
On Expressive Power of Looped Transformers:
Theoretical Analysis and Enhancement via Timestep Encoding

Kevin Xu 1 Issei Sato 1

Abstract
Looped Transformers provide advantages in pa-
rameter efficiency, computational capabilities,
and generalization for reasoning tasks. However,
their expressive power regarding function approx-
imation remains underexplored. In this paper,
we establish the approximation rate of Looped
Transformers by defining the modulus of conti-
nuity for sequence-to-sequence functions. This
reveals a limitation specific to the looped archi-
tecture. That is, the analysis prompts the incorpo-
ration of scaling parameters for each loop, con-
ditioned on timestep encodings. Experiments
validate the theoretical results, showing that in-
creasing the number of loops enhances perfor-
mance, with further gains achieved through the
timestep encoding. Code is available at https:
//github.com/kevin671/tmlt.

1. Introduction
Transformers (Vaswani et al., 2017) have become the stan-
dard architecture for a wide range of machine learning tasks,
including natural language processing and computer vi-
sion. However, they exhibit certain limitations, particularly
when applied to complex tasks. The expressive power of
Transformers is theoretically constrained (Merrill & Sabhar-
wal, 2023; Feng et al., 2023), and they empirically strug-
gle with reasoning and planning problems (Kambhampati
et al., 2024). Although chain-of-thought reasoning (Wei
et al., 2022) can mitigate these challenges in some cases,
it typically relies on manually crafted prompts or costly in-
termediate supervision. Moreover, Transformers encounter
difficulties with length generalization (Deletang et al., 2023)
and require substantial computational resources as the num-
ber of model parameters increases (Pope et al., 2022).
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To address these limitations, Looped Transformers presents
a promising approach. The architecture consists of fixed-
size Transformer layers, in which the output is recursively
fed back into the input. Looped Transformers exhibit advan-
tages in parameter efficiency thanks to their weight-tying
structure (Lan et al., 2020; Takase & Kiyono, 2021; Csordás
et al., 2024; Bae et al., 2025), achieving performance com-
parable to standard Transformers while using fewer param-
eters. Additionally, they are well suited for size general-
ization by adjusting the loop count based on task complex-
ity (Dehghani et al., 2019; Fan et al., 2024b). Their recursive
structure endows them with the expressive power to emulate
iterative algorithms and universal computational capabili-
ties, akin to programmable computers (Giannou et al., 2023).
Furthermore, their inductive bias enhances performance on
reasoning tasks (Saunshi et al., 2025).

In contrast, the expressive power of Looped Transform-
ers and the properties unique to the looped architecture in
function approximation remain unexplored. The expressive
power of standard Transformers, on the other hand, has
been examined extensively in prior studies. These studies
show that Transformers can be universal approximators for
continuous permutation-equivariant functions on compact
domains (Yun et al., 2020; Kajitsuka & Sato, 2024). Further-
more, their approximation rate has been analyzed by identi-
fying specific properties of the target functions (Takakura &
Suzuki, 2023; Jiang & Li, 2024; Wang & E, 2024), providing
insights into the underlying characteristics of Transformer
architectures. However, these findings cannot be directly
extended due to the weight-tying constraints. Although the
approximation rate of looped ReLU networks has been es-
tablished only recently (Zhang et al., 2023), that of Looped
Transformers remains unknown.

Our contributions are summarized as follows:

• We establish the approximation rate of Looped Trans-
formers for fixed-length continuous sequence-to-sequence
functions, with respect to the number of loops and three
newly defined types of moduli of continuity.

• We identify an inherent limitation of Looped Transformers
and address it by proposing Timestep-Modulated Looped
Transformers (TMLT), which incorporate scaling parame-
ters that are conditioned on timestep encodings.
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2. Background
This section defines the Transformer and Looped Trans-
former architectures, reviews related work, and examines
prior theoretical studies on the function approximation capa-
bilities of Transformers and weight-tied networks, thereby
clarifying the research question addressed in this paper.

Notations: Vectors are represented by lowercase boldface
letters e.g., v, and matrices are denoted by uppercase bold-
face letters e.g., X . The i-th element of a vector v is denoted
by vi, and the (i, j)-th element of a matrix X is denoted by
Xi,j . The n-th column of a matrix X is denoted by X:,n.

Given an input sequence X = [x1,x2, . . . ,xN ] ∈ Rm×N ,
where xi ∈ Rm, and a function f : Rm → Rm, the token-
wise application of f is denoted by the bold symbol f i.e.

f(X) = [f(x1), f(x2), . . . , f(xN )] ∈ Rm×N .

For p ∈ [1,∞), the p-norm, denoted by ∥·∥p, represents the
entry-wise p-norm. This norm applies to both vectors and
matrices e.g., ∥X∥p. The Lp-norm of a function is defined
for p ∈ [1,∞) as:

∥f∥Lp :=
(∫

Ω

∥f(X)∥pp dX
)1/p

,

where Ω represents the domain of the function f .

2.1. Transformer Architecture

Given an input sequence X ∈ Rm×N , composed of N
token embedding of dimension size m, the self-attention
layers with h heads and head size s, and the feed-forward
layer with width size q, are defined as follows:

Attn(X) =

h∑
i=1

W i
OW

i
V Xσs

[
(W i

KX)⊤W i
QX

]
,

FF(X:,n) = W2σR(W1X:,n + b1) + b2,

where W i
O ∈ Rm×s,W i

V , W
i
K , W i

Q ∈ Rs×m,W1 ∈
Rq×m,W2 ∈ Rm×q, b1 ∈ Rq, b2 ∈ Rm are parameters,
σR denotes ReLU function, and σs denotes a softmax oper-
ator applied to the columns of the matrix.

Transformer block TF : Rm×N → Rm×N is defined by

X ′ = X +Attn(X),

TF(X) = X ′ + FF(X ′),

where FF represents token-wise FF. In other words,

TF = (id + FF) ◦ (id + Attn),

where id denotes the identity mapping, where we omit the
domain of definition for simplicity. For the analysis of ex-
pressive power in Section 3, we exclude layer normalization
and our constructive proof relies on the softmax function
to approximate the hardmax function as in previous stud-
ies (Yun et al., 2020; Kim et al., 2023)

2.2. Looped Transformer

Looped Transformer with a single layer is represented as:

L2 ◦ TF◦r ◦L1,

where L2 and L1 represent token-wise affine linear layers,
and TF◦r denotes the composition of TF applied r times.
While we focus on single-layer as (Dehghani et al., 2019;
Lan et al., 2020; Yang et al., 2024; Fan et al., 2024b), they
can also be implemented with multiple layers as (Csordás
et al., 2024; Bae et al., 2025; Saunshi et al., 2025).

Overview of Previous Work The recursive structure was
introduced into Transformers (Dehghani et al., 2019), where
the number of loops can be adaptively adjusted, allowing for
size generalization (Fan et al., 2024a). Looped Transformers
are closely related to weight-tying Transformers (Lan et al.,
2020; Takase & Kiyono, 2021), achieving performance com-
parable to standard Transformers using fewer parameters.
Deep equilibrium models (Bai et al., 2019), which compute
fixed points of iterative layers, are also related. In addition,
the recursive structure enables the model to emulate iterative
algorithms, including basic computational primitives (Gi-
annou et al., 2023) and learning algorithms (Giannou et al.,
2024; Yang et al., 2024). Furthermore, recent studies have
demonstrated that Looped Transformers exhibit an inductive
bias towards reasoning tasks (Saunshi et al., 2025). To im-
prove performance, more sophisticated architectures, such
as mixture-of-experts (Csordás et al., 2024) and relaxed
weight-tying (Bae et al., 2025), have been introduced.

2.3. Theoretical Analysis on Expressive Power

We review related work and summarize the comparisons
between our problem setting and previous studies in Table 1.

Universality of Transformers The universal approxima-
tion theorem for fully connected neural networks (Cybenko,
1989; Hornik et al., 1989) shows that networks of sufficient
size can approximate certain classes of functions with arbi-
trarily low error. For Transformers, the target function class
extends to sequence-to-sequence functions. Transformers
compute a contextual mapping of the input, which requires
capturing the entire sequence and computing the token em-
bedding within context (Yun et al., 2020), formulated as:

Definition 2.1 (Yun et al., 2020). Consider a finite set L ⊂
Rd×N . A map CM : L → R1×N defines a contextual
mapping if the map satisfies the following:

1. For any L ∈ L, the N entries in CM(L) are all distinct.
2. For any L,L′ ∈ L, with L ̸= L′, all entries of CM(L)

and CM(L′) are distinct.

Prior studies have shown that Transformers can compute
contextual mappings, enabling memorization (Kim et al.,
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Table 1. Comparisons of our problem setting with related work on the theoretical analysis of function approximation.

Paper Model Type Function Class Approximation Rate Looped (Weight-Tying)
Yarotsky (2018) FFN Continuous functions ✓ ×
Yun et al. (2020) Transformer Continuous seq-to-seq functions × ×

Takakura & Suzuki (2023) Transformer γ-smooth infinite-length ✓ ×
Kajitsuka & Sato (2024) Transformer Continuous seq-to-seq functions × ×

Jiang & Li (2024) Transformer Temporal coupled functions ✓ ×
Wang & E (2024) Transformer Long but sparse memories ✓ ×

Zhang et al. (2023) FFN Continuous functions ✓ ✓
Ours Transformer Continuous seq-to-seq functions ✓ ✓

2023) and universal approximation (Yun et al., 2020; Kajit-
suka & Sato, 2024).

For Looped Transformers, as the fixed parameters of a single
Transformer layer are used, the results of previous studies
cannot be directly applied. This leads to the question: Can
Looped Transformers compute contextual mappings? and
Are they universal approximators?

Approximation Rate of Transformers Beyond the uni-
versality, the approximation rate provides deeper insights
into the characteristics of models (Barron, 1993; Yarotsky,
2018). This rate is derived as an upper bound of error in
terms of the properties of the target functions and the com-
plexity of the networks. For Transformers, recent studies
have investigated these rates and the nature of the target
functions (Takakura & Suzuki, 2023; Jiang & Li, 2024;
Wang & E, 2024). Specifically, they have shown conditions
under which Transformers can overcome the curse of dimen-
sionality (Takakura & Suzuki, 2023) and revealed structures
in target functions that Transformers can effectively approx-
imate (Jiang & Li, 2024; Wang & E, 2024).

Our study focuses on understanding the architectural proper-
ties of Looped Transformers, particularly in comparison to
standard Transformers. To this end, we explore the approxi-
mation rate and investigate the properties of target functions
that determine their approximation errors.

Expressive Power of Weight-Tied Neural Networks Re-
cently, it has been shown that single fixed-size networks can
serve as universal approximators in a parameter-efficient
manner; that is, the parameter count depends solely on the
input dimension, not the approximation error (Zhang et al.,
2023). Furthermore, the approximation rate of weight-tied
ReLU networks has been established with respect to the
number of loops and the modulus of continuity of con-
tinuous functions (Zhang et al., 2023). The modulus of
continuity for g : Rd → R and δ ≥ 0 is defined as:

ωg(δ) := sup
{
|g(x)− g(x′)| : ∥x− x′∥2 ≤ δ

}
.

Our question is whether the results can be extended to
sequence-to-sequence functions and Transformers, which

require contextual mappings. For a sequence-to-sequence
function f : Rd×N → Rd×N , the modulus of continuity
can be generalized as:

ωf (δ) := sup
{
∥f(X)− f(X ′)∥p : ∥X −X ′∥2 ≤ δ

}
We investigate whether this modulus of continuity alone can
determine the approximation rate.

For Looped Transformers, it has been shown that they can
represent standard Transformers, although their parameter
count grows with both the desired approximation accuracy
and the sequence length (Saunshi et al., 2025). Moreover,
no existing work has established their approximation rate.

3. Approximation Rate Analysis
In this section, we establish the approximation rate of
Looped Transformers. We define three types for the modu-
lus of continuity in Section 3.2 that determine the approxi-
mation rate. The main results are presented in Section 3.3,
followed by a proof sketch in Section 3.4.

3.1. Preliminaries

The target function class of our analysis is continuous func-
tions that Transformers can represent. Specifically, these
are permutation-equivariant functions, defined as follows:

Definition 3.1 (Yun et al., 2020). A function f : Rd×N →
Rd×N is said to be permutation equivariant if f(XP ) =
f(X)P holds for any permutation matrix P . Let FPE(Ω)
denote the set of continuous functions, defined on Ω, that
are permutation equivariant.

We evaluate both the number of parameters and the bit com-
plexity, the maximum number of bits required to represent
the network’s weights (Vardi et al., 2022; Kim et al., 2023).

In our proofs, we introduce IDs for tokens, sequences, and
tokens within sequences as theoretical constructs to formal-
ize contextual mappings.

Definition 3.2. A token ID is a unique integer assigned to
each token. A sequence ID uniquely identifies each sentence.
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A contextual token ID uniquely identifies a specific token
within a specific sentence. We denote the set of contextual
token IDs as K = 0, 1, . . . ,K − 1, with corresponding
embeddings yk ∈ Rd for each k ∈ K.

This notion is defined in Kim et al. (2023), to which we
refer for further details, for constructive proofs of contextual
mappings. The actual construction of contextual token IDs
may vary depending on the specific proof. In our case, we
adopt a different construction from that of Kim et al. (2023).

3.2. Definition of modulus of Continuity

As briefly mentioned in the preliminary discussion, we de-
fine the modulus of continuity in Eq. 2.3 as:
Definition 3.3 (Modulus of Sequence Continuity). Given
a sequence-to-sequence continuous function f : Rd×N →
Rd×N , the modulus of sequence continuity is defined by:

ωf (δ) := sup
{
∥f(X)− f(X ′)∥p : ∥X −X ′∥2 ≤ δ

}
.

We omit the subscript p for simplicity. This quantifies how
the output sequence shifts relative to differences in input,
hence referred to as sequence continuity.

We found that this alone is insufficient to determine the
approximation rate of Looped Transformers, in contrast to
the case of ReLU networks (Zhang et al., 2023). Informally,
this issue arises because Transformers compute contextual
mappings. We notably identified two additional types of
modulus of continuity, defined as follows.
Definition 3.4 (Modulus of Contextual Continuity). Given
a sequence-to-sequence continuous function f : Rd×N →
Rd×N , the modulus of contextual continuity is defined by:

ωcont
f (δ) := sup

n,X,X′

{
∥f(X):,n − f(X ′):,n∥p

: ∥X −X ′∥2 ≤ δ, X:,n = X ′
:,n

}
.

Definition 3.5 (Modulus of Token Continuity). Given a
sequence-to-sequence continuous function f : Rd×N →
Rd×N , the modulus of token continuity is defined by:

ωtok
f (δ) := sup

n,X,X′

{
∥f(X):,n − f(X ′):,n∥p :

∥X:,n −X ′
:,n∥2 ≤ δ, X:,q = X ′

:,q (∀q ̸= n)
}
.

The modulus of contextual continuity quantifies the variation
in the contextual token embeddings induced by perturba-
tions of context. For example, consider the sentences: (1)
“I write papers” and (2) “You write books”. It measures the
difference in the contextual token embedding of the same
word ‘write’ within different contexts.

On the other hand, the modulus of token continuity quantifies
the variation in the output embedding caused by perturba-
tions to the token itself within the same context such as (1)
“I write papers” and (2) “I draft papers”.

3.3. Main Result

The result establishes the approximation rate of Looped
Transformers in terms of the number of loops and the three
types of moduli of continuity of the target function.

Theorem 3.6. Given a function f ∈ FPE([0, 1]
d×N ), r >

N , there exists a Looped Transformer, composed of TF :
R(17d+9)×N → R(17d+9)×N with two heads, head size 1,
and width size of q = 49d+ 25, and two affine linear maps
L1 : Rd → R17d+9 and L2 : R17d+9 → Rd s.t.∥∥L2 ◦ TF◦r ◦L1 − f

∥∥
Lp

≤ (Nd)
1
p

(
ωtok
f (δ
√
d) + ωcont

f (δ
√
Nd)

)
+ ωf (δ

√
Nd)

+O(N2/pδd/p) +O
((

(Mδ)−1dN
)1/p)

,

where δ =
(
(r −N)/2

)−1/((N+1)d+1)
,

where M is the maximum absolute value of the model pa-
rameters, and the bit complexity is O(δ−(N+1)d).

Theorem 3.6 shows that increasing the number of loops r
reduces the approximation error. Under infinite-precision
weights, this leads to a universal approximation theorem.

Corollary 3.7 (Universality). The hypothesis space of
Looped Transformers, defined by

H :=
{
L2 ◦ TF◦r ◦L1 : [0, 1]d×N → [0, 1]d×N |
m, q ≤ Cd, h = 2, s = 1, r ∈ N, W ∈ Rnw

}
,

where C is a positive constant, W denotes the flattened
set of all weights in the network, and nw represents the
total number of these weights, is dense in FPE([0, 1]

d×N )
w.r.t.the Lp norm.

This approximation analysis highlights the characteristics
of Looped Transformers, including both their capabilities
and limitations, as summarized below:

• While the number of parameters remains fixed at O(d), in-
dependent of the desired approximation accuracy and the
sequence length, the error can be reduced by increasing
the number of loops.

• Looped Transformers, even with weight-tied self-attention
using a hard-max function, can compute contextual map-
pings and become universal approximators.

• The approximation rate depends on three types of conti-
nuity, with contextual and token dependencies unique to
Looped Transformers; these dependencies are not present
in standard Transformers or looped ReLU networks.

Our contribution lies in establishing the approximation rate
with respect to the number of loops, based on novel moduli
of continuity that are unique to Looped Transformers.
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Token ID from Step 1 Sequence ID from Step 2

I write 
papers.

Beethoven
writes music.

𝑧 = 0
draft

𝑧 = 11
paper

𝑧 = 9
music

I draft 
papers.

𝒦: Contextual token IDI write papers. Beethoven
writes music.

𝛽 !

𝛽 "

ℬ!,!

ℬ!,"

𝑧 = 1
write

𝑧: token ID

Figure 1. The networks construct contextual token IDs by combin-
ing token IDs with sequence IDs.

Furthermore, the additional dependency can amplify the ap-
proximation error, revealing a limitation inherent to Looped
Transformers. A detailed discussion of this issue, along
with improvement methods, is provided in Section 4.

3.4. Proof Sketch

This section presents a proof sketch, emphasizing distinc-
tions from prior studies and challenges unique to the looped
architecture. The formal proof is provided in Appendix A.

The basic strategy involves approximating the continu-
ous target function f with a piecewise constant function
f̄ , which is approximated by the network, denoted by f̃ .
For δ−1 ∈ N, δ−1 ≥ 2, the input space [0, 1]d×N is
divided into discretized cubes with width δ, denoted by
{QB}B∈{0,1,...,δ−1−1}d×N . Each cube is assigned a rep-
resentative point X̂B ∈ QB, and the piecewise constant
function f̄ is then defined as:

f̄(X) = f(X̂B) where B satisfies X ∈ QB. (1)

The approximation with networks consists of three steps.
First, the network assigns a token ID to each token. Second,
it assigns a sequence ID. The combination of the token ID
and sequence ID constitutes the contextual token IDs as
in Fig. 1. Finally, these are mapped to embeddings that
represent the output of the target function at each token.

Step 1. Token-wise Quantization. The network uses the
feed-forward network to assign each input token, denoted by
X:,n, to a token ID, denoted by z, in a token-wise manner.

X:,n ∈ [0, 1]d → z ∈ {0, 1, . . . , δ−d − 1}. (2)

Step 2. Contextual Mapping. The network, given N to-
ken IDs computes their sequence ID. We notice that the
result of previous studies on Transformers (Yun et al., 2020;

Kim et al., 2023) cannot be directly applied to Looped Trans-
formers due to the following distinctions:

• Yun et al. (2020) employed both sparse and uniform at-
tention mechanisms, whereas Looped Transformers are
limited to a single fixed attention layer.

• Kim et al. (2023) used N layers to store N parameters
required for representing the target function, whereas
Looped Transformers have a fixed parameter size.

Notably, we found that Looped Transformers with N -loops
can compute contextual mapping. Let z ∈ {0, 1, . . . , δ−d−
1}N represent a sequence consist of N ordered and distinct
token IDs, satisfying z1 > z2 > · · · > zN . The network
then maps z to a sequence ID through an inner product with
u = (δ−d(N−1), . . . , δ−d, 1), which satisfies

|u⊤z − u⊤z′| > 1, if z ̸= z′. (3)

This guarantees that the network assigns distinct sequence
IDs for different z. Combined with token IDs, the network
computes contextual mapping. The key idea is that the
network requires only δ−d to represent u, allowing it to be
implemented with Looped Transformers.

Step 3. Function Value Mapping. The network maps
the contextual token IDs into the target embeddings in a
token-wise manner, using K − 1 loops to sequentially map
k = 0, 1, . . . ,K − 1 to ỹk ∈ Rd, which approximates yk,
in each iteration. In our constructive proofs, we design both
the set of contextual token IDs and their ordering.

Weight-tied feed-forward networks cannot map accurately,
and the error can only be bounded by the maximum differ-
ence between adjacent contextual token embeddings, i.e.

|(ỹk − yk)i| ≤ max
k′∈K

|(yk′ − yk′−1)i| (4)

holds for k ∈ K and i = 1, . . . , d.

Generally, the following inequality holds, for x ∈ Rm,

max
i
|xi| ≤ ∥x∥p ≤ m

1
p max

i
|xi|. (5)

That is, by controlling the p-norm, ∥yk − yk−1∥p, the error
in Eq. 4 can bounded. We require K to be designed such
that the differences between neighboring contextual token
embeddings are bounded w.r.t.the p-norm.

To illustrate our idea, consider the following sentences:

(1) I write papers. ; I write papers. (different token ID
with same sequence ID)

(2) I write papers. ; You write books. (same token ID
with different sequence ID)
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𝒦

𝑦

I write
papers.  

I draft
papers.  

< 𝝎𝐭𝐨𝐤 (𝜹 𝒅)

He writes papers. Mozart writes
music.

< 𝝎𝒄𝒐𝒏𝒕(𝜹 𝑵𝒅)

< 𝝎𝒄𝒐𝒏𝒕 𝜹 𝑵𝒅 + 𝝎𝒕𝒐𝒌(𝜹 𝒅)

She talks
at you.

He drinks
coffee.

・ 𝑦"!	(model)
・	linear	interpolation

Figure 2. Approximation error and modulus of continuity. The linear interpolation technique reduces the error by a factor of 1/δ−1.

We found that none of the moduli of continuity, defined in
Section 3.2, alone can bound the difference between ‘write
and ‘papers’ in (1). In contrast, the error of ‘write’ in (2) can
be bounded by the contextual continuity, ωcont

f . Thus, we
designed contextual token IDs such that, basically, identical
or similar tokens with different sequence IDs are positioned
adjacent to each other, as shown in Fig. 2. To reduce errors
in corner cases, linear interpolation is applied; further details
are provided in Appendix A. This allows us to obtain the
following error bound.

max
k′∈K

∥yk′ − yk′−1∥p ≤ ωtok
f (δ
√
d) + ωcont

f (δ
√
Nd). (6)

Substituting x = yk − yk−1 into Eq. 5, with Eq. 4 and
Eq. 6, the following result holds:

|(ỹk − yk)i| ≤ ωtok
f (δ
√
d) + ωcont

f (δ
√
Nd), (7)

for i = 1, . . . , d and k ∈ K.

Concatenated into a Single Transformer Layer In the
final construction, we show that the composition of the three
sub-networks from Steps 1, 2, and 3 can be implemented
within a single Transformer block. While our proof strategy
follows Zhang et al. (2023), their approach necessitates an
additional layer. In contrast, we show that a single Trans-
former block suffices, as detailed in Appendix A.

Deriving Approximation Rate Lastly, we analyze the
approximation error of our construction and establish the
approximation rate in terms of the number of loops.

With the triangle inequality, we obtain the following:

∥f̃ − f∥Lp ≤
∫
∥f̃(X)− f(X)∥pdX (8)

≤
∫
∥f̃(X)− f̄(X)∥pdX +

∫
∥f̄(X)− f(X)∥pdX

+O(N2/pδd/p) +O
((

(Mδ)−1dN
)1/p)

, (9)

where O(N2/pδd/p) arises from the case where identical
tokens appear in sequences, and O

((
(Mδ)−1dN

)1/p)
re-

sults from the restriction on the norm of weights.

Considering the error within cubes in Eq. 1, we obtain∫
∥f̄(X)− f(X)∥pdX ≤ ωf (δ

√
Nd). (10)

Since, generally, the norm of sequences can be bounded by
the maximum norm of the token-wise vectors as

∥f(X)∥p ≤ (Nd)
1
p max

i,n
|f(X)i,n|, (11)

the error between f̃ and f̃ can be bounded by∫
∥f̃(X)− f̄(X)∥pdX ≤ (Nd)

1
p max

k′∈K
|ỹk′−yk′ |. (12)

Substituting x = ỹk − yk into Eq. 5, and using Eq. 7 and
Eq. 12, we obtain:∫

∥f̃(X)− f̄(X)∥pdX

≤ (Nd)
1
p

(
ωtok
f (δ
√
d) + ωcont

f (δ
√
Nd)

)
.

(13)

We then express δ in terms of the number of loops r to
determine the approximation rate. We use δ−1− 1 loops for
Step 1, N loops for Step 2, and 2δ−(N+1)d − 1 loops for
Step 3, with 1 loop required to connect each step i.e.

r = δ−1 + 2δ−(N+1)d +N. (14)

Now, δ can be bounded in terms of the number of loops as:

δ−1 + 2δ−(N+1)d = r −N (15)

⇒ δ−1 · 2δ−(N+1)d ≥ r −N (δ−1 ≥ 2) (16)

⇔ δ ≤
(r −N

2

)−1/((N+1)d+1)

. (17)

By combining Eq. 10 and Eq 13 with Eq. 9, and substituting
Eq. 17, we obtain Theorem 3.6.
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4. From Theory to Practice: Introducing
Timestep Encoding

The theoretical result in Section 3 highlights a limitation of
the looped architecture. We show that a variant of architec-
ture can overcome this limitation.

4.1. Motivation

Limitation Specific to Looped Transformers The ap-
proximation rate in Theorem 3.6 includes two additional
moduli of continuity, which can lead to increased errors,
reflecting a limitation inherent to Looped Transformers.

We can identify the cause of additional dependency in the
error in Eq. 4, caused by weight-tied feed-forward networks.
This can be formalized as follows:
Lemma 4.1. Given yk ∈ Rd for k = 0, 1, . . . ,K − 1 with

|(yk − yk−1)i| ≤ εi for i = 1, . . . , d,

there exists a feed-forward layer FF : R12d → R12d with
a width size of 18d, and two affine linear maps L1 : R →
R12d and L2 : R12d → Rd s.t.

|
(
L2 ◦ (id + FF)◦(K−1) ◦ L1(k)− yk

)
i
| ≤ εi, (18)

for i = 1, . . . , d and k = 0, 1, . . . ,K − 1.

This shows that large variations in the target function may
lead to approximation errors, raising the question of whether
inequality in Eq. 18 can be replaced with equality.

Improving Approximation Rate of Looped Transformers
To eliminate this dependency, we introduce time-dependent
parameters. Specifically, we modify the feed-forward layers
by adding a scaling vector for each loop step as follows:

FF(X)→ η(t)⊙ FF(X) for the t-th loops,

where ⊙ is an element-wise product,t ∈ N is the loop index,
and η(t) ∈ Rd is the scaling parameter for each loop. This
method is analogous to Hypernetworks (Ha et al., 2016).
With the definition

(id+η⊙FF)r := (id+η(r)⊙FF)◦· · ·◦(id+η(1)⊙FF),

we show that this model can memorize labels exactly.
Theorem 4.2. Given yk ∈ Rd for k = 0, 1, . . . ,K − 1,
there exists a feed-forward layer FF : R4d → R4d with a
width size of 6d, η(t) ∈ R4d for t = 1, . . . ,K − 1, and two
affine linear maps L1 : R→ R4d and L2 : R4d → Rd s.t.

|
(
L2 ◦ (id + η ⊙ FF)◦(K−1) ◦ L1(k)− yk

)
i
| = 0,

for i = 1, . . . , d and k = 0, 1, . . . ,K − 1.

The proof is provided in Appendix B. For implementation,
adding parameters per loop increases the total parameter
count proportionally. Thus, we introduce timestep encoding.

4.2. Timestep-Modulated Looped Transformer

We employ timestep encodings to condition scaling parame-
ters on the loop index (timestep). This method is inspired
by adaptive instance normalization (Peebles & Xie, 2023).

To condition on timesteps, frequency embeddings are pro-
cessed through a two-layer MLP with hidden size matching
the Transformer block and SiLU activation. Let TE(t) ∈
Rd denote timestep embeddings, defined as:

TE(t) = W3 · SiLU(W4 · PE(t) + b4) + b3,

where W3,W4 ∈ Rd×d, b3, b4 ∈ Rd, and PE(t) ∈ Rd de-
notes the timestep encoding function that maps the timestep
into a d-dimensional embedding, s.t.

PE(t)2i = sin(t/100002i/d),

PE(t)2i+1 = cos(t/100002i/d).

We use the root mean square layer normalization (RM-
SNorm) (Zhang & Sennrich, 2019), which is widely used in
several recent LLMs (et al., 2023; Team, 2024), defined as:

x̄ = α⊙ x

RMS(x)
, where RMS(x) =

√√√√1

d

d∑
i=1

x2
i ,

where α ∈ Rd is a gain parameter for rescaling. We define
time-dependent RMSNorm, denoted by RMSN, as:

RMSN(x, t) = α(t)⊙ x

RMS(x)

where α(t) ∈ Rd is a time-dependent parameter generated
by a network. With scaling parameters, the time-dependent
Transformer block is defined as follows:

X ′ = X + γ1(t)⊙Attn(RMSN1(X, t)),

TF(X, t) = X ′ + γ2(t)⊙ FF(RMSN2(X
′, t)),

where γ1(t), γ2(t) ∈ Rd are time-dependent parameters
applied token-wise, as well as RMSNorm.

The time-dependent vector parameters are generated as:

α1(t),α2(t),γ1(t),γ2(t) = W5 · SiLU(TE(t)) + b5,

where W5 ∈ R4d×d and b5 ∈ Rd.

5. Experiments
This section presents experimental results supporting our
theoretical findings. We used Looped Transformers with
varying numbers of loops, both with and without timestep
encoding, and compared to standard Transformers. We
assess approximation capabilities based on test evaluation,
as we observe a strong correlation between train and test
performance. The details are provided in Appendix C.
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Table 2. Test accuracy for reasoning tasks. Performance improves as the number of loops increases..

Task TF Looped TF w/ Timestep Encoding
L=6 r=4 r=8 r=16 r=32 r=4 r=8 r=16 r=32

Sudoku 0.0 0.0 0.0 65.6 87.9 0.0 0.0 62.0 90.2
Countdown 53.8 28.3 52.7 81.0 88.1 33.2 54.4 80.2 90.5

L=12 r=5 r=10 r=50 r=100 r=5 r=10 r=50 r=100
LCS (60) 70.0 66.0 81.8 98.6 96.9 68.5 80.5 99.3 97.1
LCS (100) 39.8 39.6 45.1 93.5 98.2 36.7 45.6 98.1 98.6
ED (40) 54.2 41.4 57.9 85.4 90.4 44.8 63.5 94.5 96.1
ED (60) 41.4 23.8 32.6 47.3 47.7 26.6 38.9 57.3 88.3

5.1. Problem Setting

We evaluate the model on two types of tasks. The first
consists of reasoning problems known to be challenging for
standard Transformers. These are used to examine whether
increasing the number of loops and incorporating timestep
encodings can enhance performance. The second includes
core Transformer benchmarks, such as in-context learning
and language modeling.

5.1.1. REASONING TASKS

Dynamic Programming is a method for solving complex
problems by breaking them down into simpler sub-problems.
We use edit distance (ED) and longest common subsequence
(LCS) tasks with varying input lengths. Each task has 106

train samples and 103 test samples.

Sudoku is a constrained satisfaction problem that involves
filling a 9×9 grid with digits from 1 to 9, such that each digit
appears exactly once in every row, column, and predefined
3 × 3 sub-grid. The grid is flattened into a sequence rep-
resentation. Unlike (Yang et al., 2023), we use the dataset
from (Radcliffe, 2020), sampling 3M instances for training
and 100K for testing.

Countdown is a game in which a given set of input numbers
must be combined using basic arithmetic operations to reach
a target number (Yao et al., 2023; Gandhi et al., 2024). We
consider cases with 4 input numbers and target numbers
ranging from 10 to 100, where 10% of the target numbers
are reserved for evaluation. We generate 5M samples for
training and 1K samples for testing.

5.1.2. IN-CONTEXT AND LANGUAGE MODELING

The in-context learning problem is to learn the function
class from a given sequence, which was investigated with
Looped Transformers (Yang et al., 2024) without timestep
encodings. We use decision tree functions. For the language
modeling task, we use the WikiText-103 (Merity et al., 2017)
dataset, containing over 100 million tokens from Wikipedia
articles. Details are in Appendix C.2 and Appendix C.3.

5.2. Results

The results in Table 2 demonstrate that increasing the num-
ber of loops improves performance on reasoning tasks, with
higher loop counts significantly outperforming standard
Transformers. Furthermore, incorporating timestep encod-
ings leads to additional gains; in particular, for the edit
distance task with input size n = 60, the model with loop
counts r = 100 achieves significantly better performance
when timestep encodings are incorporated.

Table 3. MSE (↓) on the in-context learning task.

TF L=12 Looped r=12 w/ Timestep r=12
Test 8.6e-03 1.4e-02 1.7e-03

Table 4. Perplexity (↓) on the WikiText-103 dataset.

TF L=12 Looped r=24 w/ Timestep r=24
Train 15.9 17.1 15.9
Test 20.5 20.6 19.6

As evidenced by the results in Table 3 and Table 4, the use
of timestep encodings leads to performance gains in both
in-context learning and language modeling.

6. Conclusion
We establish the approximation rate of Looped Transform-
ers with respect to the number of loops and the moduli of
continuity of the target function. Our analysis reveals a
limitation of Looped Transformers, which is addressed by
timestep encodings. To the best of our knowledge, this study
is the first to investigate the function approximation capa-
bilities of Looped Transformers. Extending the analysis to
multiple layers, varying input lengths, and characterizing op-
timal memorization capacity presents promising avenues for
future research. Beyond expressivity, investigating estima-
tion performance and enhancing training stability constitute
important challenges moving forward.
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A. Proofs for Theorem 3.6
The main theorem incorporates a restriction on the norm of weights, leading to errors when approximating discontinuous
functions, such as step functions with ReLU or hardmax functions with softmax. We first establish the approximation rate
assuming that weights can take arbitrary precision real values, as outlined below. Then, we account for the bit complexity of
bounded weights to complete the proof of the main Theorem 3.6.

Theorem A.1. Given a function f ∈ FPE([0, 1]
d×N ), r > N , there exists a Looped Transformer, composed of TF :

R(17d+9)×N → R(17d+9)×N with two heads, head size 1, a width size of q = 49d + 25, and two affine linear maps
L1 : Rd → R17d+9 and L2 : R17d+9 → Rd s.t.∥∥L2 ◦ TF◦r ◦L1 − f

∥∥
Lp ≤ (Nd)

1
p

(
ωtok
f (δ
√
d) + ωcont

f (δ
√
Nd)

)
+ ωf (δ

√
Nd) +O(N2/pδd/p), (19)

where δ =
(
(r −N)/2

)−1/((N+1)d+1)
.

A.1. Proof of Theorem A.1

Proof. Since any continuous function can be approximated by a piecewise constant function with arbitrarily small errors, we
approximate f ∈ FPE([0, 1]

d×N ) with piece-wise constant function f̄ : [0, 1]d×N → Rd×N . We choose δ−1 ∈ N, δ−1 ≥ 2,
determining how finely the input is divided: we divide the input space [0, 1]d×N into δ-discretized cubes, denoted by {QB}
for B ∈ {0, 1, . . . , δ−1 − 1}d×N defined by

QB :=
{
X ∈ [0, 1]d×N : Xi,n ∈

[
Bi,nδ, (Bi,n + 1)δ

)
, i = 1, 2, . . . , d, n = 1, 2, . . . , N

}
. (20)

Each cube QB is associated with a representative point X̂B, defined as the vertex of QB with the minimal ℓ1 norm. Then,
we define the piecewise constant function f̄ for X ∈ [0, 1]d×N as

f̄(X) := f(X̂B). (21)

Since we can bound the error within each cube, we have:

max
X∈[0,1]d×N

{∥f̄(X)− f(X)∥p} ≤ ωf (δ
√
Nd). (22)

Our construction consists of three steps to approximate f̄ , as outlined below.

1. The network, with δ−1 − 1 loops, maps the input space [0, 1]d token-wise to the coordinates β ∈ {0, 1, . . . , δ−1 −
1}d of discretized cubes, and then bijectively maps these coordinates to integers, representing token IDs in the set
{0, 1, . . . , δ−d − 1}, using a δ−1-base system; for example, if d = 2 and δ−1 = 3, then coordinates (β1, β2) = (2, 1) are
mapped to the integer 2× 31 + 1× 30 = 7.

2. The network, with N loops, computes a contextual mapping from the set of N distinct token IDs into the set of contextual
token ID. Contextual token IDs refer to token IDs assigned to each token within the context of a sequence ID.

3. The network, with 2δ−(N+1)d − 1 loops, approximately maps contextual token IDs into the output embeddings of each
token in a token-wise manner. To achieve a small approximation error, the network has to be designed so that neighboring
IDs correspond to similar output token embeddings. Furthermore, dummy indices are used to reduce the error.

The details for each step are provided below.

Step 1. Token-wise Quantization. The input space for each token x ∈ [0, 1]d are divided into δ-discretized cubes denoted
by {Qβ} for β ∈ {0, 1, . . . , δ−1 − 1}d, defined as

Qβ :=
{
x ∈ [0, 1]d : xi ∈

[
βiδ, (βi + 1)δ

)
, for all i = 1, 2, . . . , d

}
. (23)

12
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By Lemma A.5, there exists a feed-forward layer FF(1) : R5d → R5d of width size q = 7d, and two affine linear maps
L(1)
1 : Rd → R5d and L′(1)

2 : R5d → Rd such that

L′(1)
2 ◦

(
id + FF(1)

)◦(δ−1−1) ◦ L(1)
1 (x) = β s.t. x ∈ Qβ. (24)

In addition, we need to bijectively map the d-dimensional vector β to an integer token ID, denoted by z. We use a δ−1-base
system: we define the vector u(δ−1) ∈ Rd as

u(δ−1) := (δ−(d−1), δ−(d−2), . . . , δ−1, 1)⊤, (25)

and define z as
z := u⊤

(δ−1)β ∈ {0, 1, . . . , δ−d − 1}. (26)

To implement this, we define an affine linear map L(1)
2 : R5d → R via

L(1)
2 (x) = u⊤

(δ−1)L
′(1)
2 (x). (27)

Thus, we have (
L(1)
2 ◦ (FF

(1)
1 )◦(δ

−1−1) ◦ L(1)
1 (x)

)
n
= u⊤

(δ−1)β = z s.t. x ∈ Qβ. (28)

We establish an upper bound on the maximum distance in input space between adjacent token IDs to derive the approximation
error for the following steps. Define the input cubes corresponding to each token ID z as follows:

Qz :=
{
x ∈ [0, 1]d : xi ∈

[
βiδ, (βi + 1)δ

)
for i = 1, 2, . . . , d s.t. z = u⊤

(δ−1)β
}
. (29)

Then we have

max
z,x∈Qz,x′∈Qz−1

∥x− x′∥2 ≤

{
δ
√
d, if βd ∈ {1, 2, . . . , δ−1 − 1},√
d, if βd = 0.

(30)

Informally, in this δ−1-based representation, the least significant digit corresponds to the index of the d-th dimension,
βd. As the token ID increments sequentially, the index in the d-th dimension increases as 0, 1, 2, . . . , δ−1 − 1, while the
higher-order digits remain unchanged. Consequently, consecutive token IDs correspond to tokens that are “similar” in the
d-dimensional space, with a maximum distance of δ

√
d. However, when a carry occurs, the higher-order digits may change

significantly, leading to cases where tokens that are not adjacent in input space become adjacent in their indices. In such
cases, the distance is only bounded by

√
d.

Step 2. Contextual Mapping. The networks, with N -loops, map the list of N token IDs, denoted by z ∈ {0, 1, . . . , δ−d−
1}N , into sequence IDs bijectively. Combined with token IDs, the network computes contextual mapping.

We consider only the case where all N input tokens are distinct, disregarding other cases, as they can be treated as negligible
when δ is small. The number of subsets in which at least one of the N tokens is duplicated is given by

(δ−d)N −
(
δ−d · (δ−d − 1) · · · (δ−d −N + 1)

)
<

N(N − 1)

2
δ−(N−1)d, (31)

when δ is sufficiently small. The volume of these subsets is bounded by

Cδ−(N−1)d

δ−Nd
= O(N2δd). (32)

Thus, the error with respect to the Lp norm is bounded by O(N2/pδd/p).

Let Lδ denote the set of N distinct token IDs, i.e.

Lδ := {z ∈ {0, 1, . . . , δ−d − 1}N | zi ̸= zj for all i ̸= j}. (33)

13
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Due to permutation equivariance, we can assume without loss of generality that elements of z ∈ Lδ are ordered, i.e.,
z1 > z2 > · · · > zN . Define u(δ−d) := (δ−(N−1)d, . . . , δ−d, 1)⊤, which satisfy

|u⊤
(δ−d)z − u⊤

(δ−d)z
′| > 1, for any z, z′ ∈ Lδ with z ̸= z′. (34)

This mapping, u⊤
(δ−d)z, represents z in a δ−d-base system. Then, we define sequence ID for z ∈ Lδ as:

s(z) := u⊤
(δ−d)z =

N∑
n=1

znδ
−(N−n)d. (35)

By Lemma A.6, there exists a Transformer block TF′(2) : R5×N → R5×N with single head, head size s = 1, and width
size q = 3, and two affine linear maps L′(2)

1 : R→ R5 and L′(2)
2 : R5 → R such that

L′(2)
2 ◦

(
TF′(2))◦N ◦L′(2)

1 (z⊤) = s(z) · 1⊤
N . (36)

Furthermore, we have to add dummy indices to alleviate the approximation error caused by the looped architecture in Step
3. Recall that B ∈ {0, 1, . . . , δ−1 − 1}d×N represents the coordinates of the inputs. Let ZB ∈ {0, 1, . . . , δ−1 − 1}d×N

denote the ordered coordinates of B where the tokens are ordered by their token IDs, i.e., (u⊤
(δ−1)ZB)

1
> (u⊤

(δ−1)ZB)
2
>

· · · > (u⊤
(δ−1)ZB)

N
, in other words, z = u⊤

(δ−1)ZB. Recall that we consider only the case where all N input tokens are
distinct. By redefining the sequence ID of Eq. 35 for B instead of z, sequence IDs in δ−d-base can be rewritten in the
δ−1-base system as follows:

s(B) := u⊤
(δ−d)(u

⊤
(δ−1)ZB) (37)

=

d∑
i=1

N∑
n=1

(ZB)i,nδ
−
(
(N−n)d+(d−i)

)
. (38)

Then, we define extended sequence IDs as:

svalid(B) := 2s(B)− (ZB)d,N (39)

and the dummy sequence IDs as:
sbdummy(B) := svalid(B) + b. (40)

for b ∈ {δ−1, δ−1 + 1, . . . , 2δ−1 − 1}. Then, define each set as follows:

Svalid :=
{
svalid(B) : B ∈ {0, 1, . . . , δ−1 − 1}d×N

}
,

Sdummy :=
{
sbdummy(B) : B ∈ {0, 1, . . . , δ−1 − 1}d×N , b ∈ {δ−1, δ−1 + 1, . . . , 2δ−1 − 1}

}
.

Recalling that (ZB)d,N ∈ {0, . . . , δ−1 − 1}, we observe that

Svalid ∩ Sdummy = ∅, (41)

Svalid ∪ Sdummy = {0, 1, . . . , 2δ−Nd − 1}. (42)

We define the input cubes for each valid sequence ID s ∈ Svalid as follows:

Qs :=
{
X ∈ [0, 1]d×N : X ∈ QB, s.t. s = s′(B)

}
. (43)

Analogous to Eq. 30, we have

max
s∈Svalid,X∈Qs,X′∈Qs−1

∥X −X ′∥2 ≤

{
δ
√
Nd if Bd,N ∈ {1, 2, . . . , δ−1 − 1},√
Nd if Bd,N = 0.

(44)

To implement this, we slightly modified TF′(2). By Corollary A.7, there exists a Transformer block TF(2) : R8×N → R8×N

with two heads, head size s = 1, and width size q = 5, and two affine linear maps L(2)
1 : R2 → R8 and L(2)

2 : R8 → R s.t.

L(2)
2 ◦

(
TF(2)

)◦N
◦L(2)

1

([
z⊤

Zd,:

])
= (2s(z)−Zd,N ) · 1⊤

N . (45)
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Step 3. Token-wise Function Value Mapping. In Steps 1 and 2, the network receives a token ID and extended sequence
ID as input for each token, collectively forming a contextual token ID. With 2δ−(N+1)d−1 loops, the network approximately
maps contextual token IDs to the output token embeddings of the target function.

To construct contextual token IDs, we define a bijective affine linear mapping L(3)
0 : N2 → N as follows:

L(3)
0 (z, s) := 2zδ−Nd + s, (46)

where z represents a token ID, defined in Eq. 26, and s represents an sequence ID. Recall that z ∈ {0, 1, . . . , δ−d − 1} and
sequence IDs are less than 2δ−Nd, so informally, it’s as if we are adding another digit, z, as the most significant digit in a
δ−d-based system. Define the set of contextual token IDs as:

Kvalid :=

{
L(3)
0

(
z, s) : z ∈ {0, 1, 2, . . . , δ−d − 1}, s ∈ Svalid

}
. (47)

and dummy contextual token ID as

Kdummy :=

{
L(3)
0

(
z, s) : z ∈ {0, 1, 2, . . . , δ−d − 1}, s ∈ Sdummy

}
. (48)

From Eq. 41 and Eq. 42, the following holds:

Kvalid ∩ Kdummy = ∅, (49)

K := Kvalid ∪ Kdummy = {0, 1, . . . , 2δ−(N+1)d − 1}. (50)

We now define the target output embedding for each ID. Let yk ∈ Rd denote the contextual token embedding corresponding
to each contextual token ID, defined as follows:

yk :=

{
f̄(X̂B):,n s.t. L(3)

0

(
zn, s

′(B)
)
= k for k ∈ Kvalid,

lin interp
(
ynear-(k,Kvalid),ynear+(k,Kvalid), k − near-(k,Kvalid), δ

−1
)

for k ∈ Kdummy,
(51)

where the nearest functions are defined as

near+(a,S) := argmin
b∈S,b>a

|a− b| , near-(a,S) := argmin
b∈S,b<a

|a− b| , (52)

and a function lin interp is defined by

lin interp(a, b, t, n) := a+
t

n
(b− a). (53)

The illustration of y is shown in Fig. 2.

Thanks to our design of K, the error between neighboring contextual token embeddings can be bounded as follows. There
are two types of error: the variation induced by contextual perturbation and the variation induced by token perturbation, or
both. The examples of each pattern are shown in Fig. 2, such that

(1) I draft papers. ; I write papers. (perturbation of token)

(2) He writes papers. ; Mozart writes music. (perturbation of context)

(3) He drinks coffee. ; He drinks coffee. (perturbation of both token and context)

Recall that there are two types of adjacency that generally have small errors, with a few instances causing large errors when
‘carryover’ occurs, as stated in Eq. 30 and Eq. 44. The key point of our design of K is that when a large variation occurs,
linear interpolation inevitably takes place to smooth out the steep changes between adjacent indices.
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Thus for token ID in Eq. 30, if a small variation of token ID, with same context, in input space, δ
√
d, occurs, the error

ek = ∥yk − yk−1∥p in the output contextual token embedding can be bounded by the modulus of token continuity as

ek ≤ ωtok
f (δ
√
d). (54)

In contrast, if a large variation in token input space,
√
d, occurs in the token input space, the error can be bounded using

linear interpolation with δ−1 intermediate points as:

ek ≤ δωtok
f (
√
d). (55)

The same holds for sequence IDs in Eq. 44. That is, since the variation in context is bounded by sequence variation, the
difference in adjacent contextual token IDs caused by perturbations in context is bounded as

ek ≤ ωcont
f (δ

√
Nd), or ek ≤ δωcont

f (
√
Nd). (56)

for k = 0, 1, . . . ,K − 1.

Since that
ωcont, tok
f (n · t) ≤ n · ωcont, tok

f (t) (57)

for any n ∈ N and t ∈ [0,∞), with δ < 1, it follows that (note that it holds with opposite inequality due to δ < 1)

δωcont
f (
√
Nd) ≤ ωcont

f (δ
√
Nd) and δωcont

f (
√
Nd) ≤ ωcont

f (δ
√
Nd). (58)

Considering the maximum difference when both token and context perturbations occur, we have, with the triangle inequality,

max
k′∈K

∥yk′ − yk′−1∥p ≤ δ
(
ωtok
f (
√
d) + ωcont

f (
√
Nd)

)
≤ ωtok

f (δ
√
d) + ωcont

f (δ
√
Nd). (59)

Generally, the following inequality holds, for any vector x ∈ Rd,

max
i
|xi| ≤ ∥x∥p ≤ d

1
p max

i
|xi|. (60)

Substituting x = yk − yk−1 into the above inequality results in

max
i
|(yk − yk−1)i| ≤ ∥yk − yk−1∥p. (61)

By Lemma 4.1, there exists a feed-forward layer FF(3) : R12d → R12d of width size 18d and two affine linear maps
L(3)
1 : R→ R12d and L(3)

2 : R12d → Rd such that

|
(
L(3)
2 ◦ (id + FF(3))

(K−1)
◦ L(3)

1 (k)− yk

)
i
| ≤ max

k′∈K
|(yk′ − yk′−1)i|, (62)

for i = 1, 2, . . . , d and k = 0, 1, . . . ,K − 1, where K = 2δ−(N+1)d.

Let ỹk ∈ Rd be defined as ỹk := L(3)
2 ◦ (id + FF(3))

(K−1)
◦ L(3)(k). Then we have

|(ỹk − yk)i| ≤ max
k′∈K

|(yk′ − yk′−1)i| (63)

≤ max
k′∈K

∥yk′ − yk′−1∥p because of Eq. 61 (64)

≤ ωtok
f (δ
√
d) + ωcont

f (δ
√
Nd) because of Eq. 59, (65)

for i = 1, 2, . . . , d and k = 0, 1, . . . ,K − 1.
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Concatenated into a Single Transformer Layer Define the input space for each step as:

X(0) ∈ R1×N , X(1) ∈ R5d×N , X(2) ∈ R8×N , X(3) ∈ R12d×N , (66)

where X(0) act as counter. Define Attn : R(17d+9)×N → R(17d+9)×N with two heads, head size s = 1, and width size
q = 5 via

Attn




X(0)

X(1)

X(2)

X(3)


 =


01×N

05d×N

Attn(2)(X(2))
012d×N

 , (67)

where Attn(2) denote the self-attention layer of TF(2) and 0m×N denote m×N zero matrix. Let

x0 ∈ R, x1 ∈ R5d, x2 ∈ R8, x3 ∈ R12d

denote the token-wise input space. Define FF : R17d+9 → R17d+9, with the impulse function in Proposition A.4, as:

FF




x0

x1

x2

x3


 =




1

FF(1)(x1)

FF(2)(x2) + impulse(δ−1−1)

(
L′(x1), x0

)
FF(3)(x3) + impulse(δ−1+N)

(
L′′(x2), x0

)

 (68)

where FF(2) denotes the feed-forward layer of TF(2), two linear maps L′ : R5d → R8 and L′′ : R8 → R12d are defined
respectively as follows:

L′(x) := L(2)
1

([
L(1)
2 (x)
x5d

])
(69)

L′′(x) := L(3)
1

(
L(3)
0

(
(x2)1,L(2)

2 (x2)
))

(70)

and impulse refers to the dimension-wise application of impulse function. Note that x0 serves the role of a counter.

Each step should always be zero or set to an appropriate initial value at the beginning of the corresponding loop iteration.
If the bias term causes it to deviate from this value before the iteration starts, the offset can be subtracted in advance to
compensate.

As shown in Proposition A.4, the impulse function requires 2 ReLU functions per dimension and 2 ReLU functions for the
corresponding loop iteration. Since the total dimension of x2 and x3 is 12d+ 8, this results in an additional width size of
24d+ 16 + 4 = 24d+ 20. Since the width size is 7d for FF(1), 5 for TF(2), and 18d for FF(3), resulting in a total width
size of 49d+ 25.

Define two affine linear maps L1 : Rd → R17d+9 and L2 : R17d+9 → Rd via

L1(x) = (0,L(1)
1 (x),012d+8

⊤)
⊤
, L2

(
(x0,x1,x2,x3)

⊤)
= L(3)

2 (x3). (71)

Thus, the network, consisting of three steps, is defined as:

f̃(X) := L2 ◦ TF◦r ◦L1(X) (72)

where r = δ−1 +N + 2δ−(N+1)d and TF : R(17d+9)×N → R(17d+9)×N consists of Attn and FF.

Deriving Approximation Error Generally, the following inequality holds.

n∑
i=1

xp
i ≤

(
n∑

i=1

xi

)p

for xi ≥ 0 and p ≥ 1. (73)

Substituting xi = ∥f̄(X)− f(X)∥p into the above inequality results in

∥f̄ − f∥Lp =
(∫ ∥∥f̄(X)− f(X)

∥∥p
p
dX
)1/p

≤
∫
∥f̄(X)− f(X)∥pdX. (74)
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Also, generally, the following inequality holds, for x ∈ Rm,

max
i
|xi| ≤ ∥x∥p ≤ m

1
p max

i
|xi|. (75)

With the triangle inequality, we can bound the approximation error as

∥f̃ − f∥Lp ≤
∫
∥f̃(X)− f(X)∥pdX because of Eq. 74 (76)

≤
∫
∥f̃(X)− f̄(X)∥pdX +

∫
∥f̄(X)− f(X)∥pdX (77)

≤ (Nd)
1
p max

k′∈K
|ỹk′ − yk′ |+

∫
∥f̄(X)− f(X)∥pdX +O(N2/pδd/p) because of Eq. 75 (78)

≤ (Nd)
1
p max

k′∈K
|ỹk′ − yk′ |+ ωf (δ

√
Nd) +O(N2/pδd/p) because of Eq. 22 (79)

≤ (Nd)
1
p
(
ωtok
f (δ
√
d) + ωcont

f (δ
√
Nd)

)
+ ωf (δ

√
Nd) +O(N2/pδd/p) because of Eq. 65. (80)

Then, δ is expressed in terms of the number of loops as:

r = δ−1 +N + 2δ−(N+1)d ⇔ δ−1 + 2δ−(N+1)d = r −N (81)

⇒ δ−1 · 2δ−(N+1)d ≥ r −N (82)

⇔ δ ≤ (
r −N

2
)
−1/
(
(N+1)d+1

)
. (83)

Thus, we have completed the proof of Theorem A.1.

A.2. Proof of Theorem 3.6

Extending the construction in Theorem A.1, we then account for the boundedness of the weights and bit complexity.

Proof. Due to the use of bounded weights to approximate discontinuous functions, there inevitably exist regions where
quantization errors arise in Step 1 of our construction. We define these regions, for 0 < ϵ < δ, as

Ω([0, 1]d×N , δ−1, ϵ) :=

X ∈ [0, 1]d×N : ∃ i, n such that Xi,n ∈
δ−1⋃
k=1

(kδ − ϵ, kδ)

 . (84)

That is, Ω consists of all inputs for which at least one coordinate Xi,n lies within an ϵ-neighborhood of a quantization
discontinuity point kδ for some k ∈ {1, . . . , δ−1}.

Outside the region Ω, the quantization function is piecewise constant and can be precisely approximated using bounded
weights. By the construction in Lemma A.5, the maximum magnitude of weights required is proportional to 1/ϵ. We now
estimate the Lebesgue measure of Ω. For each coordinate (i, n), the set

δ−1⋃
k=1

(kδ − ϵ, kδ)

is a union of δ−1 intervals, each of length ϵ, so the total measure of this set is δ−1ϵ. Since the input X has d×N coordinates,
and since we consider the event that at least one coordinate lies in a bad region, we apply the union bound for measures to
obtain meas(Ω) ≤ dN × δ−1ϵ. Substituting the bound on meas(Ω), and using the fact that the maximum magnitude of the
weights M satisfies M = 1/ϵ, we have meas(Ω) ≤ dN × δ−1M−1. Consequently, the Lp-norm of the quantization error
is bounded by O

((
(Mδ)−1dN

)1/p)
.

When replacing hardmax with softmax, it is required that the error in step 2 remains sufficiently small so that it does not
affect step 3. Specifically, a step function is used, in Lemma 4.1 for step 3, to map the index, defined for ϵ > 0 as

stepϵ(x) =

{
1 if x ≥ 0,

0 if x < 0− ϵ,
(85)
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The construction of Lemma 4.1 use this function for indices k ∈ K obtained from step 2 as stepϵ(k−i) for i = 0, 1 · · ·K−1.
Thus, the error in step 2 does not affect step 3 if the perturbed indices, denoted by k̃, satisfies

stepϵ(k̃ + 1− i) = stepϵ(k − i) for all i = 0, 1 · · ·K − 1. (86)

To estimate the error introduced by replacing hardmax with softmax in step 2, we revisit the construction of Lemma A.6.
Specifically, we extract and reformulate the key components necessary for this estimation. In particular, we consider a
simplified form of the attention computation in Eq. 135, denoted by gH : RN × RN → R, which is defined as

gH(v,a) := vargmaxi ai
(87)

When hardmax in Eq. 135 is replaced with softmax, the function can be expressed as

gS(v,a, λ) :=

N∑
i=1

exp(λai)∑N
j=1 exp(λaj)

vi, (88)

where λ > 0. Note that limλ→∞ gS(v,a, λ) = gH(v,a). According to the construction of Lemma A.6, such as Eq. 147,
the domains, denoted by v ∈ Lδ and a ∈ Aδ , are restricted on

Lδ := {z ∈ {0, 1, . . . , δ−d − 1}N | zi ̸= zj for all i ̸= j}, (89)

Aδ :=
{
a ∈ RN

∣∣ ai ∈ {0, 1, . . . , δ−d − 1} or ai < 0, if ai,aj ≥ 0, then ai ̸= aj for all i ̸= j, ∃i s.t. ai > 0
}
.

(90)

We impose the following two additional assumptions on v ∈ Lδ and a ∈ Aδ

n = arg max
1≤i≤N

ai, vn = max
1≤i≤N

vi. (91)

Under these assumptions, for any finite λ > 0 we have

0 < gS(v,a, λ) < gH(v,a) (92)

and

gS(v,a, λ) ≥
exp(λan)∑N
j=1 exp(λaj)

vn, (93)

Thus we have

gH(v,a)− gS(v,a, λ) = vn − gS(v,a, λ) (94)

≤
∑N

j=1 exp(λaj)− exp(λan)∑N
j=1 exp(λaj)

vn (95)

=

∑
j ̸=n exp(λaj)∑

j ̸=n exp(λaj) + exp(λan)
vn (96)

≤
∑

j ̸=n exp(λaj)

exp(λan)
vn (97)

= vn

∑
j ̸=n

exp
(
λ(aj − an)

)
(98)

≤ vnN exp(−λ) because aj − an ≤ −1 (99)

≤ δ−dN exp(−λ). (100)

Thus, if we aim to bound the error within ϵ > 0, λ must satisfies

δ−dN exp(−λ) < ϵ⇔ λ > log
(δ−dN

ϵ

)
. (101)
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From Eq. 46, the error of contextual ID k − k̃ can be bounded in terms of the error of ϵ = gH(v,a)− gS(v,a, λ) as:

k − k̃ ≤ (u(δ−d))
⊤(ϵ1N ) ≤ ϵNδ−(N−1)d (102)

where u(δ−d) := (δ−(N−1)d, . . . , δ−d, 1)⊤ and 1N ∈ RN denotes the all-ones vector.

Since Eq. 86 holds if 0 < k − k̃ < 1, it follows that

λ > log
((

δ−dN
)
· (Nδ−(N−1)d)

)
⇒ ϵNδ−(N−1)d < 1, (103)

and Eq. 86 holds. Thus, the bit complexity of λ can be bounded by

O
(
log log(δ−NdN2)

)
, (104)

while ensuring that no error occurs in step 3 when using the softmax function instead of the hardmax function.

The bit complexity at each step of the computation can be analyzed as follows. In Step 1 and Step 2, the bit complexity is
bounded by O(log δ−1), reflecting the cost of maintaining precision within error δ. In contrast, Step 3 incurs a significantly
higher cost, with a bit complexity bounded by O(2δ−(N+1)d), due to the need to evaluate higher-order terms accurately.

As a result, the overall bit complexity of the Looped Transformer is dominated by Step 3 and can be bounded by

O(max{log log(δ−NdN2), 2δ−(N+1)d}) = O(δ−(N+1)d) (δ → 0). (105)

With Theorem A.1, the proof of Theorem 3.6 is completed.

A.3. Approximating Discontinuous Piecewise Functions

We define three utility functions using ReLU activations. Since the target function is discontinuous, there are negligible
‘trifling regions’ introduced by the bounded weights of the networks.

Proposition A.2 (Rectangular function). Given t1, t2 ∈ R, there exist four ReLU functions that can approximate the
following function, denote by rectt : R→ R, for 0 < ϵ < t2 − t1, such that:

rect(t1,t2,ϵ)(x) =

{
1 if x ∈ [t1, t2 − ϵ],

0 if x ∈ (−∞, t1 − ϵ] ∪ [t2,∞),
(106)

which is represented by

rect(t1,t2,ϵ)(x) = σR

(
x−t1+ϵ

ϵ

)
− σR

(
x−t1

ϵ

)
+ σR

(−x+t2
ϵ

)
− σR

(−x+t2−ϵ
ϵ

)
− 1. (107)

Note that maximum magnitude of the weights is 1/ϵ and ‘trifling regions’ are (t− ϵ, t) ∪ (t+ 1− ϵ, t− 1).

Proposition A.3 (Step function). There exist four ReLU functions that can approximate the following function, denote by
step : R→ R, for ϵ > 0, such that:

stepϵ(x) =

{
1 if x ≥ 0,

0 if x < 0− ϵ,
(108)

which is represented via
stepϵ(x) = σR

(
x
ϵ + 1

)
− σR

(
x
ϵ

)
. (109)

Proposition A.4 (Impulse function). Given θ ∈ N, there exist four ReLU functions that can approximate the following
function, denote by impulseθ : R× N→ R for x ∈ [−M,M ] and t ∈ N, such that:

impulseθ(x, t) =

{
x if t = θ,

0 otherwise.
(110)

which is represented via

impulseθ(x, t) :=σR

(
x+ 2M(t− θ + 1/2)

)
− 2MσR(t− θ + 1/2)

− σR

(
x+ 2M(t− θ − 1/2)

)
+ 2MσR(t− θ − 1/2).

(111)
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Figure 3. An illustration of hk(x).

A.4. Step 1. Token-wise Quantization

We aim to construct quantization function g : [0, 1]d → {0, 1, . . . , δ−1}d, for ϵ < δ, for each dimension as

g(x) = (g(x1), g(x2), . . . , g(xd))
⊤
, where g(x) = k if x ∈ [kδ, (k + 1)δ − ϵ] for k = 0, . . . , δ−1 − 1. (112)

This function g : R→ R can be expressed as

g(x) =

n−1∑
i=0

i · rect(iδ,(i+1)δ),ϵ)(x) (113)

for any n ∈ N and x ∈ R. The illustration of hk(x) := k · rect(kδ,(k+1)δ))(x) is shown in Fig 3. The key idea is that
hk(x) can be represented with a single function h in the form of h

(
kx, k2, k

)
. Lemma A.5 implement h

(
kx, k2, k

)
with a

feed-forward layer and perform the summation through a skip connection.

Lemma A.5. Given any δ−1 ∈ N and x ∈ Rd, there exists a feed-forward layer FF : R5d → R5d of width size q = 7d
with the maximum magnitude of the weights 1/ϵ, and two affine linear maps L1 : Rd → R5d and L2 : R5d → Rd s.t.(

L2 ◦
(
id + FF

)◦(δ−1−1) ◦ L1(x)
)
i
= k if x ∈ [kδ, (k + 1)δ − ϵ], for k = 0, . . . , δ−1 − 1 (114)

for any i = 1, 2, . . . , d.

Proof. On the basis of Proposition A.2, define function hk(x) = k · rectk(x) via

hk(x) := σR

(
k
ϵ (x− kδ + ϵ)

)
− σR

(
k
ϵ (x− kδ)

)
+ σR

(
k
ϵ (−x+ kδ + 1)

)
− σR

(
k
ϵ (−x+ kδ + 1− ϵ)

)
− k,

(115)

which satisfies

hk(x) =

{
k if x ∈ [kδ, (k + 1)δ − ϵ],

0 if x ∈ (−∞, kδ − ϵ] ∪ [(k + 1)δ,∞),
(116)

For any x ∈ [kδ, (k + 1)δ − ϵ] for k = 0, 1, . . . , δ−1 − 1, we have

δ−1−1∑
i=0

hi(x) = hk(x) = k. (117)

Define function h : R3 → R to represent hk via

h(kx, k2, k) := σR

(
kx
ϵ −

k2δ
ϵ + k

)
− σR

(
kx
ϵ −

k2δ
ϵ

)
+ σR

(
− kx

ϵ + k2δ
ϵ + k

ϵ

)
− σR

(
− kx

ϵ + k2δ
ϵ + k 1−ϵ

ϵ )− σR(k) = hk(x).
(118)
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Define ξk as

ξk =
(
kx, k2, k, x,

k−1∑
i=0

hi(x)
)⊤

. (119)

Then, construct a feed-forward layer FF : R5 → R5 with a skip connection such that(
id + FF

)
(ξk) =

(
id + FF

)(
(kx, k2, k, x,

k−1∑
i=0

hi(x))
⊤
)

(120)

=
(
(k + 1)x, (k + 1)2, k + 1, x,

k∑
i=0

hi(x)
)⊤

(121)

= ξk+1. (122)

via

(
id + FF

)



kx
k2

k
x∑k−1

i=0 hi(x)


 =


kx
k2

k
x∑k−1

i=0 hi(x)

+


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 −1 1 −1 −1

σR





0 0 0 1 0
0 0 2 0 0
1
ϵ − δ

ϵ 1 0 0
1
ϵ − δ

ϵ 0 0 0
− 1

ϵ
δ
ϵ

1
ϵ 0 0

− 1
ϵ

δ
ϵ

1−ϵ
ϵ 0 0

0 0 1 0 0




kx
k2

k
x∑k−1

i=0 hi(x)




+


0
1
1
0
0

 (123)

=


kx
k2

k
x∑k−1

i=0 hi(x)

+


x

2k + 1
1
0

hk(x)

 (124)

=


kx+ x

k2 + 2k + 1
k + 1
x∑k−1

i=0 hi(x) + hk(x)

 (125)

=


(k + 1)x
(k + 1)2

k + 1
x∑k

i=0 hi(x)

 . (126)

Then, define two affine linear maps L1 : R1 → R5 and L2 : R5 → R1 by

L1(x) := (0, 0, 0, x, 0), L2(x1, x2, x3, x4, x5) := x5. (127)

Thus, we have

L2 ◦
(
id + FF

)◦(δ−1−1) ◦ L1(x) = L2 ◦
(
id + FF

)◦(δ−1−1)
(ξ0) (128)

= L2(ξδ−1) (129)

=

δ−1−1∑
i=0

hi(x). (130)

For d-dimensional inputs, we need d-times more parameters.
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A.5. Step 2. Contextual Mapping

The network takes token IDs as inputs, denoted by z ∈ {0, 1, . . . , δ−d − 1}N . We only consider cases where all token IDs
are distinct. The network maps token IDs into a sequence ID using the inner product with the vector u ∈ RN defined as
u := (δ−(N−1)d, δ−(N−2)d, . . . , δ−d, 1)⊤ i.e.

s(z) := u⊤z. (131)

Due to permutation equivariance, we can assume without loss of generality that elements of z ∈ Lδ are ordered, i.e.,
z1 > z2 > · · · > zN . Then the map s satisfies

|u⊤z − u⊤z′| > 1, if z ̸= z′. (132)

In other words, s represent z in δ−d-base system. The network computes u⊤z in the form of
∑N

i=1 δ
−(N−i)dzi. The

network computes s(k) :=
∑k

i=1 δ
−(k−i)dzi in each loop, and after N -loops, it outputs s(N) = u⊤z. To implement this,

the self-attention layer selects zk in the k-th loop iteration. We design the key, query, and value weights to select the
maximum token ID. The feed-forward layer post-processes the token ID in such a way that if it is selected, then it is replaced
with a negative value to prevent selection in subsequent iterations, i.e., the post-processed token IDs for the k-th loop are

z
(k)
i = z s.t.

{
z < 0 if i ≤ k,

z = zi otherwise.

We focus on self-attention layers that employ the hardmax function.

Lemma A.6. Consider the set of distinct indices corresponding to the d-dimensional δ-discretized regions of N tokens, i.e.

Lδ := {z ∈ {0, 1, . . . , δ−d − 1}N | zi ̸= zj for all i ̸= j}. (133)

There exists a function s : RN → R composed of Transformer block TF : R5×N → R5×N with the hardmax function,
single head, head size s = 1, and width size q = 3, and two affine linear maps L1 : R→ R5 and L2 : R5 → R, such that

L2 ◦ TF◦N ◦L1(z
⊤) = (u⊤z) · 1⊤

N ,

for any z ∈ Lδ , where u := (δ−(N−1)d, δ−(N−2)d, . . . , δ−d, 1)⊤.

Proof. Due to permutation equivariance, we can assume without loss of generality that elements of z ∈ Lδ are ordered, i.e.,
z1 > z2 > · · · > zN . Define u ∈ RN as u := (δ−(N−1)d, . . . , δ−d, 1)⊤, which satisfy

|u⊤z − u⊤z′| > 1, if z ̸= z′ for any z, z′ ∈ Lδ. (134)

We construct Transformer block TF : R5×N → R5×N with single head and head size s = 1 such that, for any z ∈ Lδ ,

TF◦N




z⊤

z⊤

1⊤
N

0⊤
N

0⊤
N


 =


0⊤
N

0⊤
N

1⊤
N

0⊤
N

(u⊤z) · 1⊤
N

 . (135)

where 0N ,1N ∈ RN denote the all-zero and all-one vectors, respectively. For z ∈ Lδ , define two series for k = 0, · · ·N as:

z
(k)
i := z s.t.

{
z < 0 if i ≤ k,

z = zi otherwise,
for i = 1, . . . , N, ∈ RN , (136)

s(k) :=

k∑
i=0

δ−(k−i)dzi ∈ R. (137)
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While z(k) is not uniquely determined, any vector that satisfies the conditions is accepted as z(k). The series s(k) satisfies

s(k+1) =

k+1∑
i=1

δ−(k+1−i)dzi (138)

=
( k+1−1∑

i=1

δ−(k+1−i)dzi
)
+ zk (139)

=
( k∑
i=0

δ−d · δ−(k−i)dzi
)
+ zk+1 (140)

= δ−d · sk + zk+1, (141)

for k = 0, . . . , N − 1. Note that s(N) = u⊤z. Define a single-head self-attention Attn : R5×N → R5×N such that

Attn




v⊤

a⊤

1⊤
N

∗⊤
∗⊤


 =


0⊤
N

0⊤
N

0⊤
N

(vargmaxj aj ) · 1⊤
N

0⊤
N

 , (142)

where v,a ∈ RN , and ∗ ∈ RN denotes arbitrary vectors, via the weight parameters

WO =


0
0
0
1
0

 , WV =
[
1 0 0 0 0

]
, WK =

[
0 1 0 0 0

]
, WQ =

[
0 0 1 0 0

]
. (143)

Define FF : R5 → R5 of width size q = 3 via:

FF




x1

x2

x3

x4

x5


 =


0 0 0
−M 0 0
0 0 0
0 −1 0
0 1 δ−d − 1

σR


0 1 0 −1 0
0 0 0 1 0
0 0 0 0 1




x1

x2

x3

x4

x5

+


0
ϵ
0
0
0


 (144)

=


0

−MσR(x2 − x4 + ϵ)
0

−σR(x4)
(δ−d − 1)σR(x5) + σR(x4)

 , (145)

where 0 < ϵ < 1 and M > δ−d−1
ϵ .

For x2 ∈ {0, 1, . . . , δ−d − 1} ∪ {x | x ≤ 0} and x4 ∈ {0, 1, . . . , δ−d − 1} with x4 ≥ x2, we have

x2 −MσR(x2 − x4 + ϵ) = z, s.t.

{
z = x1 if x4 > x2,

z < 0 if x4 = x2.
(146)

This post-processes the token ID in such a way that if it is selected, then it is replaced with a negative value i.e.

z
(k)
i −MσR(z

(k)
i − zk + ϵ) = z s.t.

{
z < 0 if i ≤ k + 1,

z = zi otherwise,

= z
(k+1)
i for i = 1, . . . , N.

(147)
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We confirm that the Transformer block TF : R5×N → R5×N , composed of Attn and FF, satisfies, for k = 0, . . . , N − 1,

TF




z⊤

(z(k))⊤

1⊤
n

0⊤
n

(s(k))⊤


 = (id + FF) ◦ (id + Attn)




z⊤

(z(k))⊤

1⊤
n

0⊤
n

(s(k))⊤


 (148)

= (id + FF)




z⊤

(z(k))⊤

1⊤
n

zk+1 · 1⊤
N

(s(k))⊤


 (149)

=


z⊤

(z(k))⊤

1⊤
n

zk+1 · 1⊤
N

(s(k))1⊤
N

+


0⊤
n

−MσR

(
(z(k))⊤ − zk · 1⊤

N + ϵ1⊤
N

)
0⊤
n

−zk+1 · 1⊤
N

(δ−d − 1)(s(k))1⊤
N + σR(zk+11

⊤
N )

 (150)

=


z⊤

(z(k+1))⊤

1⊤
n

0⊤
n

δ−d(s(k))1⊤
N + zk+11

⊤
N

 because of Eq. 147 (151)

=


z⊤

(z(k+1))⊤

1⊤
n

0⊤
n

(s(k+1))1⊤
N

 because of Eq. 141. (152)

Define two affine linear maps L1 : R→ R5 and L2 : R5 → R via L1(x) := (x, x, 1, 0, 0) and L2(x1, x2, x3, x4, x5) := x5

respectively. Thus, we have

L2 ◦ TF◦N ◦L1(z
⊤) = (u⊤z) · 1⊤

N .

Combining the sequence ID with token ID, the network computes contextual mapping.

Corollary A.7. There exists a Transformer block TF2 : R8×N → R8×N with the hardmax function, two heads, head size
s = 1, and width size q = 5, and two affine linear maps L1 : R2 → R8 and L2 : R8 → R s.t.

L2 ◦ TF(2)◦N ◦L1

([
z⊤

Zd,:

])
=
(
2u⊤z −Zd,N

)
· 1⊤

N for any z ∈ Lδ .

Proof. Define a self-attention Attn : R8×N → R8×N such that

Attn





v⊤

a⊤

1⊤
N

∗⊤
∗⊤
Zd,:

∗⊤
∗⊤




=



0⊤
N

0⊤
N

0⊤
N

(vargmaxj aj
) · 1⊤

N

0⊤
N

0⊤
N

Zd,N · 1⊤
N

0⊤
N


, (153)
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where v,a ∈ RN , and ∗ ∈ RN denotes arbitrary vectors, via the weight parameters

W 1
O =



0
0
0
1
0
0
0
0


, W 1

V =
[
1 0 . . . 0

]
, W 1

K =
[
0 1 0 . . . 0

]
, W 1

Q =
[
0 0 1 0 . . . 0

]

(154)
and

W 2
O =



0
0
0
0
0
0
1
0


, W 2

V ,W
2
K =

[
0 . . . 0 1 0 0

]
, W 2

Q =
[
0 0 1 0 . . . 0

]
, (155)

where . . . denotes a sequence of zeros.

Define FF : R8 → R8 of width size q = 5 via:

FF





x1

x2

x3

x4

x5

x6

x7

x8




=



0 0 0 0 0
−M 0 0 0 0
0 0 0 0 0
0 −1 0 0 0
0 1 δ−d − 1 −1 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 1 −1


σR




0 1 0 −1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1





x1

x2

x3

x4

x5

x6

x7

x8


+



0
ϵ
0
0
0
0
0
0
0




(156)

=



0
−MσR(x2 − x4 + ϵ)

0
−σR(x4)

(δ−d − 1)σR(x5) + σR(x4)
0
0

−σR(x7)
σR(x7)− σR(x8)


, (157)

where 0 < ϵ < 1 and M > δ−d−1
ϵ . Then, we define two affine linear maps L1 : R2 → R8 and L2 : R8 → R respectively:

L1(x1, x2) := (x1, x1, 1, 0, 0, x2, 0, 0), L2(x1, x2, x3, x4, x5, x6, x7, x8) := 2x5 − x6 (158)

From Lemma A.6, the corollary holds for this construction.

A.6. Step 3. Function Value Mapping with Bit Extraction

We employ a bit extraction technique (Bartlett et al., 1998) , as used (Zhang et al., 2023) for weight-tied ReLU networks, to
approximately memorize the label set. Given K ∈ N input indices k = 1, 2, . . . ,K with associated values y1, y2, . . . , yK ∈
R, the network approximately memorizes the differences yi − yi−1 using their base-2 representation. Since the binary
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representation is limited to {0, 1}, the differences yi − yi−1 must be rescaled by a factor ϵ := maxi |yi − yi−1| as

ai =
⌊yi
ϵ

⌋
, (159)

where ⌊x⌋ := max{n : n ≤ x, n ∈ Z}. Then, the difference bi = ai−ai−1 satisfies bi ∈ {−1, 0, 1} and can be represented
using two binary values ci, di ∈ {0, 1} as follows:

bi = ci − di, (160)

and we have

ak = a0 +

k∑
i=0

bi = a0 +

k∑
i=0

ci −
k∑

i=0

di for k = 0, 1, . . . , n− 1. (161)

Lemma A.9 and Lemma 4.1 show that
∑k

i=0 ci and
∑k

i=0 di can be realized by composition of single feed-forward layer.
Thus, the network can approximate yi using ϵai, denoted as ỹi, with the following accuracy:

|ỹi − yi| = |ϵ
⌊yi
ϵ

⌋
− ϵ

yi
ϵ
| = ϵ|

⌊yi
ϵ

⌋
− yi

ϵ
| ≤ ϵ. (162)

For a d-dimensional input-output pair, we construct the networks for each dimension i.e.

ỹ = (ỹ1, ỹ2, . . . , ỹd) (163)

The basic strategy of our lemma and proof follows Lemma D.1 from Zhang et al. (2023), as shown below and Proposition
3.2. However, their result cannot be directly applied here, as it requires depth-2 networks.

Proposition A.8 (Lemma D.1 in Zhang et al. (2023)). Given any r ∈ N+, there exists a function FF : R3d → R3d with width
8 and depth 2, utilizing two affine linear maps L1 : R2 → R5 and L2 : R5 → R, such that for any θ1, θ2, . . . , θr ∈ {0, 1},
the following holds:

L2 ◦ FF◦r ◦ L1

(
k, bin 0.θ1θ2 · · · θr

)
=

k∑
ℓ=1

θℓ for k = 1, 2, . . . , r, (164)

where bin0.θ1θ2 · · · θr denote the binary representation of θ =
∑r

l=1 θl2
−l.

We found that the loop unrolling technique allows us to reduce the number of layers from 2 to 1 by replacing
xk+1 = ReLU(ReLU(x′k)) with (xk+1, x′k) = ReLU(x′k, xk). Although our method makes the weights dependent
on θ1, θ2, . . . , θr, this does not present an issue for our construction in function approximation. Specifically, θ1, θ2, . . . , θr
is fixed for each target function, and the role of the network is to learn the weights tailored to that single function.

Lemma A.9. Given θ1, θ2, . . . , θr ∈ {0, 1} for some r ∈ N+, there exists a feed-forward layer FF : R6 → R6 of width
size 9 and two affine linear maps L1 : R→ R6 and L2 : R6 → R s.t.

L2 ◦ (id + FF)
◦r ◦ L1

(
k) =

k∑
l=1

θl for k = 1, 2, . . . , r, (165)

where the bit complexity is bounded by O(r).

Proof. From Proposition A.3, we have a function stepϵ(x), for ϵ > 0, defined by

stepϵ(x) = σR

(
x
ϵ + 1

)
− σR

(
x
ϵ

)
, (166)

as shown in Figure 4, and it satisfies

stepϵ(x) =

{
1 if x ≥ 0,

0 if x ≤ 0− ϵ.
(167)
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Figure 4. An illustration of stepϵ(x).

Define βl for l = 0, 1, . . . , r as
βl = bin0.θl · · · θr, (168)

where bin0.θl · · · θr denote the binary representation of θ =
∑r

i=l θi2
−i and β0 := 0. If we set ϵ < 2−r, it follows that

θl = stepϵ(bin0.θl · · · θr − 1
2 ) (169)

= stepϵ(βl − 1
2 ), (170)

implying, for l = 0, 1, . . . , r − 1,

βl+1 = 2βl − θl (171)

= 2βl − stepϵ
(
βl − 1

2

)
. (172)

For all l = 1, . . . , r, since the product xy satisfies

xy = max{0, x+ y − 1} (173)
= σR(x+ y − 1), (174)

for x, y ∈ {0, 1}, it follows that

k∑
l=1

θl =

k∑
l=1

θl +

r∑
l=k+1

0 (175)

=

r∑
l=1

θl · stepϵ(k − l) (176)

=

r∑
l=1

σR

(
θl + stepϵ(k − l)− 1

)
(177)

=

r∑
l=1

σR

(
stepϵ(βl − 1

2 ) + stepϵ(k − l)− 1
)
. (178)

To compute the right-hand side, we require two nested ReLU functions. By employing loop unrolling, we precompute
T (βl − 1

2 ) and T (k − l) in the previous iterations, reducing the requirement to a single layer.

Define ξl for l = 0, 1, . . . , r − 1 as

ξl =
(
k − l, βl, βl+1, stepϵ(βl −

1

2
), stepϵ(k − l), sum(l)

)⊤
,

where sum(l) :=

l∑
i=1

σR

(
stepϵ(βi − 1

2 ) + stepϵ(k − i)− 1
)
.

(179)

Note that we have βl+1 in the l-th loop to precompute stepϵ(βl+1 − 1
2 ) and stepϵ

(
(k − (l + 1)

)
for the (l + 1)-th loop.
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Define FF : R6 → R6 with a width size of 9 such that

(
id + FF

)
(ξl) =

(
id + FF

)



k − l
βl

βl+1

stepϵ(βl − 1
2 )

stepϵ(k − l)
sum(l)



 (180)

=


k − l
βl

βl+1

stepϵ(βl − 1
2 )

stepϵ(k − l)
sum(l)

+


0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0
0 0 1 −1 1 0 0 0 0
0 −1 0 1 −1 −1 0 0 0
0 0 0 0 0 −1 −1 1 0
0 0 0 0 0 0 0 0 1



σR





0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1/ϵ 0 0 0
0 0 1/ϵ 0 0 0
0 0 0 0 1 0
1/ϵ 0 0 0 0 0
1/ϵ 0 0 0 0 0
0 0 0 1 1 0




k − l
βl

βl+1

stepϵ(βl − 1
2 )

stepϵ(k − l)
sum(l)

+



0
0
0

−1/(2ϵ) + 1
−1/(2ϵ)

0
−1/ϵ+ 1
−1/ϵ
−1




+


−1
0
0
0
0
0

 (181)

=


k − l
βl

βl+1

stepϵ(βl − 1
2 )

stepϵ(k − l)
sum(l)

+



−1
σR(βl)− σR

(
stepϵ(βl − 1

2 )
)

σR(βl+1)−
(
σR(

βl+1−1/2
ϵ + 1)− σR(

βl+1−1/2
ϵ )

)
−σR

(
stepϵ(βl − 1

2 )
)
+ σR(

βl+1−1/2
ϵ + 1)− σR(

βl+1−1/2
ϵ )

−σR

(
stepϵ(k − l)

)
+ σR(

k−(l+1)
ϵ + 1)− σR(

k−(l+1)
ϵ )

σR

(
stepϵ(k − l) + stepϵ(βl − 1

2 )− 1
)


(182)

=


k − (l + 1)

2βl − stepϵ(βl − 1
2 )

2βl+1 − stepϵ(βl+1 − 1
2 )

stepϵ(βl+1 − 1
2 )

stepϵ
(
(k − (l + 1)

)
sum(l + 1)

 =


k − (l + 1)

βl+1

βl+2

stepϵ(βl+1 − 1
2 )

stepϵ
(
(k − (l + 1)

)
sum(l + 1)

 = ξl+1, (183)

Define L1 : R→ R6 and L2 : R6 → R via

L1(k) := (k, β0, β1, 0, 0, 0)
⊤
= ξ0, L2(x1, x2, x3, x4, x5, x6) := x6, (184)

respectively. The lemma holds for this construction.

Then, we prove Lemma 4.1 with Lemma A.9.

Lemma 4.1. Given yk ∈ Rd for k = 0, 1, . . . ,K − 1 with

|(yk − yk−1)i| ≤ εi for i = 1, . . . , d,

there exists a feed-forward layer FF : R12d → R12d with a width size of 18d, and two affine linear maps L1 : R→ R12d

and L2 : R12d → Rd s.t.
|
(
L2 ◦ (id + FF)◦(K−1) ◦ L1(k)− yk

)
i
| ≤ εi, (18)

for i = 1, . . . , d and k = 0, 1, . . . ,K − 1.
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Proof. We prove this for the case where d = 1, considering yk ∈ R for k = 0, 1, . . . ,K − 1. Define

ak =
⌊
yk

ε

⌋
for k = 0, 1, . . . ,K − 1, (185)

where ⌊x⌋ = max{n : n ≤ x, n ∈ Z} and set

bk = ak − ak−1 for k = 1, 2, . . . ,K − 1. (186)

Since bk ∈ {−1, 0, 1}, there exist ck ∈ {0, 1} and dk ∈ {0, 1} such that

bk = ck − dk for k = 1, 2, . . . ,K − 1. (187)

Thus, we have

ak = a0 +

k∑
i=1

ci −
k∑

i=1

di for any k ∈ {1, 2, . . . ,K − 1} (188)

From Lemma A.9, there exist FF(c),FF(d) : R6 → R6 of width size 9 and affine linear maps L′
2 : R6 → R and

L(c)
1 ,L(d)

1 : R→ R6 s.t.

L′
2 ◦ (id + FF(c))

◦(m−1)
◦ L(c)

1

(
k) =

k∑
i=1

ci, L′
2 ◦ (id + FF(d))

◦(m−1)
◦ L(d)

1

(
k) =

k∑
i=1

di, (189)

for k = 0, 1, . . . ,K − 1. Then, define FF : R12 → R12 of width size 18, for x,y ∈ R6,

FF

([
x
y

])
:=

[
FF(c)(x)

FF(d)(y)

]
. (190)

Define L1 : R→ R12 and L2 : R12 → R as

L1(x) :=

[
L(c)
1 (x)

L(d)
1 (x)

]
, L2

([
x
y

])
:= ϵ

(
a0 + L′

2(x)− L′
2(y)

)
. (191)

We can confirm that

L2 ◦ (id + FF)◦(K−1) ◦ L1(k) (192)

= L2 ◦ (id + FF)◦(K−1)

([
L(c)
1 (k)

L(d)
1 (k)

])
(193)

= L2

([
(id + FF(c))◦(K−1) ◦ L(c)

1 (k)

(id + FF(d))◦(K−1) ◦ L(d)
1 (k)

])
(194)

= ϵ
(
a0 +

k∑
i=1

ci −
k∑

i=1

di
)
= ϵak. (195)

Thus we have
|L2 ◦ (id + FF)◦(K−1) ◦ L1(k)− yk| = |ϵak − yk| ≤ ε. (196)

For d-dimensional inputs, we need d-times more parameters.

30



On Expressive Power of Looped Transformers

B. Role of Time-dependent Scaling Parameters
We show that time-dependent scaling parameters overcome the limitations inherent to the looped architecture and eliminate
the dependence of the modulus of continuity. We use the architecture defined in Section 4 as:

FF(x)→ η(t)⊙ FF(x) for the t-th loops, (197)

The following lemma demonstrates that time-dependent scaling parameters can exactly map indices to output vectors.

Theorem 4.2. Given yk ∈ Rd for k = 0, 1, . . . ,K − 1, there exists a feed-forward layer FF : R4d → R4d with a width
size of 6d, η(t) ∈ R4d for t = 1, . . . ,K − 1, and two affine linear maps L1 : R→ R4d and L2 : R4d → Rd s.t.

|
(
L2 ◦ (id + η ⊙ FF)◦(K−1) ◦ L1(k)− yk

)
i
| = 0,

for i = 1, . . . , d and k = 0, 1, . . . ,K − 1.

Proof. We consider the case when d = 1, where yk ∈ R for k = 0, 1, . . . ,K − 1. We update yk as follows:

yk → yk + ϵ, (198)

where ϵ is chosen such that none of the yl values are zero.

Next, we define η(l) ∈ R4 as:

η(l) := (0, 1,
yl

yl−1
− 1,

yl
yl−1

)⊤ for l = 1, 2, . . . ,K − 1. (199)

By Proposition A.4, we have, x ∈ [−M,M ] and t ∈ N,

impulse0(x, t) = σR

(
x+ 2M(t+ 1/2)

)
− 2MσR(t+ 1/2)

− σR

(
x+ 2M(t− 1/2)

)
+ 2MσR(t− 1/2) (200)

=

{
x if t = 0,

0 otherwise,
(201)

where M > maxk∈{0,1,...,K−1} yk.

Let k ∈ {0, 1, . . . ,K − 1} be the input index that specifies which yk to extract. Define

s(l) :=

l∑
i=0

impulse0
(
yi, k − i

)
, (202)

for l = 0, 1, . . . ,K − 1, which satisfies

s(K − 1) = yk. (203)

Define ξl ∈ R4 via

ξl :=
(
k, k − l − 1, yl, s(l))

)⊤
. (204)

for l = 0, 1, . . . ,K − 1.
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Then, define FF : R4 → R4 of width size q = 6 via:

(id + η(l)⊙ FF)(ξl−1) = ξl−1+

η(l)⊙



0 0 0 0 0 0
0 0 0 0 0 0
1 −1 0 0 0 0
0 0 1 −1 −2M 2M

σR




0 0 1 0
0 0 −1 0
0 2M 1 0
0 2M 1 0
0 1 0 0
0 1 0 0

 ξl−1 +


0
−1
M
−M
1/2
−1/2



+


0
−1
0
0


 (205)

= ξl−1 +


0
1

yl

yl−1
− 1

yl

yl−1

⊙



0
−1

σR(yl−1)− σR(−yl−1)(
σR

(
yl−1 + 2M((k − l) + 1/2)

)
−2MσR((k − l) + 1/2)

−σR

(
yl−1 + 2M(k − l − 1/2)

)
+ 2MσR(k − l − 1/2)

)


(206)

=


k

k − l
yl−1

s(l − 1)

+


0
1

yl

yl−1
− 1

yl

yl−1

⊙


0
−1
yl−1

impulse0
(
y(l−1), k − l)

)
 (207)

=


k

k − l − 1
yl
s(l)

 = ξl. (208)

for l = 1, 2, . . . ,K − 1. Thus we have

(id + η(K − 1)⊙ FF) ◦ · · · ◦ (id + η(1)⊙ FF)(ξ0) = ξK−1 (209)

Then, define two affine linear maps L1 : R→ R4 and L2 : R4 → R by

L1(x) := (k, k, y0, 0), L2(x1, x2, x3, x4) := x4 − ϵ. (210)

We can extend this to d-dimensional input by using d times more parameters, by applying the above to each dimension

C. Details of Experiments
This appendix section provides additional details on the experiments for each task.

C.1. Reasoning Tasks

C.1.1. PROBLEM SETTINGS

Longest Common Subsequence (LCS) is the longest common to a given set of sequences. We use problems with input
lengths of 60 and 100. Two sequences are sampled uniformly from the alphabet.

Edit Distance (ED) problem, also known as Levenshtein distance, is to find the minimum cost required to change one
sequence into the other. We adopted the problem setting and data generation approach from Feng et al. (2023), but applied
larger input lengths. The costs for insertion, deletion, and replacement were set to 2, 2, and 3, respectively. They generate
instances of the edit distance problem as shown in Algorithm 1. The first string is randomly selected, while the second
is generated in two ways: (1) a random string yielding a large edit distance, and (2) a corrupted copy of the first string,
resulting in a small edit distance.
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Algorithm 1 ED Data Generation from Feng et al. (2023)
1: Input: Length of the First String n
2: Input: Alphabet V = {a, b...z}
3: Output: Sequence s1, s2 Sample t uniformly from {3, 4...10} T ← Sample t letters from V s1← Sample n letters

uniformly from T Sample p uniformly from [0, 1]
4: if p < 0.4 then
5: Sample l uniformly from {n− 3, n− 2, ..., n+ 2}
6: s2← Sample l letters uniformly from T
7: else
8: while len(s2) not in [n− 3, n+ 2] do
9: s2 ← s1

10: for i← 1 to n do
11: Sample p uniformly from {0, 1...len(s2)− 1}
12: Sample l uniformly from T
13: Randomly conduct one of the followings: pop s2[p], substitute s2[p] with l, insert l into s2[p]
14: end for
15: end while
16: end if

Sudoku We use the dataset from Radcliffe (2020), which contains over 3 million Sudoku puzzles. The puzzles are
flattened, with 0 representing blank grids. The input sequence is formatted as:

100503700603008090000009800010000000876100000000006000000000007080907604700060312.

Countdown To generate the dataset, we randomly sampled the target and input numbers for each instance. Pairs that have
no solution were excluded. For tokenization, we assigned unique tokens to each number and symbol. The target sequence is
represented as:

58 84 48 62 96 62 - 58 = 4 48 / 4 = 12 84 + 12 = 96 .

The model learns to predict the target sequence from the input:

58 84 48 62 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .

C.1.2. TRAINING AND TEST ACCURACY CORRELATION FOR EDIT DISTANCE

Given that our study focuses on function approximation capabilities, one might question whether it is appropriate to rely
on test evaluations, which are influenced by generalization. Here, we confirm that there is a strong correlation between
training and test results, validating this approach. Figure 5 demonstrates a strong positive correlation between training and
test accuracy, enabling the evaluation of approximation power through test accuracy.
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Figure 5. Training and test accuracy for the edit distance task with a sequence length of 60.
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C.1.3. MODEL AND TRAINING CONFIGURATION

We used Looped Transformers with 4 attention heads and a 256-dimensional embedding. The AdamW optimizer (Loshchilov
& Hutter, 2018) was used with β1 = 0.9, β2 = 0.999, a weight decay of 0.01, and a linear learning rate decay scheduler
starting at lr = 10−4 and ending at 0, with 5 warm-up steps. Training consisted of 50 epochs for reasoning, 200K steps for
in-context learning, and 100K iterations for language modeling, using a batch size of 64. For time-dependent models, γ(t)
and α(t) were initialized as zero and one vectors, respectively, following Peebles & Xie (2023). The input embeddings are
added at each loop iteration. Furthermore, for Sudoku and in-context learning tasks, the output of each intermediate loop is
incorporated into the loss as (Yang et al., 2023).

C.2. In-Context Learning

We followed the setting of Yang et al. (2024). The problem is to learn the function class from a given sequence composed of
the pairs of input xi and output values f(xi). The input for model is (x1, f(x1), . . . ,xk, f(xk),xtest), and model learns to
predict f(xtest). The model is trained on f(xk) and its performance is evaluated on f(xtest) using the squared error.

We use depth-4 decision trees with 20-dimensional inputs. Each function in this class is represented by a full binary tree
with 16 leaf nodes. Non-leaf nodes are associated with specific input coordinates, while leaf nodes are assigned target
values. To evaluate f(x), the tree is traversed from the root, moving to the right if the coordinate value is positive and to
the left otherwise. Inputs and leaf node values are sampled from N(0,I), and the coordinates for non-leaf nodes are drawn
uniformly at random. Our training setup follows the approach of Yang et al. (2024). Following the curriculum training
approach of Garg et al. (2022); Yang et al. (2024), we progressively increase the task dimensionality from 5 to 20 in steps of
1 every 5000 steps, while the sequence length increases from 26 to 101 in increments of 5 over the same interval.

C.3. Language Modeling

Tokenization is performed using byte-pair encoding, following GPT-2 (Radford et al., 2019). The Transformer model is
based on the GPT-2 decoder architecture (Radford et al., 2019). The baseline standard Transformer model consists of 6
layers, 8 attention heads, and an embedding size of 512. The Looped Transformer has a 1 layer, 12 attention heads, and
a hidden dimension of 768, which were chosen to match the parameter size of the baseline. We initialize γ(t) as zero
vectors and α(t) as one vector for time-dependent models. The AdamW optimizer (Loshchilov & Hutter, 2018) is used with
β1 = 0.9, β2 = 0.95, a weight decay of 1× 10−4, and a learning rate schedule with 2000 warmup steps. The maximum
learning rate is set to 2× 10−4 and decays to 6× 10−5 using a cosine schedule. Training is conducted for 100k iterations
with a batch size of 48 and a block size of 1024.

D. Disccusion
Multiple Layers A natural question is whether our analysis, which focuses on single-layer Looped Transformers, can
be extended to multi-layer architectures. We restricted our analysis to a single layer in order to highlight a key strength
of Looped Transformers—namely, their universality as function approximators even with just one layer. A more specific
question is whether multi-layer Looped Transformers can overcome potential limitations inherent to the single-layer design.
While it is conceivable that deeper architectures but with fixed-depth feedforward layers may achieve better approximation
accuracy, this remains an open question. The difficulty lies in the fact that such improvements are not captured in terms of
asymptotic order but rather in constants, which are harder to analyze theoretically. For instance, if we allow a logarithmic
number of layers depending on the desired approximation precision, then even our current construction may overcome
the limitations of the looped architecture. However, this deviates from our main objective, which is to characterize the
approximation rate solely in terms of the number of loops.

Additional Experiments To assess the model’s sensitivity to input continuity, we designed a perturbed version of the
WikiText-103 dataset, where 10% of the tokens were randomly replaced. We trained models with and without timestep
encoding and evaluated both their memorization performance and continuity behavior. Continuity was measured by applying
small perturbations to the input and quantifying the change in output embeddings. The model with timestep encoding showed
improved memorization (cross-entropy loss reduced from 4.32 to 4.18) and a significant reduction in continuity coefficients
(from 130.6 to 21.5). These results suggest that timestep encoding not only enhances stability under perturbations but also
enables more faithful input-output mappings, thereby improving both robustness and learning efficiency.
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