
Published as a conference paper at ICLR 2022

ANNEALED IMPORTANCE SAMPLING MEETS SCORE
MATCHING

Arnaud Doucet, Will Grathwohl, Alex G.D.G. Matthews & Heiko Strathmann ∗
DeepMind
{arnauddoucet,wgrathwohl,alexmatthews,strathmann}@google.com

ABSTRACT

Annealed Importance Sampling (AIS) is one of the most effective methods for
marginal likelihood estimation. It relies on a sequence of distributions interpolat-
ing between a tractable initial distribution and the posterior of interest which we
simulate from approximately using a non-homogeneous Markov chain. To obtain
an importance sampling (IS) estimate of the marginal likelihood, AIS introduces
an extended target distribution to reweight the Markov chain proposal. While
much effort has been devoted to improving the proposal distribution used by AIS
by changing the intermediate distributions and corresponding Markov kernels, an
underappreciated issue is that AIS uses an convenient but suboptimal extended
target distribution which can hinder its performance. We leverage here recent
progress in score-based generative modeling to learn the optimal extended target
distribution for a given AIS proposal using score matching ideas. We demonstrate
this novel differentiable AIS procedure on a number of synthetic benchmark dis-
tributions and a normalizing flow target.

1 INTRODUCTION

Evaluating the marginal likelihood, also known as evidence, is of key interest in Bayesian statistics
as it allows not only model comparison but is also often used to select hyperparameters. A large va-
riety of Monte Carlo methods have been proposed to address this problem, including path sampling
(Gelman & Meng, 1998), AIS (Neal, 2001) and related SMC methods (Del Moral et al., 2006). An
appealing feature of AIS is that it provides an unbiased estimate of the marginal likelihood and can
thus be used to define an evidence lower bound (ELBO); see e.g. (Wu et al., 2020; Thin et al., 2021).

AIS builds a proposal distribution using a Markov chain (xk)Kk=0 initialized at an easy-to-sample
distribution followed by a sequence of Markov chain Monte Carlo (MCMC) transitions targeting
typically annealed versions of the posterior. By proceeding this way, we obtain a proposal xK whose
distribution is expected to be a reasonable approximation to the posterior. However, this distribution
is intractable as it requires integrating the joint proposal distribution over previous states (xk)K−1k=0 .
AIS bypasses this issue by instead using IS on the whole path (xk)Kk=0 through the introduction of
an artificial extended target distribution whose marginal at time K coincides with the posterior.

There has been much work devoted to improving AIS by modifying the intermediate distributions
(Grosse et al., 2013; Brekelmans et al., 2020) and corresponding transition kernels of the proposal
(Dai et al., 2020; Wu et al., 2020; Geffner & Domke, 2021; Thin et al., 2021; Zhang et al., 2021).
We here address a distinct issue: it was shown in (Del Moral et al., 2006) that the extended target
distribution used by AIS is suboptimal and that the optimal extended target minimizing the variance
of the evidence estimate is defined through the time-reversal of the proposal. This result has never
been exploited algorithmically as the time-reversal is intractable. Inspired by recent developments
on score-based generative modeling (Ho et al., 2020; Song et al., 2021b) which approximates the
time-reversal of a noising diffusion process, we parameterize an approximation to the time-reversal
which we learn by maximizing an ELBO. As in score-based generative modeling, this ELBO is
shown to coincide with a denoising score matching loss (Vincent, 2011; Ho et al., 2020; Song et al.,
2021b). This provides a novel, optimized and differentiable, AIS estimator. We demonstrate the
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benefits of this approach on various synthetic benchmark distributions and a normalizing flow target.
All proofs can be found in the Appendix.

2 ANNEALED IMPORTANCE SAMPLING

Setup and algorithm. Let π(x) = γ(x)/Z be a density on Rd where γ(x) can be evaluated and
we want to approximate its intractable normalizing constant Z =

∫
γ(x)dx. In a Bayesian frame-

work, γ(x) = p(x)p(D|x) is the joint density of parameter x and data D, π(x) = p(x|D) the
corresponding posterior and Z = p(D) the evidence.

To estimate Z, AIS introduces the intermediate distributions (πk)Kk=1 bridging smoothly from a
tractable distribution π0 to the target distribution πK = π of interest. One typically uses πk(x) ∝
γk(x) with γk(x) = π0(x)1−βkγK(x)βk for 0 = β0 < β1 < · · · < βK = 1 but other choices are
possible. The IS proposal used by AIS is then obtained by running a Markov chain (xk)Kk=0 such
that x0 ∼ π0(·), and then xk ∼ Fk(·|xk−1) for k ≥ 1 where Fk is a MCMC kernel invariant w.r.t.
πk. The proposal is thus given by

Q(x0:K) = π0(x0)
∏K
k=1 Fk(xk|xk−1). (1)

Denote by qk the intractable marginal distribution of xk under Q satisfying qk(xk) =∫
qk−1(xk−1)Fk(xk|xk−1)dxk−1 for k ≥ 1 and q0 = π0. As qK cannot be evaluated, the marginal

IS estimate wmar(xK) = γK(xK)/qK(xK) of Z is intractable. AIS bypasses this issue by introduc-
ing an extended target

P (x0:K) = Γ(x0:k)/Z, Γ(x0:K) = γK(xK)
∏K−1
k=0 Bk(xk|xk+1), (2)

where (Bk)K−1k=0 are backward Markov transition kernels. For any selection of backward kernels
such that the ratio Γ/Q is well-defined, w(x0:K) = Γ(x0:K)/Q(x0:K) is an unbiased estimate of Z
for x0:K ∼ Q. AIS relies on the specific choice Bais

k (x′|x) = πk+1(x′)Fk+1(x|x′)/πk+1(x) which
yields the AIS log-evidence estimate logwais(x0:K) =

∑K
k=1 log(γk(xk−1)/γk−1(xk−1)).

Limitations of AIS. While designing P in (2) by using (Bais
k )K−1k=0 is convenient, it is clearly subop-

timal. For example, consider the ideal scenario where Fk(x′|x) = πk(x′) then varQ[wais(x0:K)] > 0
while varqK [wmar(xK)] = 0. Another illustration of the suboptimality of AIS is to consider a sce-
nario where the proposal is an homogeneous MCMC chain, i.e. x0 ∼ π0 and xk ∼ F (·|xk−1) for F
a π-invariant MCMC kernel; i.e. use Fk = F and πk = π for k = 1, ...,K. If F is reasonably well-
mixing, then qK ≈ π for K large enough and the evidence estimate wmar(xK) = γK(xK)/qK(xK)
should have small variance. However, we have wais(x0:K) = γ(x0)/π0(x0) for the exact same
proposal; i.e. the AIS estimate does not depend on the MCMC samples x1:K and boils down to
the IS estimate of Z using the proposal π0. These examples illustrate that it would be preferable to
use wmar(xK) rather than wais(x0:K). We propose in the next section an unbiased estimate of the
evidence approximating wmar(xK).

3 OPTIMIZED ANNEALED IMPORTANCE SAMPLING

We show here that the optimal extended target distribution P is defined through the time-reversal of
the proposal Q. By exploiting a connection to score-based generative models, we then approximate
this reversal using score matching when the proposal is an unadjusted Langevin algorithm (ULA).

Optimal Extended Target Distribution via Time Reversal. We summarize here Proposition 1 of
Del Moral et al. (2006); see also (Sohl-Dickstein et al., 2015).
Proposition 1. For a proposal Q of the form (1), the extended target P of the form (2) minimiz-
ing both DKL(Q||P ) and the variance of the evidence estimate w(x0:K) = Γ(x0:K)/Q(x0:K) for
x0:K ∼ Q is given by Popt(x0:K) = Γopt(x0:K)/Z where

Γopt(x0:K) = γK(xK)

K−1∏
k=0

Bopt
k (xk|xk+1), Bopt

k (xk|xk+1) =
qk(xk)Fk+1(xk+1|xk)

qk+1(xk+1)
. (3)

In particular, one has wmar(xK) = Γopt(x0:K)/Q(x0:K) and DKL(Q||Popt) = DKL(qK ||πK).
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We emphasize that Proposition 1 applies to any forward kernels (Fk)Kk=1 including MCMC kernels,
ULA kernels or even deterministic maps. It shows that P opt is the distribution of a backward process
initialized at πK which then follows the time-reversed dynamics of the forward process Q.

Time reversal, Score matching and ELBO. We concentrate henceforth on the case where (Fk)Kk=1
are ULA kernels as used in (Heng et al., 2020; Wu et al., 2020; Thin et al., 2021); that is we
consider Fk(x′|x) = N (x′;x + δ∇ log πk(x), 2δI) where δ > 0 is a stepsize. Let δ := T/K
then, as K →∞, the proposal Q converges to the path measureQ of the following inhomogeneous
Langevin diffusion (Xt)t∈[0,T ]

dXt = ∇ log πt(Xt)dt+
√

2dBt, X0 ∼ π0, (4)

where (Bt)t∈[0,T ] is the standard multivariate Brownian motion and we are slightly abusing notation
as πt for t = tk = kδ corresponds to πk in discrete-time for δ = T/K. The time-reversed process
(Yt) = (XT−t)t∈[0,T ] is also a diffusion (Haussmann & Pardoux, 1986)

dYt =
{
−∇ log πT−t(Yt) + 2∇ log qT−t(Yt)

}
dt+

√
2dBt, Y0 ∼ qT . (5)

The continuous-time version of Popt is the path measure Popt defined by the diffusion (5) but ini-
tialized at Y0 ∼ πT rather than qT as noted in Bernton et al. (2019). This shows that approxi-
mating (Bopt

k )K−1k=0 requires approximating the so-called scores (∇ log qt(x))t∈[0,T ], which are the
continuous-time versions of the ratios qk+1(xk+1)/qk(xk) appearing in Bopt

k (xk|xk+1).

In score-based generative models (Song et al., 2021b), a powerful class of models that has be-
come recently very popular, one gradually adds noise to data using an Ornstein–Ulhenbeck process
and the generative model is obtained by approximating the time-reversal of this diffusion initial-
ized by Gaussian noise. Practically, the time-reversal approximation is obtained by estimating the
scores of the noising diffusion using denoising score matching (Vincent, 2011). We here adapt
this idea to our setup. We define a path measure Pθ by plugging a neural network sθ(T − t, Yt)
in place of ∇ log qT−t(Yt) in (5). We learn θ by minimizing DKL(Q||Pθ) over θ, i.e. maximize
a continuous-time ELBO, which we will show below coincides with a score matching loss as in
the generative modeling context (Song et al., 2021a). Note that it is neither easily feasible to min-
imize DKL(Popt||Pθ) as one cannot sample from πT nor it is desirable as the evidence estimate
is computed using samples from the proposal. Practically the diffusions corresponding to Q and
Pθ have to be discretized so a more direct route is to simply take inspiration of (5) and consider
Bθk(x′|x) = N (x′;x− δ∇ log πk+1(x) + 2δsθ(k + 1, x), 2δI) to obtain a parameterized extended
target Pθ and corresponding unnormalized target Γθ and learn θ by minimizingDKL(Q||Pθ). These
two approaches coincide for δ � 1 as shown below. Once θ is learned, we can then estimate
unbiasedly the evidence through wθ(x0:K) = Γθ(x0:K)/Q(x0:K) for x0:K ∼ Q(·).

Proposition 2. Under regularity conditions, we have

DKL(Q||Pθ) = EQ
[ ∫ T

0

||sθ(t,Xt)−∇ log qt(Xt)||2dt
]

+ C1

=

K∑
k=1

∫ tk

tk−1

EQ
[
||sθ(t,Xt)−∇ log qt|tk−1

(Xt|Xtk−1
)||2
]

dt+ C2, (6)

where tk = kδ, K = T/δ, qt|s(x′|x) is the density of Xt = x′ given Xs = x under Q and C1, C2

constants independent of θ. Let L(θ) = δ
∑K
k=1 EQ

[
||sθ(k, xk)−∇ logFk(xk|xk−1)||2

]
denote a

discrete-time approximation of this loss. We have∇DKL(Q||Pθ) = ∇L(θ)+ε(θ) for some function
ε satisfying limK→∞ ε(θ) = 0.

4 EXPERIMENTS

We run a number of experiments where we estimate normalizing constants to validate our approach,
Monte-Carlo Diffusion (MCD) and compare to differentiable AIS with ULA (Wu et al., 2020; Thin
et al., 2021) and Unadjusted Hamiltonian Annealing (UHA) (Geffner & Domke, 2021; Zhang et al.,
2021). We first investigate the performance of these approaches when the initial distribution is fixed.
Next we explore the performance of the methods where the step-sizes, initial distribution, annealing
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schedule, and per-timestep transition densities are learned. Our method’s run-time is approximately
two times the ULA baseline. For this reason we provide comparisons between the methods with
increasing number of sampler steps. All target distributions are normalized, i.e. logZ = 0.

Full experimental details, hyper-parameters, and model architectures can be found in Appendix B.

Impact of reverse transition density. We first study the impact of our score-based backward kernels
compared to the standard AIS backward kernels. We sample from N (0, I) using initial distribution
N (3, I). We use the same sampler, i.e. annealed ULA, for both methods using an increasing number
of steps K. For both methods we learn the step-size per-timestep, trained to maximize the ELBO.
Final logZ estimates are computed over 8192 samples. Results can be seen in Table 1 where we
can clearly see the large impact our optimized backward kernels.

Sampler ULA MCD (ours)
# steps 64 128 256 64 128 256

Dim-20 -0.83
± 0.14

-0.086
± 0.121

-0.059
± 0.032

-0.0013
± 0.0046

0.0019
± 0.0033

-0.0002
± 0.0008

Dim-200 -42.84
± 1.49

-17.10
± 0.79

-5.95
± 0.59

-0.087
± 0.043

-0.018
± 0.026

-0.020
± 0.010

Dim-500 -142.40
± 2.04

-59.30
± 4.30

-24.57
± 1.37

-0.58
± 0.15

-0.045
± 0.155

-0.040
± 0.065

Table 1: logZ estimates for annealing between N (0, 1) and N (3, 1). Averages and standard errors
over 5 seeds.

Full Differentiability. We next estimate Z for a more challenging distribution; a Gaussian mix-
ture with 8 modes. Each mode’s mean is drawn from N (0, 3I) and has covariance I . As in prior
work (Geffner & Domke, 2021; Zhang et al., 2021), we take advantage of the fact that our impor-
tance weights are completely differentiable and we learn the initial distribution’s mean and variance,
the annealing schedule, and per-timestep transition densities. Results can be found in Table 2. In all
settings our approach outperforms the baselines. In the 500-dimensional example, we find that the
initial distribution learned by ULA and UHA collapses around a single mode. We do not observe
this behavior with our method. We attribute this behavior to the reduced variance of the objective
for our method.

Sampler ULA UHA MCD (ours)
# steps 128 256 128 256 128 256

Dim-20 -0.68
± 0.18

-0.018
± 0.584

-0.50
± 0.07

-0.31
± 0.05

0.0009
± 0.0153

0.015
± 0.013

Dim-200 -1.14
± 0.01

-1.70
± 0.55

-1.07
± 0.37

-0.41
± 0.10

-0.13
± 0.06

0.040
± 0.050

Dim-500 -2.97
± 0.01

-2.97
± 0.01

-2.98
± 0.00

-2.97
± 0.00

-1.50
± 0.37

-0.29
± 0.10

Table 2: logZ estimates for mixtures of Gaussians. Averages and standard errors over 5 seeds.

Normalizing Flow Evaluation. Finally, we train NICE (Dinh et al., 2014) flows on the MNIST
dataset. We train on 3 variants: the original 28× 28 images, as well as images down-sampled to 14
and 7× 7. All models are trained for 100K steps and then logZ is estimated using 4096 importance
samples. Results can be seen in Table 3. In the largest setting we can see that UHA outperforms
ULA, but our method outperforms both.

Dimension ULA UHA MCD (ours)
7× 7 -0.14 -0.17 -0.11

14× 14 -13.24 -15.04 -6.25
28× 28 -141.29 -82.16 -23.10

Table 3: logZ estimates for Normalizing flows.

4



Published as a conference paper at ICLR 2022

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Espen Bernton, Jeremy Heng, Arnaud Doucet, and Pierre E Jacob. Schrödinger bridge samplers.
arXiv preprint arXiv:1912.13170, 2019.

Rob Brekelmans, Vaden Masrani, Thang Bui, Frank Wood, Aram Galstyan, Greg Ver Steeg, and
Frank Nielsen. Annealed importance sampling with q-paths. arXiv preprint arXiv:2012.07823,
2020.

Chenguang Dai, Jeremy Heng, Pierre E Jacob, and Nick Whiteley. An invitation to sequential Monte
Carlo samplers. arXiv preprint arXiv:2007.11936, 2020.

Valentin De Bortoli, Arnaud Doucet, Jeremy Heng, and James Thornton. Simulating diffusion
bridges with score matching. arXiv preprint arXiv:2111.07243, 2021.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential Monte Carlo samplers. Journal of the
Royal Statistical Society: Series B, 68(3):411–436, 2006.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components esti-
mation. arXiv preprint arXiv:1410.8516, 2014.

Tomas Geffner and Justin Domke. MCMC variational inference via uncorrected Hamiltonian an-
nealing. In Advances in Neural Information Processing Systems, 2021.

Andrew Gelman and Xiao-Li Meng. Simulating normalizing constants: From importance sampling
to bridge sampling to path sampling. Statistical Science, 13(2):163–185, 1998.

Roger B Grosse, Chris J Maddison, and Russ R Salakhutdinov. Annealing between distributions by
averaging moments. In Advances in Neural Information Processing Systems, 2013.

Ulrich G Haussmann and Etienne Pardoux. Time reversal of diffusions. The Annals of Probability,
14(3):1188–1205, 1986.

Jeremy Heng, Adrian N Bishop, George Deligiannidis, and Arnaud Doucet. Controlled sequential
Monte Carlo. The Annals of Statistics, 48(5):2904–2929, 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Fima C Klebaner. Introduction to Stochastic Calculus with Applications. Imperial College Press,
2012.

Radford M Neal. Annealed importance sampling. Statistics and Computing, 11(2):125–139, 2001.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing, 2015.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of score-
based diffusion models. In Advances in Neural Information Processing Systems, 2021a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021b.

Achille Thin, Nikita Kotelevskii, Alain Durmus, Maxim Panov, Eric Moulines, and Arnaud Doucet.
Monte Carlo variational auto-encoders. In International Conference on Machine Learning, 2021.

5



Published as a conference paper at ICLR 2022

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural Compu-
tation, 23(7):1661–1674, 2011.
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A PROOFS OF PROPOSITIONS

A.1 PROOF OF PROPOSITION 1

Proof. The chain rule for the Kullback–Leibler divergence DKL(Q||P ) yields

DKL(Q||P ) = DKL(qK ||πK) + EqK
[
DKL(Q(·|xK)||P (·|xK))

]
, (7)

where, from (1) and (2), the conditional distributions of x1:k given x0 are equal to

Q(x0:K−1|xK) =

K−1∏
k=0

Bopt
k (xk|xk+1), P (x0:K−1|xK) =

K−1∏
k=0

Bk(xk|xk+1), (8)

The expression for Q above follows directly from its time-reversed decomposition; i.e.

Q(x0:K) = qK(xk)

K−1∏
k=0

qk(xk)Fk+1(xk+1|xk)

qk+1(xk+1)
= qK(xk)

K−1∏
k=0

Bopt
k (xk|xk+1). (9)

It thus follows directly from (7) and (8) that the backward transition kernels (Bk)K−1k=0 minimizing
DKL(Q||P ) are (Bopt

k )K−1k=0 as this implies P (x0:K−1|xK) = Q(x0:K−1|xK).

The variance decomposition formula yields for all P

varQ[w(x0:K)] = varqK [EQ(·|xK)[w(x0:K ]] + EqK [varQ(·|xK)[w(x0:K ]]

= varqK [wmar(xK ]] + EqK [varQ(·|xK)[w(x0:K ]]

≥ varqK [wmar(xK ]].

By direct calculations, we also have wmar(xK) = Γopt(x0:K)/Q(x0:K) so Popt minimizes the vari-
ance of the evidence estimate.

A.2 PROOF OF PROPOSITION 2

We establish first here Proposition 3 and Proposition 4. Both results can then be easily combined to
obtain Proposition 2.
Proposition 3. Under regularity conditions, one has

DKL(Q||Pθ) = EQ
[ ∫ T

0

||sθ(t,Xt)−∇ log qt(Xt)||2dt
]

+ C1 (10)

=

K∑
k=1

∫ tk

tk−1

EQ
[
||sθ(t,Xt)−∇ log qt|tk−1

(Xt|Xtk−1
)||2
]

dt+ C2, (11)

for constants C1, C2 independent of θ, where tk = kδ with K = T/δ and qt|s(x′|x) is the density
of Xt = x′ given Xs = x under Q.

To establish (10), we follow arguments similar to (Song et al., 2021a, Theorem 2). The loss (11)
we then consider differs from the one uses in the score-based generative modeling literature. This
is because, contrary to the Ornstein–Ulhenbeck process used for generative modeling, the transition
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density qt′|t(x′|x) of the forward diffusion (4) is not available in closed-form and can only be ap-
proximated reliably when t′ − t is small. Practically, to obtain a tractable criterion, we need to first
approximate the integrals in (11) by the rectangular rule. We also discretize the Langevin dynamics
using an Euler–Maruyama scheme; i.e. we use an approximation Q of Q based on the ULA kernel
Fk(x′|x) = N (x′;x + δ∇ log πtk(x); 2δI) approximating qtk|tk−1

(x′|x). We thus finally obtain a
loss

L(θ) = δ

K∑
k=1

EQ
[
||sθ(k, xk)−∇ logFk(xk|xk−1)||2

]
. (12)

Proof. We assume here that πt(x) and sθ(t, x) are sufficiently regular to yield a unique (weak)
solution of the SDEs. By the chain rule for KL divergences, one has

DKL(Q||Pθ) = DKL(qT ||πT ) + EqT
[
DKL(Q(·|XT )||Pθ(·|XT ))

]
(13)

where Q(·|XT )) and Pθ(·|XT ) are the path measures induced by

dYt =
{
−∇ log πT−t(Yt) + 2∇ log qT−t(Yt)

}
dt+

√
2dBt, Y0 = XT , (14)

and
dYt =

{
−∇ log πT−t(Yt) + 2∇ log sθ(T − t, Yt)

}
dt+

√
2dBt, Y0 = XT . (15)

We now use Girsanov theorem (see e.g. (Klebaner, 2012, Section 10.3)) to compute the Radon–
Nikodym derivative dQ(·|XT )/dPθ(·|XT ) so that

EqT
[
DKL(Q(·|XT )||Pθ(·|XT ))

]
=− EQ

[
log

dPθ(·|XT )

dQ(·|XT )

]
=EQ

[√
2

∫ T

0

(∇ log qt(Xt)− sθ(t,Xt))dBt +

∫ T

0

||∇ log qt(Xt)− sθ(t,Xt)||2dt
]

=EQ
[ ∫ T

0

||∇ log qt(Xt)− sθ(t,Xt)||2dt
]
,

as EQ
[ ∫ T

0
ft(Xt)dBt

]
= 0 for any function ft.

As in (De Bortoli et al., 2021) in a different context, we can write for any partition of [0, T ] defined
by t0 = 0 < t1 < · · · < tK−1 < tK = T

EQ
[ ∫ T

0

||∇ log qt(Xt)− sθ(t,Xt)||2dt
]

=

∫ T

0

∫
||∇ log qt(x)− sθ(t, x)||2qt(x)dxdt

=

K∑
k=1

∫ tk

tk−1

∫
||∇ log qt(x)− sθ(t, x)||2qt(x)dxdt

where, for a constant c independent of θ, we have∫ tk

tk−1

∫
||∇ log qt(x)− sθ(t, x)||2qt(x)dxdt

=

∫ tk

tk−1

∫ {
||∇ log qt(x)||2 + ||sθ(t, x)||2 − 2sθ(t, x)T∇ log qt(x)

}
qt(x)dxdt

=

∫ tk

tk−1

∫ {
||sθ(t, x)||2 − 2sθ(t, x)T∇ log qt(x)

}
qt(x)dxdt+ c.

Now we have∫ tk

tk−1

∫
sθ(t, x)T∇ log qt(x)qt(x)dxdt =

∫ tk

tk−1

∫
sθ(t, x)T∇qt(x)dxdt (16)
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where, using Chapman-Kolmogorov, qt satisfies

qt(x) =

∫
qtk−1

(xtk−1
)qt|tk−1

(x|xtk−1
)dxtk−1

. (17)

It follows that
∇qt(x) =

∫
qtk−1

(xtk−1
)∇qt|tk−1

(x|xtk−1
)dxtk−1

. (18)

Hence, we have∫ tk

tk−1

∫
sθ(t, x)T∇qt(x)dxdt

=

∫ tk

tk−1

∫ ∫
sθ(t, x)T∇ log qt|tk−1

(x|xtk−1
)qtk−1

(xtk−1
)qt|tk−1

(x|xtk−1
)dxtk−1

dxdt

so minimizing EqT
[
DKL(Q(·|XT )||Pθ(·|XT ))

]
w.r.t. θ is equivalent to minimize

K∑
k=1

∫ tk

tk−1

∫ ∫
||sθ(t, x)||2qtk−1

(xtk−1
)qt|tk−1

(x|xtk−1
)dxtk−1

dxdt

−2

K∑
k=1

∫ tk

tk−1

∫ ∫
sθ(t, x)T∇ log qt|tk−1

(x|xtk−1
)qtk−1

(xtk−1
)qt|tk−1

(x|xtk−1
)dxtk−1

dxdt

=

K∑
k=1

∫ tk

tk−1

∫ ∫
||sθ(t, x)−∇ log qt|tk−1

(x|xtk−1
)||2qtk−1

(xtk−1
)qt|tk−1

(x|xtk−1
)dxtk−1

dxdt+ C

where C is independent of θ. Hence, this is equivalent to minimizing (11).

We now establish results about the discrete-time Kullback–Leibler divergence DKL(Q||Pθ). First
note that

DKL(Q||Pθ) = EQ
[

log
Q(x0:K)

Pθ(x0:K)

]
= EQ

[
log

π0(x0)
∏K−1
k=0 Fk+1(xk+1|xk)

πK(xK)
∏K−1
k=0 Bθk(xk|xk+1)

]

= −
K−1∑
k=0

EQ
[

logBθk(xk|xk+1)
]

+ C1, (19)

where, as Bθk(x′|x) = N (x′;x− δ∇ log πk+1(x) + 2δsθ(k + 1, x), 2δI), one has

− logBθk(xk|xk+1) =
1

4δ
||xk − xk+1 + δ∇ log πk+1(xk+1)− 2δsθ(k + 1, xk+1)||2 + C2

= δ
∥∥∥sθ(k + 1, xk+1)− 1

2δ
(xk − xk+1 + δ∇ log πk+1(xk+1))

∥∥∥2 + C2 (20)

≈ δ
∥∥∥sθ(k + 1, xk+1)− 1

2δ
(xk − xk+1 + δ∇ log πk+1(xk))

∥∥∥2 + C2

= δ
∥∥∥sθ(k + 1, xk+1)−∇ logFk+1(xk+1|xk)

∥∥∥2 + C2, (21)

where we have used πk+1(xk+1) ≈ πk+1(xk) for δ � 1. The sum over k = 0, ...,K − 1 of the first
terms on the r.h.s. of (20) are equal to the loss L(θ) defined in (12). More rigorously, we can prove
the following result.
Proposition 4. Under Lipschitz assumptions on (∇ log πk)Kk=1 and moment assumptions on the
scores approximations and their derivative w.r.t. θ, the gradient of the Kullback–Leibler divergence
DKL(Q||Pθ) satisfies

∇DKL(Q||Pθ) = ∇L(θ) + ε(θ), (22)
for L(θ) defined in (12) and a function ε satisfying limK→∞ ε(θ) = 0.
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Proof. In the rest of the proof, all the expectations are taken w.r.t. Q unless mentioned otherwise
and we drop it from the notations for simplicity. However as we take gradients w.r.t. to both x and
θ, this is indicated notationally to avoid confusion. We also assume that θ is a scalar in the proof,
the extension to the multivariate case is straightforward.

Using (19), we have

∇θDKL(Q||Pθ) = −
K−1∑
k=0

E
[
∇θ logBθk(xk|xk+1)

]
, (23)

where, from (20), one has

−∇θ logBθk(xk|xk+1) (24)

=δ∇θ
∥∥∥sθ(k + 1, xk+1)− 1

2δ
(xk − xk+1 + δ∇x log πk+1(xk+1))

∥∥∥2
=2δ∇θsθ(k + 1, xk+1)T(sθ(k + 1, xk+1)− 1

2δ
(xk − xk+1 + δ∇x log πk+1(xk+1))). (25)

We also have

∇θL(θ) = δ

K−1∑
k=0

E
[
∇θ
∥∥∥sθ(k, xk)−∇x logFk(xk|xk−1)

∥∥∥2] , (26)

where

δ∇θ
∥∥∥sθ(k, xk)−∇x logFk(xk|xk−1)

∥∥∥2
=δ∇θ

∥∥∥sθ(k, xk)− 1

2δ
(xk − xk+1 + δ∇x log πk+1(xk))

∥∥∥2
=2δ∇θsθ(k + 1, xk+1)T(sθ(k + 1, xk+1)− 1

2δ
(xk − xk+1 + δ∇x log πk+1(xk))). (27)

So we obtain by using (19) and (20)

∇θDKL(Q||Pθ) = ∇θL(θ) + ε(θ), (28)

for

ε(θ) = 2δE

[
K−1∑
k=0

∇θsθ(k + 1, xk+1)T(∇x log πk+1(xk)−∇x log πk+1(xk+1))

]
. (29)

Hence we have

|ε(θ)| ≤ 2δ

K−1∑
k=0

E
[
|∇θsθ(k + 1, xk+1)T(∇x log πk+1(xk)−∇x log πk+1(xk+1))|

]
≤ 2δ

K−1∑
k=0

E
[∥∥∥∇θsθ(k + 1, xk+1)

∥∥∥2]1/2 E [∥∥∥∇x log πk+1(xk)−∇x log πk+1(xk+1)
∥∥∥2]1/2

(30)

As we assume that the gradients∇x log πk+1 are L-Lipschitz, then

E
[∥∥∥∇x log πk+1(xk)−∇x log πk+1(xk+1)

∥∥∥2] ≤ L2E
[∥∥∥xk+1 − xk

∥∥∥2]
≤ 2L2δE

[
δ
∥∥∥∇x log πk+1(xk)

∥∥∥2 + 2M

]
, (31)

where M = EZ∼N (0,I)[||Z||2] as xk+1 = xk + δ∇x log πk+1(xk) +
√

2δZ under Q. Hence if we
assume that the following moment assumptions hold

lim sup
K

max
k=0,...,K−1

EQK

[∥∥∥sθ(k + 1, xk+1)
∥∥∥2] ≤ E (32)

9
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and

lim sup
K

max
k=0,...,K−1

EQK

[∥∥∥∇θsθ(k + 1, xk+1)
∥∥∥2] ≤ E, (33)

for some constant E < ∞, where we have emphasized here notationally that Q is a function of K,
then we obtain from (30), (31), (32), (33) that ε(θ) = O(

√
δ) and the result follows.

B EXPERIMENTAL DETAILS

B.1 SAMPLER PARAMETERIZATION

For all models, the step size was learned via a function εθ(t) which is a 2-layer neural network with
32 hidden units, followed by a scaled sigmoid function which constrains εθ(t) < .25. As in prior
work (Geffner & Domke, 2021) we found this alleviated some instabilities in training.

When learning the annealing schedule, we parameterize an increasing sequence of T steps using un-
constrained parameters bt (initialized to the same constant). We map these to our annealing schedule
with

βt =

∑
t′≤t σ(bt′)∑T
t′=1 σ(bt′)

(34)

where we fix β0 = 0 and σ is the sigmoid function. This ensures that β0 = 0, βK = 1, and βt < βt′
when t < t′.

For UHA (Geffner & Domke, 2021), we also learn the momentum refreshment parameter η ∈ (0, 1).
We parameterize this with a parameter u and define η = .98σ(u) + .01 to keep the values in the
range (.01, .99) which we found alleviated training instabilities.

B.2 SCORE MODEL PARAMETERIZATION

We parameterize our score model sθ(t, x) using an MLP residual network. We first project the x to
dim dh using a linear layer and embed discrete time steps t to dim dt using a learned embedding
map. We then apply k residual blocks.

Each block begins with a layer norm (Ba et al., 2016) operation followed by a nonlinearity. We
project the hidden representation to dim 2 · dh using a linear layer, project the embedding of t to
dim 2 · dh using another linear map and add them together. We then apply another nonlinearity and
then project the back to dh using another linear layer. We use the swish nonlinearity (Ramachandran
et al., 2017) throughout.

To ensure our ELBO is initialized to a reasonable value we warm start it so that at initialization,
the score model outputs the standard AIS backward kernels. We do this by defining a score model
s̃θ(x, t) as explained above (but set the final layer weights to 0 at initialization) and define:

sθ(x, t) = s̃θ(x, t) +∇xγt(x) (35)

which we found this led to much faster convergence and better results overall.

B.3 HYPER-PARAMETERS

In all experiments we use k = 3 residual blocks. For our Gaussian experiments we set dh = 128
and dt = 16. For our Gaussian Mixture experiments we set dh = 512 and dt = 32. For our flow
experiments we set dh to 128, 256, and 512 for image sizes 7×7, 14×14, and 28×28, respectively.
For all flows we set dt = 32.

All models are trained with the Adam optimizer Kingma & Ba (2014) with learning rate 0.001. We
train for 100,000 iterations and estimate logZ using 8912 importance samples. For the Gaussian
and the Gaussian Mixture experiments, we present average performance (with standard error) over
5 different random seeds.
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