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ABSTRACT

Typical 3D perception approaches are inclined to learn a well-performing network
with supervised training on the target data or a pretraining-finetuning paradigm.
Either way, they only explore in-modality solutions and data. In this work, con-
sidering that both point cloud and text are discrete data, we introduce a cross-
modal strategy that applies pretrained language models for understanding 3D point
clouds, where the language model is trained on language corpus and frozen. We
propose a simple yet effective approach, named LAMP (LAnguage Models read-
ing Point clouds), which merely trains a small portion of parameters to align the
data distribution of 3D point clouds with pretrained language models and spark the
3D perception ability of language models. Furthermore, we utilize the 3D-aware
language model to simultaneously extract features of point cloud and text, which
mitigates the modality gap and boosts the performance on multimodal tasks, e.g.,
3D visual grounding. Extensive experiments on unimodal and multimodal tasks
validate the superiority of our proposed method.

1 INTRODUCTION

The point cloud is an indispensable data modality critical for numerous applications such as au-
tonomous driving (Liu et al., 2022; Lang et al., 2019; Yin et al., 2021), robotic visual percep-
tion (Chao et al., 2021; Yang et al., 2020), and virtual reality (Xiong et al., 2021). Point cloud
recognition methods typically utilize supervised learning (Qi et al., 2017b;a; Zhao et al., 2021b) or
pretraining-finetuning paradigms (Pang et al., 2022; Yu et al., 2022) to facilitate model training for
3D perception tasks. These approaches, which train networks from scratch using 3D point clouds,
have yielded promising results in tasks such as 3D object recognition, semantic segmentation, and
part segmentation within a unimodal framework.

Specifically, a point cloud consists of a set of unordered points captured by lidar cameras, with each
point encoded with spatial coordinates x, y, z and, optionally, features such as intensity or color.
Point clouds provide a view complementary to 2D images; while the latter captures texture and
appearance, the former details an object’s skeletal structure and shape. Some studies have suggested
the possibility of exchanging 3D and 2D representations and adapted image-pretrained networks to
encode 3D point clouds, thereby extending 3D pipelines into multimodal applications (Zhu et al.,
2022; Zhang et al., 2022; Xu et al., 2022; Wang et al., 2022; Qian et al., 2022b). Nonetheless,
these multimodal approaches have predominantly been explored within the vision sphere, leaving
the exploration of other modalities less examined.

This work diverges from the existing literature by examining the effectiveness of non-vision modal-
ities for 3D perception, with a focus on language. As both texts and point clouds are discrete sets,
we propose leveraging the wealth of available pretrained language models to encode 3D data. This
method circumvents the necessity of training a new model from scratch with text and point cloud
data. Given the distinct nature of these modalities, we aim to adapt language models for the 3D
vision domain with minimal adjustment.

In our pursuit to bridge the gap between language models and point cloud processing, we introduce
a novel methodology termed LAMP, an acronym for “LAnguage Models reading Point clouds.” In
LAMP, the word tokenizer is substituted with the point-cloud tokenizer (Sec. 3.2) to effectively ex-
tract latent representations of raw point clouds. The subsequent challenge lies in synchronizing the
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Figure 1: Our method is radically different from the previous unimodal and multimodal works.
(a) The unimodal models are designed for learning representations of specific modalities. (b) The
multimodal models (e.g., CLIP) trained with paired multimodal data to learn the representations by
contrastive learning. (c) In this work, we directly utilize a frozen and pretrained language model
to recognize 3D point clouds. Note that we do not require any language data paired with the point
clouds.

encoder of language models with point clouds to engender semantically meaningful point-cloud fea-
tures. To address this, we conceptualize two distinct strategies: cross-modal self-attention learning
(CMSA) and cross-modal cross-attention learning (CMCA). The term “cross-modal” underscores
the innovative application of parameters originally learned from natural language processing to the
realm of 3D point clouds. Within the CMSA, each point is treated analogously to a word token and
we employ self-attention mechanisms to establish inter-point correlations and facilitate information
interchange. On the other hand, CMCA interprets the position embedding as the query and visual
features as both the key and value. To align point clouds with the parameters of langauge-pretrained
encoder, we utilize a lightweight projection network to transform point embeddings. It is notewor-
thy that both position embeddings and visual features are derived directly from raw point clouds.
The inherent positional priors within the position embedding make it adept at probing visual fea-
tures, thereby enhancing feature interactions. Our experimental findings underscore the efficacy of
LAMP. Not only does it surpass other point-cloud methodologies that rely on specific architectural
designs tailored for 3D vision, but it also showcases that a vanilla pre-trained language model can
indeed interpret 3D point clouds with remarkable proficiency.

Beyond the unimodal setup, we further extend the 3D-aware language encoder to the multimodal
realm. Specifically, we use one language encoder to encode both texts and point clouds in 3D visual
grounding task. In this way, the modality gap between text and 3D point clouds is mitigated thanks
to the shared encoding, leading to improved grounding results.

We would like to highlight that our work differs from previous works in the following aspects:
1) Compared to typical unimodal approaches, LAMP explores pretrained models from language
modality to perceive point clouds, and 2) LAMP does not require paired data to align two modal-
ities and only train a few parameters to achieve the alignment. The comparison is illustrated in
Fig. 1. Extensive experiments are conducted to validate the effectiveness of our approach. For 3D
object classification, LAMP achieves 93.8% OA on the ModelNet40 dataset with only 0.44M train-
able parameters. For 3D semantic segmentation, LAMP outperforms other competitive methods,
ACT (Dong et al., 2022) by 6.8% mIoU and Point-BERT (Yu et al., 2022) by 7.2% mIoU on the
S3DIS dataset. Meanwhile, LAMP also shows an impressive performance in relieving the long-tail
problem, outperforming PointNeXt (Qian et al., 2022a) by 4.3% on the tail classes of ShapeNet Part
dataset (Yi et al., 2016). Furthermore, LAMP showcases strong multimodal results on ScanRefer
dataset of 3D visual grounding task.

In addition, LAMP brings new directions for the vision-language area. It demonstrates that text and
point clouds can be encoded by the same set of parameters.

To sum up, our contributions are as follows.

• LAMP validates the feasibility and efficacy of leveraging pretrained language models to
process 3D point clouds, which opens a new avenue for 3D point cloud understanding.
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• LAMP manifests that 3D point clouds and text can be encoded by the same parameters.
This finding further enhances performance on text-3D tasks and 3D visual grounding.

• LAMP achieves outstanding performance on both unimodal (ModelNet-40, S3DIS, and
ShapeNetPart) and cross-modal 3D visual grounding (ScanRefer), which demonstrates the
effectiveness and versatility of the proposed algorithm.

2 RELATED WORK

2.1 MULTIMODAL PRETRAINING

Tranditional pretraining works developed their algorithms in the unimodal setup, such as BERT (De-
vlin et al., 2019), XLNet(Yang et al., 2019), and Roberta(Liu et al., 2019). Recently, several works
extended pretraining approaches to the mulitomodal setup. For example, VL-BERT (Su et al., 2019)
explored modality-aligned representations for generic vision-language understanding with the MLM
paradigm. Oscar (Li et al., 2020) described the object semantics in both visual and textural contents.
Frameworks like Vinvl (Zhang et al., 2021a), Simvlm (Wang et al., 2021c), VLMO (Wang et al.,
2021b), ALBEF (Li et al., 2021), and Florence (Yuan et al., 2021a) further develop the joint repre-
sentations across vision-language modalities in terms of semantic consistency. Different from these
works, the proposed LAMP aims to directly adapt a language-pretrained model to 3D modality.

2.2 POINT-ORIENTED NETWORKS

In the early stage, convolutional layers are leveraged to construct the network to encode 3D point
clouds. Usually, researchers set abstraction of original input points and utilize grids for precise
and regular representation (Qi et al., 2017b;a; Zhao et al., 2019; Thomas et al., 2019). Also, to
exploit the advantages of convolutional networks, they design different image planes and employ
CNN backbones to extract representations of points (Su et al., 2015; Chen et al., 2017; Lang et al.,
2019). Meanwhile, the transformation between irregular points and regular voxel also brings im-
provements (Maturana & Scherer, 2015; Song et al., 2017), which also depends on CNN for feature
extraction. (Graham et al., 2018) and (Choy et al., 2019) further enhanced voxel-based methods
by proposing sparse convolution to improve computational efficiency. Recently, with the advance-
ment of transformer architecture (Vaswani et al., 2017), (Zhao et al., 2021a) and (Guo et al., 2021)
both introduce the attention mechanism to point cloud understanding. (Park et al., 2022) proposed a
hash-based scheme and lightweight attention layers for point transformer architecture (Zhao et al.,
2021a), which successfully boosts the efficiency. In addition, pre-training is also a trending means
to enhance perception performance on 3D point clouds (Yu et al., 2022). PointContrast (Xie et al.,
2020) learns scene level representation via contrastive learning across different views of a point
cloud. (Zhang et al., 2021b) further extended pretraining paradigm to single-view 3D data. (Hou
et al., 2021) enhanced PointContrastive by integrating spatial information into contrastive learning.
MSC (Wu et al., 2023a) and PointClustering (Long et al., 2023) introduce reconstructive learning
and clustering as the pretext task of pretraining. In comparison, our work explore a cross-modal
strategy instead of focusing on use point-cloud data to train a well-performed network from scratch.

2.3 CROSS-MODAL KNOWLEDGE TRANSFER TO POINT

Recently, an increased number of works focused on transferring learned knowledge from other
modalities to 3D point clouds. Image2Point (Xu et al., 2022; Wang et al., 2022; Qian et al., 2022b)
found that vision-pretrained models can be adapted to perceive point clouds. After witnessing the
success in 2D zero-shot and few-shot learning of CLIP (Radford et al., 2021), several methods align
point clouds with CLIP-style models, e.g. CLIP and GLIP (Li et al., 2022), to fulfill open-world
3D recognition (Zhang et al., 2022; Peng et al., 2023; Rozenberszki et al., 2022; Zhang et al., 2023;
Xue et al., 2023; Liu et al., 2023b;a). Some other works build a strong pertaining 3D baseline model
with CLIP (Xue et al., 2023; Peng et al., 2023; Liu et al., 2023a) or a caption model (Ding et al.,
2022). Different from LLaMa AdapterV2 (Gao et al., 2023) and Point-Bind & Point-LLM (Guo
et al., 2023), LAMP excels in handling long-tailed and out-of-distribution problems in point cloud
analysis and joint multimodal learning in the 3D visual grounding tasks.
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Figure 2: Framework of LAMP. It contains three parts: point tokenizer, encoder, and task-specific
heads. Point tokenizer projects point clouds from input space to latent space, resulting in high-
dimensional numeric vectors which are also referred to as point embeddings. Point tokenizer
will generate two kinds of point embeddings: position embedding and visual features. We de-
sign two schemes for transferring language encoders: cross-modal self-attention learning and cross-
modal cross-attention learning. Both schemes fix the langauge-pretrained encoder and only train
lightweight projection layers. Finally, the task-specific head outputs predictions for downstream
tasks such as object understanding and scene understanding.

Nevertheless, existing approaches all follow the “consensus” that neural networks could obtain the
ability to deal with the modalities only after they got trained with the corresponding data, which
indicates that the ability for modality generalization of neural networks has not been explored. In
this paper, we utilize networks only pretrained with corpus and tune networks on the 3D point cloud
understanding. LAMP is the first general vision-language framework, which intuitively utilizes the
learned patterns from natural language to transfer knowledge to 3D point clouds.

3 LANGUAGE MODEL READ POINTS

3.1 REVISIT LANGUAGE TRANSFORMER MODELS

At the core of LAMP is perceiving 3D point clouds with language-pretrained transformer models.
Transformer-based language models (Devlin et al., 2019; Liu et al., 2019) follow an encoder-decoder
architecture with self-attention (Vaswani et al., 2017) and have achieved state-of-the-art performance
on various NLP tasks. There are 3 steps for transformer models to extract representations from nat-
ural language. 1) Word Tokenization. A word token is a sequence of characters that are grouped
together as a useful semantic unit for processing. Referring to the vocabulary (Wu et al., 2016) (the
set of all unique tokens), a sentence can be tokenized into a set of word tokens including special
tokens, SEP and CLS, which indicate the separator and representation of entire input sequence, re-
spectively. 2) Token to Embedding: The embedding of each word token is learned with embedding
layers of a neural network, which projects each token to high-dimensional vector space. 3) Sequence
Modeling: To inject the relative or absolute position of the tokens in the sentence, position embed-
dings are further added to the word embeddings to jointly represent the original sentence. These
embeddings are fed into sequence-to-sequence models to output the contextualized representation.
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In this paper, we leverage the weights of language transformer models to encode point clouds, trans-
ferring the knowledge learned from sequences of word tokens to uncover the structure and features
of point clouds. A critical problem would be how to facilitate the adaptation of language models to
3D vision.

First of all, the word tokenizer is obviously not adequate to extract latent representation from raw
points, therefore we substitute the word tokenizer with a point tokenizer with aligned output di-
mension as described in Sec. 3.2. Then, we design two schemes to facilitate the parameters of
the language encoder to understand point clouds, which are cross-modal self-attention learning in
Sec. 3.3 and cross-modal cross-attention learning in Sec. 3.3. The design of task-specific heads
follows the common-used solution.

3.2 POINT TOKENIZATION

To employ the language encoder to process 3D points, the first step is to transform them from
input space to high-dimensional vector space. Formally, denote a point cloud of N points as X =
{xi}Ni=1, with xi = (pi,fi), where pi ∈ R3 is the 3D location and fi ∈ Rc is the feature of the i-th
point. In general, fi contains the visual information regarding color, viewpoint, normal, etc. Similar
to Pix4Point (Qian et al., 2022b), we utilize a trainable point tokenizer to extract embeddings of
the point cloud. Specifically, we utilize the Farthest Point Sampling (FPS) operation to sample a
subset of points with a fixed sampling rate (1/4), and then use convolution to extract features of the
sub-clouds. Such a two-step transformation can be summarized as

X ∈ RN×(3+c) → X ′ ∈ R
N
4 × c′

2 → X ′′ ∈ R
N
16×c′ , (1)

where c′ is the dimension of resultant point embedding. In each stage, we employ FPS operation
and k-nearest neighbor to obtain subsets of current sets, which is similar to segmenting sentences
into token sequences. After the two-step transformation, we utilize Batch Normalization (BN), max
pooling (max), and ReLU activation function to obtain 3D position embeddings as

p′′
m,n = MLP(BN([f ′

m,n − f ′
m,p′

m,n − p′
m]), Ep = MLP

′(ReLU([p′′
m,n, max

n:(m,n)∈N
p′
m,n]), (2)

where p′
m,n and f ′

m,n are the 3D coordinates and features of n-th neighbor of m-th center point
sampled by FPS, and p′m denotes the center. To obtain visual feature embeddings Ef , we take a
similar operation with feature f as 3D position coordinates. In summary, after point tokenization, we
deal with position and feature input and obtain 3D position and visual feature embeddings Ep, Ef ∈
RN×L×C , where L denotes the length of sequences and C denotes the embedding dimension.

3.3 POINT-LANGUAGE ENCODER

Cross-Modal Self-Attention Learning (CMSA). In the original language encoder, self-attention
is utilized to exchange the information of each word token. After layer-by-layer interaction among
word tokens, the encoder generates high-level semantic features of input language sequences. Cross-
modal self-attention aims to effectively transfer the above process to 3D point clouds. To achieve
this, we prepend an MLP project network before the encoder. The role of the projector is to align
point-cloud data with the parameters of the language encoder.

Formally, let f denote the projector, we feed position embedding of point clouds into f and obtain
corresponding outputs: z0p = Fp(Ep), which is the input of subsequent encoder. WL

q ,W
L
k ,W

L
v

(L stands for that weights are language-pretrained) denote the linear layers for queries, keys, and
values in language encoder, then we can formulate the cross-modal self-attention as:

zip =
WL,i

q z
(i−1)
p WL,i

k z
(i−1)
p√

d
WL,i

v z(i−1)
p , s.t. i = 1, 2, ..., n, (3)

where i indicates ith layer of encoder and d is the dimension of query embedding.

Cross-Modal Cross-Attention Learning (CMCA). CMSA only utilizes the position information
of point clouds. Hence, we further introduce CMCA to leverage position information and visual
features at the same time. The key design of CMCA is to cast the position embedding as a query
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Figure 3: In this paper, we utilize networks only pretrained with corpus and tune networks on the 3D
point cloud understanding. LAMP is the first general vision-language framework, which intuitively
utilizes the learned patterns from natural language to transfer knowledge to 3D point clouds.

since it carries spatial prior and cast the visual feature as the key and value since it carries rich
semantic information. Similar to CMSA, we leverage two MLP networks Fp, Ff to align position
embeddings and visual features with language encoder, i.e., zp = Fp(Ep), zf = Ff (Ef ).

Technically, we define CMCA as

zip =
WL,i

q z
(i−1)
p WL,i

k z
(i−1)
f√

d
WL,i

v z
(i−1)
f , s.t. i = 1, 2, ..., n. (4)

We highlight the difference between Eq. 4 and Eq. 3 with blue color.

Optimization procedure. In our architecture, we substitute original attention layers in language
encoders with our proposed CMSA and CMSA layers, respectively. In both schemes, only the
project networks Fp, Fj are updated, while the parameters of language-pretrained encoder are frozen
during training. A task-specific head is attached after the encoder to perform task predictions, which
is also updated.

Extending to 3D visual grounding. We further extend LAMP to a multimodal scenario, i.e., 3D vi-
sual grounding, where a text is given to locate the corresponding object in a 3D scene. LAMP unifies
the encoders for perceiving different input modalities with a single language model. The language
encoder is used to simultaneously encode point clouds and texts. Thanks to the unified encoding,
the modality gap between input modalities is reduced, leading to better grounding performance.

4 EXPERIMENTS

We first describe the experiment setup including dataset information and implementation details,
followed by the comparison results with other competitive results on both unimodal and cross-modal
benchmarks. Then, we show the analytical experiments for LAMP in terms of several factors.
Furthermore, we discuss the performance of LAMP under long-tailed and domain shift settings.

4.1 EXPERIMENT SETUP

Unimodal: We evaluate LAMP on several datasets across classification and segmentation tasks. 1)
Classification: To validate the performance of LAMP on the 3D object classification, ModelNet-
40 (Wu et al., 2015) is utilized as the benchmark. It contains CAD models of 40 classes with 9,843
samples for training and 2,468 samples for validation. 2) Semantic segmentation: We evaluate
LAMP on both S3DIS (Armeni et al., 2016) and ShapeNetPart (Yi et al., 2016) datasets. S3DIS cov-
ers 6 large indoor areas and 13 semantic classes, comprising 271 rooms. There are 16, 880 models
in 16 different shape categories in the ShapeNetPart dataset. Particularly, the head for segmentation
consists of a three-layer convolution network with output dimensions depending on the class number
of datasets. For all experiments, there are several default hyper-parameters in the neural networks:
we split Ng = 32 groups to preprocess points and we set the dropout rate p = 0.1 for attention
layers. To optimize our network, we employ cosine learning rate scheduler (Loshchilov & Hutter,
2016) and AdamW optimizer (Loshchilov & Hutter, 2019) with a weight decay of 0.05.
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Table 1: Comparisons among design choices on ModelNet-40. We report overall accuracy (OA)
and mean accuracy scores (mAcc) (%). In the default setting, which is labeled in gray , the encoder
has 12 transformer blocks and 6 heads.

(a) Pretrained Corpus.

Models State OA mAcc
BERT English 91.41 88.18
BERT Chinese 90.64 87.02
BERT Multilingual 91.17 87.28

(b) Model Scale.

Model Size OA mAcc
BERT small 90.35 87.24
BERT Base 91.90 88.28
BERT Large 91.49 88.18

(c) Model architecture.

Models State OA mAcc
Roberta Finetune 91.65 88.18

T5 Finetune 92.63 88.28
XLNet Finetune 89.22 84.29

(d) Pretraining text case.

Models State OA mAcc
BERT Uncased 91.41 88.18
BERT Cased 87.20 82.10
XLNet Cased 88.54 83.60
XLNet Large+Cased85.14 82.03

(e) Parameter Frozen.

Models State OA mAcc
BERT Frozen 90.84 86.84
Roberta Frozen 89.71 85.08

T5 Frozen 92.79 89.78
XLNet Frozen 88.33 83.52

(f) Learning Schemes.

Models Approach OA mAcc
BERT CMCA 89.10 84.53
Roberta CMCA 86.51 80.82

T5 CMCA 91.86 88.65
XLNet CMCA 87.64 83.29

Table 2: 3D Object Classification on ModelNet-40.
We report the pre-training modality (Pre-train) and
trainable parameters number (Param).

Method Pre-train mAcc (%) OA (%) Params

PointNet [CVPR’17] (Qi et al., 2017b) N/A 86.0 89.2 3.5M
PointNet++ [NeurIPS’17] (Qi et al., 2017a) N/A - 91.9 1.5M
PointCNN [NeurIPS’18] (Li et al., 2018) N/A 88.1 92.5 0.6M
PointConv [CVPR’19] (Wu et al., 2019) N/A - 92.5 -
KPConv [ICCV’19] (Thomas et al., 2019) N/A - 92.9 14.3M
DGCNN [TOG’19] (Wang et al., 2019b) N/A 90.2 92.9 1.8M
Point Transformer [ICCV’21] (Zhao et al., 2021b) N/A 90.6 93.7 7.8M
PointNeXt [NeurIPS’22](Qian et al., 2022a) N/A 90.8 93.2 1.4M
Point-MLP [ICLR’22] (Ma et al., 2022b) N/A 90.9 93.6 0.68M
PointMixer [ECCV’22] (Choe et al., 2022) N/A 91.4 93.6 3.6M

Point-BERT [CVPR’22] (Yu et al., 2022) 3D - 93.2 21.1M
Point-MAE [ECCV’22] (Pang et al., 2022) 3D - 93.8 21.1M
P2P [NeurIPS’22] (Wang et al., 2022) 2D - 93.1 1.2M
ACT [ICLR’23] (Dong et al., 2022) 2D - 93.5 21.1M

LAMP (Ours) Language 90.1 93.8 0.44M

Cross-modal: We evaluate LAMP on a
cross-modal task, 3D visual grounding.
ScanRefer dataset is widely adopted for
this task, which comprises visual data of
ScanNet (Dai et al., 2017) and 51, 538
text descriptions. We use the point to-
kenizer (Sec. 3.2) and Roberta’s word
tokenizer for tokenization and Roberta
model (Liu et al., 2019) to simultaneously
extract the semantic features of point clouds
and texts and fuse such multimodal features.
Then the fused features are fed into a 6-layer
transformer-based decoder to predict bound-
ing boxes and labels. It is worth noting that
the shared language model is frozen.

4.2 COMPARISONS AMONG DESIGN CHOICES

We experiment to evaluate multiple design choices such as pretraining corpus, model scale, archi-
tecture, etc. Table 1 presents the results of point cloud classification on ModelNet-40.

Pretrained Corpus. We compare the point cloud understanding capability of language models
pretrained on different text corpora and the results are shown in Table 1a.

Model Size. We further examine whether larger language models could improve point cloud under-
standing capability. Table 1b shows that a larger language model does not necessarily achieve better
point cloud recognition performance on ModelNet-40.

Model architecture. Table 1c shows the results with different language models including
Roberta (Liu et al., 2019), T5 (Raffel et al., 2020), and XLNet (Yang et al., 2019).

Text Case. From Table 1d, where “Cased” means that uppercase and lowercase words represent
different semantics, we can infer that a language model not pretrained to be discriminative to text
cases could lead to better point cloud recognition performance.

Parameters Frozen. In contrast to tuning language models, we propose to freeze the language
model parameters. Table 1e shows that language model can directly encode point clouds.

Point Language Encoder. We conduct experiments with the encoder learning scheme (Sec. 3.3),
with results shown in Table 1f. It reveals that a language model is also a point cloud encoder.

4.3 RESULTS ON SHAPE CLASSIFICATION

The LAMP model’s performance on the ModelNet-40 dataset is detailed in Table 1, outperforming
traditional point cloud methods such as PointNet++(Qi et al., 2017a), PointCNN(Li et al., 2018), and
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Point Transformer (Zhao et al., 2021b). It also excels against multimodal methods like P2P (Wang
et al., 2022), which starts with image pretraining, and ACT (Dong et al., 2022), which utilizes image
and language data, demonstrating LAMP’s superior classification capabilities.

Table 3: Part segmentation results on the ShapeNetPart dataset. We report the mean IoU across all part
categories mIoUC (%), the mean IoU across all instances mIoUI (%), and the IoU (%) for each category. The
best and second best experimental results are bolded and underlined respectively.

Model mIoUC mIoUI
aero
plane bag cap car chair ear

phone guitar knife lamp laptop motor
bike mug pistol rocket skate

board table

PointNet [CVPR’17] (Qi et al., 2017b) 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++ [NeurIPS’17] (Qi et al., 2017a) 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
DGCNN [TOG’19] (Wang et al., 2019a) 82.3 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6
KPConv [ICCV’19] (Thomas et al., 2019) 85.1 86.4 84.6 86.3 87.2 81.1 91.1 77.8 92.6 88.4 82.7 96.2 78.1 95.8 85.4 69.0 82.0 83.6
OcCo [ICCV’21] (Wang et al., 2021a) 83.4 85.1 83.3 85.2 88.3 79.9 90.7 74.1 91.9 87.6 84.7 95.4 75.5 94.4 84.1 63.1 75.7 80.8

Point-BERT [CVPR’22] (Yu et al., 2022) 84.1 85.6 84.3 84.8 88.0 79.8 91.0 81.7 91.6 87.9 85.2 95.6 75.6 94.7 84.3 63.4 76.3 81.5
Point-MLP [ICLR’22] (Ma et al., 2022a) 84.6 86.1 83.5 83.4 87.5 80.5 90.3 78.2 92.2 88.1 82.6 96.2 77.5 95.8 85.4 64.6 83.3 84.3
Point-MAE [ECCV’22] (Pang et al., 2022) 84.2 86.1 84.3 85.0 88.3 80.5 91.3 78.5 92.1 87.4 86.1 96.1 75.2 94.6 84.7 63.5 77.1 82.4
P2P [NeurIPS’22] (Wang et al., 2022) 84.1 86.5 84.3 85.1 88.3 80.4 91.6 80.8 92.1 87.9 85.6 95.9 76.1 94.2 82.4 62.7 74.7 83.7
PointNeXt [NeurIPS’22] (Qian et al., 2022a) 84.2 86.7 85.2 84.7 85.3 81.5 91.8 79.3 91.8 87.9 85.1 96.1 75.5 95.9 83.6 62.9 76.4 83.8
Pix4Point [Arxiv’22] (Qian et al., 2022b) 84.1 86.5 85.7 87.5 87.0 81.8 92.0 83.9 92.6 88.8 85.2 96.2 80.3 96.1 84.9 65.5 78.1 82.8

LAMP (Ours) 85.4 86.9 85.8 89.5 89.5 82.2 91.9 83.3 92.5 87.9 85.2 96.3 80.2 96.2 85.2 58.2 80.2 82.9

4.4 RESULTS ON SEMANTIC SEGMENTATION

Table 3 shows LAMP outperforms existing advanced models including Point-BERT (Yu et al.,
2022), Point-MLP (Ma et al., 2022a), and Point-MAE (Pang et al., 2022) in terms of both mIoUC and
mIoUI . Meanwhile, a new state-of-the-art Instance mIoU of 86.9% is achieved on the ShapeNetPart
dataset. Except for mIoU, the respective IoU scores of many categories are also impressive.

Table 4: Out-of-domain recognition (accuracy %) on the PointDA-10 dataset. M: ModelNet, S:
ShapNet, S*: ScanNet; → indicates the adaptation direction. Adv.: adversarial domain alignment,
SLT: self-learning tasks, and SPST: self-paced self-training.

Methods Adv. SLT SPST M → S M → S∗ S → M S → S∗ S∗ → M S → S Avg.
DANN [JMLR’16] (Ganin et al., 2016) ✓ 74.8± 2.8 42.1± 0.6 57.5± 0.4 50.9± 1.0 43.7± 2.9 71.6± 1.0 56.8
PointDAN [NeurIPS’19] (Qin et al., 2019) ✓ 83.9± 0.3 44.8± 1.4 63.3± 1.1 45.7± 0.7 43.6± 2.0 56.4± 1.5 56.3
RS [NeurIPS’19] (Sauder & Sievers, 2019) ✓ 79.9± 0.8 46.7± 4.8 75.2± 2.0 51.4± 3.9 71.8± 2.3 71.2± 2.8 66.0
DefRec [CVPR’21] (Achituve et al., 2021) ✓ 81.7± 0.6 51.8± 0.3 78.6± 0.7 54.5± 0.3 73.7± 1.6 71.1± 1.4 68.6

GAST [CVPR’21] (Zou et al., 2021) ✓ 83.9± 0.2 56.7± 0.3 76.4± 0.2 55.0± 0.2 73.4± 0.3 72.2± 0.2 69.5
✓ ✓ 84.8± 0.1 59.8± 0.2 80.8± 0.6 56.7± 0.2 81.1± 0.8 74.9± 0.5 73.0

Implicit PCDA [CVPR’22] (Shen et al., 2022) ✓ 85.8± 0.3 55.3± 0.3 77.2± 0.4 55.4± 0.5 73.8± 0.6 72.4± 1.0 70.0
✓ 86.2± 0.2 58.6± 0.1 81.4± 0.4 56.9± 0.2 81.5± 0.5 74.4± 0.6 73.2

MLSP [ECCV’22] (Liang et al., 2022) ✓ 83.7± 0.4 55.4± 1.8 77.1± 0.9 55.6± 0.7 78.2± 1.5 76.1± 0.5 71.0
✓ 85.7± 0.6 59.4± 1.3 82.3± 0.9 57.3± 0.7 82.2± 0.5 76.4± 0.5 73.8

LAMP [ours] ✓ 86.2± 0.8 59.1± 0.9 83.5± 0.4 57.6± 0.6 81.2± 0.4 76.4± 0.3 74.0

4.5 LONG-TAILED AND OUT-OF-DOMAIN RECOGNITION IN 3D VISION TASKS

Long-tailed recognition. We explore how language models perform under the long-tailed setup,
and evaluate long-tailed performance on ShapeNetPart (Yi et al., 2016) dataset. As shown in Table 6,
we divide original ShapeNetPart categories to 3 groups: Many, Medium, and Few according to the
number of training samples. We calculate the mean IoU scores for the three types. Compared
with existing advanced models such as KPConv (Thomas et al., 2019), Point-MAE (Pang et al.,
2022), and Point-MLP (Ma et al., 2022a), LAMP achieves better performance, especially for the
tail classes. In LAMP, the language encoder is pretrained on the language corpus and frozen during
training, which prevents it from biasing by the long-tailed distribution. Thus, LAMP can alleviate
long-tailed performance to some extent.

Out-of-domain (ODD) recognition. We compare LAMP with other methods on the out-of-domain
benchmark, i.e., PointDA-10, as shown in Table 4. OOD problem is that training a model with la-
beled data of source domain and unlabeled data of the target domain and expecting excellent perfor-
mance on the target domain. One can observe that LAMP outperforms others on average accuracy.
It’s noteworthy that LAMP does not have any special design for OOD recognition and only trains
the network on the source domain. These results demonstrate that the frozen language-pretrained
encoder in LAMP can alleviate the over-fitting on source domain, leading to better generalization
performance on target domain.
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Table 5: Semantic Segmentation on S3DIS
Area 5.

Method Pre-train mIoU (%) mAcc (%) Params
PointNet [CVPR’17] N/A 41.1 49.0 3.6M
PointNet++ [NeurIPS’17] N/A 53.5 - 1.0M
DeepGCN [ICCV’19] N/A 52.5 - 1.3M
KPConv [ICCV’19] N/A 67.1 72.8 15.0M
ASSANet [NeurIPS’21] N/A 66.8 -
ST [CVPR’22] N/A 60.0 68.6 7.8M
PointNext [NeurIPS’22] N/A 67.3 - 3.8M

Point-BERT [CVPR’22] 3D 60.8 69.9 21.1M
Pix4Point [Arxiv’22] 2D 67.5 73.7 21.1M
Image2Point [ECCV’22] 2D 56.6 - -
ACT [ICLR’23] 2D 61.2 71.1 21.1M

LAMP (Ours) Language 68.0 73.9 2.0M

Table 6: Long-Tailed distribution on ShapeNet-
Part (Yi et al., 2016) dataset.

Model Overall Many Medium Few
PointNet [CVPR’17] 80.4 81.9 91.8 78.1
PointNet++ [NeurIPS’17] 81.9 83.4 93.5 79.5
DGCNN [TOG’19] 82.3 83.6 93.5 81.6
KPConv [ICCV’19] 85.1 84.6 98.2 83.8
OcCo [ICCV’21] 83.4 83.9 95.4 82.5

Point-BERT [CVPR’22] 84.1 84.4 95.6 84.8
Point-MLP [ICLR’22] 84.6 84.2 97.6 83.0
Point-MAE [ECCV’22] 84.2 84.9 95.8 83.9
P2P [NeurIPS’22] 84.1 85.1 95.1 84.7
PointNeXt [NeurIPS’22] 84.2 85.5 95.7 83.1

LAMP 85.4 ↑ 0.3 85.6 ↑ 0.1 96.7 87.4 ↑ 2.7

Table 7: Additional Experiments on the datasets which are closer to real-world indoor scenarios.
Model Objaverse (%) Shapenet-Core55 (%) PartNet (%) Scan200
LAMP [ours] 54.2 83.0 Acc 50.5% mIoU 30.47 mIoU

Moreover, we would like to highlight that compared with PointMLP (Ma et al., 2022a), LAMP
outperforms advanced models like Point-MLP in terms of mean IoU scores in the dense prediction
tasks of semantic segmentation and part segmentation. Meanwhile, LAMP also outperforms Point-
MLP, particularly in long-tailed classes and out-of-domain recognition tasks

4.6 CROSS-MODAL UNDERSTANDING: 3D VISUAL GROUNDING

To further explore the advantage of LAMP, we conduct experiments on the 3D visual ground-
ing (Achlioptas et al., 2020) task. The goal of 3D visual grounding is to locate the object in 3D
scene given a text description. Referring to Table 8, we found that LAMP can directly deliver a new
state-of-the-art performance on ScanRefer (Chen et al., 2020) dataset. The potential reason is that
the unified encoding of LAMP mitigates the modality gap between visual and text inputs, leading
to better alignment. In this case, the text feature can probe more precise visual features thanks to
the improved alignment. These experimental results demonstrate that our method opens a new av-
enue in multimodal 3D understanding between natural language and point clouds. Discussion on

Table 8: Experiment results on ScanRefer dataset. We fairly compare LAMP with existing meth-
ods without additional 3D pretraining.

Method Venue Input Unique (%) Multiple (%) Overall (%)
Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

ScanRefer (Chen et al., 2020) ECCV’20 3D 67.64 46.19 32.06 21.26 38.97 26.10
IntanceRefer (Yuan et al., 2021b) ICCV’21 3D 77.45 66.83 31.27 24.77 40.23 32.93
SAT (Yang et al., 2021) ICCV’21 3D 73.21 50.83 37.64 25.16 44.54 30.14
3DVG-Transformer (Zhao et al., 2021c) ICCV’21 3D 77.16 58.47 38.38 28.70 45.90 34.47
3D-SPS (Luo et al., 2022) CVPR’22 3D+2D 84.12 66.72 40.32 29.82 48.82 36.98
3DJCG (Cai et al., 2022) CVPR’22 3D 78.75 61.30 40.13 30.08 47.62 36.14
BUTD-DETR (Jain et al., 2022) ECCV’22 3D 84.20 66.30 46.60 35.10 52.20 39.80
ViL3DRel (Chen et al., 2022) NeurIPS’22 3D 81.58 68.62 40.30 30.71 47.94 37.73
EDA (Wu et al., 2023b) CVPR’23 3D 85.76 68.57 48.11 36.82 53.83 41.70
3D-VisTA (Zhu et al., 2023) ICCV’23 3D 77.00 67.90 37.90 30.40 45.20 37.30
LAMP Ours 3D 85.62 69.34 49.83 38.33 55.17 42.96
LAMP (Base scale + Finetuning) Ours 3D 86.74 69.87 50.06 39.77 55.66 43.54
LAMP (Large scale + Finetuning) Ours 3D 88.32 70.75 51.79 40.23 57.36 44.60

Increasing Parameters. For multimodal tasks, with increasing trainable parameters designed in
our methods, the language model backbone delivers better performance for multimodal alignments.
LAMP can significantly boost joint multimodal understanding by increasing trainable parameters.
5 DISCUSSION AND CONCLUSION

In this paper, we propose a framework LAMP to turn traditional 3D point cloud understanding
into reading a passage for language models. For multimodal research, it changes the consensus that
tuning modality can be independent of pretraining modality. For 3D vision, LAMP is an effective
and concise framework, which relieves the traditional hand-crafted designs on extracting represen-
tations of point clouds. Experimental results on 3D object classification and segmentation validate
the superiority of the proposed LAMP framework. For many vision-language tasks, which deal with
modality divergence between 3D vision and language, we believe weight-sharing across the two
modalities would be a promising direction for further performance improvement.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Idan Achituve, Haggai Maron, and Gal Chechik. Self-supervised learning for domain adaptation
on point clouds. In Proceedings of the IEEE/CVF winter conference on applications of computer
vision, pp. 123–133, 2021.

Panos Achlioptas, Ahmed Abdelreheem, Fei Xia, Mohamed Elhoseiny, and Leonidas Guibas.
Referit3d: Neural listeners for fine-grained 3d object identification in real-world scenes. In Euro-
pean Conference on Computer Vision, pp. 422–440. Springer, 2020.

Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer, and Silvio
Savarese. 3d semantic parsing of large-scale indoor spaces. In CVPR, pp. 1534–1543, 2016.

Daigang Cai, Lichen Zhao, Jing Zhang, Lu Sheng, and Dong Xu. 3djcg: A unified framework for
joint dense captioning and visual grounding on 3d point clouds. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 16464–16473, 2022.

Yu-Wei Chao, Wei Yang, Yu Xiang, Pavlo Molchanov, Ankur Handa, Jonathan Tremblay, Yashraj S
Narang, Karl Van Wyk, Umar Iqbal, Stan Birchfield, et al. Dexycb: A benchmark for capturing
hand grasping of objects. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9044–9053, 2021.

Dave Zhenyu Chen, Angel X Chang, and Matthias Nießner. Scanrefer: 3d object localization in
rgb-d scans using natural language. In European Conference on Computer Vision, pp. 202–221.
Springer, 2020.

Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi, Cordelia Schmid, and Ivan Laptev. Language
conditioned spatial relation reasoning for 3d object grounding. Advances in Neural Information
Processing Systems, 35:20522–20535, 2022.

Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3d object detection network
for autonomous driving. In CVPR, 2017.

Jaesung Choe, Chunghyun Park, Francois Rameau, Jaesik Park, and In So Kweon. Pointmixer: Mlp-
mixer for point cloud understanding. In European Conference on Computer Vision, pp. 620–640.
Springer, 2022.

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets: Minkowski
convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 3075–3084, 2019.

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In CVPR, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, 2019.

Runyu Ding, Jihan Yang, Chuhui Xue, Wenqing Zhang, Song Bai, and Xiaojuan Qi. Pla: Language-
driven open-vocabulary 3d scene understanding. arXiv preprint arXiv:2211.16312, 2022.

Runpei Dong, Zekun Qi, Linfeng Zhang, Junbo Zhang, Jianjian Sun, Zheng Ge, Li Yi, and Kaisheng
Ma. Autoencoders as cross-modal teachers: Can pretrained 2d image transformers help 3d repre-
sentation learning? arXiv preprint arXiv:2212.08320, 2022.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural net-
works. The Journal of Machine Learning Research, 17(1):2096–2030, 2016.

Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, Wei Zhang, Pan Lu,
Conghui He, Xiangyu Yue, et al. Llama-adapter v2: Parameter-efficient visual instruction model.
arXiv preprint arXiv:2304.15010, 2023.

Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. 3d semantic segmentation with
submanifold sparse convolutional networks. In CVPR, 2018.

10



Under review as a conference paper at ICLR 2024

Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R Martin, and Shi-Min Hu.
Pct: Point cloud transformer. Computational Visual Media, 7(2):187–199, 2021.

Ziyu Guo, Renrui Zhang, Xiangyang Zhu, Yiwen Tang, Xianzheng Ma, Jiaming Han, Kexin Chen,
Peng Gao, Xianzhi Li, Hongsheng Li, et al. Point-bind & point-llm: Aligning point cloud
with multi-modality for 3d understanding, generation, and instruction following. arXiv preprint
arXiv:2309.00615, 2023.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Ji Hou, Benjamin Graham, Matthias Nießner, and Saining Xie. Exploring data-efficient 3d scene
understanding with contrastive scene contexts. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 15587–15597, 2021.

Ayush Jain, Nikolaos Gkanatsios, Ishita Mediratta, and Katerina Fragkiadaki. Bottom up top down
detection transformers for language grounding in images and point clouds. In European Confer-
ence on Computer Vision, pp. 417–433. Springer, 2022.

Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. Point-
pillars: Fast encoders for object detection from point clouds. In CVPR, 2019.

Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven
Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum
distillation. Advances in neural information processing systems, 34:9694–9705, 2021.

Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong, Li-
juan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded language-image pre-training.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10965–10975, 2022.

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei Hu, Lei Zhang, Lijuan Wang, Houdong
Hu, Li Dong, Furu Wei, et al. Oscar: Object-semantics aligned pre-training for vision-language
tasks. In European Conference on Computer Vision, pp. 121–137. Springer, 2020.

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convolu-
tion on x-transformed points. Advances in neural information processing systems, 31, 2018.

Hanxue Liang, Hehe Fan, Zhiwen Fan, Yi Wang, Tianlong Chen, Yu Cheng, and Zhangyang Wang.
Point cloud domain adaptation via masked local 3d structure prediction. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings,
Part III, pp. 156–172. Springer, 2022.

Minghua Liu, Ruoxi Shi, Kaiming Kuang, Yinhao Zhu, Xuanlin Li, Shizhong Han, Hong Cai,
Fatih Porikli, and Hao Su. Openshape: Scaling up 3d shape representation towards open-world
understanding. arXiv preprint arXiv:2305.10764, 2023a.

Minghua Liu, Yinhao Zhu, Hong Cai, Shizhong Han, Zhan Ling, Fatih Porikli, and Hao Su. Partslip:
Low-shot part segmentation for 3d point clouds via pretrained image-language models. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21736–
21746, 2023b.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang, Huizi Mao, Daniela Rus, and Song Han.
Bevfusion: Multi-task multi-sensor fusion with unified bird’s-eye view representation. arXiv
preprint arXiv:2205.13542, 2022.

Fuchen Long, Ting Yao, Zhaofan Qiu, Lusong Li, and Tao Mei. Pointclustering: Unsupervised point
cloud pre-training using transformation invariance in clustering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 21824–21834, 2023.

11



Under review as a conference paper at ICLR 2024

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with
deep adaptation networks. In International conference on machine learning, pp. 97–105. PMLR,
2015.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Junyu Luo, Jiahui Fu, Xianghao Kong, Chen Gao, Haibing Ren, Hao Shen, Huaxia Xia, and Si Liu.
3d-sps: Single-stage 3d visual grounding via referred point progressive selection. arXiv preprint
arXiv:2204.06272, 2022.

Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Rethinking network design and local
geometry in point cloud: A simple residual MLP framework. In ICLR, 2022a. URL https:
//openreview.net/forum?id=3Pbra-_u76D.

Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Rethinking network design and local
geometry in point cloud: A simple residual mlp framework. ICLR, 2022b.

Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network for real-time
object recognition. In IROS, 2015.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359, 2010.

Yatian Pang, Wenxiao Wang, Francis EH Tay, Wei Liu, Yonghong Tian, and Li Yuan. Masked
autoencoders for point cloud self-supervised learning. arXiv preprint arXiv:2203.06604, 2022.

Chunghyun Park, Yoonwoo Jeong, Minsu Cho, and Jaesik Park. Fast point transformer. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16949–
16958, 2022.

Songyou Peng, Kyle Genova, Chiyu Jiang, Andrea Tagliasacchi, Marc Pollefeys, Thomas
Funkhouser, et al. Openscene: 3d scene understanding with open vocabularies. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 815–824,
2023.

Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature learning
on point sets in a metric space. In NeurIPS, 2017a.

Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation. In CVPR, 2017b.

Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai, Hasan Hammoud, Mohamed Elhoseiny, and
Bernard Ghanem. Pointnext: Revisiting pointnet++ with improved training and scaling strategies.
In Advances in Neural Information Processing Systems (NeurIPS), 2022a.

Guocheng Qian, Xingdi Zhang, Abdullah Hamdi, and Bernard Ghanem. Pix4point: Image pre-
trained transformers for 3d point cloud understanding. arXiv preprint arXiv:2208.12259, 2022b.

Can Qin, Haoxuan You, Lichen Wang, C-C Jay Kuo, and Yun Fu. Pointdan: A multi-scale 3d domain
adaption network for point cloud representation. Advances in Neural Information Processing
Systems, 32, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pp. 8748–8763. PMLR, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140):1–67, 2020.

12

https://openreview.net/forum?id=3Pbra-_u76D
https://openreview.net/forum?id=3Pbra-_u76D


Under review as a conference paper at ICLR 2024

Haoxi Ran, Jun Liu, and Chengjie Wang. Surface representation for point clouds. In CVPR, 2022.

David Rozenberszki, Or Litany, and Angela Dai. Language-grounded indoor 3d semantic segmen-
tation in the wild. In European Conference on Computer Vision, pp. 125–141. Springer, 2022.

Jonathan Sauder and Bjarne Sievers. Self-supervised deep learning on point clouds by reconstructing
space. Advances in Neural Information Processing Systems, 32, 2019.

Yuefan Shen, Yanchao Yang, Mi Yan, He Wang, Youyi Zheng, and Leonidas J Guibas. Domain
adaptation on point clouds via geometry-aware implicits. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 7223–7232, 2022.

Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas Funkhouser.
Semantic scene completion from a single depth image. In CVPR, 2017.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik G. Learned-Miller. Multi-view convo-
lutional neural networks for 3d shape recognition. In ICCV, 2015.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai. Vl-bert: Pre-training
of generic visual-linguistic representations. arXiv preprint arXiv:1908.08530, 2019.

Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François Goulette,
and Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point clouds. In ICCV,
2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Hanchen Wang, Qi Liu, Xiangyu Yue, Joan Lasenby, and Matt J Kusner. Unsupervised point cloud
pre-training via occlusion completion. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 9782–9792, 2021a.

Wenhui Wang, Hangbo Bao, Li Dong, and Furu Wei. Vlmo: Unified vision-language pre-training
with mixture-of-modality-experts. arXiv preprint arXiv:2111.02358, 2021b.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M.
Solomon. Dynamic graph cnn for learning on point clouds. ACM TOG, 2019a.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. TOG, 2019b.

Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia Tsvetkov, and Yuan Cao. Simvlm: Sim-
ple visual language model pretraining with weak supervision. arXiv preprint arXiv:2108.10904,
2021c.

Ziyi Wang, Xumin Yu, Yongming Rao, Jie Zhou, and Jiwen Lu. P2p: Tuning pre-trained image
models for point cloud analysis with point-to-pixel prompting. arXiv preprint arXiv:2208.02812,
2022.

Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep convolutional networks on 3d point
clouds. In CVPR, 2019.

Xiaoyang Wu, Xin Wen, Xihui Liu, and Hengshuang Zhao. Masked scene contrast: A scalable
framework for unsupervised 3d representation learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 9415–9424, 2023a.

Yanmin Wu, Xinhua Cheng, Renrui Zhang, Zesen Cheng, and Jian Zhang. Eda: Explicit text-
decoupling and dense alignment for 3d visual grounding. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2023b.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine trans-
lation system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

13



Under review as a conference paper at ICLR 2024

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In CVPR, 2015.

Saining Xie, Jiatao Gu, Demi Guo, Charles R Qi, Leonidas Guibas, and Or Litany. Pointcontrast:
Unsupervised pre-training for 3d point cloud understanding. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16, pp.
574–591. Springer, 2020.

Jianghao Xiong, En-Lin Hsiang, Ziqian He, Tao Zhan, and Shin-Tson Wu. Augmented reality
and virtual reality displays: emerging technologies and future perspectives. Light: Science &
Applications, 10(1):1–30, 2021.

Chenfeng Xu, Shijia Yang, Tomer Galanti, Bichen Wu, Xiangyu Yue, Bohan Zhai, Wei Zhan, Peter
Vajda, Kurt Keutzer, and Masayoshi Tomizuka. Image2point: 3d point-cloud understanding with
2d image pretrained models. In European Conference on Computer Vision, pp. 638–656. Springer,
2022.

Le Xue, Mingfei Gao, Chen Xing, Roberto Martı́n-Martı́n, Jiajun Wu, Caiming Xiong, Ran Xu,
Juan Carlos Niebles, and Silvio Savarese. Ulip: Learning a unified representation of language,
images, and point clouds for 3d understanding. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 1179–1189, 2023.

Wei Yang, Chris Paxton, Maya Cakmak, and Dieter Fox. Human grasp classification for reactive
human-to-robot handovers. In 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 11123–11130. IEEE, 2020.

Zhengyuan Yang, Songyang Zhang, Liwei Wang, and Jiebo Luo. Sat: 2d semantics assisted training
for 3d visual grounding. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 1856–1866, 2021.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. Advances in neural
information processing systems, 32, 2019.

Li Yi, Vladimir G Kim, Duygu Ceylan, I Shen, Mengyan Yan, Hao Su, ARCewu Lu, Qixing Huang,
Alla Sheffer, Leonidas Guibas, et al. A scalable active framework for region annotation in 3d
shape collections. ACM TOG, 35(6):210, 2016.

Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-based 3d object detection and tracking.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
11784–11793, 2021.

Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. Point-bert: Pre-
training 3d point cloud transformers with masked point modeling. In CVPR, 2022.

Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella, Xiyang Dai, Jianfeng Gao, Houdong Hu,
Xuedong Huang, Boxin Li, Chunyuan Li, et al. Florence: A new foundation model for computer
vision. arXiv preprint arXiv:2111.11432, 2021a.

Zhihao Yuan, Xu Yan, Yinghong Liao, Ruimao Zhang, Sheng Wang, Zhen Li, and Shuguang Cui.
Instancerefer: Cooperative holistic understanding for visual grounding on point clouds through
instance multi-level contextual referring. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 1791–1800, 2021b.

Junbo Zhang, Runpei Dong, and Kaisheng Ma. Clip-fo3d: Learning free open-world 3d scene
representations from 2d dense clip. arXiv preprint arXiv:2303.04748, 2023.

Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and
Jianfeng Gao. Vinvl: Revisiting visual representations in vision-language models. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5579–5588,
2021a.

14



Under review as a conference paper at ICLR 2024

Renrui Zhang, Ziyu Guo, Wei Zhang, Kunchang Li, Xupeng Miao, Bin Cui, Yu Qiao, Peng Gao, and
Hongsheng Li. Pointclip: Point cloud understanding by clip. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8552–8562, 2022.

Zaiwei Zhang, Rohit Girdhar, Armand Joulin, and Ishan Misra. Self-supervised pretraining of 3d
features on any point-cloud. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 10252–10263, 2021b.

Hengshuang Zhao, Li Jiang, Chi-Wing Fu, and Jiaya Jia. PointWeb: Enhancing local neighborhood
features for point cloud processing. In CVPR, 2019.

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip Torr, and Vladlen Koltun. Point transformer. In ICCV,
2021a.

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In
ICCV, pp. 16259–16268, 2021b.

Lichen Zhao, Daigang Cai, Lu Sheng, and Dong Xu. 3dvg-transformer: Relation modeling for
visual grounding on point clouds. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 2928–2937, 2021c.

Xiangyang Zhu, Renrui Zhang, Bowei He, Ziyao Zeng, Shanghang Zhang, and Peng Gao. Pointclip
v2: Adapting clip for powerful 3d open-world learning. arXiv preprint arXiv:2211.11682, 2022.

Ziyu Zhu, Xiaojian Ma, Yixin Chen, Zhidong Deng, Siyuan Huang, and Qing Li. 3d-vista: Pre-
trained transformer for 3d vision and text alignment. arXiv preprint arXiv:2308.04352, 2023.

Longkun Zou, Hui Tang, Ke Chen, and Kui Jia. Geometry-aware self-training for unsupervised
domain adaptation on object point clouds. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pp. 6403–6412, 2021.

15



Under review as a conference paper at ICLR 2024

Appendix

A SUMMARY

SUMMARY OF THE APPENDIX

This appendix is for the ICLR 2024 submission, titled From Language to 3D Worlds: Adapting
Language Models for Point Cloud Perception. The appendix is organized as follows:

• § B illustrates the intrinsic alignment between textural and 3D representations in the high-
level semantic space, where the same frozen language encoder network extracts similar
representations for samples from different modalities but with the same semantic category.

• § C presents a comprehensive comparison between the proposed LAMP framework and ex-
isting approaches for point cloud understanding in terms of efficiency, including the number
of training parameters, FLOPs, inference speed, etc

• § D provides detailed experimental settings of long-tailed 3D part segmentaion on the
ShapeNetPart (Yi et al., 2016) dataset, and further illustrates the experimental results of 3D
out-of-distribution (OOD) problem on the PointDAN dataset (Qin et al., 2019).

• § E shows the visualization results (for semantic segmentation) of the proposed LAMP and
other advanced approaches on the S3DIS (Armeni et al., 2016) dataset.

• We provide the source code with detailed documentation.

B ALIGNMENT BETWEEN TEXT & 3D POINT CLOUDS
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(c) Flower Pot
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(h) Night Stand

Figure 4: Qualitative Results of LAMP on ModelNet-40 datasets. We visualize the semantic simi-
larity by the dot product between the features of prompts and 3D objects, which reveals that features
of natural languages and point clouds are well aligned in the high-level semantic space

.

To uncover the underlying reason that a language transformer can well encode the feature represen-
tations of the 3D inputs, we measure the similarities between output features of 3D point clouds and
the prompts (i.e., “A point cloud of CLS.”) extracted by the same transformer encoder pre-trained on
natural language (see Fig. 4). The similarity scores indicate the probability of the 3D object assigned
the corresponding prompts. From Fig. 4, we can observe that the two modalities (natural language
and 3D vision) are well aligned in the high-level semantic space, i.e., the features of 3D objects
are matched with the corresponding prompts. This implies that the language model can leverage
prompts to understand the semantics of 3D point clouds, which interprets why the language model
can be exploited to encode the representations of 3D inputs.
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Table 9: Efficicency Experiment. We report the pre-training modality (Pre-train), mAcc, OA, the
number of training parameters (Train. Params.), the overall parameters (All Params.), the percentage
of training parameters in all parameters (Percent.), GFLOPs, and the inference time (Infer.).

Method Pre-train mAcc (%) OA (%) Train. Params. All Params. Percentt(%) GFLOPs Infer.(ms)

PointNet [CVPR’17] (Qi et al., 2017b) N/A 86.0 89.2 3.5M 3.5M 100.0 0.9 4212
PointNet++ [NeurIPS’17] (Qi et al., 2017a) N/A - 91.9 1.5M 1.5M 100.0 1.7 1872
PointCNN [NeurIPS’18] (Li et al., 2018) N/A 88.1 92.5 0.6M 0.6M 100.0 - 44
PointConv [CVPR’19] (Wu et al., 2019) N/A - 92.5 - - 100.0 - -
KPConv [ICCV’19] (Thomas et al., 2019) N/A - 92.9 14.3M 14.3M 100.0 - -
DGCNN [TOG’19] (Wang et al., 2019b) N/A 90.2 92.9 1.8M 1.8M 100.0 4.8 263
Point Transformer [ICCV’21] (Zhao et al., 2021b) N/A 90.6 93.7 7.8M 7.8M 100.0 5.6 -
PointNeXt [NeurIPS’22](Qian et al., 2022a) N/A 90.8 93.2 1.4M 1.4M 100.0 1.6 2040
Point-MLP [ICLR’22] (Ma et al., 2022b) N/A 90.9 93.6 0.68M 0.68M 100.0 - 176
PointMixer [ECCV’22] (Choe et al., 2022) N/A 91.4 93.6 13.2M 13.2M 100.0 - -

Point-BERT [CVPR’22] (Yu et al., 2022) 3D - 93.2 21.1M 21.1M 100.0 - -
Point-MAE [ECCV’22] (Pang et al., 2022) 3D - 93.8 21.1M 21.1M 100.0 - -
P2P [NeurIPS’22](ResNet-101) (Wang et al., 2022) 2D - 93.1 0.50M 81.2M 0.6 - -
P2P [NeurIPS’22](HorNet-L-22k-mlp) (Wang et al., 2022) 2D - 94.0 1.2M 205M 0.6 - -
ACT [ICLR’23] (Dong et al., 2022) 2D - 93.5 21.1M 21.1M 100.0 - -

LAMP (T5-Base (Raffel et al., 2020)) [Ours] Language 90.1 93.8 0.44M 309.4M 0.1 164.2 242
LAMP (T5-Base (Raffel et al., 2020))w/Vote [Ours] Language 90.3 94.1 0.44M 309.4M 0.1 164.2 242
LAMP (T5-Small (Raffel et al., 2020)) [Ours] Language 89.7 93.4 0.44M 99.4M 0.8 53.7 543
LAMP (BERT-Base (Devlin et al., 2019)) [Ours] Language 88.3 91.9 0.44M 198.9M 0.2 96.9 372
LAMP (BERT-Medium (Devlin et al., 2019)) [Ours] Language 89.9 92.7 0.44M 22.2M 2.0 19.0 1046
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Figure 5: Confusion matrix of LAMP on the ModelNet-40 dataset. It shows that learned representa-
tions of language models for 3D point cloud can be effectively utilized for 3D object classification.

Simiarlity Meansurement : In specific, we utilize LAMP with a frozen BERT (Devlin et al.,
2019) to extract representations of 3D point clouds zp on the ModelNet-40 dataset. For the text, the
prompts are constructed as “A point cloud of CLS”, such as “A point cloud of Airplane” for the
airplane class. Therefore we acquire a set of prompts P for all classes in the ModelNet-40 dataset.
We use the same BERT encoder to extract the features zt of the prompts. Particularly, we use the
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output features corresponding to the [CLS] token for both the prompts and point clouds. With the
zp and zt at hand, the dot product is utilized to estimate the similarities between the 3D objects
and the prompts, followed by a softmax function to calculate the probabilistic scores. Formally, the
similarities scores can be formulated as:

si,j =
exp(zi

p · z
j
t /τ)∑

k∈∥P∥ exp(z
i
p · zk

t /τ)
, (5)

where τ is temperature factor as (He et al., 2020) and sij indicates the similarity scores of ith point
cloud and jth prompt.

Furthermore, we visualize the confusion matrix of the proposed LAMP as shown in Fig. 5, from
which one can observe that the LAMP model can recognize each object class with minimal confu-
sion.

Discussion between light-weight Models Compared with representative light-weight methods
such as RepSurf (Ran et al., 2022), LAMP’s superior performances, particularly in dense predic-
tion tasks and under challenging conditions like long-tailed and out-of-distribution problems.

Model ModelNet (%) S3DIS (%) ShapeNetPart (%) Long-Tail (%) PointDA-10 (%)
RepSurf 94.7 OA 68.9 mIoU 85.3 mIoU 83.6 mIoU (Few) 71.3 Acc.
LAMP 93.8 OA 68.0 mIoU 86.9 mIoU 87.4 mIoU (Few) 74.0 Acc.

Table 10: Performance comparison of light-weight models on various datasets.

C EFFICIENCY EXPERIMENTS

Beyond the empirical evaluation using typical metrics, we perform auxiliary performance on ef-
ficiency w.r.t. the number/percentage of training parameters, FLOPs, and the inference speed (the
consuming time for all test samples), to validate the merit of our LAMP, as shown in Table 9.

Compared with other competitive methods, our prosed LAMP yields the best performance of 93.8%
OA while only training 0.44M of network parameters and consuming 242 seconds for the testing
stage. It’s also noteworthy that LAMP only requires training 0.1% of total parameters, 6× less than
its image counterpart, P2P. A smaller cost is needed to adapt the language model to 3D vision do-
main while greater performance can be achieved than the image models, which reveals the inherent
advantage of language in terms of processing 3D point clouds.

D LONG-TAIL AND OOD PROBLEMS IN 3D VISION

D.1 LONG-TAIL SEGMENTATION

In total, there are 16, 880 objects of 16 different shape categories in the ShapeNetPart dataset (Yi
et al., 2016). The detailed data distribution is presented in Table 11. We split the datasets based on
the data number of classes. For example, the classes with more samples, such as “Table” and “Car”,
are cast as the Many classes while the rest is cast as Medium or Few.

D.2 OUT-OF-DISTRIBUTION IN 3D VISION

Typically, supervised algorithms only focus on the in-domain performance, where the training and
testing data are sampled from an identical distribution. However, in practice, the model is often
exposed to the out-of-domain (OOD) scenario, i.d., the test data severely differ from the training
one. Therefore, we aim to evaluate whether the language model can help the point cloud models to
generalize well on the out domains. To this aim, we first fine-tune our input and output layers of
LAMP on a training domain and then directly test it performed on a different domain without any
extra adaptation training stage like domain adaptation approaches (Pan & Yang, 2010; Long et al.,
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Table 11: Data distribution on the ShapeNetPart dataset (Yi et al., 2016), where N denotes the
number of objects, L denotes the number of parts for objects, and Ann denotes the annotations.

Type Category N L Ann

Many

Table 8420 2 999
Car 7496 3 2215

Chair 6742 4 2112
Airplane 4027 4 2142

Lamp 2308 3 696

Medium

Guitar 793 3 270
Laptop 452 1 18
Knife 420 2 149

Motorbike 336 5 264
Pistol 307 3 176
Mug 213 1 33

Skateboard 152 2 24
Rocket 85 3 35

Few
Bag 83 2 18

Earphone 73 2 25
Cap 56 2 18

Total All 31963 42 9194

2015). The OOD experiment results are shown in Table 4, from which we can observe that our
proposed LAMP reaches encouraging performance on the unseen domains, yielding the best average
performance of 74.0%. Even compared with the domain adaptation methods like DANN (Shen
et al., 2022), PointDAN (Qin et al., 2019), and the recent Implicit PCDA (Shen et al., 2022), LAMP
can still outperform them in term of the average performance. The potential interpretation is that the
supervision signals from the source domain might cause over-fitting, thus limiting the generalization
performance. In addition, the results reveal that prior knowledge from natural language is helpful
to mitigate the over-fitting of the training domain, and has a better generalization ability to new
domains.

E VISUALIZATION RESULTS

We illustrate the extra visualization results on the S3DIS (Armeni et al., 2016) dataset of our LAMP
and other approaches including PointNet (Qi et al., 2017b), Point-BERT (Yu et al., 2022), Point-
NeXt (Qian et al., 2022a) as shown in Fig. 6. One can observe that LAMP can yield better segmen-
tation results than others.
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Figure 6: Qualitative Results of LAMP on S3DIS Area 5. LAMP with natural language corpus pre-
training (5th column) achieves better segmentation results than advanced 3D understanding methods
including PointNet (Qi et al., 2017b) (2nd column), Point-BERT (Yu et al., 2022) (3rd column) and
PointNeXt (Qian et al., 2022a) (4th column).
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