
Under review as a conference paper at ICLR 2022

REPRESENTING VALUE FUNCTIONS IN POWER
SYSTEMS USING PARAMETRIC NETWORK SERIES

Anonymous authors
Paper under double-blind review

ABSTRACT

We describe a novel architecture for modeling the cost-to-go function in approxi-
mate dynamic programming problems involving country-scale, real-life electrical
power generation systems. Our particular scenario features a heterogeneous power
grid including dozens of renewable energy plants as well as traditional ones; the
corresponding state space is in the order of thousands of variables of different
types and ranges. While Artificial Neural Networks are a natural choice for mod-
eling such complex cost functions, their effective use hinges on exploiting the
particular structure of the problem which, in this case, involves seasonal patterns
at many different levels (day, week, year). Our proposed model consists of a se-
ries of neural networks whose parameters are themselves parametric functions of a
time variable. The parameters of such functions are learned during training along
with the network parameters themselves. The new method is shown to outperform
the standard backward dynamic programming program currently in use, both in
terms of the objective function (total cost of operation over a period) and com-
putational cost. Last, but not least, the resulting model is readily interpretable in
terms of the parameters of the learned functions, which capture general trends of
the problem, providing useful insight for future improvements.

Keywords: energy dispatch, approximate dynamic programming, cost function approximation, arti-
ficial neural networks, parametric network series, reinforcement learning.

1 INTRODUCTION

The operation of electrical energy systems involving a mixture of thermal and renewable sources is
particularly challenging due to a number of factors. The value of water stored in the dams needs to
be assessed constantly depending on the availability of other sources and short, middle and long term
forecasts, which are highly variable and depend on the seasons in complex ways. Other renewable
sources such as wind and solar power also depend on highly variable factors. Thermal power plants,
on the other hand, need to be bootstrapped over relatively long periods before reaching full capacity,
so that the effect of turning them on and off also has lasting implications. Last but not least, the
demand of electricity is highly variable and exhibits complex seasonal patterns at different scales.

The concrete case that we are dealing with is the country-wide energy dispatch of Uruguay. This pa-
per presents the preliminary implementation of a novel method for computing the optimal operation
method of the Uruguayan grid. The method has been implemented within the Electric Energy Sys-
tems Platform (SimSEE).1 The SimSEE system is currently in use by the Electric Market Adminis-
tration (ADME) of Uruguay for continuously programming the optimal operation of the Uruguayan
electrical system at several different time scales. Besides Uruguay, the SimSEE system is currently
in use in República Dominicana and Belize.

Besides optimizing the schedule, SimSEE is also capable of producing detailed simulations (through
precise physical models) of the evolution of the system in terms of the actual continuous state-space.
This feature is key in the development of our proposed method, which can be seen as a plug-in
replacement for the operation optimization component of SimSEE.

1{SimSEE}https://simsee.org

1

{SimSEE} https://simsee.org

Under review as a conference paper at ICLR 2022

Methods based on Approximate Dynamic Programming (ADP) (Bertsekas & Tsitsiklis, 1996; Sut-
ton, 1995), are the usual choice for optimizing the operation of energy systems. These methods
rely on estimating the cost of operation for any possible initial state of the system. Unfortunately,
when the number of state variables is large, ADP methods suffer from the so called Bellman’s curse
of dimensionality (Bellman, 1957), meaning that the number of states and actions on which the
cost function needs to be evaluated grows prohibitively large and thus cannot be reliably estimated.
This is true even for sophisticated variants of ADP such as Stochastic Dual Dynamic Programming
(SDDP) (Pereira & Pinto, 1991). Moreover, the SDDP method is particularly sensitive to inputs
with high variability such as renewable-energy sources.

The aforementioned problem arises when attempting to explicitly evaluate all possible values of the
state variable, whose number grows exponentially with the dimension of the state space. This is
obvious even if the state variables are discrete. When the variables are continuous, traditional ADP
methods transform them into discrete variables via some form of quantization. In such scenarios,
a common strategy is to employ dimensionality reduction techniques such as Principal Component
Analysis (PCA) (Jolliffe, 2005). Of course, the price of quantization and dimensionality reduction
is that the true value function can only be evaluated in an approximate way.

The current method used by SimSEE is a traditional Backward-ADP recursion applied over a quan-
tized, reduced state-space of the whole Uruguayan system. The recent diversification of the power
generation matrix has exerted a significant stress on the aforementioned method. This is particularly
so for the short term operation, which is re-computed hourly.

1.1 VALUE FUNCTION APPROXIMATION

A recent alternative approach to the above techniques is to construct an implicit representation of
the value function (Powell, 2011; Sutton & Barto, 2018). Instead of reducing the dimensions and/or
quantizing the state space, a continuous model is built in the original state space based on a set of
values of the function evaluated at arbitrary positions. Here, a rich set of tools from Approximation
Theory is available to choose, construct and evaluate the appropriate approximation method for a
particular task. Kernel methods (Xu et al., 2014) are a popular choice which is backed by the elegant
theory of Reproducing Kernel Hilbert Spaces (Paulsen & Raghupathi, 2016). Another natural family
of methods, more flexible, but also harder to characterize, is that of artificial neural networks (ANN),
which are well known for being universal function approximators (R.Barron, 1994).

The above methods, however, have their drawbacks too. For instance, it has been shown that, if
no additional measures are taken, the number of samples of the value function required for the
overall approximation-based ADP method to converge can be even larger than that required by
using traditional, explicit evaluation methods (Du et al., 2020). Luckily, such requirement can be
significantly relaxed if appropriate variance reduction techniques are applied, e.g., Common Random
Numbers (Christophe et al., 2015).

In the particular case of ANN approximators applied to an heterogeneous energy system, the above
measure might not be enough. The great flexibility of ANNs also implies a great sensitivity to the in-
put data, which in our case is highly variable due to the random nature of renewable energy sources.
In this challenging scenario, further measures need to be taken in order to obtain parsimonious
approximations.

1.2 PARAMETRIC NETWORK SERIES

Luckily for us, the signals and processes involved in the planning of energy dispatch usually exhibit
regular patterns. This can be exploited to impose parsimonious approximations which extrapolate
reasonably to unseen states. Our proposed method combines the flexibility of ANNs with prior
information about the problem. In a nutshell, the value function, which is a function of state and
time, is approximated by one neural network per time slot. The architecture of the network is the
same for all time slots, reflecting the fact that the structure of the system itself does not change.
The parameters do vary across networks, albeit in a controlled fashion: for any given link in the
architecture, the corresponding weight is a function of time. The general idea is depicted in Figure 1.

2

Under review as a conference paper at ICLR 2022

g(t,a)

tw(0) w(1) w(T)

...

Figure 1: Parametric network series. When re-computing the hourly model, we can do a warm-
restart by droping the leftmost network and adding a new one to the right.

1.3 WHY NOT A SINGLE NET?

Naturally, one could use a single parametric function to model the whole value function across
all time steps. The reason for us to opt for a sequence of smaller models is again computational
performance: instead of computing the whole approximation from scratch at each time step (usually
an hour), we can quickly update the overall model by dropping the first model (at t = 1), adding a
new one at the end, and running a few iterations. We call this a sliding window strategy, in reference
to similar modeling patterns used in other fields.

1.4 RELATED WORKS

As mentioned, the use of approximation in value functions is an established technique described
in classic textbooks such as (Bertsekas & Tsitsiklis, 1996; Powell, 2011; Sutton & Barto, 2018).
Also, incorporating time dependence in approximation models and, in particular, artificial neural
networks, is an active line of research. The main difference between the related works in this matter
is in how the time dependence is imbued into the architecture.

Recurrent Neural Networks (RNNs) are widely deployed to capture time-dependent patterns us-
ing their current widely adopted incarnation, the so called Long-Short Term Memory (LSTM) net-
works (Hochreiter & Schmidhuber, 1997). In these models, the hidden layer outputs depend not
only on their current input, but also on their own previous output, in a way similar to a recursive
filter. Such architectures are able to produce outputs which depend not only on the current input,
but on past inputs as well. However, these kind of architectures are incapable of capturing periodic
patterns, especially if such patterns have low frequencies, such as periodic seasonal patterns.

Another widespread technique to represent time in ANNs is generally known as positional encoding
(see Zheng et al. (2021) for a recent review on the subject). The typical positional encoding method
involves auxiliary sinusoidal inputs to the network, usually several of them, with different frequen-
cies. Although their typical use is in the context of language translation (see e.g. (Gehring et al.,
2017)), where the frequencies are high (letter, word, phrase, a few time steps), nothing prevents one
from using such techniques in a scenario such as the one described in this paper.

The main difference between the “positional encoding” approach and our proposed method lies in
the way that this periodical information is fed into the system. Whereas the former uses these auxil-
iary signals as inputs to the whole network, and their influence on the weights is implicitly learned
through standard backpropagation techniques, our method imposes a periodic pattern explicitly on
the weights themselves, giving them some room to accomodate for the particularities not captured
by the periodic model.

1.5 CONTRIBUTIONS

In summary, the main contributions of this work are two. First, we develop a novel architecture for
learning value functions in approximate dynamic programming problems; the novelty lies in the use
of a series of neural networks of identical architecture, one per time slot, where the weights are func-
tions of time rather whose parameters are learned at training time. Second, we demonstrate the use

3

Under review as a conference paper at ICLR 2022

of the proposed model on a real-life, complex case, where we can evaluate the actual performance
of the model in terms of real operation cost savings.

1.6 DOCUMENT ORGANIZATION

The rest of the document is organized as follows. In Section 2 we provide a formal introduction
to the problem and the notation used throughout the paper. Section 3 introduces the problem of
electric systems operation. The proposed method is described in detail in Section 4.4. Section 5
shows a detailed comparison between the current model in production and the proposed method,
and discusses the results. Concluding remarks are given in Section 6.

2 PRELIMINARIES

We follow the usual notation and conventions used in approximate dynamic programming. The task
is to operate a system over a time period in a way that minimizes the total operation cost over that
period. The time is observed and operated at regular time intervals tT . In energy systems, T may
represent an hour, a day, a week, etc. Here t is the discrete time index. The state of the system at
time t, represented by xt ∈ X, evolves according to the following rule:

xt+1 = f(xt, ut, wt, t).

The vector ut ∈ Ωt represents the controllable variables (the action), wt is a vector of exogenous,
random, uncontrollable variables, and f(·) is the state evolution function. Note that, as the notation
implies, the feasible set of actions Ωt may vary through time. In the case of electric power systems,
the function f(·) can be modeled with great precision and thus it can be assumed known. Then, it is
possible to compute, the cost, at time t, of taking a particular action ut while in state xt, given the
exogenous variables wt. We call this the stage cost function and write it as c(xt, ut, wt, t).

2.1 THE FUTURE COST-TO-GO, OR VALUE, COST FUNCTION

When we are about to take a given action, it is not the stage cost that we are interested in, but its
long term impact in the future cost of the system. Unfortunately, the system is subject to random
fluctuations due to wt, making the future cost a random variable. The future cost function J(xt, t)
is the expected value of the future cost, assuming that one can take the best action for every possible
realization of wt. The value of J(xt, t), in turn, can be decomposed as the stage cost at time t, and
the future cost at time t+ 1 and state xt+1, leading to the well known Bellman recursion:

J(xt, t) = EWt
[c(xt, ut, wt, t) + q · J(f(xt, ut, wt, t), t+ 1)] , (1)

where ut is the best possible action given the current state xt and a particular realization of the
random inputs wt, which is represented by the random variable Wt, and q ∈ (0, 1] is a discount
factor, generally defined by the compound interest rate of the currency (in this case, USD):

ut = arg min
ζ∈Ωt

{c(xt, ζ, wt, t) + q · J(f(xt, ζ, wt, t), t+ 1)}. (2)

2.2 VALUE ITERATION

The above equation defines a mapping between the current state xt, a realization of wt, and the
action ut. We call this mapping an operation policy. Ideally, if J(xt, t) was perfectly known to
us, the policy obtained above would be the optimal policy of the system. However, there is a clear
“chicken-and-egg” problem between ut and J(xt, t), and so practical solutions need to provide a
starting point.

One of the well established methods in the theory of approximate dynamic programming (see (Bert-
sekas & Tsitsiklis, 1996; Powell, 2011; Sutton & Barto, 2018)) is to transform the above recursive
problem into an iterative one, by starting with an arbitrary future function approximation J̃ (0)(xt, t)

(here the superindex (0) refers to the initial iteration) and then estimating J̃ (k)(xt, t) for k = 1, . . .
until some convergence criterion is met.

4

Under review as a conference paper at ICLR 2022

Table 1: STM state space description.
variable Description cardinality

1 Volume in lake Rincón de Bonete 10
2 Combined cycle boiler #1 blowdown (4h) and steam turbine #1 loading (2h) 6
3 Combined cycle boiler #2 blowdown (4h) and steam turbine #2 loading (2h) 6
4 Combined cycle boiler #1 cooling time (120 h) 3
5 Combined cycle boiler #2 cooling time (120 h) 3
6 Volume in lake Palmar 5
7 Volume in lake Salto Grande 5
8 Runoff status of the Rı́o Negro basin 4
9 Runoff status of the Uruguay River basin 4

3 SCENARIO

3.1 BACKGROUND ON ELECTRICAL POWER SYSTEMS

Traditional, thermal power generating plants (natural gas, combined cycles, coal-fired plants, nu-
clear) have a high variable cost (measured in USD per MWh), but are very predictable. On the
contrary, renewable sources such as hydroelectric, solar or wind have zero variable cost, but are
highly unpredictable.

When renewable resources are abundant (sun, wind, etc.), the cost of supplying the demand may
be 0. On the other hand, when such resources are short, the system must rely on the highly costly
thermal sources. Thus, the ever increasing addition of wind and solar energy in electrical power
generation systems implies savings, but also greatly complicates planning, as the fluctuations in the
stage costs become larger and more unpredictable. It is therefore very important to construct the best
possible stochastic models for the resources involved. These models must capture the correlations
between the different resources (e.g., wind at nearby solar plants) as well as their temporal depen-
dencies. This subject is in itself a large area of active research. The interested reader is referred
to (Flieller & Chaer, 2020).

The state transition function is also of paramount importance. Naturally, these functions are specific
to the physical characteristics of each energy power generation system. For the particular case of
the Uruguayan system see (Chaer & Monzon, 2008).

Last, but not least, the value function is modeled so that it measures the economic impact of the
different actions. Different time scales involve different actions, each with its own range of options,
and thus different value functions and operational restrictions are applied in each case. We provide
more information on this in appendixes B and C.

Traditional value function approximation methods either construct independent estimations J̃(xt, t)

for each time t, or attempt to construct a single J̃(xt, t) that works for all t. Our proposed method,
which lies in between these two approaches, exploits the continuity in time of the value function to
construct a series of approximations (J̃(xt, t), t = 1, . . . , nt) where the corresponding parameters
(Θt, t = 1, . . . , nt) are themselves a function of the time t. The parameters of these guiding func-
tions are themselves learned within the iterative approximation loop. The technical details of this
method are described in the next section.

3.2 SHORT TERM (STM) OPERATION OF THE URUGUAYAN SYSTEM

In recent years, the Uruguayan system has undergone radical changes in its generation matrix (Cor-
nalino et al., 2018) with the widespread incorporation of wind and solar sources. These changes
have exerted considerable pressure on the current optimization tools in use, thus motivating the
development of newer approaches such as the one presented in this work.

The STM contains 9 visible state variables (several other state variable exist, but are not shown since
the optimal operation does not depend on them). Table 1 shows a detail of these variables; the last
column shows the number of discrete values into which each variable is quantized when solving the
problem using the classic Bellman recursion-based optimization method currently in production.

5

Under review as a conference paper at ICLR 2022

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

x1r1

x2r1

x1r2

x2r2

Time step.

x_
rt

0.9

Figure 2: Depiction of the common random numbers in a one-dimensional state space. The blue
and red trajectories correspond to two different initial states. The dotted trajectories correspond to
one random seed, and the solid ones to another.

4 PROPOSED METHOD

The overall algorithm begins with an initial continuous value function estimation J̃ (0)(x, t), x ∈
X, t ∈ [nt]. Here [nt] is an abbreviation for {1, 2, 3, . . . , nt}, and X is the continous state space.
The superscript 0 indicates the initial iteration k = 0. Each iteration k > 0 involves three steps:
i) simulation, ii) sampling of the value function (at discrete points), and iii) approximation (of the
continuous value function) based on the aforementioned points. The following subsections describe
each of these steps in detail, albeit for a generic architecture. The last subsection describes the spe-
cific architecture used in our case. A diagram of the overall algorithm is also provided in Appendix
A.

4.1 SIMULATION USING COMMON RANDOM NUMBERS

In order to construct an approximation J̃(x, t), the function J(x, t) needs to be sampled at a number
of points in state space. In order to obtain a set of interesting points on which to evaluate the function,
as well as their corresponding values, we simulate the operation of the system subject to a number
of different realizations of the external random variables (e.g., rain, sunshine, wind).

Starting at state x0 = x, the system is allowed to evolve up to a pre-specified time horizon nt

by drawing samples from wt ≈ Wt, computing the optimal action ut, and updating xt+1 ←
f(xt, ut, wt, t). A well known issue with this scheme is that the variance of the estimated variable
J(x, t) grows quickly as the horizon nt increases, thus limiting the ability of the overall method to
evaluate the long term impact of the chosen actions.

The common random numbers technique, depicted in Figure 2, greatly reduces the variance of the
estimates (at the cost of increasing their bias) by using, for every simulation stage, a fixed set of nr

pseudo-random ensembles (w1,w2, . . . ,wnr). A given ensemble wr = (wr0, wr1, . . . , wrnt) is
called a chronicle.

Since we always begin from the same known state x0 , the simulation results in nr trajectories,
one per chronicle. Since the trajectories depend globally on the current approximation of the value
function, J̃ (k−1)(x, t), a different set of trajectories will be obtained at each iteration k.

4.2 POINT-WISE EVALUATION OF THE VALUE FUNCTION

Once the nr trajectories are computed, the sample values J (k)(x, t) need to be estimated at all the
states visited by all the trajectories. For this, we use a variant of the method described in (Sutton &
Barto, 2018, Chapter 12) as compound TD estimation. Given a trajectory xr = {x(k)

rt : t ∈ [nt]},

6

Under review as a conference paper at ICLR 2022

we compute the corresponding sample values {J (k)(x
(k)
rt , t) : t ∈ [nt]} as follows:

J̄ (k)(x
(k)
rt , t) =

∆∑
δ=0

TD
(k)
δ (x

(k)
rt), (3)

where

TD
(k)
δ (x

(k)
rt) =

δ∑
d=0

qdc(x
(k)
r(t+d), ut+d, wt+d, t+ d) + qδJ̃ (k−1)(x

(k)
r(t+d), t+ d).

In order to further enhance the overall stability of the method, each of the above estimates
J̄ (k)(x

(k)
rt , t) is mixed with the value obtained using the current continuous approximation of

J̃ (k)(x
(k)
rt , t) (note that, in general, we will not have point-wise estimations of these values, as the

trajectories from one iteration to the other are different). The mixture is computed as:

Ĵ (k)(x
(k)
rt , t)← (1− α)J̃ (k)(x

(k)
rt , t) + αJ̄ (k)(x

(k)
rt , t), (4)

where 0 < α < 1 is a parameter

4.3 VALUE FUNCTION APPROXIMATION

Note: for the rest of this section, we will omit the iteration index k to clarify notation, as all related
variables belong to the current iteration.

After simulation, we have nr state-value training pairs available to approximate the value function
at each time slot t > 0. We will now describe the generic training procedure, leaving the details of
the architecture for the next subsection.

The overall approximation is given by nt parametric models, one for each t ∈ [nt], and each of
these models is adapted using the value function sampled at all states visited at time t during the
simulation stage. We call this set of points, {xrt : r ∈ [nr]}, a constellation. The training data at
time t is the set of pairs (xrt, Ĵ(xrt, t)).

Given the training data, the approximation of the value function, and the time step t, J̃(x, t), x ∈ X,
depends on a set of p parameters Θt = (θ1t, θnpt); we write this dependency explicitly as J̃(x, t|Θt).
As usual, these parameters are adapted so that the approximation error is minimized. This error is
given by:

nr∑
r=1

[
J̃(xrt, t|Θt)− Ĵ(xrt, t)

]2
. (5)

Besides minimizing (5), each of the np parameters of the approximation model is encouraged to
follow a particular curve, which is itself parametric. Concretely, the nt values of the p-th parameter
of the architecture across time, (θp1, θp2, . . . , θpnt), are modeled after a function g(t,ap),

θpt ≈ g(t,ap),

where ap is the set of na hyper-parameters associated to parameter p which are themselves adaptive.
Correspondingly, an additional term is added to the cost function to enforce that relation:

1

2

np,nt∑
p=1,t=1

βpt (θpt − g(t,ap))
2
. (6)

Using different penalties βpt we can modulate the degree of fitness to the guiding functions g(t,ap)
depending on the time index t and/or the corresponding architecture parameter p. For example, we
can ignore the imposition of a temporal pattern by setting the corresponding βtp = 0 for a particular
p and all t.

Finally, the hyper-parameters ap, p = 1, . . . , np are regularized using an ℓ2 (Ridge) penalty with
parameter µ. The overall cost function to be minimized during learning is:

L(Θt,ap : t ∈ [nt], p ∈ [np]) =
1

2

∑
r,t

[
J̃(xrt, t|Θt)−Ĵ(xrt, t)

]2
(7)

+
1

2

∑
p,t

βpt [θpt − g(t,ap)]
2
+

µ

2

∑
p,h

a2ph

7

Under review as a conference paper at ICLR 2022

0 20 40 60 80 100
-5

5

15

25

35

Classic
TD(167)

Value approximation iteration
M

U
S

$

Figure 3: Difference between PDS for ∆ = 167 and the Classic algorithm as a function of the
iteration. The PDS-based method surpasses the classic one after 30 iterations.

4.4 ARCHITECTURE

As mentioned in Section 3, electrical power systems exhibit extremely variable costs. Because of
this, and despite the imposed regularity, the best architecture found to represent the value function at
a given state for this (simplified) STM model consists a single hidden layer of 4 neurons with tanh
activations, and a linear output. Recall now that we have an ensemble of nt = 240 such networks,
one per time step. The parameters of each of these networks are regularized by encouraging them to
follow a smooth time-dependent function, as described before. In the case of the STM, we choose a
third order polynomial:

g(t, a1p, a2p, a3p, a4p) = a1p + a2pt+ a3pt
2 + a4pt

3.

For medium and long-term models, which are currently in development, we can use sinusoidal
functions matching the seasonal patterns of both energy production and demand (day, week, year).

5 RESULTS

In this section we compare the total operation cost obtained with the new method and with the
“Classic” Bellman iteration-based method currently in use. We evaluate the STM hourly models
of both methods along the 10 day (240 hour) period that goes from 8/24/2021 9:00AM to 9/3/2021
9:00 AM.

We also set µ = 10−12 in (7), the discount factor q = 1, the number of chronicles used in the
simulation to nr = 100, ∆ = 167 in (3) and α = 0.3 in (4).

Figure 3 compares the expected 10 day cost-to-go value obtained with the proposed and the one
obtained using the Classic one. The new PDS-based method is seen to surpass the performance of
the classic method after 30 iterations (more details on the evaluation of these policies are given in
Appendix F).

Figure 4 shows the evolution of the cost-to-go derivatives with respect to the state variables for a
given fixed state during the simulation horizon. As can be seen, the parsimony imposed on the
parameters of the set of networks forces an evolution with similar parsimony in the derivatives.
From the point of view of the operation of the system, parsimony in these derivatives is essential
since these derivatives are transformed into operating instructions and it would not be feasible to
abruptly change the dispatch of the generation units.

In terms of execution time, 30 iterations using the PDS approximation requires just 12 minutes to
complete, whereas the classic Bellman recursion requires 31 hours to reach the same performance
over the same STM state space (see Appendix E for details on the complexity of the CBS method for
this scenario). It is important to remark that the optimal programming needs to be recomputed on
an hourly basis, thus rendering the Classic approach infeasible for this scenario (the Classic method

8

Under review as a conference paper at ICLR 2022

0 50 100 150 200 250
time(t)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2
we

ig
ht

 v
al

ue w_1
w_2
w_3
w_4
w_5
w_6
w_7
w_8
w_9
w_10

Figure 4: Here we show the effect of g(t, a) on a few network weights (left), and the derivative
of the cost-to-go function w.r.t the state variables (right), reflecting the parsimonious nature of the
weights.

here was trained off-line). Thus, the new PDS-based method not only reduces times dramatically,
but also allows us to obtain a better operation by considering a more complex state space.

6 CONCLUDING REMARKS

We have presented a new parametric value function approximation model capable computing the
optimum programming of a large and diverse electrical power systems. We have tested this new
method on the short term model of the real Uruguayan system (the most challenging one), and
confirmed it to be superior to the one in production using drastically less resources. Also, proposed
parametric network series (PNS) provides both stable and interpretable models by capturing the
time-dependent trends in the network parameters.

We are currently working on implementing the sliding window strategy for obtaining even faster
updates, as described in Section 1, and on deploying the new model on medium (MTM) and long
term (LTM) scenarios.

REFERENCES

R. Bellman. Dynamic Programing. Princeton University Press, 1957. 1

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996. 1, 1.4,
2.2

R. Chaer and P. Monzon. Stability conditions for a stochastic dynamic optimizer for optimal dispatch
policies in power systems with hydroelectrical generation. In 2008 IEEE/PES Transmission and
Distribution Conference and Exposition: Latin America, pp. 1–5, 2008. doi: 10.1109/TDC-LA.
2008.4641717. 3.1

J.-J. Christophe, J. Decock, J. Liu, and O. Teytaud. Variance reduction in population-based opti-
mization: Application to unit commitment. In Artificial Evolution (EA2015), Lyon, France, 2015.
1.1

E. Cornalino, P. Sobes, F. Palacios, M.C. Alvarez, E. Coppes, G. Casaravilla, and R. Chaer. Handling
the intermittence of wind and solar energy resources, from planning to operation. uruguay’s suc-
cess. In 36th USAEE/IAEE North American Conference, Washington, DC, pp. 23–26, September
2018. 3.2

S. S. Du, S. M. Kakade, R. Wang, and L. F. Yang. Is a good representation sufficient for sample ef-
ficient reinforcement learning? In International Conference on Learning Representations (ICLR)
2020, 2020. 1.1

9

Under review as a conference paper at ICLR 2022

G. Flieller and R. Chaer. Introduction of ensemble based forecasts to the electricity dispatch simu-
lator simsee. In 2020 IEEE PES Transmission & Distribution Conference and Exhibition - Latin
America (T&D LA), 2020. 3.1

J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolutional sequence to sequence
learning. In In International Conference on Machine Learning, pp. 1243–1252, 2017. 1.4

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9:1735–80, 12
1997. doi: 10.1162/neco.1997.9.8.1735. 1.4

I. Jolliffe. Principal Component Analysis, chapter online, pp. –. American Cancer Society,
2005. ISBN 9780470013199. doi: https://doi.org/10.1002/0470013192.bsa501. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1002/0470013192.bsa501. 1

V. I. Paulsen and M. Raghupathi. An Introduction to the Theory of Reproducing Kernel Hilbert
Spaces. Cambridge University Press, 2016. ISBN 9781107104099. 1.1

M.V.F Pereira and L.M.V.G. Pinto. Multi-stage stochastic optimization applied to energy planning.
Mathematical Programming, 52:359–375, 1991. doi: https://doi.org/10.1007/BF01582895. 1

W. B. Powell. Approximate Dynamic Programming. Wiley, 2011. 1.1, 1.4, 2.2

A. R.Barron. Approximation and Estimations Bounds for Neural Networks. Machine Learning, pp.
115–133, 1994. 1.1

R. Sutton. TD models: Modeling the world at a mixture of time scales. In Proc. the 12th Int. Conf.
Machine Learning, pp. 531–539, 1995. 1

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, Feb. 2018. 1.1,
1.4, 2.2, 4.2

X. Xu, C. Lian, L. Zuo, and H. He. Kernel-based approximate dynamic programming for real-time
online learning control: An experimental study. IEEE Trans. on Control Systems Technology, 22
(1), Jan. 2014. 1.1

J. Zheng, S. Ramasinghe, and S. Lucey. Rethinking Positional Encoding. preprint, 2021. URL
http://arxiv.org/abs/2107.02561. 1.4

10

https://onlinelibrary.wiley.com/doi/abs/10.1002/0470013192.bsa501
https://onlinelibrary.wiley.com/doi/abs/10.1002/0470013192.bsa501
http://arxiv.org/abs/2107.02561

Under review as a conference paper at ICLR 2022

A VALUE ITERATION LEARNING LOOP DIAGRAM

A diagram-box of overall algorithm is shown in Figure 5.

Figure 5: Value Iteration - Learning loop.

11

Under review as a conference paper at ICLR 2022

B VALUE FUNCTION IN ENERGY DISPATCH PROGRAMMING

In the generation system we have several time horizons to solve. The value function weights different
operation costs depending on the horizons. In the medium term (several months) the value function
assigns value to the water stored in the lakes with the highest capacity. This is used to trigger
purchases of ships with fuel, which must be made 90 days in advance so that the fuel is available
when required.

On a weekly basis, the operating policy takes into consideration the information of the rain, wind,
solar forecasts, and the demand. As a result, the distributions of the exportable energy blocks (system
surplus) and their recovery (minimum price to receive) are available one week in advance.

For daily simulations, the value function captures the effect of the forecasts of availability of water,
solar and wind resources and allows determining the order of dispatch of the resources, the instruc-
tions given to the operators regarding the recovery of the dammed water in each of the lakes (derived
from the value function with respect to using a unit of energy stored in each lake). This valuation
allows the operators, in real time, to make decisions to maintain the power balance of the system
while maintaining a dispatch of minimum cost. The same short-term simulations with hourly detail,
allow to visualize the probabilities of dispatching thermal power plants and to give advance notice
to the operators of said units so that they are ready to dispatch when requested.

C PENALTIES ON THE VIOLATION OF RESTRICTIONS

In the representation of the system used, if a restriction is included through a penalty, the value of
the penalty is calculated by evaluating the real effect on the system when said restriction is violated.
Therefore, the value function includes both the costs associated with the use of fuels and imports as
well as the implicit costs associated with the penalties on the represented restrictions. As an example,
it is a common practice to represent the power balance constraint at each node of the system as the
sum of the generator powers minus the sum of the demands equal to zero, but this constraint is
represented with penalties whose values are estimated as the cost of the country’s economy for not
supplying the demand.

D THE NEED TO RE-TRAIN THE MODEL AT EACH TIME STEP

Modern electric systems integrate several wind and solar energy sources. These sources have impor-
tant fluctuations in terms of hours. It is the introduction of these short-term variabilities that makes
the filtering elements (reservoirs, battery banks, etc.) of the system that were not important before,
now do. The need to operate these new filtering elements, using the information from the forecasts,
leads to an increase in the dimension of the state of the system to be considered. This change has
been accentuated in the last 5 years and will continue in the same direction in the coming years as
a worldwide trend. Theoretically, if the representation of the state of the system was complete, it
would not be necessary to fit a model for each time step. But the representation of the state is never
complete. It should be remembered that the structure of the system is variable over time. In the
short term, the forecast information is represented based on time series of biases and attenuators
that shift the distributions that model the associated stochastic processes. This leads to the same
state (represented) of the system, but in different time steps, the value function is different. In the
long term, the structure of the system changes as the demand grows, the power plants age and are
withdrawn and new generators enter. On an annual scale, the different stations impose shifts in the
distributions associated with wind, solar and hydraulic energy and on the Demand of the system.

E COMPUTATIONAL COST OF THE CLASSIC BELLMAN RECURSION

Table 1 shows the nine state variables considered in the model along with the corresponding number
of discretized values. Solving a single time step in Classic Bellman’s Recursion (CBR) requires one
to compute the value function for every combination of the discrete values of all nine variables. In
our case, there are 10 × 6 × 6 × 3 × 3 × 5 × 5 × 4 × 4 = 1 : 296000 different states. This, in
turn, has to be carried out for each time step. In our case we have 240 such stems, for a total of

12

Under review as a conference paper at ICLR 2022

311040000 value function estimations. On the other hand, in the proposed method, simulations of
100 chronicles are being carried out in each simulation cycle. Each chronicle implies computing the
value at just the 240 visited states and therefore each simulation cycle implies solving the dispatch
in 100 × 240 = 24000 states. The computational effort of the classical Bellman resolution is
then 311040000/24000 = 12960 times greater than that of an information collection cycle of the
proposed algorithm. For the example presented, the proposed algorithm converged to a slightly
better Operation Policy than the classical one in just 30 iterations of the learning loop.

F DETAILS IN THE EVALUATION OF THE POLICIES

First 100 iterations of the learning loop were performed (see Figure 5 with block diagram of the
algorithm). Then, each of these iterations, the functions of value J̃ (k)(., t) were taken and the
operation of the system with these functions was simulated for a set of 1000 new realizations of the
stochastic processes (generated with new random seeds not used for training previous). Finally with
these simulations, the estimate of the expected value of the future operation with each J̃ (k)(., t) was
obtained. And with the same random seeds, it was simulated using the value function obtained with
the classical Bellman algorithm (currently in use for dispatch resolution). The obtained estimations
are shown in Figure 3

G ON THE CHOICE OF THE PARSIMONY CRITERION

There are two aspects for which the imposition of temporal parsimony seems important to us. The
first is that in the actual operation there is a certain temporary behavior that must be respected.
They are restrictions imposed by the operation. As an example, it would not be permissible to
have operating instructions that imply dispatching a combined cycle power plant at one hour and
shutting it down the next. These operating instructions arise directly from the derivatives of the
value function with respect to the state variables and therefore, by giving temporary parsimony to
the network parameters, indirectly the same type of parsimony is being imposed on the operation
instructions.

The other aspect, no less important, is that it is a way of introducing expert knowledge, such as
the trends and seasonality to be expected in the variables of the system (demand growth, rainy
seasons, windy seasons, etc.). It would be possible to let the network learn these relationships from
simulations, but remember that we are fighting the Bellman curse and that we intend to focus the
neural network’s representational capacity and computational effort efficiently. The implementation
carried out allows to experience the effect of considering or not the temporal parsimony increasing
or reducing the value of the penalties βpt.

13

