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encoding spatial representations
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Abstract

How does the brain efficiently encode space, and can this be achieved with low-dimensional
neural codes? We address this question by developing a theory of spatial encoding for
both continuous signals (the (z,y) coordinates of space) and discrete signals (the firing
of place cells). We show that discrete codes require high-dimensional latent variables to
faithfully tile a spatial domain such as R?, whereas continuous codes can be realized with
low-dimensional dynamical systems. To test this prediction, we train recurrent neural
networks (RNNs) to perform path integration. RNNs trained on continuous spatial outputs
develop low-dimensional latent codes, while those trained to reproduce discrete, place-
cell-like responses yield high-dimensional latent dynamics. Since mammalian place cells
form a discrete code that may reduce output noise, our results suggest that basis functions,
i.e., population-level coding variables that optimally span space, are central to navigation,
in which the required spatial resolution sets the dimensionality of the neural code. This
framework shifts attention from tuning properties of individual neurons to the population-
level latent representations that arise when solving the spatial encoding problem, thereby
extending prior work on path integration and self-supervised navigation models.
Keywords: Spatial navigation, path-integrating RNNs

Introduction: The question of how the brain compactly represents space has been
closely tied to the discovery of grid cells (Sorscher et al., 2023, 2019). These neurons,
first identified in the medial entorhinal cortex, exhibit a striking hexagonal lattice of firing
fields across the environment (Gardner et al., 2022). Several theoretical frameworks have
attempted to explain their emergence. A particularly influential line of work treated the
firing patterns of individual neurons as the fundamental “basis functions” of spatial rep-
resentation (Sorscher et al., 2019, 2023). Under certain assumptions, interference between
sinusoidal components was shown to generate hexagonal lattice patterns resembling grid
cell activity. However, these models typically produced only a single module' of grid cells
and focused on their tuning properties rather than the required dimensionality of the basis
functions and their rich characteristics. Later work argued that explaining the coexistence
of multiple modules of grid cells requires a self-supervised framework, and even questioned
whether grid cells directly support path integration, the process of computing position by
integrating velocity over time, via outputs to place cells (Schaeffer et al., 2022).

In parallel, computational neuroscience, primarily focusing on short-term memory and
visual tasks, has developed a complementary perspective. Rather than emphasizing the
tuning of individual neurons, this approach highlights how populations of neurons collec-
tively encode task variables in low-dimensional latent representations (Dinc et al., 2025;

1. A module refers to a population of neurons that share the same grid scale and orientation but differ in
spatial phase.
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Dubreuil et al., 2022; Beiran et al., 2021; Valente et al., 2022; Mastrogiuseppe and Osto-
jic, 2018). From this viewpoint, path integration can be studied as an important problem
in its own right and arguably a more central concern for the brain than producing grid
cells. Specifically, grid-like responses may or may not arise from efficient coding principles
(Schaeffer et al., 2022) or from biological constraints such as the non-negativity of neural
responses (Sorscher et al., 2023), but biological networks must solve the path integration
problem to self-center and navigate in the real world. This motivates the perspective shift
we take in this work, leading to a central question: Can spatial encoding be carried out
within low-dimensional latent codes, or does it require high-dimensional dynamics?

To date, low-dimensional latent dynamical systems have been sufficient to explain many
cognitive tasks within the population-code perspective (Valente et al., 2022; Dubreuil et al.,
2022). This success has fostered the view that low-dimensional solutions may be a general
feature of neural computation Perich et al. (2025). Spatial navigation, however, provides a
decisive test case that spans both regimes. When space is represented discretely, navigation
cannot be achieved with a low-dimensional latent code and instead requires training an
inherently high-dimensional dynamical system to handle the place cell outputs. By contrast,
when space is represented continuously, the low-dimensionality of the output enables path
integration to be solved with a low-dimensional dynamical system.

Results: In this work, we ask: What is the optimal way to represent space in a latent
population code? To address this question, we treat the basis functions of spatial represen-
tation as latent variables, implemented by neural populations through linear combinations
Dinc et al. (2025). Our focus is not on how these representations are learned, but on the
consequences once they are in place.

Studying compact representations of space: Building on Sorscher et al. (2023), we for-
mulate spatial encoding as an optimization problem and extend this framework to examine
the dimensionality and properties of the basis functions when outputs are either discrete
(place-cell-like) or continuous. The key distinction in our formulation is that we do not
assume individual neurons themselves constitute the basis functions. Instead, we treat the
basis functions as latent variables (population-level coding variables obtained through linear
combinations of neural activities (Dinc et al., 2025)) and ask: How many are truly needed?
For clarity, we focus on a one-dimensional environment, while noting that the generalization
to two dimensions is straightforward.

To start with, we focus on representing the space with discrete, place-like, outputs,
which will cover the continuous case trivially. Let {f,(z)} denote the family of tuning
functions associated with place cells indexed by p. Here, p denotes the location of the
place field, whereas f,(z) is simply translated across the field based on p. For instance,
fulz) =exp (—%) for some spatial resolution o, where x € €} denotes position in the
environment. Our goal is to study the joint approximation of each function by a set of
orthonormal basis functions {¢y(z)}5 :
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where wy(p) specifies the output weight from the kth basis function to produce uth place
cell. Since ¢i(t) are thought of as basis functions, we further enforce an orthonormal-



ity constraint: [, ¢;(z)¢r(x)dx = dj;, where Q represents the spatial domain to be cov-
ered, here Q = {x : x € [0,L]} for some length L. Then, the optimal set of basis func-
tions is defined as the one that minimizes the mean squared reconstruction error (Sorscher

2
et al., 2019, 2023): L = E, [, [f#(x) - Zszl wk(u)dm(:r)} dz. This problem reduces to

the classical Karhunen—Loeéve (KL) expansion, or functional principal component analy-
sis Ramsay and Silverman (2005). The solution is determined by the correlation kernel
C(z,2") =E, [fu(x)fu(z)], whose eigenfunctions provide the optimal basis:

/Q O, 2') (') da’ = Aen (). ()

Here, using the top K components, the minimized loss function becomes Lx = Zj> K Aj-
Compact spatial representations are therefore obtained by using the leading eigenfunctions
of C(z,2') as the basis functions, whereas the error in the reconstruction is obtained by
summing over the eigenvalues A\, that belong to the eigenfunctions not picked as the basis
function.

Due to space constraints (pun not intended), we focus on the dimensionality of the
learned representations in this extended abstract. If our presentation is accepted, we will
present more results on how these basis functions turn out to be Fourier series under uniform
coverage of space by place cells, and how their perturbations can explain recent empirical
evidence about distortions to tuning properties of individual cells under specific landmark
and/or reward locations.

Dimensionality of the learned representations: Having established the basis functions,
we now ask: how many such modes are required to represent space at a given resolution? For
a continuous representation in a general K-dimensional space, the answer is straightforward.
We can replace f,(x) with {fi(z) = z1, fa(x) = 22, ..., fx(x) = xx}, where z; is the ith
coordinate of the current location. In this case, the number of basis functions is upper-
bounded by K. For example, when K = 2, two basis functions are sufficient.

The discrete case, however, is more subtle. Suppose place fields have characteristic
width o, so that each tuning function can be expressed as a rescaled template f,(z) =

g (%), where ¢ specifies the field shape (e.g., Gaussian). Substituting this form into

the kernel gives C(z,2') = C (9” %) for some scale-invariant coordinates & = x/o and a

o’
corresponding kernel function C. Then, we can consider the eigenvalue problem in Eq. (2).
z z'

Using C(z,2') = C (f —) and defining rescaled variables & = x/0 and &’ = 2'/o, we

g’ o
obtain o [5 C(&,%"), r(0d'),d¥' = A\por(c7), so that \y(0) = oM(0), where @ = Q/c
and S\k(a) are the eigenvalues of the rescaled kernel. This shows two effects: an explicit
prefactor o from the Jacobian, and an implicit dependence through the effective domain
size || ~ L/o for the rescaled kernel C(Z,#'). Notably, the latter effect is often stronger
than a polynomial decay in practice (see below).

Since the optimal loss function value, £(K) = 3. A;, is controlled by the first ne-
glected eigenvalue Ag 1 that decays fast with j, the remaining loss value after using K
basis functions is determined by O(cAxg41(c)). To see why narrower fields require more
modes K to achieve the same accuracy, consider the translation-invariant Gaussian kernel

—_ / 2 . . . .
with scale o, C(z,2') = exp(—%). In this case, the eigenfunctions are Fourier modes
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Figure 1: Path-integration is a low- or high-dimensional process when the out-
put is continuous or discrete, respectively. We trained low-rank RNNs to
perform path integration in a rectangular 2D domain. In the continuous output
case, the RNNs were instructed to output continuously coded spatial locations.
In the discrete output case, RNN outputs were linear projections to 50 uniformly
sampled Gaussian-shaped place cells similar to Eq. (1), in which the standard
deviation was taken to be o.

(Sorscher et al., 2023) with eigenvalues \(q;0) o oexp(—c2q?/4), which decay exponen-
tially once |g| 2 1/0. Thus the number of significant modes scales as K ~ L/o: finer
resolution (smaller o) demands higher-dimensional latent codes, while broader fields reduce
dimensionality at the expense of precision.

Tests with path-integrating RNNs: We tested these predictions in recurrent neural net-
works trained to perform path integration, comparing two output formats: (i) a discrete
representation with many place-cell-like outputs and (ii) a continuous representation with
two outputs corresponding to spatial coordinates in 2D. In this setting, the rank of the
RNN constrains the dimensionality of its latent representation, and thus the number of
basis functions available for spatial coding. The results matched theoretical expectations
(Fig. 1). For continuous outputs, rank-two networks were sufficient to achieve perfect per-
formance, since only two latent variables were needed to represent the two coordinates.
In contrast, for discrete outputs, performance improved gradually with increasing rank,
and accurate path integration required higher-dimensional networks, with the number of
required ranks depending on the resolution ¢ that set the width of the place-cell tuning
curves.

Conclusion: In this work, we showed that spatial navigation can rely on low-dimensional
dynamics in the continuous case or high-dimensional dynamics in the discrete case, with di-
mensionality determined by spatial resolution for the latter. Therefore, place-cell responses
require high-dimensional latent representations, which suggests that their function is not
necessarily efficiency but likely other computational goals, such as robustness to noise, flex-
ible remapping, or compatibility with downstream readouts that rely on sparse, localized
responses.
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