) with α ∈ {0, 0.5, 1} to learn sufficient
and necessary masks. Further details are in Appendix A.3.

Comparison of Post-hoc InterpretabilityMethods. For a set of 20 images positively classified by the
ResNet model, we apply multiple post-hoc interpretability methods, as well as compute sufficient
and necessary masks by solving (7). The results in Fig. 7 show that for thresholds t < 0.1, many
methods identify sufficient sets smaller in size than the sufficient and unified explainer, as indicated
by their large values of − log(∆suf) and smaller values of − log(L0). However, for t > 0.1, only
the sufficient and unified explainer identify sufficient sets of a constant small size. Importantly, no
methods, besides the necessity and unified explainers, identify necessary sets. Furthermore, as expected,
the sufficient explainer does not identify necessary sets and vice versa. The unified explainer, as
expected, identifies a sufficient and necessary set (at the cost of a larger set). In conclusion, while
off-the-shelfmethods can identify sufficient, they do not identify necessary sets for small thresholds.
Only by optimizing for such properties one gets explanations that are consistently small, sufficient
and/or necessary across thresholds.

Sufficiency vs. Necessity. In Fig. 8 we visualize the sufficient and necessary features in various CT
scans. The first observation is that sufficient subsets do not provide a complete picture of which
features are important. Notice for all the CT scans, a sufficient set, S∗

suf highlights one or two, but
never all, brain hemorrhages in the scans. For example, in the last row, S∗

suf only contains the right
frontal lobe parenchymal hemorrhages, which happens to be one of the larger hemorrhages present.
On the other hand, necessary sets, S∗

nec, contain parts of, sometimes entirely, all hemorrhages in the
scans. In the last row, S∗

nec contains all multifocal parenchymal hemorrhages in both right and left
frontal lobes, because when all these regions are masked, the model yields a prediction≈ 0.64– the
prediction of the model on the mean image. Finally, notice in the 2nd and 3rd columns that S∗

nec
and S∗

uni are nearly identical, which precisely demonstrate Lemma 4.1 and Theorem 4.1 in practice.
First, since S∗

suf is super sufficient, S∗
suf and S∗

nec, share common features. Second, visually S∗
suf ⊆ S∗

nec
holds approximately and so S∗

nec = S∗
uni. Through this experiment we are able to highlight the differ-

ences between sufficient and necessary sets, show how each contain important and complementary
information, and demonstrate our theory holding in real world settings.
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Original Image S *
suf S *

nec S *
uni

Original Image S *
suf S *

nec S *
uni

Figure 8: S∗
suf, S

∗
nec and S∗

uni for various CT scans.
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A.3. Additional Experimental Details
In this section, we include further experimental details. All experiments were performed on a pri-
vate cluster with 8 NVIDIA RTX A5000 with 24 GB of memory. All scripts were run on PyTorch
2.0.1, Python 3.11.5, and CUDA 12.2.

A.3.1. RSNA CT Hemorrhage

Dataset Details. The RSNA 2019 Brain CT Hemorrhage Challenge dataset [54], contains 75,2803
images labeled by a panel of board-certified radiologists with the types of hemorrhage present
(epidural, intraparenchymal, intraventricular, subarachnoid, subdural).

Implementation. For this experiment we solve the relaxed optimization problem [11, 16]

arg min
S⊆[0,1]d

∆uni
V (S, f,x, α) + λ1 · ||S||1 + λTV · ||S||TV . (52)

where

∆uni
V (gθ(xi), f,xi, α) = α · |f(xi)− fS(xi)|+ (1− α) · |f(xi)− fS(xi)| (53)

to identify sufficient and necessary masks S for a sample x. Here ||S||1 and ||S||TV are the L1

and Total Variation norm of S, which promote sparsity and smoothness respectively and λSp and
λSm are the associated. To solve this problem, a mask S ∈ [0, 1]512×512 is initialized with entries
Si ∼ N (0.5, 1

36 ). For 1000 iterations, the mask S is iteratively updated to minimize the objective
function above, where for any S,

fS(x) =
1

K

K∑
i=1

f((X̃S)i) with (X̃S)i = x ◦ 1̃S + (1− 1̃S) ◦ bi. (54)

Here the entries (1̃S)i ∼ Bernoulli(Si) and bi is the ith entry of a vector b = (b1, · · · , bd) ∼ V .
For this experiment, the reference distribution V is the unconditional mean image over the set of
training images. Therefore bi is the average value of the ith pixel over the training set. To allow for
differentiation during optimization, we generate discrete samples 1̃S using the Gumbel-Softmax
distribution. With this formulation, the entries (X̃S)i follow a Bernoulli distribution with outcomes
{bi, xi}, i.e. (X̃S)i is distributed as

Pr[(X̃S)i = xi] = Si and Pr[(X̃S)i = bi] = 1− Si. (55)

For every α ∈ {0, 0.5, 1}, during optimization we set K = 10, λ1 = 3 and λTV = 20. We utilize the
Adam optimizer with default β-parameters of β1 = 0.9, β2 = 0.99 and a fixed learning rate of 0.01.

A.3.2. CelebA-HQ

Dataset Details. We use a modified version of the CelebA-HQ dataset [53, 58] which contains
30,000 celebrity faces resized to 256×256 pixels with several landmark locations and binary at-
tributes (e.g., eyeglasses, bangs, smiling).

Implementation. Recall for this experiment, to generate sufficient or necessarymasksS for samples
x, we learn a model gθ : X 7→ [0, 1]d via solving the following optimization problem:

arg min
θ∈Θ

E
X∼DX

[
∆uni

V (gθ(X), f,X, α) + λ1 · ||gθ(X)||1 + λTV · ||gθ(X)||TV
]

(56)

To learn sufficient and necessary explainer models, we solve Eq. (8) via empirical risk minimization
for α ∈ {0, 1} respectively. Given N samples {xi}Ni=1

i.i.d.∼ DX , we solve

1

N

N∑
i=1

[
∆uni

V (gθ(xi), f,xi, α) + λ1 · ||gθ(xi)||1 + λTV · ||gθ(xi)||TV
]
. (57)
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Here

∆uni
V (gθ(xi), f,xi, α) = α · |f(xi)− fS(xi)|+ (1− α) · |f(xi)− fS(xi)| (58)

where fS(xi) is evaluated in the same manner as in the RSNA experiment. For α = 0, λ1 = 0.1 and
λTV = 100. For α = 1, λ1 = 1 and λTV = 10. For both α, during optimization we use a batch size of
32, set K = 10 and use the Adam optimizer with default β-parameters of β1 = 0.9, β2 = 0.99 and a
fixed learning rate of 1× 10−4

Sampling. To generate the samples in Figs. 5, 6, 13 and 14, we use the CoPaint method [46].
We utilize their code base and pretrained diffusion models (available at https://github.com/
UCSB-NLP-Chang/CoPaint) with the exact the same parameters as reported in the paper to perform
conditional generation.

A.4. Additional Results
A.4.1. Natural Language Sentiment Classification

Analysis of Post-hoc Methods.

Table 4: Jaccard Index between the sets generated by Integrated Gradients and GradientShap and
the optimal solutions S∗

suf, S∗
nec, and S∗

uni for tweets from the SemEval-2017 dataset.

ρ = 0.05 ρ = 0.10 ρ = 0.15
IG GS IG GS IG GS

J(Ŝ, S∗
suf) 0.72 ± 0.07 0.61 ± 0.09 0.73 ± 0.06 0.64 ± 0.08 0.67 ± 0.05 0.59 ± 0.06

J(Ŝ, S∗
nec) 0.74 ± 0.07 0.65 ± 0.09 0.69 ± 0.06 0.63 ± 0.08 0.63 ± 0.06 0.59 ± 0.06

J(Ŝ, S∗
uni) 0.73 ± 0.07 0.62 ± 0.09 0.77 ± 0.07 0.69 ± 0.08 0.71 ± 0.05 0.64 ± 0.06

Table 5: Jaccard Index between the sets generated by Integrated Gradients and GradientShap and
the optimal solutions S∗

suf, S∗
nec, and S∗

uni for tweets from the SemEval-2017 dataset.

ρ = 0.35 ρ = 0.40 ρ = 0.45
IG GS IG GS IG GS

J(Ŝ, S∗
suf) 0.58 ± 0.03 0.55 ± 0.03 0.58 ± 0.04 0.54 ± 0.03 0.60 ± 0.04 0.56 ± 0.04

J(Ŝ, S∗
nec) 0.50 ± 0.04 0.50 ± 0.04 0.51 ± 0.03 0.52 ± 0.04 0.51 ± 0.03 0.51 ± 0.04

J(Ŝ, S∗
uni) 0.56 ± 0.04 0.53 ± 0.03 0.56 ± 0.04 0.52 ± 0.03 0.55 ± 0.03 0.55 ± 0.03

Sufficiency vs Necessity

Table 6: Comparison of solutions S∗
suf, S∗

nec, and S∗
uni on the SemEval-2017 dataset.

ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.40 ρ = 0.45
J(S∗

suf, S
∗
nec) 0.85 ± 0.06 0.72 ± 0.06 0.59 ± 0.05 0.56 ± 0.04 0.54 ± 0.03

J(S∗
suf, S

∗
uni) 0.96 ± 0.04 0.83 ± 0.05 0.73 ± 0.05 0.63 ± 0.05 0.64 ± 0.04

J(S∗
nec, S

∗
uni) 0.88 ± 0.06 0.85 ± 0.06 0.78 ± 0.07 0.65 ± 0.06 0.63 ± 0.04
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Example Solutions to (Psuf), (Pnec), and (Puni)

Sufficient Solution: S∗
suf

@user the G 2 is amazing btw, a HUGE improvement over the G1

Necessary Solution: S∗
nec

@user the G2 is amazing btw, a HUGE improvement over the G1

Unified Solution: S∗
uni

@user the G2 is amazing btw, a HUGE improvement over the G1

Figure 9: Solutions (ρ = 0.15), S∗
suf, S∗

nec, and S∗
uni, for a tweet from the SemEval-2017 dataset.

Sufficient Solution: S∗
suf

@user I love Google Translator too ! :D Good day mate !

Necessary Solution: S∗
nec

@user I love Google Translator too ! :D Good day mate !

Unified Solution: S∗
uni

@user I love Google Translator too ! :D Good day mate !

Figure 10: Solutions (ρ = 0.10), S∗
suf, S∗

nec, and S∗
uni, for a tweet from the SemEval-2017 dataset.

Sufficient Solution: S∗
suf

@user LeBron is cool . I like his personality...he has good character.

Necessary Solution: S∗
nec

@user LeBron is cool . I like his personality...he has good character.

Unified Solution: S∗
uni

@user LeBron is cool . I like his personality...he has good character.

Figure 11: Solutions (ρ = 0.15), S∗
suf, S∗

nec, and S∗
uni, for a tweet from the SemEval-2017 dataset.

Sufficient Solution: S∗
suf

ugh. the amount of times these stupid insects have bitten me. Grr..

Necessary Solution: S∗
nec

ugh.the amount of times these stupid insects have bitten me. Gr r ..

Unified Solution: S∗
uni

ugh.the amount of times these stupid insects have bitten me. Gr r ..

Figure 12: Solutions (ρ = 0.25), S∗
suf, S∗

nec, and S∗
uni, for a tweet from the SemEval-2017 dataset.
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A.4.2. CelebA-HQ

Keeping and removing the sufficient subset S∗
suf

Prediction = 1.0

Original Image Keeping S *
suf

Prediction = 1.0

Sample 1

Prediction = 1.0

Sample 2

Prediction = 1.0

Sample 3

Prediction = 1.0

Sample 4

Prediction = 1.0

Original Image Removing S *
suf

Prediction = 1.0

Sample 1

Prediction = 1.0

Sample 2

Prediction = 1.0

Sample 3

Prediction = 1.0

Sample 4

Prediction = 1.0

Original Image Keeping S *
suf

Prediction = 1.0

Sample 1

Prediction = 1.0

Sample 2

Prediction = 1.0

Sample 3

Prediction = 1.0

Sample 4

Prediction = 1.0

Original Image Removing S *
suf

Prediction = 1.0

Sample 1

Prediction = 1.0

Sample 2

Prediction = 1.0

Sample 3

Prediction = 1.0

Sample 4

Figure 13: Images and model predictions by keeping and removing the sufficient subset S∗
suf.
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Keeping and removing the necessary subset S∗
nec

Prediction = 1.0

Original Image Keeping S *
nec

Prediction = 1.0

Sample 1

Prediction = 1.0

Sample 2

Prediction = 1.0

Sample 3

Prediction = 1.0

Sample 4

Prediction = 1.0

Original Image Keeping S *
nec

Prediction = 0.99

Sample 1

Prediction = 1.0

Sample 2

Prediction = 1.0

Sample 3

Prediction = 1.0

Sample 4

Prediction = 1.0

Original Image Removing S *
nec

Prediction = 0.02

Sample 1

Prediction = 0.05

Sample 2

Prediction = 1.0

Sample 3

Prediction = 1.0

Sample 4

Figure 14: Images and model predictions by keeping and removing the necessary subset S∗
nec.
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