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Abstract

In this paper, we consider the problem of causal order discovery within the frame-
work of monotonic Structural Causal Models (SCMs), which have gained attention
for their potential to enable causal inference and causal discovery from observa-
tional data. While existing approaches either assume prior knowledge about the
causal order or use complex optimization techniques to impose sparsity in the
Jacobian of Triangular Monotonic Increasing maps, our work introduces a novel
sequential procedure that directly identifies the causal order by iteratively detecting
the root variable. This method eliminates the need for sparsity assumptions and the
associated optimization challenges, enabling the identification of a unique SCM
without the need for multiple independence tests to break the Markov equivalence
class. We demonstrate the effectiveness of our approach in sequentially finding the
root variable, comparing it to methods that maximize Jacobian sparsity.

1 Introduction

The problem of finding the causal relationships among a set of variables, or causal discovery, has been
extensively studied to address interventional and counterfactual queries (causal inference) [1]. These
two type of queries play a crucial role in biology [2, 3], economics [3], philosophy [4], and machine
learning [5]. Structural Causal Models (SCMs) are among the most well-known frameworks for
mathematically formulating the problem of causal discovery [6]. SCMs model causal relationships
by assigning each effect variable as a function of its causes and an unobserved noise. They enable the
answering of interventional and counterfactual queries, as well as the learning of causal relationships
from observational data.

In general, one needs interventional data to learn the true, unique SCMs. However, for special types
of SCMs the task of causal discovery is possible from just observational data. The identifiability of
SCMs has been investigated by proposing different functional assumptions between causes and effect.
These types of SCMs, including those with linear functions with non-Gaussian noise [7], nonlinear
functions with additive independent noise [8], and post-nonlinear models have been proven to be
identifiable from observational data [9].

Recent research has demonstrated that Monotonic SCMs can be identified using triangular monotonic
increasing (TMI) maps, provided the causal order of these maps is known [10]. Monotonic SCMs
are a class of SCMs characterized by nonlinear functions between causes and effects, where each
function is monotone with respect to unobserved noise. Given the true order of the maps, the Jacobian
of normalizing flows transformation as TMI maps [11] has been shown to effectively learn Monotonic
SCMs [12]. Although knowing the order is a restrictive assumption for causal discovery, normalizing
flows have been employed for causal inference [12]. Nevertheless, TMI maps can facilitate causal
discovery based on Monotonic SCMs without requiring the order [13]. It has been established that
the true order of TMI maps corresponds to an order where the Jacobian of TMI maps is maximally
sparse [13]. This insight leads to a two-step optimization procedure for estimating TMI maps with
sparse Jacobians at each iteration of searching over orders (permutations). This introduces significant
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complexity to the optimization efficiency of this procedure, with many local minima, as discussed in
[13], without proposing an efficient method to overcome this issue. However, this approach identifies
only the Markov Equivalent Class (MEC) of the true SCM, and multiple independence tests need to
be performed to identify the unique SCM.

In this paper, we propose a procedure for learning the causal order of Monotonic SCMs based on the
idea of sequentially identifying the root of the graph. For Monotonic SCMs, the Jacobian vector of
the map of the root variable with respect to all other variables contains all zero values. Instead of
enforcing sparsity on the Jacobian of the entire TMI maps, we determine the order by sequentially
discovering the roots using the zeroness of the Jacobian of the root map. This approach enables the
learning of the true order of the SCMs, making SCMs identifiable [10] and breaking the Markov
Equivalent Class (MEC), eliminating the need for independence tests. Additionally, this sequential
procedure, without any sparsity assumption, simplifies the complex two-step process of learning TMI
maps and orders. In summary, the main contributions of this paper are as follows:

• We introduce a novel sequential procedure for discovering causal order in Monotonic SCMs
by leveraging the Jacobian of TMI maps to identify the root variable, and to the best of
our knowledge, this represents the first efficient approach for causal discovery based on
Monotonic SCMs.

• We conduct several experiments to demonstrate the efficiency of our approach in finding
the correct order by sequentially discovering the root variable. Our method is compared to
approaches that aim to learn the order with the maximally sparse Jacobian.

2 Related Works

Nonlinear SCMs: The approach to causal discovery for nonlinear SCMs using the Jacobian began
with [14], but it has focused on additive nonlinear noise models rather than monotonic SCMs. In
contrast, the connection between nonlinear ICA and causal discovery for nonlinear SCMs has been
explored in [15, 16]. However, identifying the true unique graph through ICA requires counterfactual
data, which is a restrictive assumption compared to our proposed method that relies on observational
data. While the identifiability of monotonic SCMs was introduced through the concept of indetermi-
nacy in generative models [10], knowing the causal order is essential. Our paper, however, focuses
on determining this causal order for monotonic SCMs. Additionally, the assumption of bijectivity
for nonlinear SCMs has been demonstrated to be useful for counterfactual identifiability results in
Monotonic SCMs. A recent fixed-point approach for causal discovery based on nonlinear SCMs
involves amortized causal order discovery, but does not specifically address monotonic SCMs [17].

Causal order discovery: Many approaches in causal discovery focus on searching the space of
causal orders rather than the space of DAGs. These methods first identify the topological order of
the causal graph and then apply an edge pruning algorithm to obtain the final causal graph [18, 19].
RL-based [20] and Permutation based [21, 22] determine the causal order using a greedy approach,
which is not applicable for high-dimensional data due to its combinatorial nature.

Another set of order-based methods attempts to find the topological order based on discovering
permutation matrix [23, 24, 25]. While these methods make the problem of causal discovery fully
differentiable by proposing a procedure for learning the combinatorial permutation matrix, their
approaches suffer from searching in the space of permutation matrices, which is challenging to
optimize due to its combinatorial nature. Another line of research focuses on using the score or
gradient of probability distribution of data for causal order discovery [26, 27, 28, 29, 30]. In contrast
to score-bases methods that leverage the variance of the Hessian of the probability distribution for
selecting leaves of graph iteratively, our method uses Jacobian of TMI maps for finding the roots
iteratively. However, unlike the proposed method, none of the methods assume Monotonic SCMs.

TMI maps and Normalizing flows for causal discovery: Flow-based models have been employed
for causal discovery under the assumptions of location-scale noise models [31, 32]. Our method
differs from these two, as we assume the monotonic SCMs. Another group of methods develops the
theory of normalizing flows for causal inference and proposes an algorithm for causal discovery using
normalizing flows [12]. However, this algorithm assumes that the topological order of the graph is
given as input, whereas the focus of our paper is on discovering this causal order. TMI maps have
also been used to learn conditional independence through sparsity, but this application is limited to

2



undirected settings in graphical models, not for causal discovery [33, 34, 35]. While TMI maps have
been applied to causal discovery, their use has been confined to identifying the MEC equivalence
class based on conditional independencies derived from TMI maps [36, 13]. In contrast, our work
focuses on discovering the causal order of the graph, without relying on conditional independencies
or outputting the Markov equivalence class.

3 Background

3.1 Monotonic Structural Causal Models

Given a d-dimensional observational dataset X ∈ Rn×d, where X contains n i.i.d. samples. The
causal relationships among the set of variables are captured by a Directed Acyclic Graph (DAG) G,
which is represented by the adjacency matrix A ∈ {0, 1}d×d. The adjacency matrix A models the
causal relationship of each random variable xi and its parents Pa(xi). We can write the generative
process of xi in the form of Equation 1

xi = fi(PaG(xi), ui), i = 1, ..., d (1)

where fi is an arbitrary function, PaG(xi) denotes the parents of variable xi in DAG G, and the
exogenous noise ui is independent of PaG(xi). Also, the different noise variables ui are mutually
independent, which can be arbitrary independent noise distributions. For Monotonic SCMs, we
assume that each fi is monotone in ui [10, 12, 13].

3.2 Normalizing flows and TMI maps

Normalizing flows are a class of generative models that transform the probability distribution of a
random variable X ∈ Rd into the probability distribution of a random variable U ∈ Rd through a
series of invertible and differentiable transformations T (x) [37, 38]. A key aspect of this transforma-
tion process is the use of Triangular Monotonic Increasing (TMI) maps. A TMI map is a function
Rd → Rd that is both triangular—where each output component Ti depends on the x1:i components
of the input, as expressed by

T (x1, x2, . . . , xd) = (T1(x1), T2(x1, x2), . . . , Td(x1, x2, . . . , xd)) , (2)

and monotonic increasing w.r.t xi [39, 40], ensuring that the transformation is invertible. The
triangular structure of TMI maps allows for efficient computation of the inverse map and the Jacobian
determinant, which are essential for calculating the likelihood in normalizing flows.

4 Proposed Method

4.1 Problem definition

The objective of this paper is to determine the causal order of variables (Refer to Appendix A for the
formal definition of causal order). Although a DAG G may have multiple causal orderings, for any
given causal ordering π, we can construct a fully connected DAG Gπfull where, for every pair of nodes
π(i) and π(j), there is a directed edge π(i) → π(j) if and only if i < j [18]. We define the set of
true causal orderings Π as:

Π = {π|Gπfull is a super-graph of G} (3)

Under the assumption of a monotonic SCM (Section 3.1), the set Π is identifiable. Therefore, the
goal of causal order discovery is to find a π ∈ Π [41].

Assumptions: i) Each function fi in Equation 1 is continuous, invertible, and therefore monotonic;
ii) The graph is acyclic; iii) There are no hidden confounders, so the noise variables ui are mutually
independent (causal sufficiency).

4.2 Overview of the method

Our proposed method finds the causal order of the nodes by iteratively identifying the roots of the
graph, removing each root from the graph, and repeating this process until only one variable remains.
The topological order of the graph is then determined as the order in which roots were found.
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In the following sections, we detail our methodology for identifying the roots of the graph. This
process involves training one-dimensional conditional normalizing flows to model the functions fi
of a monotonic SCM, and using the Jacobian of each map (∇Ti(xi)) as a criterion for detecting the
graph’s root. Next, we introduce an algorithm for sequentially finding the roots to determine the
causal order. Once the causal order is discovered, one can either train a d-dimensional normalizing
flow to identify the adjacency matrix [12], or apply the CAM pruning method [19] to prune the edges.
This approach uniquely discovers the causal graph without relying on independence tests, unlike
other methods that depend on the faithfulness assumption and the sparsity of the Jacobian to identify
the Markov equivalence class and break it using independence tests [13].

4.3 Finding the root

We assume d independent multi-cause models, i.e. monotonic SCM, according to equation 4 as
follows:

xi = fi(X\{xi}, ui), i = 1, ..., d (4)

where X\{xi} are all variables except variable xi, and fi are monotonic in ui. Thus,
f−1
i (X\{xi}, xi) is also monotonic increasing w.r.t xi, and it is a monotonic increasing map. As a

result, for each f−1
i we train one-dimensional conditional normalizing flow Ti(xi, X\{xi}), where

each Ti transforms xi to ui conditioned on X\{xi} and each Ti is a monotone increasing map for
each xi.

Theorem 1 Suppose X ∈ Rn×d is generated based on a monotonic SCM according to Equation 1.
Then, for the multi-cause model 4,∇X\{xi}Ti(xi, X\{xi}) = 0̃, if and only if xi is a root in G.

Sketch of the Proof: The proof leverages Theorem 1 from [12], which establishes that, under the
assumption of a known causal order, the Jacobian of the transformation T is I−A, where A is a lower
triangular matrix. Therefore, for the root variable xi, the Jacobian ∇X\{xi}Ti(xi, X\{xi}) = 0̃ is
zero due to the structure of A. Refer to Appendix B for a complete proof of Theorem 1.

To practically implement the criterion in Theorem 1, we detect the root by finding the maximum
absolute value in each row of the Jacobian and selecting the variable corresponding to the row with
the smallest of these maximum values.

Root variable = arg min
i=1,...,d

max
∣∣∇X\{xi}Ti(xi, X\{xi})

∣∣ (5)

While other aggregation schemes, such as summation or Hotelling’s T-squared test [42], can be
applied here, we found the min-max criterion to be more stable in our experiments for detecting the
root.

4.4 Causal order discovery

Once the first root of the graph is detected, we remove the root variable from the current set of
variables and add it as the first element in the causal order. We then continue finding subsequent roots
until the entire topological order is determined. Refer to Appendix C for a detailed description of the
causal order discovery algorithm, as summarized in Algorithm 1.

5 Empirical evaluation

Synthetic data generation Following the previous works [13, 15, 16], the synthetic data was
generated by first constructing a DAG with d nodes, where edges were included with a probability of
2

d−1 . Edges were then randomly assigned to the nodes. Synthetic samples were drawn from a standard
Gaussian distribution and passed through an MLP with 8 layers. The MLP’s weights were masked
at each layer based on the generated lower-triangular adjacency matrix, ensuring that connections
aligned with the DAG structure. The weights were also randomly sampled and constrained to be
positive to enforce monotonicity, with nonlinearity introduced through the leaky ReLU activation
function. Additionally, [43] mentioned that the true topological order may be discovered by sorting
the marginal variance of each variable. To prevent this phenomenon, the dataset was standardized.
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Evaluation metric To assess the performance of causal order discovery, we employed the Count
Backward (CB) metric, introduced in [26]. CB counts the number of backward edges in the ground
truth graph with respect to the discovered topological order. This metric quantifies the number of
errors in edges of the form i→ j in the true ground truth graph G, where πi > πj in the discovered
topological order π. CB equals zero when the predicted topological order is correct, and it equals the
number of edges in the true graph G when the predicted topological order is the reverse of the true
order.

See Appendix D for a detailed explanation of the architectural design and hyperparameters of
Algorithm 1 for causal order discovery.

5.1 Sequential or Permutation based Causal order discovery?

Experimental design As a baseline, we implemented a procedure for causal order discovery in
monotonic SCMs based on learning the permutation matrix for variable ordering and enforcing spar-
sity of the Jacobian through l1 regularization on the Jacobian of the TMI transformation, following
the approach introduced in [13]. For learning the permutation matrix, we used the Gumbel-Sinkhorn
network with a temperature parameter t [44]. See Appendix E for a detailed explanation of the per-
mutation based algorithm. As discussed in [13], satisfying both sparsity and learning the permutation
is a complex optimization problem. This challenge is evident in setting the temperature parameter
(t) and the penalty coefficient of the regularization term (λ), as it leads to many local minima. In
our results, we compare the proposed method with the baseline using different values of t and λ to
demonstrate the superiority of our approach in terms of optimization efficiency, avoiding many local
minima.

Results The results for datasets with dimensions 4 and 10 are presented in Figure 1. Each column
in each plot corresponds to a box plot of the given metric over runs of the algorithm for 10 random
datasets. The results show that the proposed algorithm consistently outperforms the permutation-
based method in terms of Count Backward (CB). For both dimensions, different combinations
of temperature t and regularization λ yield varying results, highlighting the presence of multiple
local minima in this approach. In contrast, the proposed method demonstrates superior performance
without the need to fine-tune hyperparameters related to ordering and sparsity.

Figure 1: Performance comparison of sequential order discovery vs permutation-based order discovery

5.2 Ablation Analysis

As discussed in [12], we conduct an ablation analysis on the number of flows for both our sequential
method and the permutation-based method to balance model complexity and causal consistency. This
analysis helps us understand how increasing the number of normalizing flow layers affects causal
inconsistency, the likelihood of encountering shortcuts, and the risk of local minima.

Both methods were executed on 10 random synthetic datasets, and the mean and standard deviation
of the results from these 10 runs for the CB metric are shown in Figure 2. In the permutation-based
approach, the values of t and λ are set to 0.0001 and 0.5, respectively. The results indicate that
for dimension 10, increasing the number of flow layers results in a higher CB for the proposed
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method, but a lower CB for the permutation-based method. The results for the proposed method are
intuitive, as adding more layers of normalizing flow introduces causal inconsistency. However, for
the permutation-based method, the performance improves, likely due to the increased complexity of
the flow helping to overcome the challenges of the optimization process, as discussed in the previous
section.

A similar phenomenon occurred for dimension 4, where increasing the number of flow layers from 1
to 2 improved performance, but the reverse effect was observed with 3 flow layers. This suggests a
trade-off between model complexity and causal consistency.

Figure 2: Ablation analysis on the number of flow layers and hidden layers of MLP.

In addition to the above results, detailed evaluations of the proposed method against other causal
order discovery approaches, such as SCORE [26] and Direct-Lingam [45], on synthetic and real
world datasets are available in Appendix F.

6 Discussion

Limitations While our method addresses several challenges in causal order discovery for Monotonic
SCMs, it assumes that the underlying causal relationships adhere strictly to the monotonicity condition.
This assumption may not hold in more complex or real-world scenarios where the relationships
between variables are non-monotonic or involve interactions that violate the monotonicity condition.
Additionally, our sequential root-identification process, although efficient, may be susceptible to
error propagation, especially in high-dimensional settings or when the data is noisy, which could
lead to incorrect causal orderings. Additionally, the min-max criterion may not be suitable for
high-dimensional settings, as it can overlook variables whose Jacobian values are close to zero.
This issue likely arises from the difficulty of accurately estimating the Jacobian using a single-layer
normalizing flow. Higher-dimensional cases require more complex functions, but these often struggle
with numerous local minima when estimating the Jacobian, leading to large Jacobian values even for
the root variable.

Future Works As the number of variables increases, the computational complexity of iteratively
identifying the root variable may become a limiting factor. Future research could focus on developing
scalable algorithms to improve efficiency in high-dimensional settings. Another key direction for
future work involves increasing the number of normalizing flow layers without compromising causal
consistency or getting trapped in local minima. Using more complex normalizing flows can lead to
better Jacobian estimation for accurately detecting the root of the graph. Additionally, alternative
methods for estimating triangular maps could help overcome the challenges of computing the Jacobian
for root variable identification.

Moreover, exploring the benefits of the proposed causal order discovery approach for the overall
problem of causal graph discovery would be valuable. One could incorporate different pruning
algorithms, such as CAM [19], or leverage identifiability results of monotonic SCMs to extract
the adjacency matrix of causal relationships, given the causal graph order, by utilizing a single
d-dimensional normalizing flow [12].
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Several studies address the challenges associated with optimization-based algorithms for causal
discovery, which can be applied to causal discovery based on monotonic SCMs. For instance, the
analysis of sparsity penalties and thresholding discussed in [46] provides insights into overcoming the
limitations of permutation-based methods. Additionally, ideas such as topological swaps introduced
in [47] can help tackle the difficulties faced in order-based causal discovery. Furthermore, the notion
of global optimality proposed in [48] offers strategies for avoiding local minima in causal discovery
methods based on monotonic SCMs.

7 Conclusion

In this paper, we introduced a novel sequential procedure for causal order discovery within Monotonic
Structural Causal Models (SCMs). Unlike existing methods that rely on complex optimization
techniques and sparsity assumptions, our approach iteratively identifies the root variable by leveraging
the zeroness of the Jacobian of Triangular Monotonic Increasing (TMI) maps. This method not
only simplifies the causal discovery process but also ensures the identification of a unique SCM
without requiring multiple independence tests to break the Markov equivalence class. We conducted
several experiments comparing our method to those that maximize Jacobian sparsity, demonstrating
its efficiency in correctly identifying the causal order.
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Appendix

A Causal order

For a DAG G, a permutation π : {1, ..., d} → {1, ..., d} is a causal topological order if:

π(i) < π(j) if j ∈ DEG
i (6)

where DEG
i denotes the set of descendents of variable xi in graph G [1]. Our proposed algorithm discovers

the causal relationships between variables by finding the causal order of variables. We highlight that the causal
ordering of a given graph is not necessarily unique [18].

B Proof of Theorem 1

Theorem 2 Suppose X ∈ Rn×d is generated based on a monotonic SCM according to Equation 1. Then, for
the multi-cause model 4, ∇X\{xi}Ti(xi, X\{xi}) = 0̃, if and only if xi is a root in G.

Proof; Based on Theorem 1 in [12], if the causal order is known, the exogenous variables of the flow differ
from the true ones by an invertible component-wise transformation of the variables u. Thus, ∇xT (x) = I −A,
where A is a lower triangular matrix. Consequently, the first row corresponds to the root variable, and all values
∇T (X)1,2:d are zero. However, since the order is unknown, we train each Ti map using a one-dimensional
conditional normalizing flow. Instead of conditioning on the preceding variables x1:i, we condition on all
X\{xi}. Because A is lower triangular, ∇X\{xi}Ti(xi, X\{xi}) = 0 for the root variable.

Motivating Example Suppose we have a monotonic SCM based on the graph x1 → x2 → x3, where
x1 = f1(u1), x2 = f2(x1, u2), and x3 = f3(x2, u3). Then, we have u1 = f−1

1 (x1), u2 = f−1
2 (x1, x2), and

u3 = f−1
3 (x2, x3). Since, ∇xf

−1(x) = ∇xT (x) = I −A, it follows that:

∇xT (x) =

1 0 0
∗ 1 0
0 ∗ 1

 (7)

Thus, the first row corresponds to the root variable, and ∇x2,x3f
−1
1 (x1, x2, x3) =

[
0 0

]
while,

∇x1,x3f
−1
2 (x2, x1, x3) ̸= 0̃ and ∇x1,x2f

−1
3 (x3, x1, x2) ̸= 0̃.

C Causal order discovery algorithm

The algorithm for causal discovery based on Monotonic SCMs works by iteratively identifying the root variable
in a dataset. Initially, the set of nodes is all variables, and the order π is empty. For each iteration, the algorithm
estimates a multi-cause model for each variable, treating it as the effect and the others as its potential causes,
using a one-dimensional conditional normalizing flow. The maximum Jacobian value of each variable is
computed, and the variable with the smallest maximum Jacobian value is identified as the root. This variable
is then added to the causal order π, and removed from the set of nodes. This process repeats until only one
node remains, which is appended to complete the causal order. Algorithm 1 shows the overall procedure of the
proposed method.

D Proposed Algorithm Detail

Architectural Design For each 1-dimensional normalizing flow transformation Ti(xi) , we employed the
neural spline flow [49], using a stack of 1 flows with 1 hidden block and 128 hidden channels. We also
conditioned each Ti(xi) on X\{xi} using an MLP comprising 1 hidden layer, each with a size of 128.

The configuration details of the hyperparameters used in our proposed method are summarized in Table 1.

E Permutation based Algorithm detail

We implement a baseline procedure for causal order discovery in Monotonic SCMs, leveraging a permutation
matrix to reorder the variables while regularizing the Jacobian matrix to encourage sparsity. The approach draws
upon prior work by [13]. The algorithm follows a two-step process: (1) learning a permutation matrix via the
Gumbel-Sinkhorn network, and (2) enforcing sparsity on the Jacobian of the Triangular Monotonic Increasing
(TMI) transformation via l1-regularization.
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Algorithm 1 Causal discovery based on Monotonic SCM.
1: input. Data Matrix X ∈ Rn×d.
2: output. Causal order π.
3: initialize. π = ∅, nodes = {1, ..., d}
4: repeat
5: for i ∈ nodes do
6: estimate multi-cause model 4 with causes X\xi, and effect xi using one-dimensional
7: conditional normalizing flow.
8: maxJac(i) = max

∣∣∇X\{xi}Ti(xi, X\{xi})
∣∣

9: end for
10: l = argmini maxJac(i)
11: append l to π
12: nodes← nodes− {l}
13: until |nodes| = 1
14: append nodes(1) to π.

Table 1: Hyperparameter Configuration for the Proposed Method

Hyperparameter Value

Learning Rate 0.001
Batch Size 64
Number of Epochs 10
MLP Dropout Rate 0.1
MLP Hidden Layers 1
MLP Units per Layer 128
Activation Function Leaky-ReLU
Number of flow layers 1
Number of blocks in flow 1
Number of hidden channel in flow 128
Flow base distribution Standard Gaussian
Optimization Algorithm Adam (weight decay=0, betas=(0.9. 0.99))

Given an input data matrix X ∈ Rn×d, our objective is to discover the causal order of variables by learning a
permutation matrix P , which reorders X . The Gumbel-Sinkhorn network is used to generate a soft permutation
matrix, which is a continuous relaxation of a discrete permutation matrix. This relaxation enables gradient-based
optimization during training. The normalizing flow T (x.PT ) is then trained over the permuted variables, aiming
to learn a transformation that captures the causal structure of the data.

The loss function consists of two terms: (1) the log-likelihood of the normalizing flow, and (2) an l1-norm
regularization on the Jacobian of the TMI transformation. This regularization enforces sparsity, encouraging the
Jacobian to reflect the triangular structure characteristic of SCMs. The loss function is formulated as follows:

L(θ, β; t, λ) := log p(T−1
θ (u.Pβ(t)

T )) + λ||∇Tθ(x.Pβ(t)
T )||1 (8)

where θ represents the parameters of the normalizing flow, β the parameter of Gumbel-Sinkhorn network, ||∇T ||1
is the l1-norm applied to the Jacobian matrix to enforce sparsity, weighted by the coefficient λ, and Pβ(t) refers
to the permutation matrix learned via the Gumbel-Sinkhorn network with temperature hyperparameter t.

Upon completion of training, the soft permutation matrix can still contain small, non-zero elements that prevent
it from being a valid permutation. To address this, we apply the Hungarian algorithm [50] to convert the soft
matrix into a hard permutation matrix, ensuring a valid reordering of variables. This final permutation matrix
provides the estimated causal order. Algorithm 2 shows the overall procedure of the permutation-based method.
To ensure a fair comparison, all shared hyperparameters with the proposed method were set identical to those
listed in Table 1.

F Comparison of Causal Order Discovery

In this section, we also benchmarked our method against other causal order discovery approaches based on
different types of SCMs, such as SCORE [26] and RESIT [18], which assume nonlinear additive noise, and
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Algorithm 2 Causal Order Discovery in Monotonic SCMs via Permutation Matrix Learning and
Jacobian Sparsity

1: Input: Data matrix X ∈ Rn×d, temperature parameter t, sparsity coefficient λ
2: Output: Permutation matrix P (causal order)
3: Initialize soft permutation matrix Pβ(t) using the Gumbel-Sinkhorn network with temperature t
4: repeat
5: Train the normalizing flow Tθ(x.Pβ(t)

⊤)
6: Compute the Jacobian∇Tθ(x)
7: Compute the loss function:

L(θ, β; t, λ) := log p(T−1
θ (u.Pβ(t)

⊤)) + λ||∇Tθ(x.Pβ(t)
⊤)||1

8: Update the normalizing flow parameters θ and the permutation matrix parameters β using
backpropagation

9: until convergence of Pβ(t) and Tθ

10: Apply the Hungarian algorithm to convert the soft permutation matrix Pβ(t) into a hard permuta-
tion matrix

11: return Hard permutation matrix P (causal order)

Direct-Lingam [45], which assumes linear SCM. The comparisons were conducted using synthetic datasets
containing 1000 samples across varying dimensions, including 2, 3, 4, 5, and 10. For each dimensional setting,
we generated ten random datasets to ensure robustness in the evaluation. The experimental results for synthetic
datasets are presented in Table 2.

For the assessment of the proposed method on real-world data, we employed dataset of protein-protein interaction
networks in the human body (SACHS) [51]. This dataset includes ground truth graphs for assessment. The
SACHS dataset comprises measurements of proteins in the human immune system, consisting of d = 11 nodes
and composed of n = 853 data samples. This dataset’s graph contains 17 edges. Additionally, the order
of variables has been randomly shuffled to prevent the methods from depending on the variable order. The
experimental results for SACHS dataset are presented in Table 3.

Our method achieves comparable performance to other causal order discovery approaches across various
synthetic datasets, as shown in Table 2, where none of the methods demonstrate a statistically significant
advantage. However, for the real-world SACHS dataset, our approach outperforms the alternatives, as seen in
Table 3. One potential explanation for the challenges observed in synthetic datasets is related to difficulties in
accurately estimating the Jacobian. Specifically, in cases where the root variable’s Jacobian value is expected to
be zero, errors in this estimation may arise, leading to high Jacobian values, even for the root variable. This
issue could stem from limitations in using a single-layer normalizing flow, which may struggle to capture the
underlying complexity of the data. Moving forward, increasing the complexity of the normalizing flow, or
exploring alternative approaches to estimating triangular maps, could improve Jacobian estimation and lead to
more accurate root detection.

Table 2: Results of different methods on various Synthetic datasets (CB metric)

Method d=2 d=3 d=4 d=5 d=10

Direct-Lingam [45] 0.5 ± 0.53 1.0 ± 0.82 1.2 ± 0.92 1.2 ± 0.79 3.0 ± 2.0
RESIT [18] 0.2 ± 0.42 0.5 ± 0.7 0.8 ± 0.79 1.1 ± 1.1 2.7 ± 2.26
SCORE [26] 0.3 ± 0.48 0.8 ± 0.92 1.3 ± 1.49 1.6 ± 1.17 3.8 ± 1.55
Proposed 0.2 ± 0.42 1.7 ± 1.06 1.1 ± 0.74 2.0 ± 1.63 3.8 ± 1.75

Table 3: Results on Real-world dataset SACHS (CB metric)

Method SACHS [51]

Direct-Lingam [45] 8.0
RESIT [18] 8.0
SCORE [26] 13.0
Proposed 7.0
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