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Abstract

Understanding cell interactions and subpopulation distribution is crucial for pathologists
to support their diagnoses. This cell information is traditionally extracted from segmenta-
tion methods, which poses significant computational challenges on processing Whole Slide
Images (WSIs) due to their giga-size nature. Nonetheless, the clinically relevant tasks are
nuclei detection and classification rather than segmentation. In this manuscript, we un-
dertake a comprehensive exploration of the applicability of detection transformers for cell
detection and classification (Cell-DETR). Not only do we demonstrate the effectiveness of
the method by achieving state-of-the-art performance on well-established benchmarks, but
we also develop a pipeline to tackle these tasks on WSIs at scale to enable the development
of downstream applications. We show its efficiency and feasibility by reporting a ×3.4 faster
inference time on a dataset featuring large WSIs. By addressing the challenges associated
with large-scale cell detection, our work contributes valuable insights that paves the way
for the development of scalable diagnosis pipelines based on cell-level information.
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1. Introduction

The integration of deep learning methods into digital pathology image analysis is reshaping
medical practices, offering unprecedented opportunities for enhanced diagnostics. These
techniques span from analyzing individual cells to examining Whole Slide Images (WSIs).
Pathologists often rely on the composition of diverse cell subtypes, and other biological
entities such as glands, in order to support their diagnoses, making the precise identifica-
tion of cell nuclei imperative for effective computer-aided diagnosis applications. Indeed,
applications leveraging cell information are gaining considerable attention (Pati et al., 2022;
Jaume et al., 2021).

Cell segmentation and classification represent well-explored tasks in digital pathology
(Graham et al., 2019; Hörst et al., 2023), supported by various datasets for related research
(Gamper et al., 2020; Graham et al., 2019). However, the truly clinically relevant objec-
tives lie in cell instance detection and classification, prioritizing these over segmentation.
The inclination towards segmentation as a surrogate for detection arises from the inher-
ent challenges posed by the size, morphology, and density of cell nuclei. Given their small
size and frequent overlap, direct detection becomes a complex task. Additionally, accurate
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classification often relies on subtle image details, necessitating high resolutions for robust
outcomes. Segmentation methods excel in capturing those small details, contributing to
improved results.

Despite the valuable boost in accuracy, this improvement comes at a cost—significant
computational demands during both training and inference. The dense output format of
segmentation masks amplifies memory and computational resource requirements for calcu-
lating pixel-level predictions and training loss function. Moreover, it also involves expensive
post-processing steps during inference to output the final predictions. The size of WSIs,
often reaching gigapixel dimensions (e.g. 100, 000 × 100, 000 = 1010 pixels), adds an ex-
tra layer of complexity to implementing a computer-aided diagnosis pipeline, requiring the
partition into smaller patches and subsequent processing. This challenge is particularly
pronounced for segmentation methods, given their dense pixel-level output maps, making
them impractical for real-world applications on WSIs. Instead, their application is often
limited to smaller tiles, hindering the development of computer-aided diagnoses that require
comprehensive cell information.

In this study, we delve into the challenges of cell nuclei detection and classification,
treating it as a traditional object detection task. We explore the opportunities and chal-
lenges associated with this approach, presenting novel insights and methodologies geared
towards enhancing the efficiency and accuracy of this critical facet of digital pathology
image analysis and extending their application to WSIs.

To develop large-scale methods for detecting and classifying cell nuclei, we utilize the
DEtection TRansformer (DETR) model (Carion et al., 2020; Zhu et al., 2020). Although
earlier studies have explored DETRs for cell detection and classification in digital pathol-
ogy (Obeid et al., 2022; Huang et al., 2023), we prioritize practicality and robustness of cell
detection transformers (Cell-DETR) rather than focusing on designing sophisticated auxil-
iary architectures as in prior methodologies. Our key objective is to provide the necessary
tools to integrate Cell-DETR into daily clinical workflows by firstly obtaining more reliable,
robust models and secondly addressing the challenges that arise when applying them to real
world, large-scale scenarios beyond the traditional patch-based datasets.

Our contributions are twofold: firstly, to enhance the reliability of Cell-DETR, we ex-
plore different design components of DETR models and achieve state-of-the-art performance
in both cell detection and classification tasks on popular benchmarks. Subsequently, we de-
rive a specialized pipeline for efficient inference on WSIs, achieving a remarkable ×3.4 speed-
up on inference time compared to other methods. This enhancement significantly expedites
the application of Cell-DETR models to WSIs, making them well-suited for large-scale
digital pathology tasks with cell-level information.

This manuscript is structured as follows: In Section 2, we provide the essential back-
ground information and related work to our topic. Section 3 outlines our methodologies, in-
cluding details on datasets, augmentations, architecture and the inference pipeline designed
for WSIs. The evaluation of our models for cell detection and classification, alongside the
measurement of inference time on WSIs, is presented in Section 4. Finally, our conclusions
are summarized in Section 5.
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2. Background and related work

2.1. Cell segmentation and classification

HoVer-Net (Graham et al., 2019) introduces an innovative U-Net-like architecture featuring
three decoder branches: nuclear pixel (NP), horizontal-vertical (HV), and nuclear classi-
fication (NC). These branches play distinct roles in predicting the probability of a pixel
belonging to a nucleus, the horizontal and vertical distances to the nucleus’s center of mass,
and the pixel label, respectively. A postprocessing step is required to merge the outputs of
the NP and HV branches to generate the final segmentation mask.

A recent extension of this work, CellViT (Hörst et al., 2023), takes a step further by
replacing the convolutional encoder with a Vision Transformer (ViT) (Dosovitskiy et al.,
2021), achieving state-of-the-art performance in cell detection and classification. This tran-
sition to a transformer-based architecture showcases the adaptability and effectiveness of
transformer models in the domain of medical image analysis (You et al., 2022).

2.2. Object detection with Transformers

The Detection Transformer (DETR) (Carion et al., 2020) presents an end-to-end approach
to object detection, utilizing transformers and bipartite matching to eliminate the necessity
for manual post-processing steps. The model consists of a backbone that extracts hidden
features from an input image, a transformer encoder that enhances these features through
self-attention, and a transformer decoder that given the encoded image information outputs
bounding box predictions for a set of input queries, which are learnable parameters of the
model. The model undergoes training with a set-based bipartite matching loss to ensure
the uniqueness of predictions.

DETR exhibits certain limitations, particularly in its ability to detect small objects due
to the global nature of self-attention. To address this constraints, Deformable-DETR (Zhu
et al., 2020) incorporates a multi-scale deformable attention operation that confines the
attention of each token to a specific subset of points. The determination of these points
is achieved through the prediction of multi-scale offsets from the central token position to
other tokens across all scales. Importantly, this offset prediction is co-trained with other
components of the model, providing a comprehensive approach to enhancing the model’s
performance in detecting smaller objects. This approach also brings additional advantages,
including multi-scale representations and faster computation.

2.3. Cell detection and classification with transformers

The exploration of cell detection and classification using transformers has been a subject
of previous research, as evident in related works such as NucDETR (Obeid et al., 2022)
and ACFormer (Huang et al., 2023). NucDETR (Obeid et al., 2022) stands out as the
pioneering work that introduced the application of DETR for cell detection. However, it
did not delve into the task of nuclei classification.

On the other hand, ACFormer (Huang et al., 2023) presents a sophisticated mechanism
featuring an adaptive transformer. This transformer proposes affine transformations for a
given input image to be used as data augmentation. The method incorporates a local-global
network architecture and a self-distillation mechanism, where the local network receives the
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affine-transformed images as input whereas the global network is fed with the original image.
The outputs of the global network serve as target for the local network. While intriguing,
the proposed transformations and the advantages of its local-global strategy remain unclear,
suggesting at an excessively complex approach that may compromise the practicality and
reliability of the model.

3. Methods

3.1. Datasets

PanNuke The PanNuke dataset (Gamper et al., 2020) comprises 7,904 patches, each sized
256×256, extracted from WSIs in The Cancer Genome Atlas (TCGA) dataset, representing
19 diverse tissue types at a magnification of 40x. Within this dataset, there are 189,744
labeled nuclei categorized into five clinically significant classes: neoplastic, inflammatory,
connective, necrosis, and epithelial.

CoNSeP The CoNSeP dataset (Graham et al., 2019) includes 41 1000 × 1000px tiles
extracted from H&E-stained colorectal adenocarcinoma WSIs, each with at a 40x magnifi-
cation. Notably diverse, the dataset encompasses various regions such as stromal, glandular,
muscular, collagen, adipose, and tumorous areas. It also features a range of nuclei derived
from different cell types, which are grouped into inflammatory, epithelial, spindle-shaped
and miscellaneous (Graham et al., 2019).

Camelyon16 The Camelyon16 dataset (Bejnordi et al., 2017) consists of 400 H&E stained
Whole Slide Images (WSIs) of lymph node sections scanned at ×40 magnification. Each
WSI is accompanied by annotations highlighting tumor and normal regions. With average
dimensions of 189, 832 × 95, 590px, approximately 29% of the slides represent tissue area.
Specifically, an average of 1384 tissue tiles, each sized 2048 × 2048 pixels, is extracted per
slide. Despite lacking cell-level annotations for quantifying detection and classification per-
formance, this dataset remains pivotal in evaluating the efficacy of our models. Leveraging
the Camelyon16 dataset allows us to assess the practicality of Cell-DETR on a scale that
closely mimics the challenges encountered in clinical settings, demonstrating their scalability
and effectiveness in handling large-scale pathology images.

3.2. Cell-DETR

Architecture The architecture for Cell-DETR comprises a hierarchical backbone that
generates a four level feature pyramid for a given input image, followed by a multi-scale
deformable transformer (Zhu et al., 2020), consisting of 6 encoder and 6 decoder layers. The
encoder enhances the input features through multi-scale deformable self-attention, while the
decoder produces predictions for bounding boxes and labels based on a set of input object
queries. The initial states of these queries are foreground proposals generated from the
output of the encoder (Zhu et al., 2020). Both the backbone and the transformer are pre-
trained on the COCO dataset (Lin et al., 2014). In Section 4.1, we conduct experiments
using both ResNet-50 (He et al., 2016) and Swin Transformer (Liu et al., 2021) backbones.
Additionally, in the Appendix C.1 we explore the impact of the output resolution and the
number of levels in the extracted image features.
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Figure 1: Cell-DETR pipeline for efficient cell detection on WSIs.
(1) Preprocessing: The tissue area of the slide is identified, and the slide is segmented into tiles of
size 2048× 2048px. (2) Inference: Each tile undergoes the window detection procedure.The tiles

are fed into the model, divided into overlapping windows, processed in parallel, and their
predictions are merged. (3) Post-processing: The outputs from all tiles are aggregated to derive

the cell nuclei for the WSI. The figure depicts a heatmap illustrating the cell density.

Data augmentation Data augmentation plays a crucial role in the domain of digital
pathology. Images exhibit substantial diversity due to various factors, including differences
in staining protocols, elapsed time since slide staining before digitization, and the diverse
tissue types. Acknowledging and addressing these variations through data augmentation is
key for obtaining robust performance across different conditions. Drawing from the obser-
vations in (Tellez et al., 2018), our data augmentation pipeline includes not only traditional
rotation, flipping, and blurring augmentations but also a combination of elastic transfor-
mation and stain augmentations. The latter involves transforming the RGB image into the
Hematoxylin-Eosin-DAB space (HED), randomly corrupting the channels separately, and
then transforming the image back to the RGB space.

Loss function We utilize the standard loss function recommended for DETRs in natural
images, which includes a combination of bounding box L1 regression, generalized intersec-
tion over union and focal loss classification. Opposed to ACFormer (Huang et al., 2023),
which limits its prediction to the nuclei centroids as it is the primary interest in cell detec-
tion, we have observed a slight performance decline when excluding the boxes’ width and
height from the loss computation. Our hypothesis is that incorporating feedback on the
boxes size during training aids the network in disambiguating detections and predicting the
class label. The focal loss is used for classification rather than the standard cross-entropy
loss to account for the class imbalance between cell nuclei. The corresponding hyperpa-
rameters and the difference in performance when excluding the bounding box size from the
target can be found in the Appendinx A and the Appendix C.2, respectively.

3.3. Large-scale cell detection

Large-scale cell detection and classification on WSIs poses a formidable challenge owing to
their gigapixel size. Traditional segmentation approaches might face significant hurdles in
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terms of computational and memory resources, making them less practical for addressing
this task. In this section, we explore an alternative approach by Cell-DETR for processing
on larger tiles. By adopting a strategic window detection procedure, we facilitate the ap-
plication of Cell-DETR on larger images, enabling efficient and scalable inference on WSIs.
This approach provides a practical solution for large-scale cell detection and classification
tasks overcoming the massive scale of histopathological images.

3.3.1. Dealing with large image tiles

A significant constraint of DETR-like models is the necessity for the number of queries
in the decoder to surpass the potential objects present in an image. In regions character-
ized by a high cell density, a 256 × 256px image patch may contain up to 300 cell nuclei.
Consequently, increasing the input image size to larger tiles, such as 1024 × 1024px or
2048× 2048px, becomes non-trivial. The number of cell nuclei, and therefore the required
input DETR queries, can substantially increase, potentially resulting in prohibitive compu-
tational demands.

To address this challenge when working with larger image tiles, we adopt a window
detection procedure. This involves training the model using randomly selected image crops
of the desired size extracted from the original images. During inference, an overlapped
sliding window approach is adopted, which is executed in-device to minimize GPU-CPU
communication and enhance inference speed. Concretely, the model splits the original
image into overlapped windows, processes them in parallel and finally combines the outputs
to derive the final results. This strategy allows Cell-DETR to overcome the limitations
associated with regions containing a high density of cell nuclei and large images, ensuring
the model’s adaptability and efficiency in real-world applications.

3.3.2. Inference on WSIs

Scalability of cell detection and classification on WSIs is central to our approach, driven by
the giga-size of these images. We have devised a robust pipeline tailored for inference on
WSIs leveraging the window detection approach. Specifically, the tissue regions of the slide
are subdivided into 2048× 2048 tiles, and these tiles undergo processing using the window
detection procedure. Subsequently, all predictions are aggregated to obtain the final results.
This approach is more suitable than directly partitioning the image into smaller patches
that could directly be fed into the model. The in-device execution of the window detection
ensures an efficient and streamlined process, making our pipeline adept at handling the
distinctive challenges associated with the substantial scale of WSIs.

Table 1: Detection and classification metrics on PanNuke dataset.

Method
Detection Neoplastic Epithelial Inflammatory Connective Necrosis

Pdet Rdet Fdet Pneo Rneo Fneo Pepi Repi Fepi Pinf Rinf Finf Pcon Rcon Fcon Pnec Rnec Fnec

DIST (Naylor et al., 2018) 0.74 0.71 0.73 0.49 0.55 0.50 0.38 0.33 0.35 0.42 0.45 0.42 0.42 0.37 0.39 0.00 0.00 0.00
Mask-RCNN (He et al., 2017) 0.76 0.68 0.72 0.55 0.63 0.59 0.52 0.52 0.52 0.46 0.54 0.50 0.42 0.43 0.42 0.17 0.30 0.22
Micro-Net (Raza et al., 2019) 0.78 0.82 0.80 0.59 0.66 0.62 0.63 0.54 0.58 0.59 0.46 0.52 0.40 0.45 0.47 0.23 0.17 0.19
HoVerNet (Graham et al., 2019) 0.82 0.79 0.80 0.58 0.67 0.62 0.54 0.60 0.56 0.56 0.51 0.54 0.52 0.47 0.49 0.28 0.35 0.31
CellViT (Hörst et al., 2023) 0.83 0.82 0.82 0.69 0.70 0.69 0.68 0.71 0.70 0.59 0.58 0.58 0.53 0.51 0.52 0.39 0.35 0.37

Cell-DETR R50 0.85 0.78 0.81 0.72 0.67 0.69 0.71 0.67 0.69 0.59 0.60 0.59 0.57 0.49 0.53 0.54 0.32 0.40
Cell-DETR SwinL 0.85 0.80 0.82 0.74 0.70 0.72 0.74 0.74 0.74 0.60 0.63 0.61 0.60 0.52 0.56 0.56 0.41 0.47

Other metrics are extracted from (Hörst et al., 2023).
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Table 2: Detection and classification F-Score on CoNSeP dataset.

Method Detection Epithelial Inflammatory Spindle-shaped Miscellaneous

DIST (Naylor et al., 2018) 0.71 0.62 0.53 0.51 0.00
Micro-Net (Raza et al., 2019) 0.74 0.62 0.59 0.53 0.12
Mask-RCNN (He et al., 2017) 0.69 0.60 0.59 0.52 0.10
HoVer-Net (Graham et al., 2019) 0.75 0.64 0.63 0.57 0.43
ACFormer (Huang et al., 2023) 0.74 0.64 0.64 - -

Cell-DETR R50 0.74 0.61 0.63 0.51 0.21
Cell-DETR SwinL 0.74 0.65 0.67 0.56 0.40
Cell-DETR SwinL* 0.77 0.70 0.70 0.61 0.55

*Model pre-trained on the first fold of PanNuKe dataset.

4. Results

In this section, we conduct an extensive set of experiments and present the results to provide
insights into the capabilities of Cell-DETR. We assess the performance in terms of F-Score
and inference time in Section 4.1 and Section 4.2, respectively.

4.1. Detection and classification performance

Table 1 presents the detection and classification metrics on the PanNuke dataset for Cell-
DETR using ResNet-50 and Swin Transformer (large) as backbones, in comparison to other
state-of-the-art segmentation and detection methods. The provided numerical values in the
table detail the averaged precision (P), recall (R), and F1-score (F1) for detection and nuclei
types across the three standard splits publicly available for this dataset. A more detailed
description of the metrics can be found in Appendix B. Notably, our results align with
the current state-of-the-art in cell detection, and we achieve state-of-the-art performance in
cell classification. The ResNet-50 backbone exhibits slightly superior classification perfor-
mance, while the Swin-L backbone surpasses classification metrics by a significant margin.
Although including the Swin-L involves an increase in the parameter complexity, these
results showcase the potential of transformers for medical image analysis.

Given that the CoNSeP dataset consists of tiles sized at 1000×1000 pixels, the potential
number of nuclei in a single image is exceptionally high. We have employed the window
detection procedure outlined in Section 3.3 for both training and evaluating the Cell-DETR
on this dataset. For training, random crops of 250× 250px are randomly samples. During
the valuation phase, the tiles are processed with the window detection, with a window
size of 250px and a stride of 187. The resulting predictions are then combined, retaining
only those detections within the central crop of 187x187 pixels for each window. The
detection and classification F-Score results are presented in Table 2, showcasing state-of-
the-art performance. These findings align with the results presented in Table 1 and validate
the effectiveness of the window detection approach in handling scenarios with high nucleus
abundance.

4.2. Time performance

To evaluate the scalability and feasibility of Cell-DETR models, along with the window
detection procedure, we conduct experiments on a subset of 111 slides from the Camelyon16
dataset and compare the time performance with HoVer-Net. The inference process can be
divided into three steps: (i) model loading and slide pre-processing, (ii) model inference and
(iii) post-processing. In the pre-processing step, which is shared between methods, tissue
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Figure 2: Model inference and post-processing times as function of the slide area and the
number of nuclei.

Cell-DETR is ×3.4 faster than HoVer-Net for inference, leading to significant differences when the
area of the slide is large. Additionally, in contrast to HoVer-Net, the post-processing time of

Cell-DETR is constant with respect to the number of detected nuclei.

regions are segmented from the thumbnail of the original WSIs and tiles of size 2048×2048
are extracted, ensuring that only tissue areas are processed by the model. An average of
1, 300 tiles are extracted for slide. For model inference, we employ the window detection
approach for Cell-DETR whereas we follow the official processing pipeline for HoVer-Net.
Figure 2(a) shows the model inference time for HoVer-Net and Cell-DETR as function of the
total area of the slide. Notably, Cell-DETR shows a ×3.4 faster performance in this step,
taking an average time of 1450s per slide, versus 4912s required by HoVer-Net. These metrics
are extracted utilizing four 16GB GPUs. As previously argued, segmentation methods
are more computationally demanding due to their dense output nature, making detection
models a more suitable solution for inference on large WSIs. Finally, the post-processing
step of Cell-DETR basically consists of combining the predictions of multiple tiles, while
HoVer-Net requires an expensive post-processing to firstly obtain the instance segmentation
masks from the raw predicted maps, and then to extract the cell nuclei instance information
such as the centroids. Figure 2(b) shows the post-processing time as function of the number
of nuclei detected in the slide. Intuitively, the post-processing time of HoVer-Net increases
with the number of nuclei, which is in the order of millions for the WSIs. Instead, Cell-
DETR exhibits a virtually constant post-processing time.

5. Conclusions

In this manuscript, we introduce a novel perspective to applications involving cell-level in-
formation on Whole Slide Images (WSIs), moving beyond conventional cell segmentation
methods to prioritize detection while addressing reliability and scalability. Firstly, through
a meticulous examination of design components, we enhance trustworthiness, achieving
state-of-the-art performance in cell detection and classification that outperforms semantic
segmentation methods. Secondly, we effectively tackle scalability challenges associated with
large histopathological images, extending our approach to process WSIs with a remarkable
efficiency. Consequently, our work provides vital insights for the development of diagnos-
tics and interpretability applications, leveraging the wealth of information within extensive
histopathology slides at the cellular level.
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Appendix A. Implementation details

Table 3 presents the image and window sizes used during the training and evaluation phases
for the three datasets included in our experiments. For the PanNuKe dataset with 256×256-
pixel images, no window partitioning is required for both training and evaluation. CoNSeP
dataset images are larger at 1000× 1000 pixels. Given the potential abundance of nuclei in
a 1000× 1000 image, we adopt the window detection procedure. Training involves random
crops of size 250 × 250 from the original image, with one crop sampled per image at each
epoch. During inference, we process the large images using sliding windows of size 250×250
and a stride of 187.

To merge predictions from overlapped sliding windows during inference, only detections
whose centroid falls within the central crop of the window are considered. Specifically, for
a window size of 250 × 250 and a stride of 187, the size of the selected central crop is
187 × 187, leaving a border of 61 pixels. Detections within these borders are excluded, as
they will belong to the central crop of the neighboring window. For windows at the tile
borders, this exclusion applies solely to the sides overlapped by another window, not to
those corresponding to the image borders.

For the Camelyon16 dataset, lacking cell annotations for training, we utilize it to assess
the scalability of cell detection and classification on Whole Slide Images (WSIs). The
original images are divided into patches of size 2048× 2048, processed similarly to CoNSep
images, with a sliding window of size 256× 256 and a stride of 187.

All our models are implemented in PyTorch, with hyperparameters drawn from the orig-
inal Deformable DETR (Zhu et al., 2020), avoiding an exhaustive hyperparameter search.
Training is performed on four NVIDIA Quadro RTX 16GB GPUs. The base learning rate,
defined for a batch size of 16 in the original paper, is linearly scaled based on our setting.
Multi-step learning rate scheduling is incorporated by a factor of 0.1 at 70% and 90% of
training. Notably, for CoNSeP, the number of epochs is extended due to the limited number
of training images and the use of only one crop of size 250 × 250 sampled from the entire
image at each epoch, resulting in only 1/16 of the image being fed into the model.

Table 3: Window detection hyperparameters.

Dataset
Training Evaluation and Inference

Image size Crop size Patch size Window size Stride

PanNuke 256 256 256 256 -
CoNSeP 1000 250 1000 250 187
Camelyon16 - - 2048 256 187

Appendix B. Evaluation metrics

The evaluation protocol for nuclei detection and classification follows the methodology out-
lined in (Graham et al., 2019), employing F1-score as the evaluation metric for enhanced
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Table 4: Training hyperparameters.

Dataset
Solver Matcher Loss

epochs base lr batch size lr drop lr steps λgiou λbbox λfocal λgiou λbbox λfocal αfocal

PanNuke 100 2e-4 2 0.1 70, 90 2 2 5 2 1 5 0.25
CoNSeP 1000 2e-4 2 0.1 700, 900 2 2 5 2 1 5 0.25

comparability. Initially, a bi-partite matching process aligns ground truth nuclei centroids
with detected counterparts, limited to a radius of 12 pixels. Detection metrics, including
true positives (TPdet), false positives (FPdet), and false negatives (FNdet), are derived based
on the outcomes of the matching process between ground truth and predicted nuclei. The
detection F1-score (Fdet) is computed as the harmonic mean of detection precision (Pdet)
and recall (Rdet).

For classification, TPdet is further categorized into correctly and incorrectly classified
nuclei of class c, denoted as TPc and FPc, respectively. Additionally, misclassified elements
from class c are captured as FNc. Precision, recall, and F1-Score for each class are then
calculated as follows:

Fc =
2(TPc + TNc)

2(TPc + TNc) + 2FPc + 2FNc + FPdet + FNdet
(1)

Pc =
TPc + TNc

TPc + TNc + 2FPc + FPdet
(2)

Rc =
TPc + TNc

TPc + TNc + 2FNc + FNdet
(3)

Appendix C. Ablations

C.1. Backbone feature levels and resolution

Deformable DETR enables multi-scale input features extracted from the backbone to boost
the capabilities of the model. By default, Deformable DETR extracts three feature levels
from the backbone and adds another virtual level on top of them with convolutional layer
of kernel size 3 and a stride of 2. The first level is extracted from the second block of the
backbone with a resolution of 1/8, and the remaining two levels are at 1/16 and 1/32.

The histopathology images employed in this work are scanned at a ×40 magnification,
with a resolution of 0.245µm/px. Given small and possibly enlarged shape of cell nuclei,
the width or height of some instances can be of no more than 10px. Consequently, if
the first feature level is extracted at 1/8, these small objects could be occluded in the
backbone output representations. Table 5 shows the performance according on the first
split of the PanNuke dataset for different configurations of the backbone and the output
features. Generally, the Swin transformer backbone performs better than the ResNet50,
accentuating the relevance transformer architectures for the medical image analysis. It can
also be observed an increase on the F-Score, with larger margins in those nuclei types that
are smaller, such as inflammatory cells and necrosis.

12



Cell detection transformers

Table 5: Performance with distinct backbones.

Backbone Output levels Detection Neoplastic Epithelial Inflammatory Connective Necrosis

ResNet50 1/8, 1/16, 1/32 0.81 0.69 0.68 0.57 0.52 0.35
ResNet50 1/4, 1/8, 1/16, 1/32 0.81 0.69 0.69 0.59 0.52 0.36
Swin 1/8, 1/16, 1/32 0.82 0.72 0.72 0.59 0.55 0.42
Swin 1/4, 1/8, 1/16, 1/32 0.82 0.73 0.74 0.61 0.55 0.45

C.2. Loss function

Object detection loss for DETR involves predicting the bounding box centroid (cx, cy) as
well as the size (w, h). Nonetheless, as mentioned in (Huang et al., 2023), for cell detection
it is enough to predict the centroid of the cells. Indeed, the evaluation metrics only take
into account the centroid, not the bounding box. In this section we explore the influence
of including the boxes size information in the target. Results of Table 6 show a slight
classification performance decline when the generalized intersection over union loss as well
as the (w, h) values of the L1 regression loss are excluded from the overall loss computation.
Although it is information that may be ignored during inference, the supervision signals
generated by their prediction could be providing valuable feedback to the network that may
help in disambiguating the predictions for the multiple queries. Additionally, the generalized
intersection over union is included as the L1 loss is highly influenced by the scale of the
object (Carion et al., 2020). If removing this term, the model learns to focus on the bigger
nuclei to minimize the loss function.

Table 6: Performance with and without bounding box size in the loss function.

Target Detection Neoplastic Epithelial Inflammatory Connective Necrosis

(cx, cy) 0.82 0.71 0.73 0.59 0.55 0.42
(cx, cy, w, h) 0.82 0.73 0.74 0.61 0.55 0.45

Appendix D. Where is the model attending to?

The deformable attention mechanism only focuses on a subset of points for a given location,
allowing for a detailed examination of the attended points within the predicted bounding
boxes. In Figure 3 we present the detections and attention maps in both low and high
cell density regions (Figure 3(a) and Figure 3(b), respectively). Concretely, we show the
detected nuclei and bounding box (left), the attended sampling locations for each detection
colored by the corresponding attention weight (middle) and finally the sampling locations
colored by the head (right). It can be observed that the sampling locations are uniformly
distributed along the bounding box. However, as depicted in the right images each head
focuses on a specific direction within the bounding box. This phenomenon may be attributed
to the ellipsoidal shape of cell nuclei and their frequent orientation.
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(a) Detections on a sparse region. (b) Detections on a dense region.

Figure 3: Deformable attention maps.
Deformable attention maps show that different heads have learned to look at distinct directions.
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