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ABSTRACT

3D Gaussian splatting (3DGS) has emerged as a premier method for 3D represen-
tation due to its real-time rendering and high-quality outputs, underscoring the
critical need to protect the copyright and privacy of 3D assets. Traditional NeRF
steganography methods fail to address the explicit nature of 3DGS since its point
cloud files are publicly accessible. Existing GS steganography solutions mitigate
some issues but still struggle with reduced rendering fidelity, increased compu-
tational demands, and security flaws, especially in the security of the geometric
structure of the visualized point cloud. To address these challenges, we propose
a SecureGS, a secure and efficient 3DGS steganography framework inspired by
Scaffold-GS’s anchor point design and neural decoding. SecureGS utilizes a hybrid
decoupled Gaussian encryption mechanism to embed offsets, scales, rotations, and
RGB attributes of the hidden 3D Gaussian points within anchor point features,
retrievable only by authorized users through privacy-preserving neural networks.
To further enhance security, we propose a density region-aware anchor growing
and pruning strategy that adaptively locates optimal hiding regions without ex-
posing hidden information. Extensive experiments demonstrate that SecureGS
significantly surpasses existing GS steganography methods in rendering fidelity,
speed, and security, effectively concealing and accurately extracting 3D objects,
images, and bits within original 3D scenes.

1 INTRODUCTION

Benefiting from its real-time rendering capabilities and impressive rendering quality, 3D Gaussian
splatting (3DGS) has become a mainstream 3D representation approach. Since optimizing a 3D
scene requires a large amount of computing resources and 3D tampering approaches are developing
rapidly, protecting the copyright and privacy of 3D assets is particularly important. As an emerging
research field, 3DGS steganography aims to embed bits, images, or 3D content into 3D Gaussian
points invisibly, and extract them losslessly in the decoding end. It has great potential for application
in encrypted communications, copyright protection, identity verification, and forensic analysis.

As a preliminary work for 3DGS steganography, previous works on NeRF watermarking have
achieved excellent results. For instance, StegaNeRF (Li et al., 2023a) jointly finetuned the weights
of NeRF and a decoder so that each 2D rendered view can decode the pre-defined watermark.
CopyRNeRF (Luo et al., 2023b) and WateRF (Jang et al., 2024a) focused on bit hiding and robust
decryption and can achieve copyright traceability of NeRF via a 2D view. However, these methods
that work on implicit representation cannot be effectively applied to 3DGS steganography, since
3DGS is an explicit representation and its point cloud files are often made public and transparent for
online real-time rendering.

To achieve this demand, GS-Hider (Zhang et al., 2024b) utilized a coupled feature field and neural
decoders to simultaneously render the original and hidden scene, as shown in Fig. 1(a). However, it
presents several shortcomings in terms of fidelity, security, and rendering speed. Fidelity: Represent-
ing the original scene and hidden information using the same set of Gaussian points with a compact
feature attribute will easily lead to mutual interference, especially when the geometry of the hidden
information is inconsistent with that of the original scene, resulting in suboptimal rendering fidelity.
Rendering Speed: Due to the use of convolutional networks to decode the rendered coupled feature
fields, there is an increase in computational complexity, which affects the rendering speed of 3DGS
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Figure 1: Analysis of previous 3DGS steganography method GS-Hider (Zhang et al., 2024b).

steganography to a certain extent. Security: We categorize the security of GS steganography into
two types, namely file format security and geometric structure security. Format security means that
the published 3DGS point cloud does not add any additional attributes that could arouse suspicion
or lead to deletion by malicious abusers. Geometric structure security denotes when visualizing the
Gaussian point cloud, no traces of the hidden scene’s geometric structure are revealed. The latter is
what GS-Hider cannot achieve, which may pose a risk of leaking hidden messages (such as Fig. 1(b)).

Our insight for solving these problems comes from a successful variant of 3DGS, namely Scaffold-
GS (Lu et al., 2023). Scaffold-GS uses anchor points to establish a hierarchical and region-aware
3D scene representation. Then, a set of neural Gaussians with learnable attributes are dynamically
predicted from the anchor feature via several simple MLPs. Scaffold-GS is naturally suited for
steganography for two reasons: First, it uses implicit MLPs to store Gaussian point attributes,
allowing encryption to focus on MLPs rather than explicit Gaussian points, making it ideal for
steganography. Second, it maintains comparable rendering quality and real-time performance to
3DGS, preserving its high fidelity and fast rendering benefits.

To address the limitations of existing 3DGS steganography methods, we propose a more secure and
efficient 3DGS steganography framework, dubbed SecureGS. Fig. 2 presents our overall pipeline and
application scenario. Specifically, we design a hybrid decoupled Gaussian encryption representation
capable of decoding two sets of dense Gaussian points from a sparse set of anchor points, which are
used for rendering the original scene and the hidden object, respectively. Note that we specifically
introduce a privacy-preserving offset predictor to conceal the positions of the hidden Gaussian points.
Furthermore, to prevent the geometric structure of the hidden object from being exposed in the anchor
point cloud, we innovatively propose a density region-aware anchor growing strategy. Based on the
gradient of the joint rendering loss, it can adaptively find the location of hidden 3D objects, thereby
lowering the splitting threshold in that region and allowing the original scene’s anchors to cover the
hidden anchor points safely. In a nutshell, our contributions are summarized as follows.

❑ (1) We present a novel attempt to introduce neural voxelization into the 3DGS steganography,
realizing a more secure, high-fidelity, and efficient framework SecureGS. It can effectively hide 3D
objects, images, and bits within the original 3D scene and precisely extract them.

❑ (2) We develop a hybrid decoupled Gaussian encryption representation that can hide and predict
the location and attributes of the hidden Gaussian points via a set of neural decoders, ensuring that the
overall framework maintains a format consistency in the point cloud files and is efficient in rendering
hidden message and preserving the original scene.

❑ (3) We propose a region-aware density optimization that can locate hidden 3D positions and
promote anchor growth in that region while inhibiting pruning, thereby significantly enhancing the
geometric structure security of the point cloud within the overall framework.

❑ (4) Extensive experiments demonstrate that our method significantly outperforms existing 3D
steganography methods in terms of the fidelity of container 3DGS, rendering speed, and security.

2 RELATED WORKS

2.1 3D GAUSSIAN SPLATTING

3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has emerged as a highly effective approach for 3D
scene reconstruction, utilizing millions of 3D Gaussians. Starting from a set of Structure-from-Motion
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Figure 2: Overall Pipeline of our SecureGS. 3D objects, images, and bits can be hidden in the original
3D scene, and only authorized users can decode these hidden messages. The core of our method is to
ensure both the file format and geometric structure security of the public anchor points.

(SfM) points, each point is assigned as the center (mean) µ of a 3D Gaussian distribution:

G(x) = e−
1
2 (x−µ)⊤Σ−1(x−µ), Σ = RSS⊤R⊤, (1)

where x is a position within the 3D scene and Σ denotes the covariance matrix of the 3D Gaussian,
which is formulated using a scaling matrix S and rotation matrix R. Instead of using the resource-
intensive ray-marching, 3DGS efficiently renders the scene via a tile-based rasterizer. Specifically, the
3D Gaussian G(x) are first transformed to 2D Gaussians G′(x) on the image plane via the projection
mechanism (Zwicker et al., 2001). Let C ∈ RH×W×3 represent the color of the rendered image
where H and W represent the height and width of images, the α-blending process of a tile-based
rasterizer is outlined as follows:

C[p] =

N∑
i=1

ciσi

i−1∏
j=1

(1− σj), σi = αiG′i(p), (2)

where p = (u, v) is the queried pixel position and N denotes the number of sorted 2D Gaussians
associated with the queried pixel. ci and αi respectively denote the color and opacity component of
the Gaussian point. In contrast to previous implicit representations, 3DGS dramatically improves
both training speed and rendering efficiency. To further elevate 3DGS’s rendering capabilities, Mip-
Splatting (Yu et al., 2023b) introduced 2D and 3D filtering, enabling high-quality, alias-free rendering
across arbitrary resolutions. Moreover, Scaffold-GS (Lu et al., 2023) integrated structured neural
anchors to enhance the rendering quality from diverse perspectives. The exceptional performance of
3DGS has extended its utility to a broad range of applications, including SLAM (Keetha et al., 2023;
Matsuki et al., 2023), 4D reconstruction (Li et al., 2023b; Luiten et al., 2023; Wu et al., 2023; Yang
et al., 2024b), and 3D content generation (Tang et al., 2023; Yi et al., 2024; Yang et al., 2024a).

2.2 3D STEGANOGRAPHY

Steganography has undergone significant evolution over the decades (Provos & Honeyman, 2003;
Cheddad et al., 2010). With the rise of deep learning, numerous deep steganography methods have
been developed to invisibly embed messages into various carriers and reliably extract them, spanning
2D images (Zhang et al., 2024a; Zhu et al., 2018; Baluja, 2019; Yu et al., 2023a), videos (Zhang et al.,
2024c; Luo et al., 2023a), audio (Liu et al., 2023a;b; Chen et al., 2023; Roman et al., 2024), and
even generative models (Wen et al., 2024; Fernandez et al., 2023). Traditional 3D steganography has
primarily focused on watermarking explicit 3D representations, such as meshes (Ohbuchi et al., 2002;
Praun et al., 1999; Wu et al., 2015), typically by perturbing vertices or transforming data into the
frequency domain. Additionally, Yoo et al. (Yoo et al., 2022) proposed a method to extract copyright
information from individual 2D perspectives, even without the full 3D mesh.

Recently, NeRF watermarking has garnered increased attention (Luo et al., 2023b; Jang et al.,
2024a; Li et al., 2023a). For instance, StegaNeRF (Li et al., 2023a) embedded images or audio
within 3D scenes by fine-tuning NeRF’s weights, while CopyRNeRF (Luo et al., 2023b) introduced
a watermarked color representation and a distortion-resistant rendering strategy to ensure robust
message extraction. WaterRF (Jang et al., 2024a) leveraged deferred backpropagation with patch loss
and employed discrete wavelet transform to enhance fidelity and robustness. NeRFProtector (Song
et al., 2024) utilized a watermarking base model and progressive global distillation to explore relations
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between rendering strategies and watermark embedding. Targeted at 3DGS, GS-Hider (Zhang et al.,
2024b) used coupled feature fields and neural decoders to render the original and hidden scene,
achieving high-quality 3D scene hiding. Meanwhile, GaussianStego (Li et al., 2024) proposed a
generalized pipeline for information hiding and recovery in the 3D generation model. 3D-GSW (Jang
et al., 2024b) presented a frequency-guided Densification strategy for robust watermarking in 3DGS.
However, these methods do not take into account the security of point clouds, and the fidelity of
container 3DGS is unsatisfactory.

3 METHODOLOGY

3.1 ANALYSIS OF THE PREVIOUS 3DGS STEGANOGRAPHY METHOD

We first review the recent 3DGS steganography work GS-Hider. As shown in Fig. 1(a), GS-Hider
follows a “coupling-decoupling” process. It replaces the spherical harmonic coefficients in 3DGS
with a coupled feature attribute fi ∈ R16 and utilizes a high-dimensional rendering pipeline to
render it as a coupled feature field Fcoup ∈ RH×W×16. Furthermore, we use a public scene decoder
and a private message decoder to decouple Iori ∈ RH×W×3 and Ihid ∈ RH×W×3 from Fcoup,
respectively. Finally, we use the combination of ℓori and ℓhid to constrain the optimization of the
learnable attributes of Gaussian points and the weights of two decoders.

Although GS-Hider achieves good rendering quality and the public point cloud file does not exhibit
suspicious attributes in terms of format, when we visualize GS-Hider’s point cloud, the geometric
structure of the hidden information is exposed in the public point cloud. For example, as shown
in Fig. 1(b), we observe that when attempting to hide the “mic” in the “bonsai”, the shape of the
microphone appears in the public point cloud file. This is because GS-Hider uses the same set of
points to represent both the original scene and the hidden object, inevitably resulting in geometric and
spatial position overlap. Moreover, GS-Hider does not implement an appropriate optimization strategy
to control the growth of Gaussian points used to render the hidden message, which exacerbates the
compromise of point cloud security.

3.2 TASK SETTINGS AND OUR OBJECTIVES

Following the setup of GS-Hider (Zhang et al., 2024b), we aim for the SecureGS framework to
maintain transparency and generalization. Transparency denotes that after users embed information
into the original 3D scene, they can openly publish the container 3DGS for online rendering, while
preventing unauthorized users from decrypting the hidden information. Generalization refers to the
framework’s ability to adapt to hiding information in 3D objects, images, and bits. To be noted, unlike
GS-Hider, we aim to ensure both the file format security and the geometric structure security of
the container 3DGS point cloud file. Considering that hiding a large-scale 3D scene makes it difficult
to ensure that the point cloud structure remains confidential, we only hide a 3D object within the 3D
scene. Fig. 2 presents our task settings and realized functions.

3.3 HYBRID DECOUPLED GAUSSIAN ENCRYPTION REPRESENTATION

Similar to previous approaches (Lu et al., 2023), we use the sparse point cloud produced by COLMAP
as the initial input and voxelize the scene, forming the voxel centers V ∈ RN×3. Each voxel
center v ∈ V is treated as an anchor point and equipped with a local context feature fv ∈ R32,
a scaling factor lv ∈ R3, and two groups of learnable offsets {Oori

v⊛i}ki=1 and {Ohid
v⊛j}kj=1, which

respectively generates the dense Gaussian points representing the original scene and hidden object.
To avoid the format inconsistency between the container point cloud file and the original Scaffold-GS
caused by explicitly storing {Ohid

v⊛j}kj=1, we design an explicit-implicit hybrid Gaussian encryption
representation, as shown in Fig. 3. For the Gaussian points representing the original scene, we
explicitly store k learnable offsets {Oori

v⊛i}ki=1 for each anchor point xv, and use a scaling factor lv
to determine the position of each Gaussian point {µori

v⊛i}ki=1.

{µori
v⊛0, . . . ,µ

ori
v⊛(k−1)} = xv + {Oori

v⊛0, . . . ,O
ori
v⊛(k−1)} · lv, (3)

Additionally, we adopt an implicit neural decoder F†
o to store the offsets of Gaussian points that

render the hidden object. Following (Lu et al., 2023), we also extend fv to be multi-resolution and
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Figure 3: Overall framework of our SecureGS. We first voxelize the scene, where each voxel contains
an anchor point with the position xv, feature fv, scaling factor lv, and offsets {Oori

v⊛i}ki=1. Then,
we explicitly compute the positions µori

v⊛i via Eq. 3, and predict attributes {coriv⊛i, α
ori
v⊛i, q

ori
v⊛i, s

ori
v⊛i}

via a series of public MLPs. Meanwhile, we use private offset predictor F†
o and MLPs to store the

position and attributes of the Gaussian points representing the hidden object. Finally, we design a
region-aware density optimization to control the Gaussian point growing and pruning.

view-dependent blended feature f̂v . Given the camera located at xc and an anchor at xv , the hidden
offsets are computed as follows:

{µhid
v⊛0, . . . ,µ

hid
v⊛(k−1)} = xv + F†

o (f̂v, δvc, d⃗vc), (4)

where δvc = ∥xv − xc∥2 denotes the relative distance and d⃗vc = (xv − xc) / ∥xv − xc∥2 denotes
the viewing direction. The offset predictor F†

o will only be accessible to authorized users.

Furthermore, we use a set of public MLPs {Fc,Fα,Fq,Fs} to predict the opacity αori
v⊛i ∈ R1, quater-

nion qori
v⊛i ∈ R4, scaling soriv⊛i ∈ R3 and color coriv⊛i ∈ R3 of the Gaussian points representing the

original scene and adopt the private MLPs {F†
c ,F†

α,F†
q ,F†

s} to produce {αhid
v⊛j , q

ori
v⊛j , s

hid
v⊛j , c

hid
v⊛j}

that render the hidden object. We take the color component as an example.

{coriv⊛0, . . . , c
ori
v⊛(k−1)} = Fc(f̂v, δvc, d⃗vc), {chidv⊛0, . . . , c

hid
v⊛(k−1)} = F

†
c (f̂v, δvc, d⃗vc). (5)

Similarly, other attributes of SecureGS can also be produced by these MLPs based on the blended
features, the distance, and the viewing direction. Finally, all 3D Gaussian points are rendered into
2D views of the original scene Iori and the hidden object Ihid via the rasterizer and alpha blending
mechanism similar to 3DGS (Kerbl et al., 2023).

3.4 REGION-AWARE DENSITY OPTIMIZATION

“Hotdog” in “Bicycle” “Lego” in “Flowers” “Mic” in “Bonsai”

Figure 4: Visualization of the point cloud produced
by our SecureGS without region-aware density op-
timization (RDO) strategy. The RGB reference of
the hidden scene is placed on the left bottom.

Motivation: Although our hybrid Gaussian en-
cryption mechanism can securely represent the
hidden Gaussian points in format, we find that
by visualizing the anchor point cloud, the clues
of the hidden object can still be discovered from
the geometric structure, as shown in Fig. 4. For
instance, since the anchor point cloud is rela-
tively sparse, when we hide the 3D object “hot
dog” in the “bicycle” scene, the geometric struc-
ture of the hot dog is completely exposed, which
seriously poses a significant security risk. To
address this issue, a straightforward solution is to increase the density of Gaussian points, allowing
the Gaussian points of the original scene to obscure those of the hidden object. However, this
indiscriminate approach of promoting Gaussian point splitting significantly increases the number of
anchor points, leading to slower rendering speeds and higher storage costs.

To overcome the trade-off between the storage size and geometry structure security of the container
point cloud, we propose a region-aware density optimization strategy to control the splitting and
pruning of the Gaussian points adaptively. It can change the threshold of anchor point splitting so that
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Gaussian anchor points only grow in large quantities at the location of hidden objects while having
a small impact on the rendering and storage efficiency of the overall framework. Specifically, our
anchor growing strategy can be divided into three steps: 1) Asynchronous Gradient calculation:
As shown in Fig. 3, for the optimization of both the original scene and the hidden 3D object, we
separately accumulate the gradients of the neural Gaussian points involved in backward with different
frequencies, denoted as ∇ori and ∇hid. We aim to slow down the accumulation of ∇hid, thereby
suppressing the splitting of the hidden anchor points and enhancing security. 2) Obtain a high-density
region: Since we calculate ∇ori and ∇hid separately, we can also perform anchor growing based
on ∇ori and ∇hid in a decoupled manner. For example, if ∇hid > τfix, we will split new anchor
points, forming the point set Γhid. Note that τfix denotes a pre-set splitting threshold. Similarly, we
can construct Γori using ∇ori > τfix as the trigger condition. Afterward, we apply a point cloud
clustering algorithm DBSCAN (Ester et al., 1996) on these hidden anchor points Γhid to obtain a
bounding box Sbbx where the hidden anchor points are densely distributed. 3) Growing and pruning
for Γori and Γhid: For the growing of Γori, we replace the fixed threshold τfix with an adaptive
threshold τada for splitting based on whether the points are within the bounding box Sbbx.

τada = τfix / rdown, if (x, y, z) ∈ Sbbx or τfix else, (6)

where (x, y, z) denotes the spatial coordinates of an anchor point. rdown denotes a gradient down-
sampling ratio. Then, we prune some of the anchor points in Γori ∪ Γhid if an anchor fails to pro
duce neural Gaussians with a satisfactory level of opacity. Note that we still use τfix as the threshold
for the growing of Γhid in this stage. The complete algorithm is presented in Alg. 1.

3.5 TRANING DETAILS AND LOSS FUNCTIONS

To train the proposed SecureGS, we use the pixel-level ℓ1 loss, SSIM term ℓssim and volume
regularization ℓvol (Lu et al., 2023) to optimize the learnable attributes of anchor points and the
weights of MLPs {Fc,Fα,Fq,Fs,F†

o ,F†
c ,F†

α,F†
q ,F†

s}. Given the ground truth of the original
training view Îori and its corresponding hidden view Îhid, the supervision is expressed as follows.

ℓori = (1− α) · ℓ1(Iori, Îori) + α · ℓssim(Iori, Îori) + β · ℓvol(sori), (7)

ℓhid = (1− α) · ℓ1(Ihid, Îhid) + α · ℓssim(Ihid, Îhid) + β · ℓvol(shid), (8)

where α and β are used to balance the components of each loss. The volume regularization ℓvol
prompts the neural Gaussians to be compact with minimal overlapping via constraining the product
of the scale in each Gaussian. Finally, our total loss is ℓtotal = ℓori + λ · ℓhid, where λ denotes the
trade-off factor to balance the rendering of the original scene and hidden object.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset Preparation: We respectively conducted experiments on hiding 3D objects, 2D images,
and bits in 3D scenes or objects. For 3D object and 2D image hiding, the original scene includes the
bicycle (BI.), flowers (FL.), garden (GA.), stump (ST.), treehill (TR.), room (RO.), counter (CO.),
kitchen (KI.), bonsai (BO.) from Mip-NeRF 360 (Barron et al., 2021). The hidden 3D object is
obtained from the Blender dataset (Mildenhall et al., 2020). We use Supersplat 1 to embed hidden 3D
objects into 3D scenes. For bit hiding, we hide 48 bits into the 3D objects (Mildenhall et al., 2020),
which is the maximum number of bits that other comparison methods can support.

Comparison Methods: For 3D object and 2D image hiding, we compare our SecureGS with existing
3DGS steganography method GS-Hider (Zhang et al., 2024b). Meanwhile, similar to StegaNeRF (Li
et al., 2023a), we feed the output of the original 3DGS to a U-shaped decoder and constrain it to
output hidden objects, thus implementing a variant called 3DGS+StegaNeRF. For bit hiding, since
there is still no 3DGS steganography work for bit hiding available, we compare our method with two
SOTA NeRF watermarking methods (Luo et al., 2023b; Song et al., 2024).

Evaluation Metrics: We utilize PSNR, SSIM, LPIPS of the original scene, and hidden message
to measure the rendering quality of different methods. Meanwhile, FPS and storage size (MB) are

1https://playcanvas.com/supersplat
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Table 1: Comparison of the PSNR(dB), storage size, and FPS performance of the original scenes
and hidden message. “Scene-Level” denotes hiding a complete RGB image where the objects
are embedded in the original scene, and “Object-level” means hiding isolated objects without a
background. The best results are highlighted in pink and the second-best ones are in yellow .

Method Type
Size
(MB)

FPS BI. FL. GA. ST. TR. RO. CO. KI. BO. Avg

Scaffold-GS Ori. 161.46 142.91 25.01 21.26 27.19 26.49 22.96 32.26 29.48 31.35 32.61 27.62
3DGS

+StegaNeRF
Ori.

1106.67 35.09
24.05 21.92 27.28 26.00 22.56 28.95 27.46 29.39 31.13 26.53

Hid. 29.03 29.28 32.38 27.60 28.32 31.35 27.06 32.21 31.20 29.82

GS-Hider
Ori.

468.63 48.28
24.42 20.85 27.28 25.98 22.01 30.20 27.88 29.90 30.84 26.59

Hid. 30.82 28.35 32.96 28.13 27.97 34.20 27.87 32.95 32.33 30.62
SecureGS

(Scene-Level)
Ori.

267.39 131.71
25.33 21.34 27.28 26.73 22.93 32.36 29.94 31.51 32.33 27.75

Hid. 33.74 30.45 34.47 30.24 29.38 35.93 30.11 33.21 32.99 32.28
SecureGS

(Object-Level)
Ori.

290.54 106.98
25.31 21.37 27.51 26.75 22.91 32.51 30.28 31.70 33.05 27.93

Hid. 48.04 40.70 38.23 29.77 50.96 38.45 30.77 33.22 33.75 38.21
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Figure 5: Rendering quality comparison of the hidden message between the proposed SecureGS,
previous GS-Hider, and 3DGS+StegaNeRF. For our SecureGS, we also present the decoupled original
scene and hidden object on the 4th and 5th row, which cannot be achieved by other methods.

used to evaluate rendering speed and memory efficiency. Bit accuracy (%) is adopted to verify the
decoding precision of our framework.

Implementation Details: λ is set to 10 when hiding 3D objects and set to 0.1 when hiding a single
image. α and β in Eq. 8 are respectively set to 0.2 and 0.01. τfix and rdown are respectively set to
0.0002 and 4. We consistently set k = 10 across all experiments and the MLPs used in our approach
consist of 2 layers with ReLU activations with each hidden layer having 32 units. We conduct all our
experiments on the NVIDIA RTX 4090Ti server and use the same rasterizer as the original 3DGS.

4.2 COMPARISON WITH EXISTING 3DGS STEGANOGRAPHY METHODS

To verify the superiority of our method, we compare the proposed SecureGS with two state-of-the-art
3DGS steganography methods in hiding 3D objects in 3D scenes. Our SecureGS has significant
advantages in at least the following three aspects.

Higher rendering fidelity: As reported in Tab. 5, our method improves the rendering quality of
the original scene by 1.16dB and the fidelity of the hidden object by 1.66dB compared to GS-Hider.
Furthermore, due to the utilization of more Gaussian points, the PSNR of our rendered original scene
can even slightly surpass that of our baseline Scaffold-GS, which proves that our decoupled Gaussian
encryption representation ensures the rendering of the hidden object and the original scene do not
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Hotdog Lego Drums Mic ficus

Figure 6: Visualization of the anchor point cloud of our SecureGS produced based on∇hid.

(a): GS-Hider (b): SecureGS w/o RDO (c): SecureGS (d): RGB Image Reference

Figure 7: Visualization of the point cloud generated by GS-Hider, SecureGS without RDO strategy,
and the proposed SecureGS. Clues of hidden objects cannot be found in our anchor point cloud, while
the security of other methods is poor.

interfere with each other. To be noted, since GS-Hider and 3DGS+StegaNeRF decode the hidden
message from a feature map or RGB image, they often suffer loss collapse when directly decoding
objects with black/white backgrounds. To ensure a fair comparison with previous methods, we
retained the content of the original scene when hiding objects, thus forming a complete RGB image
as the Îhid, and we refer to this type of hiding as “scene-level”. Meanwhile, “object-level” means that
we use isolated 3D objects, without any background, as hidden content Îhid for the training of our
SecureGS. As shown in Fig. 5, our SecureGS demonstrates a clear advantage in scene-level hiding
compared to previous methods, rendering the texture structure of hidden objects more clearly and
realistically, better integrating them with the surrounding background, and producing fewer artifacts
and noise. These results prove that our method achieves higher rendering quality in both subjective
effects and qualitative metrics.

Lower storage size and faster rendering speed: As shown in Tab. 1, our SecureGS reduces storage
space by 201.24MB compared to GS-Hider, and its rendering speed is nearly 3 times faster, verifying
that our rendering mechanism is significantly more efficient. Compared to the original Scaffold-GS,
the FPS of our SecureGS decreases by only 7% at the scene level and 25% at the object level, which
is acceptable and still maintains good real-time capability.

Decoupled original scene and hidden message decoding: In addition to the above two performance
advantages, our SecureGS can decouple the original and hidden RGB views and separate the anchor
point clouds produced based on∇ori and∇hid. As shown in Fig. 6, the hidden anchor point decoded
by our method retains a good geometry structure and is very close to the input hidden object, which
greatly increases the flexibility and practicality of our framework.

4.3 SECURITY ANALYSIS

We analyze the security of SecureGS from three aspects. From the view of the point cloud file format,
our SecureGS only stores the feature of anchor points fv, along with the offset {Oori

v⊛i}ki=1 and

8
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Table 2: Robustness analysis under different
pruning ratios. PSNRo and PSNRh denote
the fidelity of original and hidden message.

Pruning Ratio PSNRo SSIMo PSNRh SSIMh

5% 27.41 0.814 37.45 0.985
15% 26.30 0.794 35.43 0.983
20% 24.96 0.765 33.90 0.981

Table 3: Rendering quality and bit accuracy
comparison between our SecureGS and other
competitive methods on Blender dataset.

Methods Bit Acc. ↑ PSNR ↑ SSIM ↑ LPIPS ↓
CopyRNeRF 62.15 25.50 0.907 0.089

NeRFProtector 92.69 29.26 0.939 0.048
SecureGS 100.00 33.84 0.968 0.003

scaling factor lv of the Gaussian points used for rendering the original scene, which is identical to
the file format of the original Scaffold-GS. From the view of the visualized point cloud structure, as
shown in Fig. 7, almost no traces of the hidden scene can be detected in our anchor points, whereas
other methods fail to achieve this. For instance, when we hide a microphone in the “bonsai” scene (the
third line in Fig. 7), GS-Hider, lacking explicit control of point cloud growing, reveals the shape of the
microphone in the visualized point cloud. Similarly, if SecureGS does not employ our region-aware
density optimization (RDO), the hidden message would also be exposed due to the use of sparse
anchor point clouds. From the view of rendered images, as shown in Fig. 5, the rendered scene does
not reveal any artifacts or edges of the hidden object and maintains a high fidelity. Therefore, we can
conclude that our SecureGS is secure and reliable.

4.4 ROBUSTNESS ANALYSIS

To evaluate the robustness of our SecureGS, We perform random pruning on the anchor Gaussian
points. To be noted, random pruning denotes randomly pruning a proportion of anchor points. PSNR
and SSIM results of the original scene (PSNRo, SSIMo) and hidden object (PSNRh, SSIMh) are
reported in Tab. 2. We can find that randomly pruning 5% of anchors has almost no effect on the
rendering quality of SecureGS. Even at a larger pruning rate of 25%, our method can still achieve
24.96 dB / 33.90 dB on PSNRo / PSNRh, which verifies that our method is robust enough to the
degradation of point clouds. More visualized results are presented in the appendix.

4.5 ABLATION STUDIES

Table 4: Ablation studies on two key modules of
our SecureGS, namely HDGER and RDO.

Method Size(MB) PSNRo SSIMo PSNRs SSIMs

Ours w/o HDGER and RDO 185.79 27.85 0.817 40.51 0.992
Ours w/o HDGER 254.91 27.81 0.814 38.68 0.988

Ours w/o RDO 168.75 27.49 0.805 40.42 0.991
Ours 290.54 27.93 0.822 38.21 0.986

We conduct ablation studies on two key modules
of our SecureGS: hybrid decoupled Gaussian
encryption representation(HDGER) and region-
aware density optimization (RDO). Since both
HGDER and RDO are essential components for
ensuring the security of SecureGS, we only fo-
cus on exploring how adding these two modules
affects the rendering fidelity of the hidden mes-
sage and the original scene. By removing HGDER, we directly use an explicit Ohid

v⊛j to store the
offsets of the hidden Gaussian points, referred to as “Ours w/o HGDER”. As reported in Tab. 4, “Ours
w/o HGDER” has almost no significant impact on the rendering quality of SecureGS. Meanwhile,
when RDO is removed, we observe a 2.21dB gain on PSNR of the hidden scene due to the lack of
restrictions on the splitting of hidden Gaussian points. However, the rendering quality of the original
SecureGS remains satisfactory when weighed against the security enhancements provided by RDO.
Removing both modules, although the fidelity of the hidden object further improves, the security of
our method is significantly compromised (as shown in Fig. 9 of the appendix).

4.6 EXTENSIONS

In addition to hiding 3D objects in 3D scenes, our SecureGS is also applicable to hiding bits, and
single images in the original scene.

Hiding bits in 3D Scene: To achieve efficient hiding and lossless decoding of bit information, we
introduce an additional, private MLP F†

b based on the original Scaffold-GS. F†
b takes the feature

fv ∈ R32 of each voxel as input to convert the high-dimensional features into a specific bit length.
Finally, we use the average of the bit sequences decoded from all voxels as the final copyright. The
bit accuracy and rendering quality of our method and other competitive methods are presented in

9
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Table 5: Rendering quality comparison (PSNR (dB)) of the original scene and hidden image.

Method Type
Size

(MB)
FPS BI. FL. GA. ST. TR. RO. CO. KI. BO. Avg

3DGS
+StegaNeRF

Ori.
842.51 52.94

18.44 15.95 21.93 20.86 18.25 23.94 23.21 21.58 24.52 20.96
Hid. 37.95 35.82 37.23 36.21 38.85 40.92 38.79 39.51 40.16 38.38

GS-Hider
Ori.

385.41 57.35
24.38 20.74 26.84 25.91 21.92 30.49 28.75 29.72 31.05 26.64

Hid. 40.25 45.19 40.28 41.54 40.19 40.56 42.72 42.06 46.66 42.16

SecureGS
Ori.

155.09 144.46
24.86 21.02 27.07 26.21 22.86 31.96 29.13 30.52 31.70 27.26

Hid. 45.40 47.11 38.87 42.99 39.70 41.27 42.95 41.92 46.76 42.99

Rendering View Recovered ImageHidden View
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Figure 8: Visualization of the rendered scene and recovered image produced by our SecureGS and
other methods. Hidden view denotes the specific view that is used to hide the image.

Tab. 3. Compared to CopyRNeRF (Luo et al., 2023b) and NeRFProtector (Song et al., 2024), we can
achieve 100% bit decoding accuracy because we can decode directly from the point cloud and the bits
decoded from each voxel can be cross-validated. However, other methods decode bits from the 2D
view with certain errors. Meanwhile, after adding bits, the fidelity of our method can still reach 33.84
dB on PSNR, which far exceeds CopyRNeRF and NeRFProtector. Note that both these methods use
a message decoder for image watermarking, they possess unique advantages in the generalization of
message extraction.

Hiding a single image in 3D Scene: Hiding a single image is a special case of hiding 3D objects.
Here, our task is to embed a copyrighted image in a specific view of a 3D scene. Similar to GS-
Hider (Zhang et al., 2024b), during the fitting of the original scene, we only encourage the rendering
result at this specific view to be close to the hidden image in each iteration, without constraining
other views. The results are reported in Tab. 5. It can be seen that our method outperforms GS-Hider
by 0.62dB and 0.83dB on the PSNR of the original scene and restored image with a smaller storage
space and a faster rendering speed. As plotted in Fig. 8, our rendered original view can achieve more
detailed reconstruction, especially in some areas with complex textures such as grass, while GS-Hider
often appears blurry in these areas. Meanwhile, 3DGS+StegaNeRF is more inclined to remember
the embedded copyright image because it is decoded from the rendered RGB view, which will cause
severe aliasing and interference of the rendered view and copyright image.

5 CONCLUSION

In this paper, we propose SecureGS, a novel and efficient 3DGS steganography framework. SecureGS
successfully addresses the challenges of security and fidelity in previous 3DGS steganography
approaches by incorporating anchor point-based neural decoding, a hybrid Gaussian encryption
mechanism, and a region-aware density optimization. Our approach allows for secure embedding and
retrieval of hidden 3D content, copyright images, and bits, ensuring high fidelity in rendering both the
original and hidden message. Extensive experiments confirm that our SecureGS outperforms existing
methods in rendering speed, fidelity, and security, showcasing its potential for real-time applications.
Furthermore, our work lays a promising foundation for advancements in copyright protection and
encrypted transmission of 3D assets, offering a new avenue for safeguarding 3D content in various
digital media landscapes.
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Robin San Roman, Pierre Fernandez, Alexandre Défossez, Teddy Furon, Tuan Tran, and Hady Elsahar.
Proactive detection of voice cloning with localized watermarking. arXiv preprint arXiv:2401.17264,
2024.

Qi Song, Ziyuan Luo, Ka Chun Cheung, Simon See, and Renjie Wan. Protecting nerfs’ copyright via
plug-and-play watermarking base model. arXiv preprint arXiv:2407.07735, 2024.

Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative
gaussian splatting for efficient 3d content creation. arXiv preprint arXiv:2309.16653, 2023.

Yuxin Wen, John Kirchenbauer, Jonas Geiping, and Tom Goldstein. Tree-rings watermarks: Invisible
fingerprints for diffusion images. Advances in Neural Information Processing Systems, 36, 2024.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. arXiv preprint
arXiv:2310.08528, 2023.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1912–1920, 2015.

Shuzhou Yang, Yu Wang, Haijie Li, Jiarui Meng, Xiandong Meng, and Jian Zhang. Fourier123: One
image to high-quality 3d object generation with hybrid fourier score distillation. arXiv preprint
arXiv:2405.20669, 2024a.

Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. Deformable 3d
gaussians for high-fidelity monocular dynamic scene reconstruction. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2024b.

Taoran Yi, Jiemin Fang, Junjie Wang, Guanjun Wu, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Qi Tian,
and Xinggang Wang. Gaussiandreamer: Fast generation from text to 3d gaussians by bridging 2d
and 3d diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2024.

Innfarn Yoo, Huiwen Chang, Xiyang Luo, Ondrej Stava, Ce Liu, Peyman Milanfar, and Feng Yang.
Deep 3d-to-2d watermarking: Embedding messages in 3d meshes and extracting them from
2d renderings. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 10031–10040, June 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jiwen Yu, Xuanyu Zhang, Youmin Xu, and Jian Zhang. Cross: Diffusion model makes controllable,
robust and secure image steganography. Advances in Neural Information Processing Systems, 36,
2023a.

Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and Andreas Geiger. Mip-splatting: Alias-free
3d gaussian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023b.

Xuanyu Zhang, Runyi Li, Jiwen Yu, Youmin Xu, Weiqi Li, and Jian Zhang. Editguard: Versatile
image watermarking for tamper localization and copyright protection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 2024a.

Xuanyu Zhang, Jiarui Meng, Runyi Li, Zhipei Xu, Yongbing Zhang, and Jian Zhang. Gs-hider:
Hiding messages into 3d gaussian splatting. Advances in Neural Information Processing Systems,
2024b.

Xuanyu Zhang, Youmin Xu, Runyi Li, Jiwen Yu, Weiqi Li, Zhipei Xu, and Jian Zhang. V2a-mark:
Versatile deep visual-audio watermarking for manipulation localization and copyright protection.
In Proceedings of the ACM International Conference on Multimedia (ACM MM), 2024c.

Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei. Hidden: Hiding data with deep networks.
In Proceedings of the European conference on computer vision (ECCV), pp. 657–672, 2018.

Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross. Ewa volume splatting. In
IEEE Conference on Visualization (VIS), 2001.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 MORE IMPLEMENTATION DETAILS

Dataset Construction: To make the training view set of the hidden object and the original scene
correspond to each other, we use the Supersplat to align the position of the original scene and hidden
object and render the training set of the hidden object according to the viewpoints in the training set
of the original scene. The correspondence between the hidden object and original scenes is listed in
Tab. 6.

Table 6: Correspondence between hidden objects and original scenes.

Original Scene Bicycle Flowers Garden Stump Treehill Room Counter Kitchen Bonsai
Hidden Object hotdog lego ficus drums ficus chair lego ship mic

Implementation Details and Network Structure:

Feature bank: We follow the design of the feature bank introduced in Scaffold-GS (Lu et al., 2023) to
extend fv to be multi-resolution and view-dependent feature f̂v . Specifically, for each anchor v, we
generate a feature bank {fv,fv↓1

,fv↓2
}, which is then fused using view-dependent weights to obtain

a combined anchor feature f̂v . Given the camera located at xc and an anchor at xv , we compute their
relative distance and viewing direction as follows:

δvc = ∥xv − xc∥2, d⃗vc =
xv − xc

∥xv − xc∥2
, (9)

The feature bank is then blended through a weighted sum, with the weights predicted by a small MLP
Fw. The integrated anchor feature f̂v is then calculated as:

{w,w1, w2} = Softmax(Fw(δvc, d⃗vc)), (10)

f̂v = w · fv + w1 · fv↓1
+ w2 · fv↓2

. (11)

The structure of MLPs: The structure of our MLPs follows a “Linear→ RELU→ Linear” style with
the hidden dimension of 32. The structure of {F†

α,F†
s ,F†

q ,F†
c } is identical to {Fα,Fs,Fq,Fc} in

Scaffold-GS. Note that for the offset predictor F†
o , the last linear layer is to transform intermediate

tensors from RN×32 to RN×(3k), where N and k respectively denote the number of anchor points
and hidden Gaussian points generated by each voxel.

The algorithm of our RDO Strategy: To more clearly demonstrate our region-aware density
optimization (RDO) algorithm, we have provided the pseudocode in Alg. 1.

A.2 RELATIONSHIPS AND DIFFERENCES WITH EXISTING 3D STEGANOGRAPHY METHODS

Comparison with GS-Hider: Our SecureGS and GS-Hider (Zhang et al., 2024b) follow similar task
setups, assuming that the point cloud file needs to be publicly available while hiding information. At
a high level, SecureGS and GS-Hider adopt a “coupling-decoupling” process. The main differences
between them lie in the implementation architecture: First, GS-Hider is built on the original 3DGS
and embeds information through coupled feature attributes, using a CNN-based neural network
to decode the feature maps. The decoding mechanism from feature maps is the root cause of its
deficiencies in security, fidelity, and rendering speed. In contrast, our SecureGS is built on the
efficient Scaffold-GS, which naturally generates Gaussian points from anchor points specifically for
rendering hidden information. Additionally, we use several MLPs to efficiently and in parallel decode
the anchor point cloud in batches. Thanks to our efficient mechanism of decoding from anchor points
and the proposed region-aware density optimization, we outperform GS-Hider in all aspects. Our
method improves fidelity by over 1dB, renders scenes twice as fast as GS-Hider, and requires less
storage space while ensuring both the format and geometric structure security of the point cloud
files. Additionally, GS-Hider does not support bit embedding and decoding, a limitation that we have
addressed in our approach.

Comparison with HiDDeN-based Methods: Most previous SOTA 3D watermarking methods (Luo
et al., 2023b; Jang et al., 2024a;b; Song et al., 2024) typically use a watermark decoder pre-trained
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Table 7: Comparison of 3D scene hiding between GS-Hider and SecureGS.

Method PSNRo(dB) SSIMo LPIPSo PSNRs(dB) SSIMs LPIPSs

GS-Hider 25.82 0.783 0.246 25.18 0.780 0.306
SecureGS 27.20 0.796 0.235 29.75 0.858 0.211

on the image domain (e.g., HiDDeN (Zhu et al., 2018)). This watermark decoder is tasked with
extracting bits from rendered views by NeRF or 3DGS, offering excellent generalization in message
extraction. In contrast, our SecureGS aims to decode bit information directly from the point cloud,
which aligns better with the explicit representation features of 3DGS and is more direct and efficient.
Currently, there are no deep networks capable of embedding and decoding bits from point clouds,
which makes it infeasible for us to adopt HiDDeN-based methods for generalized message extraction.
However, our message extraction MLP is lightweight enough that it does not increase training time or
cost. We plan to explore the development of a generalized method for extracting bits directly from
point clouds in future work.

A.3 LIMITATIONS AND FUTURE WORKS

Limitations: First, to enhance the geometric security of our method, we have to promote anchor
point splitting to some extent through our RDO strategy, which results in slightly larger storage space
compared to the original Scaffold-GS when hiding 3D objects. Second, to better ensure the security
of our steganography framework, the hidden object is required to partially overlap with the point
cloud of the original scene to some extent. Hiding a 3D object without leaving traces in areas where
the original point cloud is sparse is extremely difficult and remains an area for further exploration.

Future works: Our future work will focus primarily on improving the robustness of 3DGS steganog-
raphy, ensuring that the hidden object’s integrity and fidelity are preserved even under more severe
damage and aggressive pruning strategies. Additionally, we will explore leveraging 3D backbone
networks, such as PointFormer (Pan et al., 2021), to directly decode the hidden point cloud from the
original Gaussian points, further enhancing the security of 3D steganography through structured and
network-based approaches.

A.4 RESULTS ON HIDING 3D SCENE INTO 3D SCENE

Following the setup of GS-Hider, we compare our SecureGS with GS-Hider on hiding 3D scenes into
3D scenes. Here, we do not use the bounding box in the RDO strategy, as it is not meaningful for
high-capacity scene hiding. The results are reported on Tab. 7. It can be observed that the rendering
fidelity of the original scene and the hidden scene in our method is 1.38 dB and 4.57 dB higher than
that of GS-Hider, respectively, demonstrating a significant advantage.

A.5 MORE ROBUSTNESS ANALYSIS

To further validate the robustness of our method, we apply several 3D degradations to the anchor
point cloud, including Gaussian noise of varying intensities and point cloud denoising. The metrics
are reported on Tab. 8. The Gaussian noise intensities are set to 0.05, 0.1, and 0.15, and the denoising
method is Statistical Outlier Removal. It can be observed that our method demonstrates strong
resistance to Gaussian noise. Moreover, when dealing with point cloud denoising, although the
original scene’s rendering quality decreases, the hidden object’s rendering quality remains almost
unchanged. Fig. 10 further illustrates the robustness of our method under different degradations.

A.6 MORE ABLATION STUDIES

To further clarify the independent contributions of our region-aware density optimization (RDO),
we further conduct ablation studies on RDO and realize two variants, namely globally reducing
the gradient threshold and using the same gradient to grow anchor points representing both the
original and hidden scenes. The results are reported on Tab. 9. We find that globally lowering the
gradient threshold increases the memory size by 114.76 MB, significantly reducing rendering speed
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Table 8: PSNR (dB) and SSIM under different degradation conditions.

Condition PSNRo SSIMo PSNRs SSIMs

Clean 27.93 0.822 38.21 0.986
Gaussian noise (σ=0.05) 27.87 0.820 37.52 0.984
Gaussian noise (σ=0.1) 27.74 0.817 37.04 0.983
Gaussian noise (σ=0.15) 27.55 0.857 36.18 0.981
Point cloud denoising 24.02 0.794 38.20 0.986

Table 9: Ablation study on different key steps in the region-aware density optimization.

Method Memory Size (MB) PSNRo (dB) SSIMo PSNRs (dB) SSIMs

Globally reducing the gradient threshold 405.27 28.11 0.831 38.36 0.987
Using the same gradient for anchor growing 252.49 27.73 0.815 37.95 0.977
SecureGS (Ours) 290.54 27.93 0.822 38.21 0.986

while only resulting in a 0.18 dB gain in PSNR. Additionally, if a shared gradient is used instead of
our asynchronous gradient accumulation, the rendering of the original scene and the hidden object
interferes with each other, leading to a reduction in rendering quality for both and failing to ensure
security. Thus, our region-aware density optimization achieves a well-balanced trade-off between
rendering quality, security, and rendering efficiency.

Furthermore, we also present the visualized results of point cloud produced by our baseline “Ours w/o
RDO and HDGER” in Fig. 9. “Ours w/o RDO and HDGER” denotes directly adding the offset Ohid

v⊛j
to the point cloud file and using a series of encrypted MLPs to predict the attributes of the hidden
Gaussian points. Meanwhile, the anchor growing and reduction strategy is the same as Scaffold-GS.
Quantitative metrics are reported in Tab. 4. Although this method achieves acceptable fidelity for
both the hidden object and the original scene, its point cloud completely exposes the information of
the hidden object, failing to meet the security requirements of 3DGS steganography. This indicates
that simply combining the framework design of GS-Hider with the rendering method of Scaffold-GS
cannot achieve steganography with strong security.

“Hotdog” in “Bicycle” “Mic” in “Bonsai” “Lego” in “Flowers”

Figure 9: Visualized results of the point cloud produced by “Ours w/o RDO and HDGER”.

A.7 MORE VISUALIZATION RESULTS

We present more visualization results of our rendering results under different degradations in Fig. 11,
the rendering results of bit hiding in Fig. 12, the rendering results of single image hiding in Fig. 13,
and the results of 3D object hiding in Fig. 14.
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Figure 10: Rendered results of the original scene and hidden object produced by our SecureGS under
Gaussian noise and point cloud denoising.
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Algorithm 1 Overall Pipeline of Our Proposed Region-Aware Density Optimization

i← 0 ▷ Iteration Count
Γori← SfM points ▷ Initalization of the anchor point set produced based on∇ori

Γhid = {} ▷ Initalization of the anchor point set produced based on∇hid

while not converged do
ℓtotal = ℓori + λℓhid ▷ Computed via Eq. 8
∇ori← AccumulateGradient(∇ℓtotal),
if i % step == 0 then:
∇hid← AccumulateGradient(∇ℓtotal), ▷ Accumulate gradients in different intervals

end if
if IsRefinementIteration(i) then

if IsBoundingBoxIteration(i) then
Sbbx← PointCloudCluster(Γhid) ▷ Using the clustering method to get a bounding box

end if
for all anchor points v(xv,fv, lv,O

ori
v ) in Γori ∪ Γhid do

if v ∈ Sbbx then
τada = τfix / rdown ▷ Lower the threshold if the anchor in the bounding box

end if
if ∇ori > τada then

Γori← AnchorGrowing(Γori)
Γori, Γhid← AnchorPruning(Γori, Γhid)

end if
if ∇hid > τfix then

Γhid← AnchorGrowing(Γhid)
end if

end for
end if
i← i+ 1

end while

ra
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Figure 11: Rendered results of the original scene and hidden object produced by our SecureGS under
different degradations.
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Figure 12: Rendered object and error maps produced by the proposed SecureGS on the blender
dataset. After embedding the bit message, the rendering quality of our original scene will hardly be
affected.

Rendering View Recovered ImageHidden View

Figure 13: Rendered view and recovered different copyright images produced by our SecureGS.
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Figure 14: Rendered original scene and the hidden object produced by our SecureGS. The first row
of each group is the original scene and the second row is the hidden object.
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