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Abstract

The state-of-the-art dimensionality reduction approaches largely rely on complicated opti-
mization procedures. On the other hand, closed-form approaches requiring merely eigen-
decomposition do not have enough sophistication and nonlinearity. In this paper, we propose
a novel nonlinear dimensionality reduction method—Inverse Kernel Decomposition (IKD)—
based on an eigen-decomposition of the sample covariance matrix of data. The method is
inspired by Gaussian process latent variable models (GPLVMs) and has comparable perfor-
mance with GPLVMs. To deal with very noisy data with weak correlations, we propose two
solutions—blockwise and geodesic—to make use of locally correlated data points and pro-
vide better and numerically more stable latent estimations. We use synthetic datasets and
four real-world datasets to show that IKD is a better dimensionality reduction method than
other eigen-decomposition-based methods, and achieves comparable performance against
optimization-based methods with faster running speeds. Open-source IKD implementation
in Python can be accessed at https://github.com/JerrySoybean/ikd.

1 Introduction

Dimensionality reduction techniques have been widely studied in the machine learning field for many years,
with massive applications in latent estimation (Wu et al., 2017; 2018), noise reduction (Sheybani & Javidi,
2009), cluster analysis (Bakrania et al., 2020), data visualization (Van der Maaten & Hinton, 2008a) and so
forth. The most commonly used method is the principled component analysis (PCA), a linear dimensionality
reduction approach. It is favored thanks to the easy use of a one-step eigen-decomposition. Its simple linear
assumption, however, restricts its exploitation, especially in highly nonlinear scenarios. On the other hand,
nonlinear dimensionality reduction models, such as autoencoders (Kramer, 1991), variational autoencoders
(VAE) (Kingma & Welling, 2013), t-SNE (Van der Maaten & Hinton, 2008b), UMAP (McInnes et al., 2020),
and Gaussian process latent variable models (GPLVMs) (Lawrence, 2003; 2005) can achieve state-of-the-
art (SOTA) performance in terms of finding (sub)optimal low-dimensional latent and rendering satisfactory
downstream analyses (e.g., visualization, prediction, classification). However, all these nonlinear models
involve intricate optimization which is time-consuming, easy to get stuck in bad local optima, and sensitive
to initialization. In this paper, we propose a novel nonlinear eigen-decomposition-based dimensionality
reduction approach that finds low-dimensional latent with a closed-form solution but intricate nonlinearity.

The proposed method is called Inverse Kernel Decomposition (IKD), inspired by GPLVMs. GPLVMs are
probabilistic dimensionality reduction generative models that use Gaussian Processes (GPs) to find a lower
dimensional nonlinear embedding of high-dimensional data. GPLVM and its many variants have been
proposed in various domains (Bui & Turner, 2015; Wang et al., 2005; 2008; Urtasun et al., 2006; Wu et al.,
2017) and proven to be powerful nonlinear dimensionality reduction and latent variable models. However,
GPLVMs are highly nonlinear and non-convex due to the GP component, resulting in practical difficulties
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during optimization. By deriving the relationship implied by the kernel function in GPLVMs, IKD solves
the GPLVM problem through eigen-decomposition, which could give a more stable latent estimation in a
shorter time than the traditional optimization-based GPLVM solver (Sec. 3.1.1).

In the experiment section, we compare IKD against four eigen-decomposition-based and four optimization-
based dimensionality reduction methods using synthetic datasets and four real-world datasets, and we can
summarize four contributions of IKD:
• As an eigen-decomposition-based method, IKD achieves more reasonable latent representations than other
eigen-decomposition-based methods with better classification accuracy in downstream classification tasks.
The running time of IKD is on par with other eigen-decomposition-based methods.
• IKD is able to provide competitive performance against some SOTA optimization-based methods but at a
much faster running speed.
• IKD promises a stable and unique optimal solution up to an affine transformation. In contrast,
optimization-based methods do not guarantee unique optimal solutions and sometimes are not numeri-
cally stable due to the highly nonconvex optimization landscapes. Therefore, IKD can sometimes achieve
better latent representations and classification performance than optimization-based methods like GPLVM
and VAE.
• When the observation dimensionality is large (i.e. observation data is high-dimensional), a lot of methods
have significant drawbacks. For example, t-SNE, UMAP, and VAE encounter the curse of dimensionality
problems. The large dimensionality not only leads to longer running time but also hurts the dimension-
ality reduction performance. In contrast, IKD always obtains improved performance with an increasing
observation dimensionality, and claims its absolute superiority when the observation dimensionality is very
large.

Note that we are not claiming to propose the best dimensionality reduction approach that beats all other
SOTAs. We propose an advanced eigen-decomposition-based method that (1) outperforms other eigen-
decomposition-based methods in most synthetic and real-world applications with the same scale of running
speeds and (2) reaches a comparable level against other optimization-based methods but with much faster
running speed.

1.1 Related works

As GPLVM’s eigen-decomposition-based solver, IKD starts from the data-generating process instead of the
observed data. Although IKD makes use of eigen-decomposition and kernel functions, it is different from
other eigen-decomposition-based methods. For example, GPLVM uses a kernel function to form a nonlinear
mapping from the embedded latent space to the data space, which is opposite to the use of kernel as in
kernel PCA (Schölkopf et al., 1997). Another similar method is Isomap (Tenenbaum et al., 2000), which
is a generalized version of multidimensional scaling (MDS) (Borg & Groenen, 2005). From the form of the
backbone IKD algorithm derived in Sec. 2.2, IKD obtains its target similarity matrix to be decomposed from
data’s pairwise correlations, and Isomap obtains its target similarity matrix from data’s pairwise generalized
distances. However, the initial goals of IKD and Isomap are different. Isomap hopes to place the dataset
into a low-dimensional space while preserving pairwise distances as well-equally scaled as possible, but IKD
works as an eigen-decomposition versioned solver for data generalized from GPVLM. In Sec 2, we introduce
the generative model GPLVM first, and then convert the problem to an eigen-decomposition problem step-
by-step, and finally solve it.

2 Methodology

2.1 Gaussian process latent variable model

Generative model. Let X ∈ RT ×N be the observed data where T is the number of observations and N
is the observation dimensionality of each data vector. Let Z ∈ RT ×M denote its associated latent variables
where M is the latent dimensionality. Usually, we assume the latent space is lower-dimensional than the
original observational space, leading to M < N . For each dimension of X denoted as X:,n ∈ RT , ∀n ∈
{1, . . . , N}, GPLVM defines a mapping function that maps the latent to the observation which has a Gaussian
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process (GP) prior. Therefore, given the finite number of observations, we can write

X:,n
i.i.d∼ N (0, K), ∀n ∈ {1, 2, ..., N}. (1)

where K is a T × T covariance matrix generated by evaluating the kernel function k of GP at all pairs of
rows in Z, i.e., ki,j = k(zi, zj) where zi and zj are the ith and jth rows of Z.

Problem setting. The goal of GPLVM is to estimate the unknown latent variables Z that are used for
constructing the covariance matrix K, from the observations X. Note that we only consider noiseless GP
for the derivation of IKD, but IKD can deal with noisy observations empirically.

2.2 Inverse kernel decomposition

In this section, we derive a novel nonlinear decomposition method, inverse kernel decomposition (IKD),
inspired by GPVLM. Previous work has been solving GPLVM by maximizing the log-likelihood to obtain
Z from X in a one-step fashion. Now let us break this process into two steps: (1) estimating K from
the observations X, and (2) identifying the latent variables Z from the estimated covariance matrix K.
The first step can be solved by estimating K with the unbiased estimator, i.e., sample covariance S :=

1
N−1

(
X − X̄1T) (X − X̄1T)T ≈ 1

N−1 XXT, where X̄ = 1
N

∑N
n=1 X:,n ought to be 0 since X:,n are i.i.d.

samples from a zero-mean Gaussian (Eq. 1).

Therefore, our main focus is to estimate the latent Z given S in the second step. In the following, we focus
on the discussion of a commonly used stationary kernel, the squared exponential (SE) kernel. We will show
in Sec. 2.3 that IKD can also work with various stationary kernels.

The SE kernel is defined as k(zi, zj) = σ2 exp
(
−∥zi−zj∥2

2l2

)
, where σ2 is the marginal variance and l is the

length-scale. Note that σ2 = k(zi, zi) = ki,i, ∀i ∈ {1, · · · , T}. Let f be the scalar function mapping the
scaled squared distance di,j := ∥zi−zj∥2

l2 between latent (zi, zj) to the scalar covariance ki,j , i.e., ki,j =
f(di,j) = σ2 exp

(
−di,j

2

)
. Let us assume we know the true K for now. Since f(·) is strictly monotonic, we

can obtain di,j = f−1(ki,j) = −2 ln
(

ki,j

σ2

)
. Writing di,j in the matrix form D = (di,j)T ×T , we have

D = 1
l2


0 (z1 − z2)T(z1 − z2) · · · (z1 − zT )T(z1 − zT )

(z2 − z1)T(z2 − z1) 0 · · · (z2 − zT )T(z2 − zT )
...

...
. . .

...
(zT − z1)T(zT − z1) (zT − z2)T(zT − z2) · · · 0


=f−1(K) =

[
f−1(ki,j)

]
T ×T

,

(2)

where f−1 maps K to D element-wisely. We define z̃ = z−z1
l with z̃1 = 0. Now we have

di,j = 1
l2 (zi − zj)T(zi − zj) = 1

l2 [(zi − z1)− (zj − z1)]T [(zi − z1)− (zj − z1)]

=(z̃i − z̃j)T(z̃i − z̃j) = z̃T
i z̃i + z̃T

j z̃j − 2z̃T
i z̃j .

(3)

Since z̃1 = 0, we have d1,j = z̃T
1 z̃1 + z̃T

j z̃j − 2z̃T
1 z̃j =⇒ z̃T

j z̃j = d1,j , ∀j ∈ {1, ..., T}. Therefore,
we arrive at an expression of z̃T

i z̃j as z̃T
i z̃j = 1

2 (di,1 + d1,j − di,j). Note that d1,i = di,1 because of the
symmetric property. Denote Z̃ = [z̃1, z̃2, · · · , z̃T ]T = [0, z̃2, · · · , z̃T ]T ∈ RT ×M , we could write the matrix
form Z̃Z̃T =

(
z̃T

i z̃j

)
T ×T

as

Z̃Z̃T =


0 0 · · · 0
0 d2,1 · · · 1

2 (d2,1 + d1,T − d2,T )
0 1

2 (d3,1 + d1,2 − d3,2) · · · 1
2 (d3,1 + d1,T − d3,T )

...
...

. . .
...

0 1
2 (dT,1 + d1,2 − dT,2) · · · dT,1

 =: g(D) = g(f−1(K)), (4)
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which is a rank-M symmetric positive semi-definite matrix given M < T . g is the function mapping D to
Z̃Z̃T. Then, Eq. 4 has the unique “reduced” eigen-decomposition

g(f−1(K)) = UΛUT =
(√

λ1U:,1, . . . ,
√

λM U:,M

)(√
λ1U:,1, . . . ,

√
λM U:,M

)T
=: ŨŨT, (5)

where U:,m = [0, u2,m, u3,m, . . . , uT,m]T ∈ RT is the mth column of U ∈ RT ×M and Λ = diag(λ1, λ2, . . . , λM )
with λ1 > λ2 > · · · > λM > λM+1 = · · · = λT = 0. Note that the unique “reduced” singular value
decomposition of Z̃ is

Z̃ = UΛ
1
2 V T = ŨV T =⇒ zt = lV ŨT

t,: + z1, ∀t ∈ {1, . . . , T}, (6)

where z1 represents the reference translation, the length-scale l is a scaling factor, and V is an orthogonal
matrix that is responsible for the corresponding rotation and reflection. Since Z and Ũ span the same
column space such that

k(zi, zj) =σ2 exp
(
−∥zi − zj∥2

2l2

)
= σ2 exp

(
−
∥lV ŨT

i,: − lV ŨT
j,:∥2

2l2

)

=σ2 exp
(
−∥Ũi,: − Ũj,:∥2

2

)
= kl=1

(
Ũi,:, Ũj,:

)
.

(7)

Ũ contains all of the low-dimensional information of Z. Therefore, we consider Ũ as an estimator of Z.
Eq. 5 and Eq. 6 summarize the inverse relationship from a GP kernel covariance matrix to the latent variable.

To date, we are able to find the exact estimation Ũ given the true GP covariance kernel K that is constructed
from Z (Eq. 7). In practice, we only have the sample covariance estimator S, and neither rank-M nor positive
semi-definite is guaranteed for g(f−1(S)). Therefore, we try to find its optimal rank-M positive semi-definite
approximation, i.e.

minimize
Ũ∈RT ×M

∥∥g(f−1(S))− ŨŨT∥∥ . (8)

Dax et al. (2014) shows that
Ũ =

(√
λ1U:,1, . . . ,

√
λM U:,M

)
(9)

is the optimal solution for any unitarily invariant matrix norm ∥ · ∥, where λ1, . . . , λM are the first M largest
positive eigenvalues of g(f−1(S)) and U:,1, . . . , U:,M are the corresponding eigenvectors. The goodness of
the estimated latent via the target loss function Eq. 8 can be quantified by the explained variance ratio∑M

t=1
λ2

t∑T

t=1
λ2

t

. We summarize the IKD algorithm in Alg. 1.

Algorithm 1 Inverse kernel decomposition
1: function ikd(X ∈ RT ×N , f)
2: S ← 1

N−1
(
X − X̄1T) (X − X̄1T)T

▷ S serves as an estimator of the covariance K

3: σ2 ← 1
T

∑T
i=1 si,i ▷ estimate σ2 through a statistic of the diagonal of S

4: D̂ = (d̂i,j)T ×T ← f−1(S) ▷ D̂ serves as an estimation of D (Eq. 2)
5: U , Λ← eigen-decomposition of g(D̂) ▷ Eq. 5
6: Form the optimal latent solution Ũ using U and Λ ▷ Eq. 5
7: return Ũ
8: end function

2.3 IKD with general stationary kernels

Apart from the SE kernel, IKD also works for most commonly used stationary kernels, as long as the kernel
function f is invertible (i.e., f is strictly monotonic over [0,∞)) and we can find a unique non-negative
solution for d = f−1(k). We summarize the kernels in Tab. 1.
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Table 1: Stationary kernels that can be applied to IKD.
kernel f f−1

squared exponential f(d) = σ2 exp
(
−d

2
)

f−1(k) = −2 ln
(

k
σ2

)
rational quadratic f(d) = σ2 (1 + d

2α

)−α
f−1(k) = 2α

[(
k

σ2

)− 1
α − 1

]
γ-exponential f(d) = σ2 exp

(
−d

γ
2
)

f−1(k) =
(
− ln k

σ2

) 2
γ

Matérn f(d) = σ2 21−ν

Γ(ν)

(√
2ν
√

d
)ν

Kν

(√
2ν
√

d
) no closed-form but solvable

with root-finding algorithms

For the SE kernel, we can generalize it to the ARD kernel k(zi, zj) = σ2 exp
(
− 1

2
∑M

m=1
1

l2
m

(zi,m − zj,m)2
)

and the Gaussian kernel k(zi, zj) = σ2 exp
(
− 1

2 (zi − zj)TL−1(zi − zj)
)
, where an extra affine transformation

L
1
2 is needed, rather than a constant scaling l.

For the Matérn kernel parameterized by ν, Kν(·) is the modified Bessel function of the second kind. Although
it is complicated to obtain a closed-form of f−1(·) for the Matérn kernel, f−1(·) always exists since f(·) is
strictly monotonically decreasing over [0,∞) for all ν > 0. Note that for the commonly used ν = p+ 1

2 , p ∈ N,
it is easy to derive f ′(·), e.g., when ν = 3

2 , f(d) = σ2
(

1 +
√

3d
l

)
exp

(
−

√
3d
l

)
, and f ′(d) = − 3dσ2

l2 exp
(
−

√
3d
l

)
.

In such cases, higher-order root-finding algorithms (e.g., Newton’s method) can be used to solve d = f−1(k).

The intuition of IKD is to find a non-linear mapping that makes xi, xj that are strongly correlated in
observational space to be closely located with each other in the latent space. This is perfectly reflected by
the shape of these stationary kernels, i.e., monotonically decreasing fast near d = 0 and then becoming flat
(converge to 0) when d→∞. Given these stationary kernels have such a similar shape, the latents estimated
by different kernels are also similar (see the last paragraph of the real-world experiment, Sec. 3.2). Since
these kernels are all invertible, we can derive the exact relationship between latents Ũ (1) and Ũ (2) from two
kernels f1 and f2 respectively. Denote D̃(1) =

[
(Ũ (1)

i,: − Ũ
(1)
j,: )T(Ũ (1)

i,: − Ũ
(1)
j,: )
]

T ×T
and similar for D̃(2), then

f1

(
D̃(1)

)
= S = f2

(
D̃(2)

)
. (10)

So, the transformation from D̃(1) to D̃(2) is the diffeomorphism f−1
2 f1.

2.4 Error analysis of IKD

IKD performs eigen-decomposition on g(f−1(S)) (Eq. 5), which uses the sample covariance S as an empirical
estimator of K. In practice, sample covariance values si,j in S can be very noisy due to the noise in
the data and an insufficient observation dimensionality N . There can be non-positive and close-to-zero
positive covariance values preventing from calculating d̂i,j = f−1(si,j) accurately. Non-positive si,j falls
out of the input range of f−1, i.e., (0, σ2]. For close-to-zero positive si,j , the error between the estimation
d̂i,j = f−1(si,j) and the ground truth di,j = f−1(ki,j) can be large and sensitive to si,j . A sketch analysis of
the error for the SE kernel is via the Taylor expansion of f−1 at si,j :

di,j =f−1(ki,j) = −2 ln si,j + (ki,j − si,j)
σ2 = −2 ln si,j

σ2 − 2ki,j − si,j

si,j
+ O((ki,j − si,j)2)

=f−1(si,j) + O(ki,j − si,j)
si,j

= d̂i,j + O(ki,j − si,j)
si,j

.

(11)

We define the estimation error as |di,j − d̂i,j | = O(|ki,j−si,j |)
si,j

. For large si,j , the error is small; but for small
si,j , the error is very sensitive to the covariance error |ki,j−si,j |. To resolve the issue, there are two solutions:

Blockwise solution. We first throw away bad si,j values by thresholding the sample covariance with a
value s0, leading to a thresholded covariance matrix S̃ = (si,j · 1[si,j > s0])T ×T . S̃ is not a fully connected
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graph due to the zero values. We can not directly apply IKD to S̃ for latent estimation. Then, we can
use, for example, the Bron–Kerbosch algorithm (Bron & Kerbosch, 1973), to find maximal cliques in S̃.
Consequently, each clique is a fully connected subgraph (block) of S̃, which can be decomposed using IKD.
After obtaining the latent for each clique, we merge all of the estimated latent variables according to the
shared points between every clique pair. As long as the number of shared points between two cliques is
greater than M , we are able to find the unique optimal rigid transformation that aligns every two cliques
correctly.

We clarify the details of the clique merging procedure in the blockwise solution here. First, the Bron-
Kerbosch algorithm provides us with a set of cliques {C1, C2, . . . , CL} satisfying

⋃L
i=1 Ci = {zt}T

t=1. Now,
we start with two cliques that share the maximum number of points, arg maxCi,Cj

|Ci ∩ Cj |. For example,
now we have Ci = {z1, z2, z3, z4} and C2 = {z2, z3, z4, z5} (Fig 1). Their shared points are {z2, z3, z4}.
Since the latent is in RM = R2 and |Ci ∩ Cj | = 3 ⩾ M + 1, we can find a unique reflection + rotation +
translation via SVD to align {z2, z3, z4} in C2 with {z2, z3, z4} in clique C1. If there are less than M + 1
shared points between the two cliques, there is more than one way to align them. Similarly, in RM , the
uniqueness of this optimal alignment transformation requires at least M + 1 shared points. Once two cliques
are merged, we remove Ci, Cj from the original set and place the merged cliques Ci ∩ Cj back. The final
latent can be obtained by repeating this merging procedure until the largest clique contains all points.

Figure 1: A clique pair example that shares three points {z2, z3, z4}.

Although the complexity of the Bron-Kerbosch algorithm for finding maximal cliques is O(3T ), we can
terminate the algorithm as long as the union of the existing cliques is the whole dataset. In other words,
we only need up to T maximal cliques, so the clique finding time can be bounded by O(T 2). Then solving
first M eigen-decomposition algorithm for up to T cliques takes O(T × (MT 2)). Therefore, the complexity
of the entire procedure can be bounded by O(MT 3).

Geodesic solution. Since small values si,j < s0 have significantly bad effects on eigen-decomposition,
we can replace si,j , whose value is smaller than s0, with the geodesic covariance si,j ← max(t1,t2,...,t′) si,t1 ·
st1,t2 · · · st′,j , where i→ t1 → · · · → t′ → j is the geodesic path from i to j found by the Dijkstra algorithm
(Dijkstra et al., 1959). The complexity of this approach is bounded by the complexity of the Dijkstra
algorithm, which is O(T 2 log(T )). Since the complexity of the geodesic approach is smaller than that of
the blockwise approach when T is larger (greater than 1000 in the following experiments), we choose the
geodesic instead of the blockwise. A comparison of these two solutions is shown in the experiment section.

2.5 Reference point selection

In Eq. 3, we choose z1 as the reference point to calculate di,j . But the reference point can be any of the
points in {zt}T

t=1. If we choose zr, for an arbitrary index r ∈ {1, ..., T}, to be the reference point, then
similar to Eq. 4, the rth row and the rth column of g(D) are 0s, and the remaining elements are g(D)i,j =
1
2 (di,r + dr,j − di,j) ̸= 0, ∀i ̸= r, j ̸= r. Note that every g(D)i,j includes an element from {dr,i}T

i=1. Thus the
quality of {dr,i}T

i=1 is vital for latent estimation. Based on the analysis in Eq. 11, we know that in practice we
want to choose a good reference index r so that {d̂r,i}T

i=1 are relatively small (i.e., {sr,i}T
i=1 are large, which

means the rth data point is highly correlated with the rest of the data points). Note that multidimensional
scaling (MDS) (Kruskal & Wish, 1978) solves a similar eigen-decomposition problem, i.e., finding coordinates
Z from the distance matrix D. It employs a centering idea which is equal to using the average of all latent
variables 1

T

∑T
t=1 zt as the reference point. We choose the best reference point instead since we want to

reduce the estimation error in Eq. 11 as much as we can, so that the objective function in Eq. 8 can be
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minimized as much as possible. Mathematically, we obtain r such that ∥d̂r∥∞ ⩽ ∥d̂i∥∞, ∀i ∈ {1, 2, ..., T}
and d̂i is the ith row of D̂ = (d̂i,j)T ×T , i.e., r = arg mini ∥d̂i∥∞ = arg mini

{
maxj{d̂i,j}

}
.

3 Experiments

In this section, we evaluate IKD with the most commonly used squared exponential as the default kernel on
three synthetic datasets, where we know the true latent representations and four real-world datasets.

Baseline methods for comparison:
• PCA: Principal component analysis. One of the most widely used linear dimensionality reduction meth-
ods.
• KPCA: Kernel PCA. We try different kernels (polynomial, SE, sigmoid, and cosine) and present the best
one.
• LE (Belkin & Niyogi, 2003): Laplacian eigenmaps, which is to do spectral decomposition to the affinity
matrix’s graph Laplacian. We use the nearest neighbors algorithm to build the affinity matrix.
• Isomap (Tenenbaum et al., 2000): Isometric mapping of multidimensional scaling (MDS) by incorporat-
ing the geodesic distances. We use sklearn’s default setting—five nearest neighbors—to build the distance
matrix.
• t-SNE (Van der Maaten & Hinton, 2008b): t-distributed stochastic neighbor embedding. We use
sklearn’s default hyperparameter setting to fit the model.
• UMAP (McInnes et al., 2020): Uniform Manifold Approximation and Projection for dimension reduc-
tion. We use sklearn’s default hyperparameter setting to fit the model. We use the official UMAP package
(McInnes et al., 2018) and its default hyperparameter setting to fit the model.
• GPLVM (Lawrence, 2003; 2005): The traditional optimization-based Gaussian process latent variable
model solver. We use the GPLVM module in the GPy package (GPy, since 2012) and its default hyperpa-
rameter setting to fit the model. Same as IKD, we use the most commonly used squared exponential as the
default kernel unless otherwise stated.
• VAE (Kingma & Welling, 2013): Variational autoencoder.
The first four are eigen-decomposition-based methods; the last four are optimization-based methods.

3.1 Synthetic data

Experimental setup. We first test all methods on three synthetic datasets. All the following experiments
are based on 50 independent repeats (trials). For each trial, we generate the true latent variables from

Zm,1:T ∼ N
(

0,
(

6e− |i−j|
5

)
T ×T

)
, ∀m ∈ {1, ..., M}, (12)

where M is the latent dimensionality, varying across different datasets. Then, we generate the noiseless data
from GP, sinusoidal, and Gaussian bump mapping functions respectively. Afterward, i.i.d. Gaussian noise
is added to form the final noisy observations X.

Evaluateion. We evaluate the performance using the R2 metric. When computing R2 values, we first
align the estimated latent with the ground truth through an affine transformation (i.e., a linear decoder);
then compute R2 for each latent dimension, and finally take an average across all latent dimensions m ∈
{1, 2, ..., M}. The reasons for choosing the affine transformation are: (1) rigid transformation could lead to
very negative R2 values for those non-IKD methods (e.g., PCA), not shown here; and (2) affine transformation
is the commonly used one for latent estimation and alignment.

Dataset 1: GP mapping function. We start our experiments with the GP mapping function. In each
trial, we generate a 3D latent Z ∈ R1000×3 (i.e., M = 3) according to Eq. 12, and generate X ∈ R1000×N

according to Eq. 1 with σ2 = 1 and l = 3. Then Gaussian noise is added: xt,n ← xt,n + εt,n, ∀(t, n) ∈
{1, ..., 1000}×{1, ..., N}, where noise εt,n ∼ N (0, 0.052). Note that this generating process is consistent with
the generating process of GPLVM. Thus it is well aligned with the model assumptions of IKD, deemed as a
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(a) (b) (c)

(d) (e)

(f)

(g) (h)
(i)

Figure 2: R2 values (a,d,g) and running time (b,e,h) with respect to N with GP, sinusoidal, and Gaussian
bump mapping functions. (c,f,i): Latent recovery visualization of an example trial with N = 100, for the
first 20 points with GP, sinusoidal, and Gaussian bump mapping functions.

data-matching example. Fig. 2(a) shows that for N = 10 and N = 20, Isomap is the best; but when N > 50,
IKD becomes the best and its R2 converges to 1 as N increases. The latent recovery visualization of an
example trial under N = 100 for the first 20 points (Fig. 2(c)) shows that Isomap and IKD match the true
latent the best.

Dataset 2: Sinusoidal mapping function. In each trial, we generate a 1D latent (i.e., M = 1) according
to Eq. 12, and generate the noisy observations X ∈ R1000×N as xt = sin(Ωzt + φ) + εt, ∀t ∈ {1, ..., 1000},
where Ω = (ωn,m)N×M with ωn,m ∼ U(−1, 1), φ = [φ1, ..., φN ]T with φn ∼ U(−π, π), and noise εt ∼
N (0, 0.12I). The result in Fig. 2(d) indicates that even though the observed data is not from a GP (data-
mismatching), IKD is still able to discover the latent structure consistently better than others, except for
N = 10 and N = 20 where Isomap is the best. When the observation dimensionality N > 50, the R2 value
of IKD approaches to 1, while Isomap, t-SNE, and UMAP all have decreasing performance due to the curse
of dimensionality. The latent recovery visualization of an example trial under N = 100 for the first 20 points
(Fig. 2(f)) shows that Isomap and IKD match the true latent the best.

Dataset 3: Gaussian bump mapping function. In each trial, we generate a 2D latent (i.e., M = 2)
according to Eq. 12, and generate X ∈ R1000×N as

xt,n = 20 exp
(
−∥zt − cn∥2

2
)

+ εt,n, ∀(t, n) ∈ {1, ..., 1000} × {1, ..., N}, (13)

where cn ∈ R2 is the center of the nth Gaussian bump randomly selected from 10,000 grid points uniformly
distributed in [−6, 6]2, with noise εt,n ∼ N (0, 0.052). This is another data-mismatching example. Fig. 2(g)
shows that in this case, IKD is the best one among all methods for all observation dimensionality N . Fig. 2(i)
also shows that only IKD matches the true latent accurately.

The running time of IKD in the three synthetic datasets above is on par with other eigen-decomposition-based
methods (Fig.2(b,e,h)), and much less than optimization-based methods. In particular, GPLVM always takes
a very long time; t-SNE requires more running time on datasets whose latent dimensionality is greater than
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Figure 3: Left: ground truth Z of the latent. Right: kernel covariance matrix K created by the corresponding
latent for the four different kernels, with marginal variance σ = 1 and length-scale l = 0.5; α = 1 in rational
quadratic kernel, γ = 1 in γ-exponential kernel, and ν = 1.5 in Matérn kernel. The difficulty levels of the
three datasets are from hard to easy, from top to bottom. For the easy dataset (bottom), points are selected
from the grids on the surface and randomly permuted.

2; and VAE is more time-consuming when the observation dimensionality is large. Note that we only vary the
dimensionality N not the number of observations T . When increasing T , the running time of all methods
will increase polynomially. For optimization-based methods, stochastic optimization can be employed to
scale to large-scale datasets. For fair comparison, extra scaling techniques should be incorporated to deal
with large-scale eigen-decomposition, which falls out of the scope of this paper.

In general, IKD performs the best for all three mapping functions especially when the observation dimen-
sionality N is large. It is also very effective in capturing details in addition to recovering the general latent
structure correctly. Same as other eigen-decomposition-based methods, IKD takes less time to solve the
presented problems compared with optimization-based methods.

3.1.1 Varying dimensionality, kernels, and latent structures

We test the effectiveness of IKD on the observation data generated from the GP mapping function described
in Eq. 1, for different observation dimensionality N ∈ {100, 200, 500, 1000, 2000, 5000, 10000}, different gen-
erating kernels (Tab. 1), and three different latent structures (hard, medium, and easy shown in Fig. 3
according to their difficulty levels). We only compare IKD with PCA and GPLVM here. PCA is the most
commonly used linear method, so it serves as a baseline. GPLVM is the traditional optimization-based
solver, and IKD is our newly proposed eigen-decomposition-based solver for data generated from the GP
mapping function.

From Fig. 4(b), we can tell that IKD is always the best for the most commonly used SE kernel. Compared
with PCA and GPLVM, IKD is highly effective especially when N is large, where the R2 values of IKD
are very close to 1. Fig. 4(c) shows the latent recovery visualization from one example trial of the medium
dataset when N = 1000. The kernel of the generating model is SE. We can tell that IKD matches the ground
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(a)

(b) (c)

Figure 4: (a): R2 values, with respect to N , of PCA, GPLVM, and IKD for different datasets and kernels. (b):
Latent recovery visualization of an example trial of the medium dataset with the SE kernel and N = 1000.
(c): Average running time in seconds (across different kernels, different datasets, and 50 independent trials)
of the three methods w.r.t. observation dimensionality N . We take averages across different kernels and
different datasets because all of them share similar running time results.

truth the best. For the third dimension, particularly, only the estimated latent from IKD reflects the linear
increasing trend of the ground truth correctly. In terms of complexity, GPLVM is time-consuming compared
with IKD (Fig. 4(d)). These results indicate that we can use IKD to recover the latent for data generated
from the GP mapping function faster and more accurately.

3.1.2 Varying the noise level

To understand the performance of IKD solving GPLVM with different levels of noise, we use the medium
dataset (Fig. 3) and the squared exponential kernel as the generative GPLVM to simulate the noiseless
observation X by Eq. 1. Then, different leveled noises are added to the observation, i.e., xt,n ← xt,n + εt,n,
where εt,n ∼ N (0, sd2), for sd ∈ {0, 0.1, . . . , 0.9, 1}. The standard deviation of the Gaussian noise “sd”
represents the noise level.
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Fig. 5 shows that IKD is able to have a relatively good estimation on datasets with low-level noise. The R2

of IKD gradually decreases as the noise level increases, but it is still better than GPLVM up to the noise
level of as high as sd = 1. The traditional optimization-based GPLVM solver explicitly considers the noise
term in its algorithm and the performance even slightly improves as the noise increases. Besides, with larger
noise, the observation also makes the GPLVM solver run faster.

(a) (b)

noise level

Figure 5: (a): R2 performances of PCA, GPLVM, and IKD on datasets with different noise levels. (b): The
corresponding running time.

3.1.3 Comparison of the blockwise and the geodesic solutions

To understand the differences between blockwise and geodesic solutions, we apply the blockwise and the
geodesic IKD on the medium dataset (Fig. 3) respectively and visualize their results. There are two sets of
observations, one is from the SE kernel and the other is from the rational quadratic kernel. We only use
the SE kernel to solve both of the two observations, constituting a model match case and a model mismatch
case.

Figure 6: The blockwise (left) and geodesic (right) solutions in a model match case (above) and a model
mismatch case (below). The blue curve is the true latent, and the orange curves are estimated latent. In the
model mismatch case, although the true data-generating model is not GP with the SE kernel, we still use a
simple decoder (i.e., an affine transformation) to align the estimated latent with the true latent to compute
the R2 metric.

In the model match case, the blockwise approach solves the GPLVM, but the geodesic approach does not.
Therefore, in the model match case and when the number of data points is not large, the Bron-Kerbosch
algorithm can be finished quickly and the blockwise solution should converge to the true latent up to an
affine transformation (the model match case in Fig. 6).
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In the model mismatch case, the clique-merging procedure is vulnerable to numerical errors, and small errors
can accumulate during this procedure, especially when the number of cliques is large. And if the number of
cliques is large but points are scattered, there will be too many cliques to be found and hence the running
time of the Bron-Kerbosch algorithm is unacceptable. Moreover, we do not know whether the true data-
generating model is GP with the SE kernel (and it is very likely that it is not GP, just like in PCA we
know the true data-generating model is certainly not a simple linear model). In such cases, we treat all data
points as a whole and compute their empirical correlation through the geodesic shortest path, and hence
using geodesic is more intuitive, globally stable, and efficient (the model mismatch case in Fig. 6).

3.2 Real-world data

Dataset. We compare IKD against alternatives on four real-world datasets:
• Single-cell qPCR (PRC) (Guo et al., 2010): Normalized measurements of 48 genes of a single cell at 10
different stages. There are 437 data points in total, resulting in X ∈ R437×48.
• Hand written digits (digits) (Dua & Graff, 2017): It consists 1797 grayscale images of hand written digits.
Each one is an 8× 8 image, resulting in X ∈ R1797×64.
• COIL-20 (Nene et al., 1996): It consists 1440 grayscale photos. For each one of the 20 objects in total, 72
photos were taken from different angles. Each one is a 128× 128 image, resulting in X ∈ R1440×16384.
• Fashion MNIST (F-MNIST) (Xiao et al., 2017): It consists of 70000 grayscale images of 10 fashion items
(clothing, bags, etc). We use a subset of it, resulting in X ∈ R3000×784.

Evaluation. Since there is no true latent to compare against, we first estimate the latent in a {2, 3, 5, 10}-
dimensional latent space and then use the k-nearest neighbor (k-NN) classifier to evaluate the performance of
each dimensionality reduction method. Specifically, we apply 5-fold cross-validation k-NN (k ∈ {5, 10, 20})
on the estimated {2, 3, 5, 10}-dimensional latent to evaluate the performance of each method on each dataset.
The k-NN classification results of different methods under different latent dimensionality M , different
datasets, and different choices of k are shown in Fig. 7(a). Performances of different methods on differ-
ent datasets evaluated by the silhouette score are presented in Fig. 7(b).

Results. Comparing IKD with other eigen-decomposition-based methods (PCA, KPCA, LE, Isomap), we
can conclude that IKD is almost always the best one on all four datasets, except that when M ∈ {3, 5, 10} in
the digits dataset, Isomap is better than IKD. When comparing IKD with GPLVM, we find the performances
of GPLVM on PCR, digits, and F-MNIST datasets are slightly better than IKD while GPLVM takes too
much running time. Specifically, IKD is significantly better than GPLVM on the COIL-20 dataset but only
slightly worse than GPLVM on the other three datasets. VAE only performs well on the most complicated
dataset F-MNIST, and is much worse than IKD in the other three datasets. Although IKD is worse than
the remaining two optimization-based methods (t-SNE and UMAP), the performance of IKD is the best
on the COIL-20 dataset. The reason is that the observation dimensionality is very high (N = 16384) in
the COIL-20 dataset, and IKD is very effective for high-dimensional data as shown in the synthetic results
(Fig. 2(a)).

2D visualization of the four datasets are shown in Fig. 8, 9, 10, and 11 respectively. Qualitatively, we can
see that IKD consistently finds more separate clusters compared with all other eigen-decomposition-based
methods and two optimization-based methods (GPLVM and VAE) across all four datasets. Therefore, even
though IKD is an eigen-decomposition-based method, its performance is significantly better than other eigen-
decomposition methods on all four real-world datasets, sometimes as good as the best optimization-based
method.

In terms of running time (Fig. 7(b)), IKD is on par with Isomap, and these eigen-decomposition-based
methods are significantly faster than those four optimization-based methods. Note that if the desired latent
dimensionality M > 2, the running time of t-SNE is barely acceptable. For the high dimensional COIL-20,
the running time values of VAE and GPLVM are extremely high, getting out of the upper limit of the
corresponding axes.
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Figure 7: (a) k-NN 5-fold cross-validation, (b) silhouette score, and (c) running time, on different methods,
different latent dimensionality M , different datasets, and different choices of k.
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Figure 8: Visualization of the dimensionality reduction results of different methods on the PCR dataset.
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Figure 9: Visualization of the dimensionality reduction results of different methods on the digits dataset.
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Figure 10: Visualization of the dimensionality reduction results of different methods on the COIL-20 dataset.
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Figure 11: Visualization of the dimensionality reduction results of different methods on the F-MNIST dataset.

Dimensionality reduction results of IKD with different kernels. As we derived in Eq. 10 in the main
content, choosing different kernels does not affect the dimensionality reduction results too much in terms
of the latent structure similarity since different kernels have similar shapes. Especially in a classification
task, although the exact relationship between the estimated latent data points under different kernels is not
the same, points belonging to the same class consistently locate together in latent space (low dimensional
space) no matter what kernel is used. Fig. 12 shows that the dimensionality reduction results under different
kernels are nearly the same (up to reflection, rotation, and translation). Tab. 2 also shows similar 5-fold
cross-validation k-NN classification accuracies under different kernels.

Varying number of points T . Although a theoretical analysis of the time complexity of IKD w.r.t. the
number of data points T has been provided in Sec. 2.4 and discussed in Sec. 3.1, we are still curious about
the comparisons of different methods on datasets varying number of data points T . Therefore, we apply
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Figure 12: Dimensionality reduction results of IKD with different kernels for the digits dataset with the
latent dimensionality M = 2. α = 1 in the rational quadratic kernel, and γ = 1 in the γ-exponential kernel.

Table 2: 5-NN 5-fold cross-validation classification accuracies under different kernels and latent dimension-
alities M ∈ {2, 3, 5, 10} for the digits dataset.

k kernels 2 3 5 10

5
squared exponential 0.875899 0.85085 0.946049 0.944937
rational quadratic 0.841382 0.821323 0.931574 0.935474

γ-exponential 0.837478 0.806288 0.930458 0.933807

10
squared exponential 0.872006 0.844732 0.936592 0.937696
rational quadratic 0.857527 0.825235 0.92212 0.943258

γ-exponential 0.854737 0.81242 0.919336 0.93992

20
squared exponential 0.871453 0.843067 0.928804 0.932683
rational quadratic 0.857521 0.822467 0.906541 0.929341

γ-exponential 0.856408 0.817457 0.908767 0.928231

different methods on the F-MNIST dataset with the number of data points T ∈ {1000, 2000, 3000, 4000}.
The k-NN accuracies and silhouette scores in Fig. 13(a) and (b) show that IKD is consistently the best
among all eigen-decomposition-based methods, except for the silhouette score at T = 4000. In terms of
runtime, we can see that IKD is faster than optimization-based methods. However, comparing the growth
rate of IKD with UMAP and VAE, we can see from the growth rates shown in Fig. 13(c) that, due to (1) the
worse time complexity of IKD and other eigen-decomposition-based methods and (2) the good scalability of
optimization-based methods to large-scale datasets, the impact of the number of data points T to IKD and
other eigen-decomposition-based methods gets bigger and bigger as T increases.

4 Discussions

In summary, IKD, as an eigen-decomposition-based method, consumes a short running time but is able to
obtain dimensionality reduction results better than other eigen-decomposition-based methods. When facing
high-dimensional observation data, IKD can perform significantly better than all other methods in a very
short time.

Note that although eigen-decomposition-based methods perform relatively worse than optimization-based
methods, the benefit of fast running provides good initialization for sophisticated nonlinear optimization
problems, mitigating the numerical instability and multi-modal issues commonly observed in methods such
as GPLVM and VAE.
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Figure 13: (a) average k-NN 5-fold cross-validation, (b) silhouette score, and (c) running time, by different
methods, on the F-MNIST dataset including different numbers of data points T .
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