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Abstract
We study reinforcement learning (RL) with lin-
ear function approximation. For episodic time-
inhomogeneous linear Markov decision pro-
cesses (linear MDPs) whose transition probabil-
ity can be parameterized as a linear function of
a given feature mapping, we propose the first
computationally efficient algorithm that achieves
the nearly minimax optimal regret Õ(d

√
H3K),

where d is the dimension of the feature mapping,
H is the planning horizon, and K is the num-
ber of episodes. Our algorithm is based on a
weighted linear regression scheme with a care-
fully designed weight, which depends on a new
variance estimator that (1) directly estimates the
variance of the optimal value function, (2) mono-
tonically decreases with respect to the number of
episodes to ensure a better estimation accuracy,
and (3) uses a rare-switching policy to update the
value function estimator to control the complex-
ity of the estimated value function class. Our
work provides a complete answer to optimal RL
with linear MDPs, and the developed algorithm
and theoretical tools may be of independent in-
terest.

1 Introduction
How to make reinforcement learning (RL) efficient with
large state and action spaces has been a central research
problem in the RL community. A widely used approach
is function approximation, which approximates the value
function in RL with a predefined function class for efficient
exploration and exploitation. Although the intuition is sim-
ple, some basic questions about the function approxima-
tion approach still remain open. For instance, what is the
optimal sample complexity (or regret) for RL algorithms
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with function approximation to find the optimal policy?
Such optimal sample complexity results have been widely-
studied and established for tabular RL methods (e.g., Azar
et al. 2017; Zhang and Ji 2019; Zhang et al. 2020), but are
still understudied for RL with function approximation.

Some recent works have studied the optimal regret results
for a special class of MDPs called linear mixture Markov
decision processes (linear mixture MDPs) (Jia et al., 2020;
Ayoub et al., 2020; Zhou et al., 2021a; Zhou and Gu, 2022),
which assume that the transition probability of the MDP is
a linear combination of several base models. More specif-
ically, Zhou et al. (2021a) proposed the near-optimal algo-
rithm for time-inhomogeneous linear mixture MDPs. Zhou
and Gu (2022) further proposed near-optimal horizon-free
algorithm for time-homogeneous linear mixture MDPs un-
der the assumption that the total reward is bounded by 1.
However, the computational efficiency of their algorithms
highly depends on the value-targeted regression procedure
(Jia et al., 2020; Ayoub et al., 2020), which relies on an in-
tegration or sampling oracle of the individual base model.
Such an integration or sampling oracle exists for some spe-
cial linear mixture MDPs but can be computationally ex-
pensive or even intractable in the general case.

Another line of works studies the linear Markov decision
processes (linear MDPs) (Yang and Wang, 2019; Jin et al.,
2020), which assumes that the transition probability and the
reward of the environment enjoys a compact low-rank rep-
resentation. The most appealing feature of linear MDPs is
that they can induce a linear structure of the value function
for any policy, which makes sample-efficient RL possible.
Meanwhile, the algorithms for linear MDPs directly ap-
proximate the value function itself, which is computation-
ally more efficient than the algorithms for linear mixture
MDPs. In particular, Yang and Wang (2019) first proposed
a near-optimal RL algorithm with the access to a generative
model, which can generate any number of samples for any
given state-action pairs. Without accessing the generative
model, Jin et al. (2020) proposed an LSVI-UCB algorithm
based on the principle of optimism in the face of uncer-
tainty and achieved Õ(

√
d3H4K) regret, where d is the

dimension of a linear MDP, H is the planning horizon and
K is the number of episodes. Nevertheless, their algorithm
is not optimal since there exists an O(

√
dH) gap between
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their regret upper bound, and the lower bound O(d
√
H3K)

proved in Zhou et al. (2021a). Zanette et al. (2020b) stud-
ied a more general MDP class called low Bellman error
class, which contains linear MDPs as a special case, and
they proposed a computationally inefficient algorithm with
a near-optimal regret.

Therefore, a natural question arises1:

Can we design a computationally efficient algorithm that
achieves the minimax optimality for linear MDPs?

We give an affirmative answer to the above question in this
work. Our contributions are listed as follows.

• We propose an algorithm LSVI-UCB++ which attains a
near-optimal regret Õ(d

√
H3K) when K is large, which

matches the lower bound (Zhou et al., 2021a) up to loga-
rithmic factors. To the best of our knowledge, this is the
first computationally efficient RL algorithm that is nearly
minimax-optimal for linear MDPs.

• The first key component of our algorithm is a variance-
aware weighted ridge regression scheme, which is firstly
introduced to acheive nearly minimax optimal regret for
linear mixture MDPs in Zhou et al. (2021a) and later im-
proved in Zhou and Gu (2022) to achieve horizon-free
regret. Such a component reduces the variance of the es-
timators in our algorithm, which leads to a

√
H improve-

ment in the regret over Jin et al. (2020).

• To improve the d dependence, inspired by previous
works for tabular RL (Azar et al., 2017), our algorithm
utilizes a new strategy to estimate the variance of the es-
timated value function. Unlike the previous approach for
linear mixture MDPs (Zhou et al., 2021a), our new es-
timator directly estimates the variance of the true value
function and computes the difference between the vari-
ances of the true value function and the estimated one.
Such a strategy allows the variance estimator to focus on
a simpler function class that only includes the true value
function, and therefore gives a tighter confidence set than
that in Jin et al. (2020).

• To obtain a uniform variance upper bound, we construct
our value function estimator as a monotonically decreas-
ing estimator with a “rare-switching” update strategy,

1We are aware of a recently published work (Hu et al., 2022),
which claims to achieve the nearly minimax optimal regret for
linear MDPs. However, a closer examination of their proof can
find a technical error, which makes their result invalid. We will
discuss it in more detail and show why our algorithm and proof
can get around the issue in Appendix A. Using the techniques pro-
posed by our paper, Hu et al. (2022) recently fixed the technical
flaw by using the “rare-switching” update strategy and also aban-
doning the over-optimistic estimator. This is acknowledged in the
updated arXiv version of Hu et al. (2022).

Model Algorithm Regret

LSVI-UCB
(Jin et al., 2020) Õ

(√
d3H4K

)
LSVI-UCB++Linear MDP

(Our work) Õ
(
d
√
H3K

)
Lower bound Zhou et al. (2021a) Ω(d

√
H3K)

Table 1. Comparison of RL with linear function approximation in
terms of regret guarantee.

which makes the estimated value function decrease with
respect to the episodes and being updated rarely. To-
gether with our new variance estimator, we can remove
the additional

√
d dependency from the previous regret,

which makes our algorithm nearly minimax optimal. No-
tably, our algorithm only needs to update the policy
O(logK) times instead of K times, and therefore enjoys
a low-switching cost.

For the ease of comparison, we summarize the regret
bounds of our algorithm and previous algorithms for lin-
ear MDPs in Table 1.

Recently, an independent concurrent work (Agarwal et al.,
2022) proposed a different algorithm that can also achieve
near-optimal regret for linear MDPs. Their algorithm fol-
lows the algorithm design in Hu et al. (2022), which in-
troduces an additional over-optimistic value function to
construct a monotonic variance estimator, and a non-
Markovian policy to fix the technical flaw in Hu et al.
(2022). In contrast, our algorithm takes a neat approach
and constructs the monotonic variance estimator with a
simple “rare-switching” update strategy, which enjoys low-
switching cost. Agarwal et al. (2022) also studied RL
with nonlinear function approximation, which is beyond
the scope of this work.

Notation In this work, we use lowercase letters to denote
scalars and use lower and uppercase boldface letters to de-
note vectors and matrices respectively. For a vector x ∈ Rd

and matrix Σ ∈ Rd×d, we denote by ∥x∥2 the Euclidean
norm and ∥x∥Σ =

√
x⊤Σx. For two sequences {an} and

{bn}, we write an = O(bn) if there exists an absolute con-
stant C such that an ≤ Cbn, and we write an = Ω(bn) if
there exists an absolute constant C such that an ≥ Cbn.
We use Õ(·) and Ω̃(·) to further hide the logarithmic fac-
tors. For any a ≤ b ∈ R, x ∈ R, let [x][a,b] denote the trun-
cate function a·1(x ≤ a)+x·1(a ≤ x ≤ b)+b·1(b ≤ x),
where 1(·) is the indicator function. For a positive integer
n, we use [n] = {1, 2, .., n} to denote the set of integers
from 1 to n.
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2 Related Work

Near-optimal tabular reinforcement learning There is a
voluminous amount of works developing nearly minimax
optimal algorithms for tabular MDPs under different set-
tings (Azar et al., 2017; Zanette and Brunskill, 2019; Zhang
and Ji, 2019; Simchowitz and Jamieson, 2019; Zhang et al.,
2020; 2021a; He et al., 2021b). A key idea behind these
works is to exploit the O(H2) total variance of the value
functions for each episode (Azar et al., 2017; Jin et al.,
2018). Azar et al. (2017) first proposed this idea to de-
sign Bernstein-type bonuses in tabular MDPs and provided
an Õ(

√
H2SAK) regret upper bound, which matches the

lower bound for the tabular setting. In their analysis, Azar
et al. (2017) also introduced a new value function decom-
position scheme which mainly focuses on the variances of
the optimal value function rather than the estimated value
function. Zhang et al. (2021a) further improved the depen-
dence on H for the constant terms and achieved a nearly
minimax optimal horizon-free regret (nearly independent
of H) under the assumption that the total reward is bounded
by 1. Our algorithm extends the idea of Bernstein-type
bonuses and value function decomposition in Azar et al.
(2017) to RL with linear function approximation.

Reinforcement Learning with Linear Function Approx-
imation. There exists a large body of literature on RL with
linear function approximation (Jiang et al., 2017; Dann
et al., 2018; Yang and Wang, 2019; Jin et al., 2020; Wang
et al., 2020; Du et al., 2019; Sun et al., 2019; Zanette et al.,
2020a; Yang and Wang, 2020; Modi et al., 2020; Ayoub
et al., 2020; Zhou et al., 2021a; He et al., 2021a; Zhou and
Gu, 2022). All these works assume certain linear structures
of the underlying MDP. The most related work to ours is
initiated by Yang and Wang (2019), which assumes that
the reward function and the transition probability are lin-
ear in the feature mapping ϕ(s, a) for each state-action pair
(s, a). Jin et al. (2020) further considered Linear MDPs
and proposed LSVI-UCB which achieves an Õ(

√
d3H4K)

regret bound. Zanette et al. (2020a) proposed a Thomp-
son sampling based algorithm for linear MDPs, which at-
tains a regret upper bound of order Õ(

√
d4H5K). Another

popular MDP model for RL with linear function approxi-
mation is linear mixture Markov Decision Processes (Modi
et al., 2020; Yang and Wang, 2020; Jia et al., 2020; Ayoub
et al., 2020), or Linear Kernel MDPs (Zhou et al., 2021b),
where the transition probability is a linear combination of
several base models. For linear mixture MDPs, Zhou et al.
(2021a) is the first to achieve a nearly minimax optimal re-
gret bound. There are also works achieving horizon-free
regret bounds for time-homogeneous linear mixture MDPs
(Zhang et al., 2021b; Zhou and Gu, 2022). Compared with
Zhou et al. (2021a), our algorithm is the first to achieve the
near-optimality for linear MDPs.

3 Preliminaries
In this work, we consider the episodic Markov Decision
Processes (MDP), where the MDP can be denoted by a tu-
ple of M(S,A, H, {rh}Hh=1, {Ph}Hh=1). Here, S is the state
space, A is the finite action space, H is the length of each
episode (i.e., planning horizon), rh : S×A → [0, 1]2 is the
reward function at stage h and Ph(s

′|s, a) is the transition
probability function at stage h which denotes the probabil-
ity for state s to transfer to next state s′ with current action
a. Following Jin et al. (2020), we assume that S is a mea-
surable space with possibly infinite number of states andA
is a finite set. A policy π : S × [H] → A is a function
that maps a state s and the stage number h to an action a.
For any stage h ∈ [H] and policy π, we define the value
function V π

h (s) and the action-value function Qπ
h(s, a) as

follows:

Qπ
h(s, a) = rh(s, a)

+ E
[ H∑
h′=h+1

rh′
(
sh′ , ah′

)∣∣sh = s, ah = a

]
,

V π
h (s) = Qπ

h

(
s, π(s, h)

)
,

where sh′+1 ∼ Ph(·|sh′ , ah′) denotes the state at stage
h′ + 1 and ah′ = π(sh′ , h′) denotes the action at stage
h′ . Furthermore, we can define the optimal value function
V ∗
h and the optimal action-value function Q∗

h as V ∗
h (s) =

maxπ V
π
h (s) and Q∗

h(s, a) = maxπ Q
π
h(s, a). By this def-

inition, the value function V π
h (s) and action-value func-

tion Qπ
h(s, a) are bounded in [0, H]. For any function

V : S → R, we denote [PhV ](s, a) = Es′∼Ph(·|s,a)V (s′)

and [VhV ](s, a) = [PhV
2](s, a)−

(
[PhV ](s, a)

)2
for sim-

plicity. Thus, for every stage h ∈ [H] and policy π, we
have the following Bellman equation for value functions
Qπ

h(s, a) and V π
h (s), as well as the Bellman optimality

equation for optimal value functions Q∗
h(s, a) and V ∗

h (s):

Qπ
h(s, a) = rh(s, a) + [PhV

π
h+1](s, a),

Q∗
h(s, a) = rh(s, a) + [PhV

∗
h+1](s, a),

where V π
H+1(s) = V ∗

H+1(s) = 0. At the beginning of each
episode k ∈ [K], the agent selects a policy πk to be fol-
lowed in this episode. At each stage h ∈ [H], the agent
first observes the current state skh, chooses an action fol-
lowing the policy πk and then observes the next state with
skh+1 ∼ Ph(·|skh, akh). Based on these definitions, we fur-
ther define the regret in the first K episodes as follows:

Definition 3.1. For any algorithm Alg, we define its re-
gret on learning an MDP M(S,A, H, r,P) in the first K

2In this work, we study the deterministic and known reward
functions for simplicity, and it is not difficult to generalize our
results to stochastic and unknown linear reward functions in (Jin
et al., 2019), where rh(s, a) =

〈
ϕ(s, a),µh

〉
.
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episodes as the sum of the sub-optimality gaps for episode
k = 1, . . . ,K, i.e.,

Regret(K) =

K∑
k=1

V ∗
1 (s

k
1)− V πk

1 (sk1),

where πk is the agent’s policy in the k-th episode.

Linear Markov Decision Process In this work, we focus
on the linear Markov decision Process (Jin et al., 2020;
Yang and Wang, 2019), which is formally defined as fol-
lows:

Definition 3.2. An MDPM(S,A, H, {rh}Hh=1, {Ph}Hh=1)
is a linear MDP if for any stage h ∈ [H], there exists an
unknown measure θh(·) : S → Rd and a known feature
mapping ϕ : S × A → Rd, such that for each state-action
pair (s, a) ∈ S ×A and state s′ ∈ S, we have

Ph(s
′|s, a) =

〈
ϕ(s, a),θh(s

′)
〉
. (3.1)

For simplicity, we assume that the norms of θn(·) and
ϕ(·, ·) are upper bounded by ∥ϕ(s, a)∥2 ≤ 1 and∥∥θh(S)∥∥2 ≤ √d. For linear MDPs, we have the follow-
ing property:

Proposition 3.3 (Proposition 2.3, Jin et al. 2020). For any
policy π, there exist weights {wπ

h}Hh=1 such that for any
state-action pair (s, a) ∈ S × A and stage h ∈ [H], we
have [PV π

h+1](s, a) = ⟨ϕ(s, a),wπ
h⟩.

4 The Proposed Algorithm
In this section, we propose a new algorithm LSVI-UCB++
to learn the linear MDPs (See Definition 3.2). The main
algorithm is illustrated in Algorithm 1. In the sequel, we
introduce the key ideas of the proposed algorithm one by
one.

4.1 Weighted Ridge Regression

The basic framework of our algorithm follows the LSVI-
UCB algorithm proposed by Jin et al. (2020). Based
on Proposition 3.3 that the expected value function
[PhV

π
h+1](s, a) = ⟨ϕ(s, a),wπ

h⟩, Algorithm 1 reduces the
learning of the optimal action-value function into a series
of linear regression problems. In order to have a good
estimation for the vector wπ

h and achieve the minimax-
optimal regret result, Algorithm 1 adapts the weighted
ridge regression method (Henderson, 1975), which was
used in heteroscedastic linear bandits (Lattimore et al.,
2015; Kirschner and Krause, 2018) and more recently RL
with linear function approximation (Zhou et al., 2021a) for
linear mixture MDPs. In detail, for each stage h ∈ [H]
and episode k ∈ [K], we construct the estimator ŵk,h by
solving the following weighted ridge regression

ŵk,h ← argmin
w∈Rd

λ∥w∥22

Algorithm 1 LSVI-UCB++
Require: Regularization parameter λ > 0, confidence ra-

dius β, β̄, β̃
1: Initialize klast = 0 and for each stage h ∈ [H] set

Σ0,h,Σ1,h ← λI
2: For each stage h ∈ [H] and state-action (s, a) ∈ S×A,

set Q0,h(s, a)← H, Q̌0,h(s, a)← 0
3: for episodes k = 1, . . . ,K do
4: Received the initial state sk1 .
5: for stage h = H, . . . , 1 do
6: ŵk,h = Σ−1

k,h

∑k−1
i=1 σ̄−2

i,hϕ(s
i
h, a

i
h)Vk,h+1(s

i
h+1)

7: w̌k,h = Σ−1
k,h

∑k−1
i=1 σ̄−2

i,hϕ(s
i
h, a

i
h)V̌k,h+1(s

i
h+1)

8: if there exists a stage h′ ∈ [H] such that
det(Σk,h′) ≥ 2 det(Σklast,h′) then

9: Qk,h(s, a) = min
{
rh(s, a) + ŵ⊤

k,hϕ(s, a) +

β
√
ϕ(s, a)⊤Σ−1

k,hϕ(s, a), Qk−1,h(s, a), H
}

10: Q̌k,h(s, a) = max
{
rh(s, a) + w̌⊤

k,hϕ(s, a) −

β̄
√
ϕ(s, a)⊤Σ−1

k,hϕ(s, a), Q̌k−1,h(s, a), 0
}

11: Set the last updating episode klast = k
12: else
13: Qk,h(s, a) = Qk−1,h(s, a)
14: Q̌k,h(s, a) = Q̌k−1,h(s, a)
15: end if
16: Vk,h(s) = maxa Qk,h(s, a)
17: V̌k,h(s) = maxa Q̌k,h(s, a)
18: end for
19: for stage h = 1, . . . ,H do
20: Take action akh ← argmaxa Qk,h(s

k
h, a)

21: Set the estimated variance σk,h as in (4.1)
22: σ̄k,h ← max

{
σk,h, H, 2d3H2∥ϕ(skh, akh)∥

1/2

Σ−1
k,h

}
23: Σk+1,h = Σk,h + σ̄−2

k,hϕ(s
k
h, a

k
h)ϕ(s

k
h, a

k
h)

⊤

24: Receive next state skh+1

25: end for
26: end for

+
∑k−1

i=1 σ̄
−2
i,h

(
w⊤ϕ(sih, a

i
h)− Vk,h+1(s

i
h+1)

)2
.

Here, we take the inverse of the estimated variances σ2
k,h

as the weights for the regression problem and set σk,h as

σ̄k,h = max
{
σk,h, H, 2d3H2∥ϕ(skh, akh)∥

1/2

Σ−1
k,h

}
in Line 22 of Algorithm 1, which depends on the uncer-
tainty term ∥ϕ(skh, akh)∥Σ−1

k,h
. Note that the uncertainty-

dependent weight has also been used in He et al. (2022)
to defend the adversarial corruption in the linear bandits
problem. The reason why we want to use an uncertainty-
dependent weight can be explained by the following
lemma.
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Lemma 4.1 (Theorem 4.3, Zhou and Gu 2022). Let
{Gk}∞k=1 be a filtration, and {xk, ηk}k≥1 be a stochastic
process such that xk ∈ Rd is Gk-measurable and ηk ∈ R
is Gk+1-measurable. Let L, σ > 0, µ∗ ∈ Rd. For k ≥ 1,
let yk = ⟨µ∗,xk⟩+ηk and suppose that ηk,xk also satisfy

E[ηk|Gk] = 0, E[η2k|Gk] ≤ σ2, |ηk| ≤ R, ∥xk∥2 ≤ L.

For k ≥ 1, let Zk = λI +
∑k

i=1 xix
⊤
i , bk =∑k

i=1 yixi, µk = Z−1
k bk, and βk = Õ

(
σ
√
d +

max1≤i≤k |ηi|min{1, ∥xi∥Z−1
i−1
}
)
. Then, for any 0 < δ <

1, with probability at least 1− δ, for all k ∈ [K], we have∥∥∑k
i=1xiηi

∥∥
Z−1

k

≤ βk, ∥µk − µ∗∥Zk
≤ βk +

√
λ∥µ∗∥2.

By Lemma 4.1, one can easily verify
that |⟨ŵk,h,ϕ(s, a)⟩ − PhVk,h+1(s, a)| =

O
(
β
∥∥Σ−1/2

k,h ϕ(s, a)
∥∥
2

)
, where β = Õ(

√
d). Such

an Õ(
√
d) dependence is similar to that in Zhou and

Gu (2022), which allows our algorithm to use a tighter
confidence set than Jin et al. (2020). Therefore, we can
construct the optimistic value function Qk,h with the linear
function and an additional exploration bonus term (Line 7
in Algorithm 1), i.e.,

Qk,h(s, a) ≈ rh(s, a) + ŵ⊤
k,hϕ(s, a) + β

∥∥Σ−1/2
k,h ϕ(s, a)

∥∥
2
.

With the help of the exploration bonus, we can show
that the optimistic value function Qk,h(s, a) is an up-
per bound of the optimal value function Q∗

h(s, a) and
the summation of the sub-optimality gaps can be up-
per bounded by the summation of exploration bonus∑H

h=1

∑K
k=1 β

√
ϕ(s, a)⊤Σ−1

k,hϕ(s, a). By adapting the
weighted ridge regression, Zhou and Gu (2022) proposed
HF-UCRL-VTR+, which is able to achieve a nearly min-
imax optimal regret for linear mixture MDPs. However,
their algorithm and approach cannot be directly applied to
linear MDPs, and we need to construct a pessimistic value
function V̌k,h for the optimal value function Q∗

h(s, a) to es-
timate the gap between Vk,h(s) and V ∗

h (s), where we have
Vk,h(s) − V ∗

h (s) ≤ Vk,h(s) − V̌k,h(s). Similar to the op-
timistic value function, we construct the vector w̌k,h by
solving the following weighted ridge regression,

w̌k,h ← argmin
w∈Rd

λ∥w∥22

+
∑k−1

i=1 σ̄
−2
i,h

(
w⊤ϕ(sih, a

i
h)− V̌k,h+1(s

i
h+1)

)2
,

and compute the pessimistic value function Q̌k,h as:

Q̌k,h(s, a) ≈ rh(s, a)

+ w̌⊤
k,hϕ(s, a)− β̄

√
ϕ(s, a)⊤Σ−1

k,hϕ(s, a),

where β̄ = Õ
(√

d3H2
)

. We can show that the pessimistic

value function V̌k,h(s) is a lower bound for the optimal
value function V ∗

h (s).

4.2 Variance Estimator

We compare our variance estimator and its counterparts in
Zhou et al. (2021a). Zhou et al. (2021a) first introduced
variance estimators into RL with linear function approxi-
mation. They studied linear mixture MDPs, and their algo-
rithm estimates the variance of the optimistic value func-
tion Vk,h+1(s) directly. In comparison, for linear MDPs,
estimating the variance of the optimistic value function
Vk,h+1(s) will encounter the dependence issue, which is
discussed in Jin et al. (2020) and will introduce an addi-
tional

√
d factor in the regret due to the covering-based

decoupling argument. Inspired by the previous works
(Azar et al., 2017; Hu et al., 2022), we decompose the
optimistic value function Vk,h+1(s) into the optimal value
function V ∗

h+1(s) and the sub-optimality gap Vk,h+1(s) −
V ∗
h+1(s), then estimate their variances [VhV

∗
h+1](s, a) and[

Vh(Vk,h+1 − V ∗
h+1)

]
(s, a) separately.

For the variance of optimal value function [VhV
∗
h+1](s, a),

since neither the variance operator Vh nor the optimal value
function V ∗

h+1 is observable, Algorithm 1 takes several
steps to estimate these two quantities. In detail, Algo-
rithm 1 uses the optimistic value function Vk,h+1 to esti-
mate the optimal value function V ∗

h+1 and introduce an er-
ror term Dk,h to bound the difference between VhVk,h+1

and VhV
∗
h+1. For the variance operator, Algorithm 1 fol-

lows Zhou et al. (2021a) to write the variance as the dif-
ference between the second-order moment and the square
of the first-order moment of Vk,h, which is upper bounded
by the bonus term Ek,h. More specifically, the variance of
function Vk,h can be denoted by

[VhVk,h](s, a) = [PhV
2
k,h](s, a)−

(
[PhVk,h](s, a)

)2
.

According to the Proposition 3.3, the expectation
PhVk,h(s, a) and PhV

2
k,h(s, a) are linear in the feature

mapping ϕ(s, a) and can be approximated as follows,

[VhVk,h](s, a) ≈ V̄hVk,h+1(s
k
h, a

k
h)

:=
[
w̃⊤

k,hϕ(s
k
h, a

k
h)
]
[0,H2]

−
[
ŵ⊤

k,hϕ(s
k
h, a

k
h)
]2
[0,H]

,

where

w̃k,h := argmin
w∈Rd

λ∥w∥22

+
∑k−1

i=1 σ̄
−2
i,h

(
w⊤ϕ(sih, a

i
h)− V 2

k,h+1(s
i
h+1)

)2
is the solution to the weighted ridge regression problem for
the squared value function. To summarize, LSVI-UCB++
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constructs the estimated variance σk,h as follows:

σk,h =
√
[V̄k,hVk,h+1](skh, a

k
h) + Ek,h +Dk,h +H,

(4.1)

where Ek,h and Dk,h are defined as follows

Ek,h = min
{
β̃
∥∥Σ−1/2

k,h ϕ(skh, a
k
h)
∥∥
2
, H2

}
+min

{
2Hβ̄

∥∥Σ−1/2
k,h ϕ(skh, a

k
h)
∥∥
2
, H2

}
,

Dk,h = min

{
4d3H2

(
ŵ⊤

k,hϕ(s
k
h, a

k
h)− w̌⊤

k,hϕ(s
k
h, a

k
h)

+ 2β̄
√

ϕ(skh, a
k
h)

⊤Σ−1
k,hϕ(s

k
h, a

k
h)
)
, d3H3

}
.

Here Ek,h is the error between the estimated variance and
the true variance of Vk,h+1, and Dk,h is the error between
the variance of Vk,h+1 and the variance of the optimal value
function V ∗

h . For term Dk,h, we use the difference between
the optimistic value function Vk,h and the pessimistic value
function V̌k,h to bound the difference between Vk,h and V ∗

h .
More discussions on the decomposition and the variance
estimator can be found in Section 6.

5 Main Results
In this section, we provide the regret bound for our algo-
rithm LSVI-UCB++.

Theorem 5.1. For any linear MDP M , if we set the pa-
rameters λ = 1/H2 and confidence radius β, β̄, β̃ as

β = O
(
H
√
dλ+

√
d log2

(
1 + dKH/(δλ)

))
,

β̄ = O
(
H
√
dλ+

√
d3H2 log2

(
dHK/(δλ)

))
,

β̃ = O
(
H2
√
dλ+

√
d3H4 log2

(
dHK/(δλ)

))
,

then with high probability of at least 1 − 7δ, the regret of
LSVI-UCB++ is upper bounded as follows:

Regret(K) ≤ Õ
(
d
√
H3K + d7H8

)
.

In addition, the number of updates for Qk,h, Q̌k,h is upper
bounded by O(dH log(1 +K/λ)).

Remark 5.2. When the number of episodic K satisfies that
K is large, the regret can be simplified as Õ(d

√
H3K).

Compared with the lower bound Ω(d
√
H3K) proved in

Zhou et al. (2021a), our regret bound matches the lower
bound up to logarithmic factors, which suggests that
LSVI-UCB++ is near-optimal for linear MDPs.

Remark 5.3. For LSVI-UCB++, based on the optimistic
property Qk,h(s, a) ≥ V ∗

h (s) and the pessimistic prop-
erty V πk

k,h(s) ≥ V̌k,h(s), the sub-optimality at episode k

is upper bounded by Vk,1(s1) − V̌k,1(s1). Thus, the to-
tal regret for the first K episodes can be roughly upper
bounded by Regret(K) ≤

∑K
k=1

(
Vk,1(s1)− V̌k,1(s1)

)
=

O(d2
√

H5/K + d8H9/K). When the initial state sk1
is fixed across all episodes k ∈ [K], according to the
monotinoic property of the optimistic value function Vk,1

and the pessimistic value function V̌k,1, the sub-optimality
gap

(
Vk,1(s1) − V̌k,1(s1)

)
is decreasing. As a result, the

cumulative regret up to episode K satisfies VK,1(s1) −
ˇVK,1(s1) ≤ 1/K ×

∑K
k=1

(
Vk,1(s1) − V̌k,1(s1)

)
=

O(1/
√
K), which implies a Probably Approximately Cor-

rect (PAC) guarantee. Therefore, LSVI-UCB++ will con-
verge to the optimal policy and enjoys an (ϵ, δ)-PAC guar-
antee with sample complexity Õ(1/ϵ2) without any modifi-
cation of the algorithm. In contrast, to obtain the (ϵ, δ)-PAC
guarantee, the LSVI-UCB algorithm in Jin et al. (2020)
needs to randomly select a policy uniformly from the pre-
vious K policies.

Computational Complexity As shown in Jin et al. (2020),
the computational complexity of the original LSVI-UCB is
O(d2|A|HK2), where A is a finite action space and |A| is
the size of the action set. Compared with the LSVI-UCB al-
gorithm, Algorithm 1 uses the “rare-switching” technique,
where the algorithm only updates the estimated value func-
tions if the determinant of the covariance matrix det(Σh,k)
doubles (Line 8). According to Lemma F.1, the number
of episodes that triggers the updating criterion is at most
dH log(1+K/λ) and the action-value function Qk,h(s, a)
can be represented as a minimum over dH log(1 + K/λ)
quadratic functions. Therefore, given all previous opti-
mistic weight vectors wi,h and covariance matrices Σi,h,
computing the optimistic value function Qk,h(s, a) needs
Õ(d3H) computational complexity. Thus, for each episode
k ∈ [K], calculating the value function Qk,h(s

k
h, a), choos-

ing the action akh ← argmaxa Qk,h(s
k
h, a) and estimating

the variance σ̄k,h will only lead to Õ(d3H2|A|) computa-
tional complexity.

For computing the linear regression weight vec-
tors (Line 6 to Line 7), if the updating criterion
is not triggered in episode k, then LSVI-UCB++
only needs to update the weight vectors ŵk,h and
w̌k,h. Since the value functions Vk,h+1 and V̌k,h+1

remain unchanged, we only need to compute the
new terms σ−2

k−1,hϕ(s
k−1
h , ak−1

h )Vk,h+1(s
k−1
h+1) and

σ−2
k−1,hϕ(s

k−1
h , ak−1

h )V̌k,h+1(s
k−1
h+1), which has an

O(d3H|A|) computational complexity. On the other hand,
if the updating criterion is triggered in episode k, then
LSVI-UCB++ needs to update the value function and
recalculate the weight vectors ŵk,h, w̌k,h, which incurs an
Õ(d4H2|A|K) computational complexity. Combining the
computational complexity for all episodes and noticing that
the number of episodes that trigger the updating criterion

6
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is at most Õ(dH), the total computational complexity
of LSVI-UCB++ is Õ(d4H3|A|K), which improves the
original LSVI-UCB algorithm by a factor of K.

6 Overview of Key Techniques
In this section, we provide an overview of the key tech-
niques in our algorithm design and analysis.

6.1 Decompose Vk,h+1 to V ∗
h+1 and Vk,h+1 − V ∗

h+1

We start with estimating the Bellman backup
[PhVk,h+1](s, a), which is the main difficulty in al-
most all existing analyses of algorithms for linear MDPs.
According to Proposition 3.3, for any value function V and
state-action pair (s, a), the Bellman backup [PhV ](s, a) is
always a linear function of the feature mapping ϕ(s, a) can
be approximated as follows

[P̂k,hVk,h+1](s, a)

≈ ϕ(s, a)⊤Σ−1
k,h

k−1∑
i=1

σ−2
i,hϕ(s

i
h, a

i
h)Vk,h+1(s

i
h+1),

which utilizes all the past observations ϕ(sih, a
i
h) and the

associated values V (skh+1). In addition, the estimation er-
ror for this estimator can be measured by

[P̂k,hVk,h+1](s, a)− [PhVk,h+1](s, a)

≈ ϕ(s, a)⊤Σ−1
k,h

k−1∑
i=1

σ−2
i,hϕ(s

i
h, a

i
h)ηi,h(Vk,h+1), (6.1)

where ηi,h(V ) = V (sih+1) − [PhV ](sih+1) denotes
the stochastic transition noise at episode i with value
function V . According to the Bernstein-type self-
normalized martingale inequality (Lemma 4.1), the sum-
mation of stochastic noise can be bounded by a
small value (e.g.,

∣∣[P̂k,hV ](s, a) − [PhV ](s, a)
∣∣ ≤

β
√
ϕ(s, a)⊤Σ−1

k,hϕ(s, a)). However, Jin et al. (2020)
noticed that the estimation of the optimistic value
function Vk,h+1 depends on the past observations
(skh, a

k
h, s

k
h+1), which violates the conditional indepen-

dence required by the martingale concentration inequality,
i.e., E

[
ηi,h(Vk,h+1)

]
̸= 0.

To deal with this problem, Jin et al. (2020) applied the uni-
form convergence argument based on covering number for
all possible value functions and introduce a fixed covering
set to replace Vk,h in their analysis. In detail, the function
class considered in Jin et al. (2020) is denoted by

V =

{
V

∣∣∣∣V (·) = max
a

min

(
H,w⊤

i ϕ(·, a)

+ β

√
ϕ(·, a)⊤Σ−1

i ϕ(·, a)
)
, ∥wi∥ ≤ L,Σi ⪰ λI

}
.

We can cover V by an ϵ-net denoted by Nϵ, and its cov-
ering entropy logNϵ satisfies logNϵ = Õ(d2). Such an
approach, although fixing the dependency issue in (6.1), in-
troduces an additional

√
d factor to their final regret since

each V belongs to a quadratic function class by their op-
timistic construction, which prevents them from achieving
the optimal d dependency in the regret.

In comparison, our approach gets around the covering num-
ber issue by decomposing the value function Vk,h into the
optimal value function V ∗

h+1 and the sub-optimality gap
Vk,h+1 − V ∗

h+1. Such an analysis approach has been firstly
considered in the tabular MDPs Azar et al. (2017); Zhang
et al. (2021a) and later in the linear MDP by Hu et al.
(2022). More specifically, we have

[P̂k,hVk,h+1](s, a)− [PhVk,h+1](s, a)

≈ ϕ(s, a)⊤Σ−1
k,h

k−1∑
i=1

σ−2
i,hϕ(s

i
h, a

i
h)ηi,h(Vk,h+1)

= ϕ(s, a)⊤Σ−1
k,h

k−1∑
i=1

σ−2
i,hϕ(s

i
h, a

i
h)ηi,h(V

∗
h+1)︸ ︷︷ ︸

I1

+ ϕ(s, a)⊤Σ−1
k,h

k−1∑
i=1

σ−2
i,hϕ(s

i
h, a

i
h)ηi,h(∆Vk,h+1)︸ ︷︷ ︸

I2

, (6.2)

where ∆Vk,h+1 = Vk,h+1 − V ∗
h+1 denotes the estimation

error for value function Vk,h+1. For the first term I1, as
discussed in Section 4.2, we can use Vk,h+1 to approximate
the optimal value function V ∗

h+1 and the estimation error
for the variance can be bounded by:∣∣[V̄hVk,h+1](s

k
h, a

k
h)− [VhV

∗
h+1](s

k
h, a

k
h)
∣∣ ≤ Ek,h +Dk,h.

Since the optimal value function V ∗
h+1 is fixed across all

episodes k ∈ [K] and does not depend on the past obser-
vations, such an approach can prevent the covering number
argument and save a

√
d factor in the regret compared with

Jin et al. (2020). For the second term I2, the sub-optimality
gap ∆Vk,h+1 = Vk,h+1 − V ∗

h+1 depends on the past ob-
servations and we still need to use the covering number
argument. However, the magnitude of the sub-optimality
gap ∆Vk,h+1 is small provided that Vk,h+1 is an accurate
estimate for V ∗

h+1. In this case, term I2 will be dominated
by term I1 even with the extra factors from the covering
number argument. With the help of the decomposition, we
have the following Bernstein-type error bound between the
estimated P̂k,hVk,h+1 and its true value:

|ŵ⊤
k,hϕ(s, a)− PhVk,h+1(s, a)| ≤ β∥ϕ(s, a)∥Σ−1

k,h
.

This analysis also explains why Algorithm 1 needs to esti-
mate the variance of V ∗

h+1 and ∆Vk,h+1 instead of Vk,h+1.

7
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6.2 Monotonic Variance Estimator

Here we provide more details about the variance estima-
tor σk,h. According to our previous discussion, we de-
compose the value function Vk,h, and only need to control
the estimation errors I1 and I2 in (6.2) separately. In or-
der to derive a Bernstein-type error bound, we use Lemma
4.1 for both the optimal value function V ∗

h+1 and ∆Vk,h+1,
which require an estimation for the variance VhV

∗
h+1 and

Vh[Vk,h+1 − V ∗
h+1]. For the variance VhV

∗
h+1, as we dis-

cussed in Section 4.2, we approximate it with the following
empirical variance:

V̄hVk,h+1(s
k
h, a

k
h)− [VhV

∗
h+1](s

k
h, a

k
h)

= V̄hVk,h+1(s
k
h, a

k
h)− [VhVk,h+1](s

k
h, a

k
h)︸ ︷︷ ︸

J1

+ [VhVk,h+1](s
k
h, a

k
h)− [VhV

∗
h+1](s

k
h, a

k
h)︸ ︷︷ ︸

J2

,

where the estimation error J1 can be controlled by a
Hoeffding-type bound (term Ek,h) and the estimation er-
ror J2 can be upper bounded by∣∣[VhVk,h+1](s

k
h, a

k
h)− [VhV

∗
h+1](s

k
h, a

k
h)
∣∣

≤ 4H[Ph(Vk,h+1 − V ∗
h+1)](s

k
h, a

k
h).

For this error bound, the optimal value function V ∗
h+1 is

not observable and we replace it by the pessimistic value
function V̌k,h, which gives an upper bound

4H[Ph(Vk,h+1 − V ∗
h+1)](s

k
h, a

k
h)

≤ 4H[Ph(Vk,h+1 − V̌k,h+1)](s
k
h, a

k
h).

The above term is further dominated by the term Dk,h.
With a similar approach, for the variance Vh[Vk,h+1 −
V ∗
h+1], it can be upper bound by

[Vh(Vk,h+1 − V ∗
h+1)](s

k
h, a

k
h)

≤ 2H[Ph(Vk,h+1 − V ∗
h+1)](s

k
h, a

k
h)

≤ 2H[Ph(Vk,h+1 − V̌k,h+1)](s
k
h, a

k
h) ≈ Dk,h/(d

3H),
(6.3)

where we approximate the optimal value function V ∗
h+1 by

the pessimistic value function V̌k,h and introduce an extra
d3H-factor in the Dk,h to offset the error caused by the
covering number argument.

However, there exists another difficulty in our algorithm
and analysis when we extend the result in (6.3) to fu-
ture episode i > k. In detail, while the value function
Vi,h+1(s

k
h+1) and corresponding variance [Vh(Vi,h+1 −

V ∗
h+1)](s

k
h, a

k
h) will change across different episodes, the

estimated variance σk,h is chosen at episode k and can-
not be changed in the subsequent episode. Therefore, σk,h

should be a uniform variance upper bound for all sub-
sequent episodes. To achieve such a uniform variance
upper bound, it suffices to have the sub-optimality gap
Vk,h+1 − V ∗

h+1 to be monotonically decreasing. Our solu-
tion is to set Vk,h+1(s) to be a monotonically decreasing se-
quence in k given any state s, by setting it as the minimum
between its current estimate and its predecessor Vk−1,h+1

(Line 9 of Algorithm 1). A similar approach is also applied
to V̌k,h+1 to guarantee the estimate sequence is monotoni-
cally increasing in k. Then, the following property shows
that the estimated variance of the sub-optimality at episode
k Dk,h holds for all the subsequent episodes.

[Vh(Vi,h+1 − V ∗
h+1)](s

k
h, a

k
h) ≤ Dk,h/(d

3H),∀i > k.

This idea was firstly introduced by Azar et al. (2017)
for tabular MDPs. Hu et al. (2022) adopted a similar
idea to guarantee the monotonicity for linear MDPs, while
their approach is to construct another sequence of “over-
optimistic” value functions, which turns out to be flawed as
we will discuss in Appendix A.

6.3 Rare-Switching Value Function Update

As we discussed in Section 6.2, we ensure the monotonicity
and construct the variance estimation, by taking minimiza-
tion with its predecessor Vk−1,h+1. However, this approach
will introduce an extra issue for the augmented value func-
tion class. In detail, the optimistic value function Vk,h can
be denoted by the minimum over several quadratic func-
tions and belongs to the following function class,

Vh =

{
V

∣∣∣∣V (·) = max
a

min
1≤i≤l

min

(
H, rh(·, a) +w⊤

i ϕ(·, a)

+ β

√
ϕ(·, a)⊤Σ−1

i ϕ(·, a)
)
, ∥wi∥ ≤ L,Σi ⪰ λI

}
,

where l is the number of quadratic functions and equals
to the number of policy updates in Algorithm 1. Here,
we denote the covering number of that function class by
N , and the covering number of a quadratic function class
by Nq . We are specifically interested in the covering en-
tropy logN , which is a standard complexity measure of
the function class, and it will directly affect the regret
of our algorithm. The standard approach to computing
the covering entropy suggests that logN = l logNq . In
this case, if we update the value function at each episode
k ∈ [K] and minimize with its predecessor, then there
will be an extra K factor in the covering number, which
is unacceptable. Inspired by the “rare-switching” tech-
nique (Abbasi-Yadkori et al., 2011; Wang et al., 2021),
it is not necessary or efficient to update the value func-
tions Vk,h+1 and V̌k,h+1 at each episode. Instead, we only
need to update the value function when the determinant
of the covariance matrix grows much larger than before
(Line 8 in Algorithm 1), which requires at most Õ(dH)
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updates. Such an update strategy reduces the covering en-
tropy from logN = K logNq to logN = Õ(dH) logNq ,
which makes the regret of Algorithm 1 tight. In addi-
tion, the “rare-switching” nature also reduces the compu-
tational complexity from Ω(K2) to Ω(K), which makes
LSVI-UCB++ more efficient.

7 Conclusions and Future Work
In this paper, we propose a near-optimal algorithm
LSVI-UCB++ for linear MDPs. LSVI-UCB++ is based
on weighted ridge regression, where the weights are con-
structed from a novel variance estimator that comes from
a direct estimation of the variance of the true value func-
tion, and a “rare-switching” updating rule to update the
value function estimator. We prove that with high proba-
bility, LSVI-UCB++ obtains an Õ(d

√
H3K) regret, which

matches the lower bound in Zhou et al. (2021a) up to loga-
rithmic factors. Our algorithm is also computationally effi-
cient. In the future, we will study how to design computa-
tionally efficient near-optimal RL algorithms with general
nonlinear function approximation with misspecification.
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A Comparison with Hu et al. (2022)
In this section, we give a detailed comparison with Hu et al. (2022). We first elaborate on the importance of the monotonic

property, then discuss the issue on the over-optimistic value function ˙̂
V k,h(s) proposed in Hu et al. (2022) and finally

illustrate the difference in the algorithm design between the algorithm in Hu et al. (2022) and our algorithm.

As we discuss in the Section 6, both our LSVI-UCB++ algorithm and LSVI-UCB+ algorithm in Hu et al. (2022) get rid of
the covering number issue by decomposing the value function Vk,h+1(s) to V ∗

h+1(s) and Vk,h+1(s) − V ∗
h+1(s). In detail,

from the proof of Lemma B.5, we have shown in (D.18) that the estimation error can be decomposed as∥∥∥∥Σ−1
k,h

k−1∑
i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)
(
Vk,h+1(s

i
h+1)− PhVk,h+1(s

i
h, a

i
h)
)∥∥∥∥

Σk,h

=

∥∥∥∥ k−1∑
i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)
(
Vk,h+1(s

i
h+1)− PhVk,h+1(s

i
h, a

i
h)
)∥∥∥∥

Σ−1
k,h

≤
∥∥∥∥ k−1∑

i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)
(
V ∗
h+1(s

i
h+1)− PhV

∗
h+1(s

i
h, a

i
h)
)∥∥∥∥

Σ−1
k,h︸ ︷︷ ︸

J1

+

∥∥∥∥ k−1∑
i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)
(
∆Vk,h+1(s

i
h+1)− [Ph(∆Vk,h+1)](s

i
h, a

i
h)
)∥∥∥∥

Σ−1
k,h︸ ︷︷ ︸

J2

.

To control the concentration error on the term J2, we use Lemma 4.1 and only need to estimate the variance
Vh[∆Vk,h+1](s, a) = Vh

[
(Vk,h+1 − V ∗

h+1)
]
(s, a), which is trivially upper bounded by 2H · [Ph∆Vk,h+1](s, a). In order

to make the upper bound of variance at episode i hold for all subsequent episode k > i, we need to guarantee that the
trivial upper bound 2H · [Ph∆Vk,h+1](s, a) is decreasing in k, which requires the optimistic value function Vk,h+1(s) to
be monotonically decreasing.

To satisfy this requirement, Hu et al. (2022) constructs an over-optimistic value function ˙̂
V k,h(s), which has the following

monotonicity property.

Lemma A.1 (Lemma D.2, Hu et al. 2022). For any stage h ∈ [H] and episodes i < j, the over-optimistic value function
˙̂
V j,h(s) satisfies:

˙̂
V i,h(s) ≥ V̂j,h(s),

where V̂j,h(s) is the optimistic value function.

Based on this monotonically decreasing property, the estimation error 2H ·
[
Ph(

˙̂
V i,h+1 − V ∗

h+1)
]
(s, a) is a uniform vari-

ance upper bound for all subsequent episodes. Unfortunately, the last inequality in the proof of Lemma A.1 claims that

[PhVi,h+1](s, a) − [PhVj,h+1](s, a) holds due to ˙̂
V i,h(s) ≥ V̂j,h(s), which is not true. Thus, the monotonic property of

over-optimistic value function ˙̂
V k,h(s) does not hold and the estimated variance σi,h may no longer be a variance upper

bound for the subsequent episodes.

In comparison, our LSVI-UCB++ ensures the monotonic property by choosing the minimum of the optimistic value func-
tions in the first k episodes (See Line 9). As the cost of ensuring monotonic property, the resulting value function class
can be regarded as a minimum over K quadratic function classes, and the covering number grows exponentially in K. To
overcome this problem, we utilize the ‘rare-switching’ technique from previous works (Abbasi-Yadkori et al., 2011; Wang
et al., 2021), which reduces the number of updates to Õ(dH) and thus controls the complexity growth of the resulting
value function class.

B Proof Sketch
This section is devoted to provide a proof sketch of Theorem 5.1.
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B.1 High-Probability Events

We first introduce the following high-probability events:

1. We define E as the event that the following inequalities hold for all s, a, k, h ∈ S ×A× [K]× [H].∣∣ŵ⊤
k,hϕ(s, a)− [PhVk,h+1](s, a)

∣∣ ≤ β̄
√
ϕ(s, a)⊤Σ−1

k,hϕ(s, a),∣∣w̃⊤
k,hϕ(s, a)− [PhV

2
k,h+1](s, a)

∣∣ ≤ β̃
√
ϕ(s, a)⊤Σ−1

k,hϕ(s, a),∣∣w̌⊤
k,hϕ(s, a)− [PhV̌k,h+1](s, a)

∣∣ ≤ β̄
√
ϕ(s, a)⊤Σ−1

k,hϕ(s, a),

where β̃ = O
(
H2
√
dλ+

√
d3H4 log2

(
dHK/(δλ)

))
and β̄ = O

(
H
√
dλ+

√
d3H2 log2

(
dHK/(δλ)

))
.

2. We define Ẽh as the event such that for all episode k ∈ [K], stage h ≤ h′ ≤ H and state-action pair (s, a) ∈ S ×A, the
weight vector ŵk,h satisfies that∣∣ŵ⊤

k,h′ϕ(s, a)− [PhVk,h′+1](s, a)
∣∣ ≤ β

√
ϕ(s, a)⊤Σ−1

k,h′ϕ(s, a), (B.1)

where β = O
(
H
√
dλ+

√
d log2

(
1 + dKH/(δλ)

))
. For simplicity, we further define events Ẽ = Ẽ1 that (B.1) holds

for all stage h ∈ [H].

Our ultimate goal is to show that Ẽ holds with high probability. Intuitively speaking, E serves as a ‘coarse’ event where the
concentration results hold with a larger confidence radius β̃ and β̄, and Ẽ serves as a ‘refined’ event where the confidence
radius β is tighter than β̃ and β̄. To start with, the following lemma shows that E holds with high probability.
Lemma B.1. Event E holds with probability at least 1− 7δ.

Next, we prove Ẽ = Ẽ1 holds with high probability. Since ŵk,h’s are obtained from weighted linear regression whose
weights depend on the variances of Vk,h+1, the key technical challenge is to show that our adapted weights σk,h’s are
indeed upper bounds of these variances for all h ∈ [H]. We use backward induction to prove such a statement. In detail,
the following two lemmas provide estimation error bounds at stage h conditioned on Ẽh+1.

Lemma B.2. On the event E and Ẽh+1, for each episode k ∈ [K] and stage h, the estimated variance satisfies∣∣[V̄hVk,h+1](s
k
h, a

k
h)− [VhVk,h+1](s

k
h, a

k
h)
∣∣ ≤ Ek,h,∣∣[V̄hVk,h+1](s

k
h, a

k
h)− [VhV

∗
h+1](s

k
h, a

k
h)
∣∣ ≤ Ek,h +Dk,h.

Lemma B.3. On the event E and Ẽh+1, for any episode k and i > k, we have

[Vh(Vi,h+1 − V ∗
h+1)](s

k
h, a

k
h) ≤ Dk,h/(d

3H).

We also have the following lemma, which shows that our constructed value functions Q,V , and Q̌, V̌ are optimistic and
pessimistic estimators of the true value functions under the events we defined before.
Lemma B.4. On the event E and Ẽh, for all episode k ∈ [K] and stage h ≤ h′ ≤ H , we have Qk,h(s, a) ≥ Q∗

h(s, a) ≥
Q̌k,h(s, a). In addition, we have Vk,h(s) ≥ V ∗

h (s) ≥ V̌k,h(s).

Equipped with Lemmas B.2, B.3 and B.4, one can easily prove σk,h indeed serves as an upper bound of the true variance
of Vk,h+1 at stage h. Therefore, by the backward induction, we can prove the following lemma.

Lemma B.5. On the events E , event Ẽ holds with probability at least 1− δ.

B.2 Regret Decomposition

Now, we prove the regret bound based on the high-probability events defined before. Based on Lemma B.4, for all stage
h ∈ [H] and episode k ∈ [K], we have Qk,h(s

k
h, a

k
h) = Vk,h(s

k
h) ≥ V ∗

h (s
k
h). Thus, we can bound the regret as follows,

Regret(K) =

K∑
k=1

(
V ∗
1 (s

k
1)− V πk

k,1 (s
k
1)
)

12



Nearly Minimax Optimal Reinforcement Learning for Linear Markov Decision Processes

≤
K∑

k=1

(
Vk,1(s

k
1)− V πk

k,1 (s
k
1)
)

≤
K∑

k=1

H∑
h=1

{[
Ph(Vk,h+1 − V πk

k,h+1)
]
(skh, a

k
h)−

(
Vk,h+1(s

k
h+1)− V πk

k,h+1(s
k
h+1)

)}
+O

(
K∑

k=1

H∑
h=1

min
(
β
√
ϕ(skh, a

k
h)

⊤Σ−1
k,hϕ(s

k
h, a

k
h), H

))
,

where the last inequality holds due to the decomposition of the difference of value functions and the high-probability events
defined in Section B.1. Using standard regret analysis, we can bound the first term as the sum of a martingale difference
sequence. Then it remains to bound the summation of bonus terms,

∑K
k=1

∑H
h=1 β∥ϕ(skh, akh)∥Σ−1

k,h
. By Cauchy-Schwartz

inequality, this summation can be bounded by

K∑
k=1

H∑
h=1

β∥ϕ(skh, akh)∥Σ−1
k,h
≤ Õ

d4H8 + βd7H5 + β

√√√√dHK + dH

K∑
k=1

H∑
h=1

σ2
k,h

 ,

where the calculation details are deferred to Lemma E.1. According to the definition of σ2
k,h, we have σ2

k,h ≤
O
(
[V̄k,hVk,h+1](s

k
h, a

k
h) + Ek,h +Dk,h +H

)
. By carefully bounding the summation of [V̄k,hVk,h+1](s

k
h, a

k
h) by relating

them to the summation of [VhV
πk

k,h+1](s
k
h, a

k
h) and using the total variance lemma (Lemma C.5, Jin et al. 2018), we have

K∑
k=1

H∑
h=1

σ2
k,h ≤ Õ

(
H2K + d10.5H16

)
.

Putting all pieces together, we can obtain the high-probability regret bound

Regret(K) ≤ Õ
(
d
√
H3K + d7H8

)
.

C Detailed Proof of Theorem 5.1
In this section, we provide the proof of Theorem 5.1. Firstly, for the stochastic transition noises, we define the following
high-probability events:

E1 =

{
∀h ∈ [H],

K∑
k=1

H∑
h′=h

[Ph(Vk,h+1 − V πk

k,h+1)
]
(skh, a

k
h)

−
K∑

k=1

H∑
h′=h

(
Vk,h+1(s

k
h+1)− V πk

k,h+1(s
k
h+1)

)
≤ 2
√
2H3K log(H/δ)

}
,

E2 =

{
∀h ∈ [H],

K∑
k=1

H∑
h′=h

[Ph(Vk,h+1 − V̌k,h+1)
]
(skh, a

k
h)

−
K∑

k=1

H∑
h′=h

(
Vk,h+1(s

k
h+1)− V̌k,h+1(s

k
h+1)

)
≤ 2
√

2H3K log(H/δ)

}
.

Then according to the Azuma–Hoeffding inequality (Lemma G.2), we have Pr(E1) ≥ 1 − δ and Pr(E2) ≥ 1 − δ. Based
on the definition of events E1, E2 and events E , Ẽ in Section B.1, the regret in the first K episodes can be upper bounded by
the summation of estimated variance

∑K
k=1

∑H
h=1 σ

2
k,h and we have the following lemma.

Lemma C.1. On the events Ẽ , E and E1, for all stage h ∈ [H], the regret in the first K episodes is upper bounded by:

K∑
k=1

(
Vk,h(s

k
h)− V πk

k,h(s
k
h)
)
≤ 16d4H8ι+ 40βd7H5ι+ 8β

√√√√2dHι

H∑
h=1

K∑
k=1

(σ2
k,h +H) + 4

√
H3K log(H/δ),
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and for all stage h ∈ [H], we further have

K∑
k=1

H∑
h=1

[
Ph(Vk,h+1 − V πk

k,h+1)
]
(skh, a

k
h)

≤ 16d4H9ι+ 40βd7H6ι+ 8Hβ

√√√√2dHι

H∑
h=1

K∑
k=1

(σ2
k,h +H) + 4

√
H5K log(H/δ),

where ι = log
(
1 +K/(dλ)

)
.

In addition, for the sub-optimality gap between the optimistic value function Vk,h(s) and pessimistic value function V̌k,h(s),
we have the following lemma.

Lemma C.2. On the events Ẽ , E and E2, the difference between the optimistic value function Vk,h and the pessimistic value
function V̌k,h is upper bounded by:

K∑
k=1

H∑
h=1

[
Ph(Vk,h+1 − V̌k,h+1)

]
(skh, a

k
h)

≤ 32d4H9ι+ 40(β + β̄)d7H6ι+ 8H(β + β̄)

√√√√2dHι

H∑
h=1

K∑
k=1

(σ2
k,h +H) + 4

√
H5K log(H/δ),

where ι = log
(
1 +K/(dλ)

)
.

For the summation of variance
∑K

k=1

∑H
h=1[VhV

πk

k,h+1](s
k
h, a

k
h), we denote the following high probability events E3:

E3 =

{ K∑
k=1

H∑
h=1

[VhV
πk

k,h+1](s
k
h, a

k
h) ≤ 3H2K + 3H3 log(1/δ)

}
.

Then Lemma C.5 in Jin et al. (2018) shows that the probability of events E3 is lower bounded by Pr(E3) ≥ 1 − δ.
Furthermore, on the event E ∩ Ẽ ∩ E1 ∩ E2 ∩ E3, the following lemma gives an upper bound of the total estimated variance∑H

h=1

∑K
k=1 σ

2
k,h.

Lemma C.3. On the event E ∩ Ẽ ∩ E1 ∩ E2 ∩ E3, the total estimated variance is upper bounded by:

K∑
k=1

H∑
h=1

σ2
k,h ≤ O

(
H2K + d10.5H16 log1.5(1 + dKH/δ)

)
.

With all previous lemma, we start to prove our main Theorem 5.1.

Proof of Theorem 5.1. On the event E ∩ Ẽ ∩ E1 ∩ E2 ∩ E3,, the regret is upper bounded by:

Regret(K) =

K∑
k=1

(
V ∗
1 (s

k
1)− V πk

k,1 (s
k
1)
)

≤
K∑

k=1

(
Vk,1(s

k
1)− V πk

k,1 (s
k
1)
)

≤ 16d4H8ι+ 40βd7H5ι+ 8β

√√√√2dHι

H∑
h=1

K∑
k=1

(σ2
k,h +H) + 4

√
H3K log(H/δ)

= Õ
(
d7H8 + d

√
H3K log2(1 + dKH/δ)

)
, (C.1)
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where ι = log
(
1 + K/(dλ)

)
, the first inequality holds due to Lemma B.4, the second inequality holds due to Lemma

C.2 and the last inequality holds due to Lemma C.3. Since the event E ∩ Ẽ ∩ E1 ∩ E2 ∩ E3 holds with probability at
least 1 − 7δ, (C.1) holds. In addition, according to Lemma F.1, the number of updates for Qk,h, Q̌k,h is upper bounded
by O(dH log(1 + K/λ)). Thus, we complete the proof of Theorem 5.1. updates for Qk,h, Q̌k,h is upper bounded by
O(dH log(1 +K/λ)).

D Proof of Lemmas in Section B
In this section, we provide the proof of Lemmas in Section B and we need the following lemma, which extends Lemma
D.4 in Jin et al. (2020) to weighted ridge regression.
Lemma D.1. (Lemma D.4, Jin et al. 2020 with weighted linear regression) Let {xk}∞k=1 be a real-valued stochastic
process on state space S with corresponding filtration {Fk}∞k=1. Let {ϕk}∞k=1 be an Rd-valued stochastic process, where
ϕk ∈ Fk−1 and ∥ϕk∥2 ≤ 1. Let {wk}∞k=1 be an real-valued stochastic process where wk ∈ Fk−1 and 0 ≤ wk ≤ C .
For any k ≥ 0, we define Σk = λI+

∑k
i=1 w

2
kϕiϕ

⊤
i . Then with probability at least 1− δ, for all k ∈ N and all function

V ∈ V with maxs |V (x)| ≤ H , we have∥∥∥∥ k∑
i=1

w2
iϕi

{
V (xi)− E

[
V (xi)|Fi−1

]}∥∥∥∥2
Σ−1

k

≤ 4C2H2

[
d

2
log(1 + kC2/λ) + log

Nϵ

δ

]
+ 8k2C4ϵ2/λ,

where Nϵ is the ϵ-covering number of the function class V with respect to the distance function dist(V1, V2) =
maxs |V1(s)− V2(s)|.

Proof of Lemma D.1. For any function V ∈ V , based on the definition of ϵ-covering number, there exists a function Ṽ in
the ϵ-net, such that

dist(V, Ṽ ) ≤ ϵ. (D.1)

Therefore, the concentration error for the value function can be decomposed as∥∥∥∥ k∑
i=1

w2
iϕi

{
V (xi)− E

[
V (xi)|Fi−1

]}∥∥∥∥2
Σ−1

k

≤ 2

∥∥∥∥ k∑
i=1

w2
iϕi

{
Ṽ (xi)− E

[
Ṽ (xi)|Fi−1

]}∥∥∥∥2
Σ−1

k︸ ︷︷ ︸
I1

+2

∥∥∥∥ k∑
i=1

w2
iϕi

{
∆V (xi)− E

[
∆V (xi)|Fi−1

]}∥∥∥∥2
Σ−1

k︸ ︷︷ ︸
I2

, (D.2)

where ∆V = V − Ṽ and the inequality holds due to ∥a + b∥2Σ ≤ 2∥a∥2Σ + 2∥b∥2Σ. For any fixed value function Ṽ , we
apply Lemma G.5 with xi = wiϕi, ηt = wiṼ (xi)−wiE[Ṽ (xi)]. According to the definition of xi, ηi, we have following
property

∥xi∥2 = wiϕi ≤ C,

E[ηi|Fi] = 0, |ηi| =
∣∣wiṼ (xi)− wiE[Ṽ (xi)]

∣∣ ≤ HC.

Therefore, according to Lemma G.5, after taking an union bound over the ϵ-net of the function class V , with probability at
least 1− δ/H , the first term I1 is upper bounded by:

I1 =

∥∥∥∥2 k∑
i=1

w2
iϕi

{
Ṽ (xi)− E

[
Ṽ (xi)|Fi−1

]}∥∥∥∥2
Σ−1

k

≤ 4C2H2

[
d

2
log(1 + kC2/λ) + log

Nϵ

δ

]
. (D.3)

For the second term, it can be upper bounded by

I2 = 2

∥∥∥∥ k∑
i=1

w2
iϕi

{
∆V (xi)− E

[
∆V (xi)|Fi−1

]}∥∥∥∥2
Σ−1

k
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≤ 2k

k∑
i=1

∥∥∥∥w2
iϕi

{
∆V (xi)− E

[
∆V (xi)|Fi−1

]}∥∥∥∥2
Σ−1

k

≤ 8k2C4ϵ2/λ, (D.4)

where the first inequality holds due to the Cauchy-Schwartz inequality and the last inequality holds due to the facts that
|∆V (xi)| ≤ ϵ, 0 ≤ wi ≤ C, ∥ϕi∥2 ≤ 1,Σk ⪰ λI. Substituting the results in (D.3) and (D.4) into (D.2), we finish the
proof of Lemma D.1.

D.1 Proof of Lemma B.1

In this subsection, we provide the proof of Lemma B.1, which suggests a Hoeffding-type upper bound for the estimation
error.

Proof of Lemma B.1. Firstly, for any fixed stage h ∈ [H] and the optimistic value function Vk,h+1, according to Lemma
G.1, there exists a vector wk,h such that PhVk,h+1(s, a) can be represented by w⊤

k,hϕ(s, a) and ∥wk,h∥2 ≤ H
√
d. There-

fore, the estimation error can be decomposed as

∥ŵk,h −wk,h∥Σk,h

=

∥∥∥∥Σ−1
k,h

k−1∑
i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)Vk,h+1(s

i
h+1)−Σ−1

k,h

(
λI+

k−1∑
i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)ϕ(s

i
h, a

i
h)

⊤
)
wk,h

∥∥∥∥
Σk,h

=

∥∥∥∥Σ−1
k,h

k−1∑
i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)
(
Vk,h+1(s

i
h+1)− [PhVk,h+1](s

i
h, a

i
h)
)
− λΣ−1

k,hwk,h

∥∥∥∥
Σk,h

≤ ∥λΣ−1
k,hwk,h∥Σk,h︸ ︷︷ ︸

I1

+

∥∥∥∥Σ−1
k,h

k−1∑
i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)
(
Vk,h+1(s

i
h+1)− [PhVk,h+1](s

i
h, a

i
h)
)∥∥∥∥

Σk,h︸ ︷︷ ︸
I2

, (D.5)

where the first inequality holds due to the fact that ∥a+ b∥Σ ≤ ∥a∥Σ + ∥b∥Σ. For the first term I1, since Σk,h ⪰ λI and
∥wk,h∥2 ≤ H

√
d, it is upper bounded by

I1 = ∥λwk,h∥Σ−1
k,h
≤
√
λ · ∥wk,h∥2 ≤ H

√
dλ. (D.6)

For the second term I2, we apply Lemma D.1 with the optimistic value function class Vh and ϵ = H
√
λ/K, then for any

fixed stage h ∈ [H], with probability at least 1− δ/H , for all episode k ∈ [K], we have

I2 =

∥∥∥∥Σ−1
k,h

k−1∑
i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)
(
Vk,h+1(s

i
h+1)− [PhVk,h+1](s

i
h, a

i
h)
)∥∥∥∥

Σk,h

≤

√
4C2H2

[
d

2
log(1 + kC2/λ) + log

HNϵ

δ

]
+ 8k2C4ϵ2/λ

≤

√
4H

[
d

2
log
(
1 + k/(λH)

)
+ log

HNϵ

δ

]
+ 8k2ϵ2/(λH2)

≤

√
4H

[
d

2
log
(
1 + k/(λH)

)
+ log

HNϵ

δ

]
+ 8

= O

(√
d3H2 log2

(
dHK/(δλ)

))
, (D.7)

where the first inequality holds due to Lemma D.1, the second inequality holds due to 0 ≤ σ̄−1
i,h ≤ 1/

√
H , the third

inequality holds due to Lemma F.6 and ϵ = H
√
λ/K. Substituting (D.6) and (D.7) into (D.5), we have

∥ŵk,h −wk,h∥Σk,h
≤ I1 + I2 = O

(
H
√
dλ+

√
d3H2 log2

(
dHK/(δλ)

))
= β̄. (D.8)
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Therefore, the estimation error is upper bounded by∣∣ŵ⊤
k,hϕ(s, a)− [PhVk,h+1](s, a)

∣∣ = |ŵ⊤
k,hϕ(s, a)−w⊤

k,hϕ(s, a)|
≤ ∥ŵk,h −wk,h∥Σk,h

· ∥ϕ(s, a)∥Σ−1
k,h

≤ β̄
√
ϕ(s, a)⊤Σ−1

k,hϕ(s, a), (D.9)

where the first inequality holds due to Cauchy-Schwartz inequality and the last inequality holds due to (D.8). Replacing
the value function class by the pessimistic value function class V̌h (or squared value function class V2

h) and following the
same proof of (D.9), we can derive the following upper bound for the estimation errors:∣∣w̃⊤

k,hϕ(s, a)− [PhV
2
k,h+1](s, a)

∣∣ ≤ β̃
√

ϕ(s, a)⊤Σ−1
k,hϕ(s, a),∣∣w̌⊤

k,hϕ(s, a)− [PhV̌k,h+1](s, a)
∣∣ ≤ β̄

√
ϕ(s, a)⊤Σ−1

k,hϕ(s, a),

where β̃ = O
(
H
√
dλ+

√
d3H4 log2

(
dHK/(δλ)

))
and β̄ = O

(
H
√
dλ+

√
d3H2 log2

(
dHK/(δλ)

))
Thus, we finish

the proof of Lemma B.1.

D.2 Proof of Lemma B.2

In this subsection, we provide the proof of Lemma B.2 for the variance estimator.

Proof of Lemma B.2. Firstly, according to Lemma B.1, we have∣∣[V̄hVk,h+1](s
k
h, a

k
h)− [VhVk,h+1](s

k
h, a

k
h)
∣∣

=
∣∣∣[w̃⊤

k,hϕ(s
k
h, a

k
h)
]
[0,H2]

−
[
ŵ⊤

k,hϕ(s
k
h, a

k
h)
]2
[0,H]

− [PhV
2
k,h+1](s

k
h, a

k
h) +

(
[PhVk,h+1](s

k
h, a

k
h)
)2∣∣∣

≤
∣∣∣[w̃⊤

k,hϕ(s
k
h, a

k
h)
]
[0,H2]

− [PhV
2
k,h+1](s

k
h, a

k
h)
∣∣∣+ ∣∣∣[ŵ⊤

k,hϕ(s
k
h, a

k
h)
]2
[0,H]

−
(
[PhVk,h+1](s

k
h, a

k
h)
)2∣∣∣

=
∣∣∣[w̃⊤

k,hϕ(s
k
h, a

k
h)
]
[0,H2]

− [PhV
2
k,h+1](s

k
h, a

k
h)
∣∣∣

+
∣∣∣[ŵ⊤

k,hϕ(s
k
h, a

k
h)
]
[0,H]

+ [PhVk,h+1](s
k
h, a

k
h)
∣∣∣ · ∣∣∣[ŵ⊤

k,hϕ(s
k
h, a

k
h)
]
[0,H]

− [PhVk,h+1](s
k
h, a

k
h)
∣∣∣

≤ min
{
β̃k

∥∥Σ−1/2
k,h ϕ(skh, a

k
h)
∥∥
2
, H2

}
+min

{
2Hβ̄k

∥∥Σ−1/2
k,h ϕ(skh, a

k
h)
∥∥
2
, H2

}
= Ek,h, (D.10)

where the first inequality holds due to |a+ b| ≤ |a|+ |b| and the last inequality holds due to Lemma B.1 with the fact that
0 ≤

[
ŵ⊤

k,hϕ(s
k
h, a

k
h)
]
[0,H]

+ [PhVk,h+1](s
k
h, a

k
h) ≤ 2H . In addition, for the variance

[
VhV

∗
h+1

]
(skh, a

k
h), we have∣∣[VhVk,h+1](s

k
h, a

k
h)− [VhV

∗
h+1](s

k
h, a

k
h)
∣∣

=
∣∣∣[PhV

2
k,h+1](s

k
h, a

k
h)−

(
[PhVk,h+1](s

k
h, a

k
h)
)2 − [Ph(V

∗
h+1)

2](skh, a
k
h) +

(
[PhV

∗
h+1](s

k
h, a

k
h)
)2∣∣∣

≤
∣∣[PhV

2
k,h+1](s

k
h, a

k
h)− [Ph(V

∗
h+1)

2](skh, a
k
h)
∣∣+ ∣∣∣([PhVk,h+1](s

k
h, a

k
h)
)2 − ([PhV

∗
h+1](s

k
h, a

k
h)
)2∣∣∣

=
∣∣[Ph(Vk,h+1 − V ∗

h+1)(Vk,h+1 + V ∗
h+1)](s

k
h, a

k
h)
∣∣

+
∣∣∣([PhVk,h+1](s

k
h, a

k
h)− [PhV

∗
h+1](s

k
h, a

k
h)
)
·
(
[PhVk,h+1](s

k
h, a

k
h) + [PhV

∗
h+1](s

k
h, a

k
h)
)∣∣∣

≤ 4H
(
[PhVk,h+1](s

k
h, a

k
h)− [PhV

∗
h+1](s

k
h, a

k
h)
)
, (D.11)

where the first inequality holds due to |a + b| ≤ |a| + |b| and the last inequality holds due to Lemma B.4 (Vk,h+1(s
′) ≥

V ∗
h+1(s

′)) with the fact that 0 ≤ V ∗
h+1(s

′), Vk,h+1(s
′) ≤ H . Based on the event E and Ẽh+1, (D.11) can be further bounded

by (
[PhVk,h+1](s

k
h, a

k
h)− [PhV

∗
h+1](s

k
h, a

k
h)
)
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≤
(
[PhVk,h+1](s

k
h, a

k
h)− [PhV̌k,h+1](s

k
h, a

k
h)
)

≤ ŵ⊤
k,hϕ(s, a) + β̄

√
ϕ(s, a)⊤Σ−1

k,hϕ(s, a)− w̌⊤
k,hϕ(s, a) + β̄

√
ϕ(s, a)⊤Σ−1

k,hϕ(s, a), (D.12)

where the first inequality holds due to Lemma B.4 (V ∗
h+1(s

′) ≥ V̌k,h+1(s
′)) and the last inequality holds due to the

definition of events E . Combining the results in (D.10), (D.11) and (D.10), we have∣∣[V̄hVk,h+1](s
k
h, a

k
h)− [VhV

∗
h+1](s

k
h, a

k
h)
∣∣

≤
∣∣[V̄hVk,h+1](s

k
h, a

k
h)− [VhVk,h+1](s

k
h, a

k
h)
∣∣+ ∣∣[VhVk,h+1](s

k
h, a

k
h)− [VhV

∗
h+1](s

k
h, a

k
h)
∣∣

≤ Ek,h + 4H
(
ŵ⊤

k,hϕ(s, a) + β̄
√
ϕ(s, a)⊤Σ−1

k,hϕ(s, a)− w̌⊤
k,hϕ(s, a) + β̄

√
ϕ(s, a)⊤Σ−1

k,hϕ(s, a)
)
.

In addition, since the value functions Vk,h(s) and V ∗
h+1(s) is upper bounded by H , we have

∣∣[VhVk,h+1](s
k
h, a

k
h) −

[VhV
∗
h+1](s

k
h, a

k
h)
∣∣ which implies that∣∣[V̄hVk,h+1](s

k
h, a

k
h)− [VhV

∗
h+1](s

k
h, a

k
h)
∣∣

≤
∣∣[V̄hVk,h+1](s

k
h, a

k
h)− [VhVk,h+1](s

k
h, a

k
h)
∣∣+ ∣∣[VhVk,h+1](s

k
h, a

k
h)− [VhV

∗
h+1](s

k
h, a

k
h)
∣∣

≤ Ek,h +H2.

Thus, we finish the proof of Lemma B.2.

D.3 Proof of Lemma B.3

In this subsection, we provide the proof of Lemma B.3 for the variance estimator.

Proof of Lemma B.3. On the event E and Ẽh+1, we have[
Vh(Vi,h+1 − V ∗

h+1)
]
(skh, a

k
h)

≤ [Ph(Vi,h+1 − V ∗
h+1)

2](skh, a
k
h)

≤ 2H
[
Ph(Vi,h+1 − V ∗

h+1)
]
(skh, a

k
h)

≤ 2H
(
[PhVi,h+1](s

k
h, a

k
h)− [PhV̌k,h+1](s

k
h, a

k
h)
)

≤ 2H
(
[PhVk,h+1](s

k
h, a

k
h)− [PhV̌k,h+1](s

k
h, a

k
h)
)

≤ 2H
(
ŵ⊤

k,hϕ(s
k
h, a

k
h) + β̄

√
ϕ(skh, a

k
h)

⊤Σ−1
k,hϕ(s

k
h, a

k
h)− w̌⊤

k,hϕ(s
k
h, a

k
h) + β̄

√
ϕ(skh, a

k
h)

⊤Σ−1
k,hϕ(s

k
h, a

k
h)
)
,

where the first inequality holds due to Var(x) ≤ E[x2], the second and third inequality holds due to Lemma B.4 with the
fact that 0 ≤ Vi,h+1(s

′), V ∗
h+1(s

′) ≤ H , the fourth inequality the fact Vk,h+1 ≥ Vi,h+1 from the update-rule in Algorithm
1 and the fifth inequality holds due to Lemma B.1. On the other hand, since value function 0 ≤ Vi,h+1(s

′), V ∗
h+1(s

′) ≤ H ,
we have [

Vh(Vi,h+1 − V ∗
h+1)

]
(skh, a

k
h) ≤ H2 = (d3H3)/(d3H).

Thus, we finish the proof of Lemma B.3.

D.4 Proof of Lemma B.4

In this subsection, we provide proof of optimistic property.

Proof of Lemma B.4. We prove this lemma by induction. First, we prove the base case for the last stage H + 1. Under
this situation, for all state s ∈ S and action a ∈ A, we have Qk,H+1(s, a) = Q∗

h(s, a) = Q̌k,h(s, a) = 0 and Vk,h(s) ≥
V ∗
h (s) ≥ V̌k,h(s) = 0. Thus, the results in Lemma B.4 holds for stage H + 1.

Now, we focus on stage h + 1. Since events Ẽh directly implies the events Ẽh+1, according to the reduction assumption,
we have

Vk,h+1(s) ≥ V ∗
h+1(s) ≥ V̌k,h(s). (D.13)
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Thus, for all episode k ∈ [K], we have

rh(s, a) + ŵ⊤
k,hϕ(s, a) + β

√
ϕ(s, a)⊤Σ−1

k,hϕ(s, a)−Q∗
h(s, a) ≥

[
Ph(Vk,h+1 − V ∗

h+1)
]
(s, a) ≥ 0,

where the first inequality holds due to the definition of events Ẽh and the second inequality holds due to (D.13). Further-
more, the optimal value function is upper bounded by Q∗

h(s, a) ≤ H and it implies that

Q∗
h(s, a) ≤ min

{
min

1≤i≤k
rh(s, a) + ŵ⊤

i,hϕ(s, a) + β
√
ϕ(s, a)⊤Σ−1

i,hϕ(s, a), H
}
≤ Qk,h(s, a). (D.14)

With a similar argument, for the pessimistic action-value function Q̌k,h(s, a), we have

rh(s, a) + w̌⊤
k,hϕ(s, a)− β̄

√
ϕ(s, a)⊤Σ−1

k,hϕ(s, a)−Q∗
h(s, a) ≤

[
Ph(V̌k,h+1 − V ∗

h+1)
]
(s, a) ≤ 0.

Since the optimal value function is lower bounded by Q∗
h(s, a) ≥ 0, the result further implies that

Q∗
h(s, a) ≥ max

{
max
1≤i≤k

rh(s, a) + ŵ⊤
klast,hϕ(s, a) + β

√
ϕ(s, a)⊤Σ−1

klast,h
ϕ(s, a), 0

}
≥ Q̌k,h(s, a). (D.15)

In addition, for the value function V , we have

Vk,h(s) = max
a

Qi,h(s, a) ≥ min
1≤i≤k

max
a

Q∗
h(s, a) = V ∗

h (s),

V̌k,h(s) = max
a

Qi,h(s, a) ≤ max
1≤i≤k

max
a

Q∗
h(s, a) = V ∗

h (s),

where the first inequality holds due to (D.14) and the second inequality holds due to (D.15). Thus, by induction, we finish
the proof of Lemma B.4.

D.5 Proof of Lemma B.5

In this subsection, we provide the proof of Lemma B.5, which suggests a Bernstein-type upper bound for the estimation
error.

Proof of Lemma B.5. We prove Lemma B.5 by induction. First, we prove the base case for the last stage H . Under this
situation, the weight vector ŵk,h = 0 and Vk,h+1(s, a) = 0. Thus, the result in Lemma B.5 holds for stage H .

For stage h ∈ [H] and k ∈ [K], according to Lemma G.1, there exists a vector wk,h such that PhVk,h+1(s, a) can be
represented by w⊤

k,hϕ(s, a) and ∥wk,h∥2 ≤ H
√
d. Conditioned on the event Ẽh+1, the estimation error can be decomposed

as

∥ŵk,h −wk,h∥Σk,h

=

∥∥∥∥Σ−1
k,h

k−1∑
i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)Vk,h+1(s

i
h+1)−Σ−1

k,h

(
λI+

k−1∑
i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)ϕ(s

i
h, a

i
h)

⊤
)
wk,h

∥∥∥∥
Σk,h

=

∥∥∥∥Σ−1
k,h

k−1∑
i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)
(
Vk,h+1(s

i
h+1)− [PhVk,h+1](s

i
h, a

i
h)
)
− λΣ−1

k,hwk,h

∥∥∥∥
Σk,h

≤ ∥λΣ−1
k,hwk,h∥Σk,h︸ ︷︷ ︸

I1

+

∥∥∥∥Σ−1
k,h

k−1∑
i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)
(
Vk,h+1(s

i
h+1)− [PhVk,h+1](s

i
h, a

i
h)
)∥∥∥∥

Σk,h︸ ︷︷ ︸
I2

, (D.16)

where the first inequality holds due to the fact that ∥a+ b∥Σ ≤ ∥a∥Σ + ∥b∥Σ. For the first term I1, since Σk,h ⪰ λI and
∥wk,h∥2 ≤ H

√
d, it is upper bounded by

I1 = ∥λwk,h∥Σ−1
k,h
≤
√
λ · ∥wk,h∥2 ≤ H

√
dλ. (D.17)
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For the second term I2, we have

I2 =

∥∥∥∥Σ−1
k,h

k−1∑
i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)
(
Vk,h+1(s

i
h+1)− [PhVk,h+1](s

i
h, a

i
h)
)∥∥∥∥

Σk,h

=

∥∥∥∥ k−1∑
i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)
(
Vk,h+1(s

i
h+1)− [PhVk,h+1](s

i
h, a

i
h)
)∥∥∥∥

Σ−1
k,h

≤
∥∥∥∥ k−1∑

i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)
(
V ∗
h+1(s

i
h+1)− [PhV

∗
h+1](s

i
h, a

i
h)
)∥∥∥∥

Σ−1
k,h︸ ︷︷ ︸

J1

+

∥∥∥∥ k−1∑
i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)
(
∆Vk,h+1(s

i
h+1)−

[
Ph(∆Vk,h+1)

]
(sih, a

i
h)
)∥∥∥∥

Σ−1
k,h︸ ︷︷ ︸

J2

, (D.18)

where ∆Vk,h+1 = Vk,h+1 − V ∗
h+1.

For the term J1, we apply Lemma 4.1 with xi = σ̄−1
i,hϕ(s

i
h, a

i
h) and ηi = 1

{
[VhV

∗
h+1](s

i
h, a

i
h) ≤ σ̄2

i,h

}
·

σ̄−1
i,h

(
V ∗
h+1(s

i
h+1)− [PhV

∗
h+1](s

i
h, a

i
h)
)
. For xt, ηt, we have the following property:

∥xi∥2 =
∥∥σ̄−1

i,hϕ(s
i
h, a

i
h)
∥∥
2
≤
∥∥ϕ(sih, aih)∥∥2/√H ≤ 1/

√
H,

E[ηi|Fi] = 0, |ηt| ≤
∣∣∣σ̄−1

i,h

(
V ∗
h+1(s

i
h+1)− [PhV

∗
h+1](s

i
h, a

i
h)
)∣∣∣ ≤ √H,

E[η2i |Fi] = E
[
1
{
[VhV

∗
h+1](s

i
h, a

i
h) ≤ σ̄2

i,h

}
· σ̄−2

i,h [VhV
∗
h+1](s

i
h, a

i
h)
]
≤ 1,

max
i

{
|ηi| ·min{1, ∥xi∥Σ−1

i,h
}
}
≤ 2Hσ̄−1

i,h∥xi∥Σ−1
i,h
≤
√
d.

Thus, with probability at least 1− δ/H , for all k ∈ [K], we have∥∥∥∥ k−1∑
i=1

xiηi

∥∥∥∥
Σ−1

k,h

≤ O
(√

d log2
(
1 + dKH/(δλ)

))
.

In addition, on the event Ẽh+1 and E , according to Lemma B.2, we have

σ̄2
k,h ≥ [V̄k,hVk,h+1](s

k
h, a

k
h) + Ek,h +Dk,h ≥ [VhV

∗
h+1](s

k
h, a

k
h),

which further implies that

J1 =

∥∥∥∥ k−1∑
i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)
(
V ∗
h+1(s

i
h+1)− [PhV

∗
h+1](s

i
h, a

i
h)
)∥∥∥∥

Σ−1
k,h

=

∥∥∥∥ k−1∑
i=1

xiηi

∥∥∥∥
Σ−1

k,h

≤ O
(√

d log2
(
1 + dKH/(δλ)

))
. (D.19)

For the term J2, we can not directly use Lemma 4.1, Since the stochastic noise
(
∆Vk,h+1(s

i
h+1)− [Ph(∆Vk,h+1)](s

i
h, a

i
h)
)

is not Fi+1 measurable. Thus, we need to use the ϵ-net covering argument. In detail, for each episode, i, the value function
Vi,h belongs to the optimistic value function class V . If we set ϵ =

√
λ/(4H2d2K), then according to Lemma F.6, the

covering entropy for function class V − V ∗
h+1 is upper bounded by

logNϵ ≤ O
(
d3H2 log2(dHK/λ)

)
. (D.20)
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Then for function Vk,h, there must exists a function Ṽ in the ϵ-net, such that

dist(∆Vk,h, Ṽ ) ≤ ϵ. (D.21)

Therefore, the variance of function Ṽ is upper bounded by

[VhṼ ](sih, a
i
h)−

[
Vh(∆Vk,h+1)

]
(sih, a

i
h)

= [PhṼ
2](sih, a

i
h)−

[
Ph(∆Vk,h+1)

2
]
(sih, a

i
h) +

([
Ph(∆Vk,h+1)

]
(sih, a

i
h)
)2
−
(
PhṼ (sih, a

i
h)
)2

≤ 2dist(∆Vk,h, Ṽ ) ·max
s′
|∆Vk,h+1 + Ṽ |(s′)

≤ 4H · dist(∆Vk,h, Ṽ )

≤ 1/d2, (D.22)

where the first inequality holds due to the definition of distance between different functions, the third inequality holds since
|∆Vk,h+1(s

′) + Ṽ (s′)| ≤ 2H and the last inequality holds due to the definition of ϵ-net. Thus, we apply Lemma 4.1 with
xi = σ̄−1

i,hϕ(s
i
h, a

i
h) and ηi = 1

{
[VhṼ ](sih, a

i
h) ≤ σ̄2

i,h/(d
3H)

}
· σ̄−1

i,h

(
Ṽ (sih+1)− [PhṼ ](sih, a

i
h)
)
. Therefore, For xt, ηt,

we have the following property:

∥xi∥2 =
∥∥σ̄−1

i,hϕ(s
i
h, a

i
h)
∥∥
2
≤
∥∥ϕ(sih, aih)∥∥2/√H ≤ 1/

√
H,

E[ηi|Fi] = 0, |ηt| ≤
∣∣∣σ̄−1

i,h

(
V ∗
h+1(s

i
h+1)− [PhṼh+1](s

i
h, a

i
h)
)∣∣∣ ≤ √H,

E[η2i |Fi] = E
[
1
{
[VhṼ ](sih, a

i
h) ≤ σ̄2

i,h/(d
3H)

}
· σ̄−2

i,h [VhṼ ](sih, a
i
h)
]
≤ 1/(d3H),

max
i

{
|ηi| ·min{1, ∥xi∥Σ−1

i,h
}
}
≤ 2Hσ̄−1

i,h∥xi∥Σ−1
i,h
≤ 1/(d3H).

After taking a union bound over the ϵ-net, with probability at least 1− δ, we have∥∥∥∥ k−1∑
i=1

xiηi

∥∥∥∥
Σ−1

k,h

≤ O
(√

d log2
(
1 + dKH/(δλ)

))
. (D.23)

In addition, on the event Ẽh+1 and E , according to Lemmas B.2 and B.3, we have

σ̄2
i,h ≥ [V̄i,hVi,h+1](s

k
h, a

k
h) + Ei,h +Di,h +H

≥ Di,h +H

≥ d3H
[
Vh(∆Vk,h+1)

]
(sih, a

i
h) +H

≥ d3H[VhṼ ](sih, a
i
h),

For simplicity, we denote V̄ = ∆Vk,h+1 − Ṽ and it further implies that

J2 =

∥∥∥∥ k−1∑
i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)
(
∆V (sih+1)− [Ph(∆Vk,h+1)](s

i
h, a

i
h)
)∥∥∥∥

Σ−1
k,h

≤ 2

∥∥∥∥ k−1∑
i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)
(
Ṽ (sih+1)− [PhṼ ](sih, a

i
h)
)∥∥∥∥

Σ−1
k,h

+ 2

∥∥∥∥ k−1∑
i=1

σ̄−2
i,hϕ(s

i
h, a

i
h)
(
V̄ (sih+1)− [PhV̄ ](sih, a

i
h)
)∥∥∥∥

Σ−1
k,h

≤ 2

∥∥∥∥ k−1∑
i=1

xiηi

∥∥∥∥
Σ−1

k,h

+ 8ϵ2k2/λ

≤ O
(√

d log2
(
1 + dKH/(δλ)

))
. (D.24)
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where the first inequality holds due to ∥a + b∥2Σ ≤ 2∥a∥2Σ + 2∥b∥2Σ, the second inequality holds due to the fact that
|V̄ (s′)| ≤ ϵ, ∥ϕ(s, a)∥2 ≤ 1,Σk,h ⪰ λI, Σ̄−1

k,h ≤ 1 and the last inequality holds due to (D.23) with ϵ =
√
λ/(4H2d2K).

Substituting the results in (D.17), (D.18), (D.19) and (D.23) into (D.16), we obtain

∥ŵk,h −wk,h∥Σk,h
≤ I1 + J1 + J2 ≤ O

(
H
√
dλ+

√
d log2

(
1 + dKH/(δλ)

))
= β, (D.25)

Therefore, the estimation error is upper bounded by

|ŵ⊤
k,hϕ(s, a)− PhVk,h+1(s, a)| = |ŵ⊤

k,hϕ(s, a)−w⊤
k,hϕ(s, a)|

≤ ∥ŵk,h −wk,h∥Σk,h
· ∥ϕ(s, a)∥Σ−1

k,h

≤ β
√

ϕ(s, a)⊤(Σk,h)−1ϕ(s, a),

where the first inequality holds due to Cauchy-Schwartz inequality and the last inequality holds due to (D.25), which
implies the results in Lemma B.5 holds for stage h. Therefore, by induction, we finish the proof of Lemma B.5.

E Proof of Lemmas in Appendix C
In this section, we provide the proof of Lemmas in Appendix C and we need the following auxiliary Lemma, which is
modified from Lemma 4.4 in Zhou and Gu (2022)

Lemma E.1. For any parameters β′ ≥ 1 and C ≥ 1, the summation of bonuses is upper bounded by

K∑
k=1

min
(
β′
√

ϕ(skh, a
k
h)

⊤Σ−1
k,hϕ(s

k
h, a

k
h), C

)
≤ 4d4H6Cι+ 10β′d5H4ι+ 2β′

√√√√2dι

K∑
k=1

(σ2
k,h +H),

where ι = log
(
1 +K/(dλ)

)
.

Proof of Lemma E.1. For each stage h ∈ [H], the summation of bonuses is upper bounded by

K∑
k=1

min
(
β′
√

ϕ(skh, a
k
h)

⊤Σ−1
k,hϕ(s

k
h, a

k
h), C

)
≤

K∑
k=1

β′ min
(√

ϕ(skh, a
k
h)

⊤Σ−1
k,hϕ(s

k
h, a

k
h), 1

)
+ C

K∑
k=1

1
{√

ϕ(skh, a
k
h)

⊤Σ−1
k,hϕ(s

k
h, a

k
h) ≥ 1

}

≤ C

K∑
k=1

1
{√

ϕ(skh, a
k
h)

⊤Σ−1
k,hϕ(s

k
h, a

k
h) ≥ 1

}
+ 10β′d5H4ι+ 2β′

√√√√2dι

K∑
k=1

(σ2
k,h +H), (E.1)

where ι = log
(
1 +K/(dλ)

)
and the last inequality holds due to Lemma G.6. Now, we only need to estimate the number

of episodes where the bonus is larger than 1 and we denote these episodes as {k1, .., km}. For simplicity, we denote

Σ′
i = λI+

i∑
j=1

σ̄2
kj ,hϕ(s

kj

h , a
kj

h )ϕ(s
kj

h , a
kj

h )⊤,

and we have
m∑
i=1

ϕ(ski

h , aki

h )⊤Σ′
i−1ϕ(s

ki

h , aki

h ) ≥
m∑
i=1

ϕ(ski

h , aki

h )⊤Σ−1
ki,h

ϕ(ski

h , aki

h ) ≥ m. (E.2)

On the other hand, notice that the estimated variance σ̄2
k,h is upper bounded by 4d4H4/λ, we have

m∑
i=1

ϕ(ski

h , aki

h )⊤Σ′
i−1ϕ(s

ki

h , aki

h ) ≤ 4d4H4/λ ·
m∑
i=1

σ̄−2
k,hϕ(s

ki

h , aki

h )⊤Σ′
i−1ϕ(s

ki

h , aki

h ) ≤ 4d4H6ι, (E.3)
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where ι = log
(
1 + K/(dλ)

)
and the last inequality holds due to Lemma G.3. Combining the results in (E.2) and (E.3),

we have m ≤ 4d4H6β2ι, and it further implies that

K∑
k=1

min
(
β′
√
ϕ(skh, a

k
h)

⊤Σ−1
k,hϕ(s

k
h, a

k
h), C

)

≤ C

K∑
k=1

1
{√

ϕ(skh, a
k
h)

⊤Σ−1
k,hϕ(s

k
h, a

k
h) ≥ 1

}
+ 10β′d5H4ι+ 2β′

√√√√2dι

K∑
k=1

(σ2
k,h +H)

≤ 4d4H6Cι+ 10β′d5H4ι+ 2β′

√√√√2dι

K∑
k=1

(σ2
k,h +H).

Thus, we finish the proof of Lemma E.1.

E.1 Proof of Lemma C.1

Proof of Lemma C.1. For all stage h ∈ [H] and episode k ∈ [K], we have

Vk,h(s
k
h)− V πk

k,h(s
k
h)

= Qk,h(s
k
h, a

k
h)−Qπk

k,h(s
k
h, a

k
h)

≤ min
(
ŵ⊤

klast,hϕ(s, a) + β
√
ϕ(skh, a

k
h)

⊤Σ−1
klast,h

ϕ(skh, a
k
h), H

)
− [PhVk,h+1](s

k
h, a

k
h)

+
[
Ph(Vk,h+1 − V πk

k,h+1)
]
(skh, a

k
h)

≤
[
Ph(Vk,h+1 − V πk

k,h+1)
]
(skh, a

k
h) + 2min

(
β
√

ϕ(skh, a
k
h)

⊤Σ−1
klast,h

ϕ(skh, a
k
h), H

)
≤
[
Ph(Vk,h+1 − V πk

k,h+1)
]
(skh, a

k
h) + 4min

(
β
√

ϕ(skh, a
k
h)

⊤Σ−1
k,hϕ(s

k
h, a

k
h), H

)
= Vk,h+1(s

k
h+1)− V πk

k,h+1(s
k
h+1) +

[
Ph(Vk,h+1 − V πk

k,h+1)
]
(skh, a

k
h)−

(
Vk,h+1(s

k
h+1)− V πk

k,h+1(s
k
h+1)

)
+ 4min

(
β
√
ϕ(skh, a

k
h)

⊤Σ−1
k,hϕ(s

k
h, a

k
h), H

)
, (E.4)

where the first inequality holds due to the definition of value function Qk,h(s
k
h, a

k
h), the second inequality holds due to

Lemma B.5 and the last inequality holds due to Lemma G.4 with the updating rule (Line 8). Furthermore, for all stage
h ∈ [H], we have

K∑
k=1

(
Vk,h(s

k
h)− V πk

k,h(s
k
h)
)

≤
K∑

k=1

H∑
h′=h

4min
(
β
√

ϕ(skh, a
k
h)

⊤Σ−1
k,hϕ(s

k
h, a

k
h), H

)
+

K∑
k=1

H∑
h′=h

([
Ph(Vk,h+1 − V πk

k,h+1)
]
(skh, a

k
h)−

(
Vk,h+1(s

k
h+1)− V πk

k,h+1(s
k
h+1)

))
≤

K∑
k=1

H∑
h′=h

4min
(
β
√

ϕ(skh, a
k
h)

⊤Σ−1
k,hϕ(s

k
h, a

k
h), H

)
+ 4
√

H3K log(H/δ)

≤ 16d4H8ι+ 40βd7H5ι+ 8β

H∑
h′=h

√√√√2dι

K∑
k=1

(σ2
k,h′ +H) + 4

√
H3K log(H/δ)

≤ 16d4H8ι+ 40βd7H5ι+ 8β

√√√√2dHι

H∑
h=1

K∑
k=1

(σ2
k,h +H) + 4

√
H3K log(H/δ), (E.5)
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where the first inequality holds by taking the summation of (E.4) for k ∈ [K] and h ≤ h′ ≤ H , the second inequality
holds due to the definition of events E1, the third inequality holds due to Lemma E.1 and the last inequality holds due to
Cauchy-Schwartz inequality. Furthermore, taking the summation of (E.5), we have

K∑
k=1

H∑
h=1

[
Ph(Vk,h+1 − V πk

k,h+1)
]
(skh, a

k
h)

=

K∑
k=1

H∑
h=1

(
Vk,h+1(s

k
h+1)− V πk

k,h+1(s
k
h+1)

)
+

K∑
k=1

H∑
h=1

([
Ph(Vk,h+1 − V πk

k,h+1)
]
(skh, a

k
h)−

(
Vk,h+1(s

k
h+1)− V πk

k,h+1(s
k
h+1)

))
≤

K∑
k=1

H∑
h=1

(
Vk,h+1(s

k
h+1)− V πk

k,h+1(s
k
h+1)

)
+ 2
√

2H3K log(H/δ)

≤ 16d4H9ι+ 40βd7H6ι+ 8Hβ

√√√√2dHι

H∑
h=1

K∑
k=1

(σ2
k,h +H) + 4

√
H5K log(H/δ),

where the first inequality holds due to Lemma G.2 and the last inequality holds due (E.5). Therefore, we finish the proof
of Lemma C.1.

E.2 Proof of Lemma C.2

Proof of Lemma C.2. For each stage h ∈ [H] and episode k ∈ [K], we have

Vk,h(s
k
h)− V̌k,h(s

k
h)

≤ Qk,h(s
k
h, a

k
h)− Q̌k,h(s

k
h, a

k
h)

≤ min
(
w̌⊤

klast,hϕ(s, a) + β
√
ϕ(skh, a

k
h)

⊤Σ−1
klast,h

ϕ(skh, a
k
h), H

)
− [PhVk,h+1](s

k
h, a

k
h)

−max
(
ŵ⊤

klast,hϕ(s, a)− β̄
√
ϕ(skh, a

k
h)

⊤Σ−1
klast,h

ϕ(skh, a
k
h), 0

)
+ [PhV̌k,h+1](s

k
h, a

k
h)

+
[
Ph(Vk,h+1 − V̌k,h+1)

]
(skh, a

k
h)

≤
[
Ph(Vk,h+1 − V̌k,h+1)

]
(skh, a

k
h) + 2min

(
β
√

ϕ(skh, a
k
h)

⊤Σ−1
klast,h

ϕ(skh, a
k
h), H

)
+ 2min

(
β̄
√

ϕ(skh, a
k
h)

⊤Σ−1
klast,h

ϕ(skh, a
k
h), H

)
≤
[
Ph(Vk,h+1 − V̌k,h+1)

]
(skh, a

k
h) + 4min

(
β
√
ϕ(skh, a

k
h)

⊤Σ−1
k,hϕ(s

k
h, a

k
h), H

)
+ 4min

(
β̄
√

ϕ(skh, a
k
h)

⊤Σ−1
k,hϕ(s

k
h, a

k
h), H

)
= Vk,h+1(s

k
h+1)− V̌k,h+1(s

k
h+1) +

[
Ph(Vk,h+1 − V̌k,h+1)

]
(skh, a

k
h)−

(
Vk,h+1(s

k
h+1)− V̌k,h+1(s

k
h+1)

)
+ 4min

(
β
√

ϕ(skh, a
k
h)

⊤Σ−1
k,hϕ(s

k
h, a

k
h), H

)
+ 4min

(
β̄
√
ϕ(skh, a

k
h)

⊤Σ−1
k,hϕ(s

k
h, a

k
h), H

)
, (E.6)

where the first inequality holds due to the fact that V̌k,h(s
k
h) = maxa Q̌k,h(s

k
h, a) ≥ Q̌k,h(s

k
h, a

k
h), the second inequality

holds due to the definition of value functions Qk,h and Q̌k,h, the third inequality holds due to Lemma B.5 and Lemma B.1,
and the last inequality holds due to Lemma G.4 with the updating rule (Line 8). Furthermore, for all stage h ∈ [H], we
have

K∑
k=1

(
Vk,h(s

k
h)− V̌k,h(s

k
h)
)

≤
K∑

k=1

H∑
h′=h

4min
(
β
√

ϕ(skh, a
k
h)

⊤Σ−1
k,hϕ(s

k
h, a

k
h), H

)
+ 4min

(
β̄
√

ϕ(skh, a
k
h)

⊤Σ−1
k,hϕ(s

k
h, a

k
h), H

)
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+

K∑
k=1

H∑
h′=h

([
Ph(Vk,h+1 − V̌k,h+1)

]
(skh, a

k
h)−

(
Vk,h+1(s

k
h+1)− V̌k,h+1(s

k
h+1)

))
≤

K∑
k=1

H∑
h′=h

4min
(
β
√
ϕ(skh, a

k
h)

⊤Σ−1
k,hϕ(s

k
h, a

k
h), H

)
+ 4min

(
β̄
√

ϕ(skh, a
k
h)

⊤Σ−1
k,hϕ(s

k
h, a

k
h), H

)
+ 4
√

H3K log(H/δ)

≤ 32d4H8ι+ 40(β + β̄)d7H5ι+ 8(β + β̄)

H∑
h′=h

√√√√2dι

K∑
k=1

(σ2
k,h′ +H) + 4

√
H3K log(H/δ)

≤ 32d4H8ι+ 40(β + β̄)d7H5ι+ 8(β + β̄)

√√√√2dHι

H∑
h=1

K∑
k=1

(σ2
k,h +H) + 4

√
H3K log(H/δ), (E.7)

where the first inequality holds by taking the summation of (E.6) for k ∈ [K] and h ≤ h′ ≤ H , the second inequality
holds due to the definition of event E2, the third inequality holds due to Lemma E.1 and the last inequality holds due to
Cauchy-Schwartz inequality. Furthermore, taking the summation of (E.7), we have

K∑
k=1

H∑
h=1

[
Ph(Vk,h+1 − V̌k,h+1)

]
(skh, a

k
h)

=

K∑
k=1

H∑
h=1

(
Vk,h+1(s

k
h+1)− V̌k,h+1(s

k
h+1)

)
+

K∑
k=1

H∑
h=1

([
Ph(Vk,h+1 − V̌k,h+1)

]
(skh, a

k
h)−

(
Vk,h+1(s

k
h+1)− V̌k,h+1(s

k
h+1)

))
≤

K∑
k=1

H∑
h=1

(
Vk,h+1(s

k
h+1)− V̌k,h+1(s

k
h+1)

)
+ 2
√

2H3K log(H/δ)

≤ 32d4H9ι+ 40(β + β̄)d7H6ι+ 8H(β + β̄)

√√√√2dHι

H∑
h=1

K∑
k=1

(σ2
k,h +H) + 4

√
H5K log(H/δ),

where the first inequality holds due to Lemma G.2 and the last inequality holds due (E.7). Therefore, we finish the proof
of Lemma C.2.

E.3 Proof of Lemma C.3

Proof of Lemma C.3. According to the definition of estimated variance σk,h, we have

K∑
k=1

H∑
h=1

σ2
k,h =

K∑
k=1

H∑
h=1

[V̄k,hVk,h+1](s
k
h, a

k
h) + Ek,h +Dk,h +H

= H2K +

K∑
k=1

H∑
h=1

(
[V̄k,hVk,h+1](s

k
h, a

k
h)− [VhVk,h+1](s

k
h, a

k
h)
)

︸ ︷︷ ︸
I1

+

K∑
k=1

H∑
h=1

Ek,h︸ ︷︷ ︸
I2

+

K∑
k=1

H∑
h=1

Dk,h︸ ︷︷ ︸
I3

+

K∑
k=1

H∑
h=1

(
[VhVk,h+1](s

k
h, a

k
h)− [VhV

πk

k,h+1](s
k
h, a

k
h)
)

︸ ︷︷ ︸
I4

+

K∑
k=1

H∑
h=1

[VhV
πk

k,h+1](s
k
h, a

k
h)︸ ︷︷ ︸

I5

. (E.8)

For the term I1, according to Lemma B.2, it is upper bounded by:

I1 =

K∑
k=1

H∑
h=1

(
[V̄k,hVk,h+1](s

k
h, a

k
h)− [VhVk,h+1](s

k
h, a

k
h)
)
≤

K∑
k=1

H∑
h=1

Ek,h = I2. (E.9)
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For the term I2, it is upper bounded by

I2 =

K∑
k=1

H∑
h=1

Ek,h

=

K∑
k=1

H∑
h=1

min
{
β̃
∥∥Σ−1/2

k,h ϕ(skh, a
k
h)
∥∥
2
, H2

}
+min

{
2Hβ̄

∥∥Σ−1/2
k,h ϕ(skh, a

k
h)
∥∥
2
, H2

}

≤ 8d4H9ι+ (10β̃ + 20β̄)d5H5ι+ (2β̃ + 4β̄)H

√√√√2dι

H∑
h=1

K∑
k=1

(σ2
k,h +H), (E.10)

where ι = log
(
1 +K/(dλ)

)
and the inequality holds due to Lemma E.1.

For the term I3, it is upper bounded by

I3 =

K∑
k=1

H∑
h=1

Dk,h

=

K∑
k=1

H∑
h=1

min

{
4d3H2

(
ŵ⊤

k,hϕ(s, a)− w̌⊤
k,hϕ(s, a) + 2β̄

√
ϕ(s, a)⊤Σ−1

k,hϕ(s, a)
)
, d3H3

}

≤
K∑

k=1

H∑
h=1

min

{
4d3H2

([
Ph(Vk,h+1 − V̌k,h+1)

]
(skh, a

k
h) + 4β̄

√
ϕ(s, a)⊤Σ−1

k,hϕ(s, a)
)
, d3H3

}

≤
K∑

k=1

H∑
h=1

4d3H2
[
Ph(Vk,h+1 − V̌k,h+1)

]
(skh, a

k
h) +

K∑
k=1

H∑
h=1

min
{
16d3H2β̄

√
ϕ(s, a)⊤Σ−1

k,hϕ(s, a), d
3H3

}

≤ 4d7H9ι+ 160β̄d8H7ι+ 32d3H3β̄

√√√√2dι

H∑
h=1

K∑
k=1

(σ2
k,h +H)

+

K∑
k=1

H∑
h=1

4d3H2
[
Ph(Vk,h+1 − V̌k,h+1)

]
(skh, a

k
h)

≤ 132d7H11ι+ 320(β + β̄)d10H8ι+ 64d3H3(β + β̄)

√√√√2dHι

H∑
h=1

K∑
k=1

(σ2
k,h +H) + 4d3

√
H9K log(H/δ), (E.11)

where ι = log
(
1 + K/(dλ)

)
, the first inequality holds due to Lemma B.1, the second inequality holds due to the fact

that Vk,h+1(s) ≥ V ∗
h+1(s) ≥ V̌k,h+1(s), the third inequality holds due to Lemma E.1 and the last inequality holds due to

Lemma C.2.

For the term I4, it is upper bounded by

I4 =

K∑
k=1

H∑
h=1

(
[VhVk,h+1](s

k
h, a

k
h)− [VhV

πk

k,h+1](s
k
h, a

k
h)
)

=

K∑
k=1

H∑
h=1

(
[PhV

2
k,h+1](s

k
h, a

k
h)−

(
[PhVk,h+1](s

k
h, a

k
h)
)2 − [Ph(V

πk

k,h+1)
2](skh, a

k
h) +

(
[PhV

πk

k,h+1](s
k
h, a

k
h)
)2)

≤
K∑

k=1

H∑
h=1

(
[PhV

2
k,h+1](s

k
h, a

k
h)− [Ph(V

πk

k,h+1)
2](skh, a

k
h)
)

≤ 2H

K∑
k=1

H∑
h=1

(
[PhVk,h+1](s

k
h, a

k
h)− [PhV

πk

k,h+1](s
k
h, a

k
h)
)
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≤ 32d4H10ι+ 80βd7H7ι+ 16H2β

√√√√2dHι

H∑
h=1

K∑
k=1

(σ2
k,h +H) + 8

√
H7K log(H/δ), (E.12)

where the first inequality holds due to the fact that V πk

k,h+1(s
′) ≤ Vk,h+1(s

′), the second inequality holds due to 0 ≤
Vk,h+1(s

′), V πk

k,h+1(s
′) ≤ H and the last inequality holds due to Lemma C.1.

Based on the definition of events E3, for the term I5, we have

I5 =

K∑
k=1

H∑
h=1

[VhV
πk

k,h+1](s
k
h, a

k
h) ≤ 3

(
H2K +H3 log(1/δ)

)
. (E.13)

Substituting the results in (E.9), (E.10), (E.11), (E.12) and (E.13) into (E.8), we have

K∑
k=1

H∑
h=1

σ2
k,h

= I1 + I2 + I3 + I4 + I5

≤ 3H2K + 183d7H11ι+ 460(β + β̃ + β̄)d10H8ι+ 12d3
√
H9K log(H/δ)

+ 92d3H3(β + β̃ + β̄)

√√√√2dHι

H∑
h=1

K∑
k=1

(σ2
k,h +H)

≤ 3H2K + 183d7H11ι+ 460(β + β̃ + β̄)d10H8ι+ 12d3
√
H9K log(H/δ)

+ 92d3H3(β + β̃ + β̄)
√
2dH2Kι+ 92d3H3(β + β̃ + β̄)

√√√√2dHι

H∑
h=1

K∑
k=1

σ2
k,h,

where ι = log
(
1 +K/(dλ)

)
,

β = O
(
H
√
dλ+

√
d log2

(
1 + dKH/(δλ)

))
β̃ = O

(
H2
√
dλ+

√
d3H4 log2

(
dHK/(δλ)

))
β̄ = O

(
H
√
dλ+

√
d3H2 log2

(
dHK/(δλ)

))
,

and the last inequality holds due to the fact that
√
a+ b ≤

√
a +
√
b. Therefore, by the fact that x ≤ a

√
x + b implies

x ≤ a2 + 2b and λ = 1/H2, we have

K∑
k=1

H∑
h=1

σ2
k,h ≤ O

(
H2K + d10.5H16 log1.5(1 + dKH/δ)

)
.

Thus, we complete the proof of Lemma C.3.

F Covering Number Arguments
F.1 Number of Value Function Updating

According to the determinant-based criterion in Algorithm 1 (Line 8), the number of episodes where the algorithm updates
the value function is upper bounded by:
Lemma F.1. The number of episodes where the algorithm updates the value function in Algorithm 1 is upper bounded by
dH log(1 +K/λ).

Proof. We denote k0 = 0 and suppose that {k1, .., km} be the episodes where the algorithm updates the value function.
Then according to the determinant-based criterion (Line 8), for each episodes ki, there exists a stage h ∈ [H] such that

det(Σki,h) ≥ 2 det(Σki−1,h).
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According to the update rule of Σk,h (Line 24), for other stage h′ ̸= h, we have Σki,h′ ⪰ Σki,h′ , which implies
det(Σki,h′) ≥ det(Σki,h′). Thus, we have

H∏
h=1

det(Σki,h) ≥ 2

H∏
h=1

det(Σki−1,h). (F.1)

Applying the result (F.1) overall episodes in {k1, .., km}, we have

H∏
h=1

det(Σkm,h) ≥ 2m
H∏

h=1

det(Σk0,h) = 2m
H∏

h=1

det(λI) = 2mλdH . (F.2)

On the other hand, the determinant det(Σkm,h) is upper bounded by:

H∏
h=1

det(Σkm,h) ≤
H∏

h=1

det(ΣK,h) ≤ (λ+K)dH , (F.3)

where the first inequality holds due to ΣK,h ⪰ Σkm,h, the last inequality holds due to σ̄−1
k,h ≤ 1 and ∥ϕ(s, a)∥2 ≤ 1.

Combining the results in (F.2) and (F.3), we have

m ≤ dH log(1 +K/λ).

Thus, we finish the proof of Lemma F.1.

F.2 Norm of the Weight Vectors

In this section, we provide the following upper bounds for the norm of the weight vectors.

Lemma F.2. For all stage h ∈ [H] and all episode k ∈ N, the norm of the weight vector ŵk,h can be upper bounded by

∥ŵk,h∥2 ≤ H
√

dK/λ.

Proof of Lemma F.2. According to the definition of weight vector ŵk,h in Algorithm 1, we have

Σk,h = λI+

k−1∑
i=1

σ̄−2
k,iϕ(s

i
h, a

i
h)ϕ(s

i
h, a

i
h)

⊤,

ŵk,h = Σ−1
k,h

k−1∑
i=1

σ̄−2
k,iϕ(s

i
h, a

i
h)Vk,h+1(s

i
h+1).

Then for the norm ∥ŵk,h∥2, we have the following inequality

∥ŵk,h∥22 =

∥∥∥∥Σ−1
k,h

k−1∑
i=1

σ̄−2
k,iϕ(s

i
h, a

i
h)Vk,h+1(s

i
h+1)

∥∥∥∥2
2

≤ k

k−1∑
i=1

∥∥Σ−1
k,hσ̄

−2
k,iϕ(s

i
h, a

i
h)Vk,h+1(s

i
h+1)

∥∥2
2

≤ kH2
k−1∑
i=1

σ̄−2
k,i

∥∥Σ−1
k,hϕ(s

i
h, a

i
h)
∥∥2
2

≤ kH2

λ

k−1∑
i=1

σ̄−2
k,iϕ(s

i
h, a

i
h)

⊤Σ−1
k,hϕ(s

i
h, a

i
h)

=
kH2

λ
tr
(
Σ−1

k,h

k−1∑
i=1

σ̄−2
k,iϕ(s

i
h, a

i
h)

⊤ϕ(sih, a
i
h)

)
, (F.4)
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where the first inequality holds due to Cauchy-Schwartz inequality, the second inequality holds due to 0 ≤
Vk,h+1(s, a) ≤ H and the last inequality holds due to Σk,h ⪰ λI. Now, we assume the eigen-decomposition of ma-
trix

∑k−1
i=1 σ̄−2

k,iϕ(s
i
h, a

i
h)

⊤ϕ(sih, a
i
h) is Q⊤ΛQ and we have

tr
(
Σ−1

k,h

k−1∑
i=1

σ̄−2
k,iϕ(s

i
h, a

i
h)

⊤ϕ(sih, a
i
h)

)
= tr

(
(Q⊤ΛQ+ λI)−1Q⊤ΛQ

)
= tr

(
(Λ + λI)−1Λ

)
=

d∑
i=1

Λi

Λi + λ

≤ d. (F.5)

Substituting (F.5) into (F.4), we have

∥ŵk,h∥22 ≤
kH2

λ
tr
(
Σ−1

k,h

k−1∑
i=1

σ̄−2
k,iϕ(s

i
h, a

i
h)

⊤ϕ(sih, a
i
h)

)
≤ kH2d

λ
, (F.6)

where the first inequality holds due to (F.4) and the last inequality holds due to (F.5). Thus, we finish the proof of Lemma
F.2

In addition, for the pessimistic weight vector w̌k,h and weight vector w̃k,h, we have the following lemmas:

Lemma F.3. For all stage h ∈ [H] and all episode k ∈ N, the norm of the weight vector w̌k,h can be upper bounded by

∥w̌k,h∥2 ≤ H
√

dK/λ.

Proof of Lemma F.3. The proof is almost the same as Lemma F.2 and we only need to replace the optimistic value function
Vk,h(s, a) by the pessimistic value function V̌k,h(s, a).

Lemma F.4. For each stage h ∈ [H] and each episode k ∈ N, the norm of the weight vector w̃k,h can be upper bounded
by

∥w̌k,h∥2 ≤ H2
√

dK/λ.

Proof of Lemma F.4. The proof is almost the same as Lemma F.2 and we only need to replace the optimistic value function
Vk,h(s, a) with the squared value function V 2

k,h(s, a).

F.3 Function Class and Covering Number

Combining the update rule (Line 8) with Lemma F.1 and Lemma F.2, for each episodes k ∈ [K] and h ∈ [H], the optimistic
value function Vk,h = mini≤k maxa Qi,h(s, a) belong to the following function class

Vh =

{
V

∣∣∣∣V (·) = max
a

min
1≤i≤l

min

(
H, rh(·, a) +w⊤

i ϕ(·, a) + β

√
ϕ(·, a)⊤Σ−1

i ϕ(·, a)
)
, ∥wi∥ ≤ L,Σi ⪰ λI

}
, (F.7)

where l = dH log(1+K/λ) and L = H
√

dK/λ. Similarly, for each episodes k ∈ [K] and h ∈ [H], the pessimistic value
function V̌k,h = maxi≤k maxa Q̌i,h(s, a) belongs to the following function class

V̌h =

{
V

∣∣∣∣V (·) = max
a

max
1≤i≤l

max

(
0, rh(·, a) +w⊤

i ϕ(·, a)− β

√
ϕ(·, a)⊤Σ−1

i ϕ(·, a)
)
, ∥wi∥ ≤ L,Σi ⪰ λI

}
, (F.8)

where l = dH log(1 +K/λ) and L = H
√
dK/λ. To compute the covering number of function classes Vh, V2

h and V̌h,
we need the following result on the Euclidean ball.
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Lemma F.5 (Lemma D.5, Jin et al. 2020). For a Euclidean ball with radius R in Rd, the ϵ-covering number of this ball is
upper bounded by (1 + 2R/ϵ)d.

With the help of Lemma F.5, the covering numberNϵ of optimistic function class V can be upper bounded by the following
lemma:
Lemma F.6. For optimistic function class Vh, we define the distance between two function V1 and V2 as V1, V2 ∈ Vh as
dist(V1, V2) = maxs |V1(s) − V2(s)|. With respect to this distance function, the ϵ-covering number Nϵ of the function
class Vh can be upper bounded by

logNϵ ≤ dl log(1 + 4L/ϵ) + d2l log(1 + 8
√
dβ2/ϵ2)

Proof of Lemma F.6. For any two function V1, V2 ∈ Vh, according to the definition of function class Vh, we have

V1(·) = max
a

min
1≤i≤l

min

(
H, rh(·, a) +w⊤

1,iϕ(·, a) + β
√
ϕ(·, a)⊤Γ1,iϕ(·, a)

)
,

V2(·) = max
a

min
1≤i≤l

min

(
H, rh(·, a) +w⊤

2,iϕ(·, a) + β
√
ϕ(·, a)⊤Γ2,iϕ(·, a)

)
,

where ∥w1,i∥2, ∥w2,i∥2 ≤ L and Γ1,i,Γ2,i ⪯ I. Since all of the functions min1≤i≤l, maxa and min(H, ·) are contraction
functions, we have

dist(V1, V2) = max
s∈S

∣∣V1(s)− V2(s)
∣∣

≤ max
1≤i≤l,s∈S,a∈A

∣∣∣w⊤
1,iϕ(s, a) + β

√
ϕ(s, a)⊤Γ1,iϕ(s, a)

−w⊤
2,iϕ(s, a)− β

√
ϕ(s, a)⊤Γ2,iϕ(s, a)

∣∣∣
≤ β max

1≤i≤l,s∈S,a∈A

∣∣∣√ϕ(s, a)⊤Γ1,iϕ(s, a)−
√
ϕ(s, a)⊤Γ2,iϕ(s, a)

∣∣∣
+ max

1≤i≤l,s∈S,a∈A

∣∣(w1,i −w2,i)
⊤ϕ(s, a)

∣∣
≤ β max

1≤i≤l,s∈S,a∈A

∣∣∣√ϕ(s, a)⊤(Γ1,i − Γ2,i)ϕ(s, a)
∣∣∣

+ max
1≤i≤l,s∈S,a∈A

∣∣(w1,i −w2,i)
⊤ϕ(s, a)

∣∣
≤ β max

1≤i≤l

√
∥Γ1,i − Γ2,i∥F + max

1≤i≤l
∥w1,i −w2,i∥2, (F.9)

where the first inequality holds due to the contraction property, the second inequality holds due to the fact that maxx |f(x)+
g(x)| ≤ maxx |f(x)| + maxx |g(x)|, the third inequality holds due to |

√
x − √y| ≥ |

√
x − √y| and the last inequality

holds due to the fact that ∥ϕ(s, a)∥2 ≤ 1. Now, we denote Cw as a ϵ/2-cover of the set
{
w ∈ Rd

∣∣∥w∥2 ≤ L
}

and CΓ as a
ϵ2/(4β2)-cover of the set {Γ ∈ Rd·d

∣∣∥Γ∥F ≤ √d} with respect to the Frobenius norms. Thus, according to Lemma F.5,
we have following property:

|Cw| ≤
(
1 + 4L/ϵ

)d
, |CΓ| ≤

(
1 + 8

√
dβ2/ϵ2

)d2

. (F.10)

By the definition of covering number, for any function V1 ∈ V with parameters w1,i,Γ1,i(1 ≤ i ≤ l), s other parameters
w2,i,Γ2,i(1 ≤ i ≤ l) such that w2,i ∈ Cw,Γ2,i ∈ CΓ and ∥w2,i −w1,i∥2 ≤ ϵ/2, ∥Γ2,i − Γ1,i∥F ≤ ϵ2/(4β2). Thus, we
have

dist(V1, V2) ≤ β max
1≤i≤l

√
∥Γ1,i − Γ2,i∥F + max

1≤i≤l
∥w1,i −w2,i∥2 ≤ ϵ,

where the inequality holds due to (F.9). Therefore, the ϵ-covering number of optimistic function class Vh is bounded by
Nϵ ≤ |Cw|l · |CΓ|l and it implies

logNϵ ≤ dl log(1 + 4L/ϵ) + d2l log(1 + 8
√
dβ2/ϵ2),

where the first inequality holds due to (F.10). Thus, we finish the proof of Lemma F.6.
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With a similar argument as Lemma F.6, the covering number Nϵ of pessimistic value function class V̌h can be upper
bounded by the following lemma:

Lemma F.7. For pessimistic function class V̌h, we define the distance between two function V1 and V2 as V1, V2 ∈ V̌h as
dist(V1, V2) = maxs |V1(s) − V2(s)|. With respect to this distance function, the ϵ-covering number Nϵ of the function
class V̌h can be upper bounded by

logNϵ ≤ dl log(1 + 4L/ϵ) + d2l log(1 + 8
√
dβ2/ϵ2)

Proof of Lemma F.7. For any two function V1, V2 ∈ V̌h, according to the definition of function class V̌h, we have

V1(·) = max
a

max
1≤i≤l

max

(
0, rh(·, a) +w⊤

1,iϕ(·, a)− β
√
ϕ(·, a)⊤Γ1,iϕ(·, a)

)
,

V2(·) = max
a

max
1≤i≤l

max

(
0, rh(·, a) +w⊤

2,iϕ(·, a)− β
√
ϕ(·, a)⊤Γ2,iϕ(·, a)

)
,

where ∥w1,i∥2, ∥w2,i∥2 ≤ L and Γ1,i,Γ2,i ⪯ I. Since all of the functions max1≤i≤l, maxa and max(0, ·) are contraction
functions, we have

dist(V1, V2) = max
s∈S

∣∣V1(s)− V2(s)
∣∣

≤ max
1≤i≤l,s∈S,a∈A

∣∣∣w⊤
1,iϕ(s, a)− β

√
ϕ(s, a)⊤Γ1,iϕ(s, a)

−w⊤
2,iϕ(s, a) + β

√
ϕ(s, a)⊤Γ2,iϕ(s, a)

∣∣∣
≤ β max

1≤i≤l,s∈S,a∈A

∣∣∣√ϕ(s, a)⊤Γ1,iϕ(s, a)−
√
ϕ(s, a)⊤Γ2,iϕ(s, a)

∣∣∣
+ max

1≤i≤l,s∈S,a∈A

∣∣(w1,i −w2,i)
⊤ϕ(s, a)

∣∣
≤ β max

1≤i≤l,s∈S,a∈A

∣∣∣√ϕ(s, a)⊤(Γ1,i − Γ2,i)ϕ(s, a)
∣∣∣

+ max
1≤i≤l,s∈S,a∈A

∣∣(w1,i −w2,i)
⊤ϕ(s, a)

∣∣
≤ β max

1≤i≤l

√
∥Γ1,i − Γ2,i∥F + max

1≤i≤l
∥w1,i −w2,i∥2, (F.11)

where the first inequality holds due to the contraction property, the second inequality holds due to the fact that maxx |f(x)+
g(x)| ≤ maxx |f(x)| + maxx |g(x)|, the third inequality holds due to |

√
x − √y| ≥ |

√
x − √y| and the last inequality

holds due to the fact that ∥ϕ(s, a)∥2 ≤ 1. Now, we denote Cw as a ϵ/2-cover of the set
{
w ∈ Rd

∣∣∥w∥2 ≤ L
}

and CΓ as a
ϵ2/(4β2)-cover of the set {Γ ∈ Rd·d

∣∣∥Γ∥F ≤ √d} with respect to the Frobenius norms. Thus, according to Lemma F.5,
we have following property:

|Cw| ≤
(
1 + 4L/ϵ

)d
, |CΓ| ≤

(
1 + 8

√
dβ2/ϵ2

)d2

. (F.12)

By the definition of covering number, for any function V1 ∈ V̌ with parameters w1,i,Γ1,i(1 ≤ i ≤ l), s other parameters
w2,i,Γ2,i(1 ≤ i ≤ l) such that w2,i ∈ Cw,Γ2,i ∈ CΓ and ∥w2,i −w1,i∥2 ≤ ϵ/2, ∥Γ2,i − Γ1,i∥F ≤ ϵ2/(4β2). Thus, we
have

dist(V1, V2) ≤ β max
1≤i≤l

√
∥Γ1,i − Γ2,i∥F + max

1≤i≤l
∥w1,i −w2,i∥2 ≤ ϵ,

where the inequality holds due to (F.11). Therefore, the ϵ-covering number of function class V̌h is bounded by Nϵ ≤
|Cw|l · |CΓ|l and it implies

logNϵ ≤ dl log(1 + 4L/ϵ) + d2l log(1 + 8
√
dβ2/ϵ2),

where the first inequality holds due to (F.12). Thus, we finish the proof of Lemma F.7.
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In addition, according to the result in Lemma F.6, the covering number Nϵ of squared function class V2
h can be upper

bounded by:

Lemma F.8. For squared function class V2
h, we define the distance between two function V 2

1 and V 2
2 as V 2

1 , V
2
2 ∈ V2

h as
dist(V 2

1 , V
2
2 ) = maxs |V 2

1 (s) − V 2
2 (s)|. With respect to this distance function, the ϵ-covering number Nϵ of the function

class V2
h can be upper bounded by

logNϵ ≤ dl log(1 + 8HL/ϵ) + d2l log(1 + 32
√
dH2β2/ϵ2)

Proof of Lemma F.8. For any function V 2
1 , V

2
2 ∈ V2

h, the distance can be upper bounded by:

dist(V 2
1 , V

2
2 ) = max

s∈S

∣∣V 2
1 (s)− V 2

2 (s)
∣∣

= max
s∈S

∣∣V1(s)− V2(s)
∣∣ · ∣∣V1(s) + V2(s)

∣∣
≤ 2Hmax

s∈S

∣∣V1(s)− V2(s)
∣∣

= 2Hdist(V1, V2), (F.13)

where the inequality holds due to the fact that 0 ≤ V1(s), V2(s) ≤ H . Thus, any (ϵ/2H)-net for optimistic function class
Vh is also a (ϵ/2H)-net for the squared function class V2. According to Lemma F.6, the covering number of the squared
function class is upper bounded by:

logNϵ ≤ dl log(1 + 4L/ϵ) + d2l log(1 + 8
√
dβ2/ϵ2).

Thus, we finish the proof of Lemma F.8.

G Auxiliary Lemmas
Lemma G.1. For any stage h ∈ [h] in a linear MDP and any bounded-function V : S → [0, B], there always exists a
vector w ∈ Rd such that for all state-action pair (s, a) ∈ S ×A, we have

[PhV ](s, a) = w⊤ϕ(s, a), where ∥w∥2 ≤ B
√
d.

Proof of Lemma G.1. According to the definition of linear MDP (Assumption 3.2), we have

[PhV ](s, a) =

∫
Ph(s

′|s, a)V (s′)ds′

=

∫
ϕ(s, a)⊤V (s′)dθh(s

′)

= ϕ(s, a)⊤
∫

V (s′)dθh(s
′)

= ϕ(s, a)⊤w,

where we set w =
∫
V (s′)dθh(s

′). In addition, the norm of w is upper bounded by:∥∥∥ ∫ V (s′)dθh(s
′)
∥∥∥ ≤ max

s′
V (s′) ·

√
d = B

√
d.

Thus, we finish the proof of Lemma G.1.

Lemma G.2 (Azuma–Hoeffding inequality, Cesa-Bianchi and Lugosi 2006). Let {xi}ni=1 be a martingale difference se-
quence with respect to a filtration {Gi} satisfying |xi| ≤ M for some constant M , xi is Gi+1-measurable, E[xi|Gi] = 0.
Then for any 0 < δ < 1, with probability at least 1− δ, we have

n∑
i=1

xi ≤M
√

2n log(1/δ).
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Lemma G.3 (Lemma 11, Abbasi-Yadkori et al. 2011). Let {xk}Kk=1 be a sequence of vectors in Rd, matrix Σ0 a d × d

positive definite matrix and define Σk = Σ0 +
∑k

i=1 xix
⊤
i , then we have

k∑
i=1

min
{
1,x⊤

i Σ
−1
i−1xi

}
≤ 2 log

(
detΣk

detΣ0

)
.

In addition, if ∥xi∥2 ≤ L holds for all i ∈ [K], then

k∑
i=1

min
{
1,x⊤

i Σ
−1
i−1xi

}
≤ 2 log

(
detΣk

detΣ0

)
≤ 2
(
d log

(
(trace(Σ0) + kL2)/d

)
− log detΣ0

)
.

Lemma G.4 (Lemma 12, Abbasi-Yadkori et al. 2011). Suppose A,B ∈ Rd×d are two positive definite matrices satisfying
that A ⪰ B, then for any x ∈ Rd, ∥x∥A ≤ ∥x∥B ·

√
det(A)/ det(B).

Lemma G.5 (Confidence Ellipsoid, Theorem 2, Abbasi-Yadkori et al. 2011). Let {Gk}∞k=1 be a filtration, and {xk, ηk}k≥1

be a stochastic process such that xk ∈ Rd is Gk-measurable and ηk ∈ R is Gk+1-measurable. Let L, σ,Σ, ϵ > 0, µ∗ ∈ Rd.
For k ≥ 1, let yk = ⟨µ∗,xk⟩+ ηk and suppose that ηk,xk also satisfy

E[ηk|Gk] = 0, |ηk| ≤ R, ∥xk∥2 ≤ L. (G.1)

For k ≥ 1, let Zk = λI+
∑k

i=1 xix
⊤
i , bk =

∑k
i=1 yixi, µk = Z−1

k bk, and

βk = R

√
d log

(
1 + kL2/λ

δ

)
.

Then, for any 0 < δ < 1, we have with probability at least 1− δ that,

∀k ≥ 1,
∥∥∑k

i=1xiηi
∥∥
Z−1

k

≤ βk, ∥µk − µ∗∥Zk
≤ βk +

√
λ∥µ∗∥2.

Lemma G.6 (Lemma 4.4, Zhou and Gu 2022). Let {σk, β̂k}k≥1 be a sequence of non-negative numbers, α, γ > 0,
{ak}k≥1 ⊂ Rd and ∥ak∥2 ≤ A. Let {σ̄k}k≥1 and {Σ̂k}k≥1 be (recursively) defined as follows: Σ̂1 = λI,

∀k ≥ 1, σ̄k = max{σk, α, γ∥ak∥1/2Σ̂−1
k

}, Σ̂k+1 = Σ̂k + aka
⊤
k /σ̄

2
k.

Let ι = log(1 +KA2/(dλα2)). Then we have

K∑
k=1

min
{
1, ∥ak∥Σ̂−1

k

}
≤ 2dι+ 2γ2dι+ 2

√
dι

√√√√ K∑
k=1

(σ2
k + α2).
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