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ABSTRACT

Contrastive learning has emerged as a powerful method in deep learning, ex-
celling at learning effective representations through contrasting samples from
different distributions. However, dimensional collapse, where embeddings con-
verge into a lower-dimensional space, poses a significant challenge, especially in
semi-supervised and self-supervised setups. In this paper, we propose CLOP, a
novel semi-supervised loss function designed to prevent dimensional collapse by
promoting the formation of orthogonal linear subspaces among class embeddings.
Through extensive experiments on real and synthetic datasets, we demonstrate that
CLOP improves performance in image classification and object detection tasks
while also exhibiting greater stability across different learning rates and batch sizes.

INTRODUCTION

Recent advancements in deep learning have positioned Contrastive Learning as a leading paradigm,
largely due to its effectiveness in learning representations by contrasting samples from different
distributions while aligning those from the same distribution. Prominent models in this domain include
SimCLR Chen et al. (2020), Contrastive Multiview Coding (CMC) Tian et al. (2020a), VICReg
Bardes et al. (2021), BarLowTwins Zbontar et al. (2021), among others Henaff (2020); Li et al. (2020);
Wu et al. (2018). These models share a common two-stage framework: representation learning and
fine-tuning. In the first stage, representation learning is performed in a self-supervised manner, where
the model is trained to map inputs to embeddings using contrastive loss to separate samples from
different labels. In the second stage, fine-tuning occurs under a supervised setup, where labeled data
is used to classify embeddings correctly. For practical applicability, a small amount of labeled data is
required in the fine-tuning stage to produce meaningful classifications, making the overall pipeline
semi-supervised. Empirical evidence demonstrates that these models, even with limited labeled data
(as low as 10%), can achieve performance comparable to fully-supervised approaches on moderate to
large datasets Jaiswal et al. (2020).

Despite the effectiveness of contrastive learning on largely unlabeled datasets, a common issue
encountered during the training process is dimensional collapse. As pointed out by Fu et al. (2022);
Gill et al. (2024); Hassanpour et al. (2024); Jing et al. (2021); Rusak et al. (2022); Tao et al. (2024);
Xue et al. (2023), this phenomenon describes the collapse of output embeddings from the neural
network into a lower-dimensional space, reducing their spatial utility and leading to indistinguishable
classes. There are two main approaches to resolve this issue: augmentation modification Fu et al.
(2022); Jing et al. (2021); Tao et al. (2024); Xue et al. (2023) and loss modification Fu et al. (2022);
Hassanpour et al. (2024); Rusak et al. (2022). In this paper, our approach selects prototypes similarly
to Gill et al. (2024); Zhu et al. (2022). The key distinction is that our method aims to push the
embeddings toward distinct orthogonal linear subspaces, allowing them to occupy a higher-rank
space. We demonstrate through experiments that CLOP is more effective for image classification and
object detection tasks.

The main contribution of this paper is to address the issue of dimensional collapse in contrastive
learning losses that rely solely on cosine similarity. We first show that such losses admit degenerate
stationary points where embeddings collapse into a rank-1 subspace, rendering the learned repre-
sentations uninformative. To overcome this limitation, we introduce CLOP, a novel contrastive loss
that promotes clustering of embeddings around a set of orthonormal prototypes, thereby preserving
representational diversity. CLOP naturally extends to semi-supervised and fully-supervised settings,
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making it particularly effective when only a subset of the training data is labeled. Through extensive
experiments on embedding visualization, image classification, and object detection across balanced
and imbalanced datasets, we demonstrate that CLOP consistently outperforms baseline methods,
exhibiting superior robustness and stability under varying learning rates and reduced batch sizes.

Paper Organization We first provide essential background information and discuss recent ad-
vancements in both self-supervised and supervised contrastive learning, as well as analyzing the
dimensional collapse phenomenon associated with contrastive learning methods. Then, we elab-
orate on the motivation behind our approach through simulations and detailed gradient analysis.
Subsequently, we introduce our proposed model, CLOP. Finally, we present extensive experimental
evaluations conducted on image datasets.

RELATED WORK

Contrastive learning has gained prominence in deep learning for its ability to learn meaningful
representations by pulling together similar (positive) pairs and pushing apart dissimilar (negative)
pairs in the embedding space. Positive pairs are generated through techniques like data augmentation,
while negative pairs come from unrelated samples, making contrastive learning particularly effective
in self-supervised tasks like image classification. Pioneering models such as SimCLR Chen et al.
(2020), CMC Tian et al. (2020a), VICReg Bardes et al. (2021), and Barlow Twins Zbontar et al. (2021)
share the objective of minimizing distances between augmented versions of the same input (positive
pairs) and maximizing distances between unrelated inputs (negative pairs). SimCLR maximizes
agreement between augmentations using contrastive loss, while CMC extends this to multi-view
learning Chen et al. (2020); Tian et al. (2020a). VICReg introduces variance-invariance-covariance
regularization without relying on negative samples Bardes et al. (2021), and Barlow Twins reduce
redundancy between different augmentations Zbontar et al. (2021).

Recent innovations have improved contrastive learning across various domains. For instance, methods
like structure-preserving quality enhancement in CBCT images Kang et al. (2023) and false negative
cancellation Huynh et al. (2022) have enhanced image quality and classification accuracy. In video
representation, cross-video cycle-consistency and inter-intra contrastive frameworks Wu & Wang
(2021); Tao et al. (2022) have shown significant gains. Additionally, contrastive learning has advanced
sentiment analysis Xu & Wang (2023), recommendation systems Yang et al. (2022a), and molecular
learning with faulty negative mitigation Wang et al. (2022b). Xiao et al. (2024) introduces GraphACL,
a novel framework for contrastive learning on graphs that captures both homophilic and heterophilic
structures without relying on augmentations.

CONTRASTIVE LOSS

In unsupervised learning, Wu et al. (2018) introduced InfoNCE, a loss function defined as:

LinfoNCE = −
∑
i∈I

log
exp(z⊤i zj(i)/τ)∑
a̸=i exp(z

⊤
i za/τ)

(1)

where zi is the embedding of sample i, j(i) its positive pair, and τ controls the temperature.

Recent refinements focus on (1) component modifications, (2) similarity adjustments, and (3) novel
approaches. Li et al. (2020) use EM with k-means to update centroids and reduce mutual information
loss, while Wang et al. (2022a) add L2 distance to InfoNCE, though both underperform state-of-the-
art (SOTA) techniques. Xiao et al. (2020) reduce noise with augmentations, and Yeh et al. (2022)
improve gradient efficiency with Decoupled Contrastive Learning, though neither surpasses SOTA.
In similarity adjustments, Chuang et al. (2020) propose a debiased loss, and Ge et al. (2023) use
hyperbolic embeddings, but neither outperforms SOTA. Novel methods include min-max InfoNCE
Tian et al. (2020b), Euclidean-based losses Bardes et al. (2021), and dimension-wise cosine similarity
Zbontar et al. (2021), achieving competitive performance without softmax-crossentropy.

SEMI-SUPERVISED CONTRASTIVE LEARNING

Semi-supervised contrastive learning effectively leverages both labeled and unlabeled data to learn
meaningful representations. Zhang et al. (2022) introduced a framework with similarity co-calibration

2
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to mitigate noisy labels by adjusting the similarity between pairs. Inoue & Goto (2020) proposed
Generalized Contrastive Loss (GCL), which unifies supervised and unsupervised learning for speaker
recognition, while Kim et al. (2021) combined contrastive self-supervision with consistency regular-
ization in SelfMatch. Sohn et al. (2020) introduced FixMatch, which combines pseudo-labeling with
consistency regularization. In this approach, weakly augmented samples generate pseudo-labels that
guide strongly augmented versions, ensuring robust semi-supervised learning (SSL) performance.
Yang et al. (2022b) enhanced SSCL by enforcing class-wise consistency in learned representations,
improving robustness to class imbalance and increasing generalization across datasets. Zheng et al.
(2022) proposed SimMatch, a framework that unifies contrastive learning and consistency regular-
ization by optimizing both instance-level alignment and class-level semantic consistency, leading to
improved SSL feature representations. Building on this, Zheng et al. (2023) introduced SimMatch-V2,
refining the balance between contrastive and consistency learning objectives, further enhancing
transferability and performance in semi-supervised settings.

DIMENSIONAL COLLAPSE

For dimensional collapse in contrastive learning, Jing et al. (2021) examine dimensional collapse in
self-supervised learning. They attribute this to strong augmentations distorting features and implicit
regularization driving weights toward low-rank solutions. Similarly, Xue et al. (2023) explore how
simplicity bias leads to class collapse and feature suppression, with models favoring simpler patterns
over complex ones. They suggest increasing embedding dimensionality and designing augmentation
techniques that preserve class-relevant features to counter this bias and promote diverse feature
learning. Fu et al. (2022) emphasize the role of data augmentation and loss design in preventing class
collapse, proposing a class-conditional InfoNCE loss term that uniformly pulls apart individual points
within the same class to enhance class separation. In supervised contrastive learning, Gill et al. (2024)
propose loss function modifications to follow an ETF geometry by selecting prototypes that form
this structure. In graph contrastive learning, Tao et al. (2024) introduce a whitening transformation
to decorrelate feature dimensions, avoiding collapse and enhancing representation capacity. Finally,
Rusak et al. (2022) investigate the preference of contrastive learning for content over style features,
leading to collapse. They propose to leverage adaptive temperature factors in the loss function to
improve feature representation quality.

MOTIVATION

In this section, we analyze the phenomenon of dimensional collapse in contrastive learning. We
first demonstrate that dimensional collapse represents a local stationary point of the InfoNCE
loss by showing that linear embeddings result in a zero gradient (Lemma 1). Subsequently, we
discuss how repulsive force within InfoNCE could induce a shift in the embedding mean through
comparisons between pairs of negative samples, ultimately leading to dimensional collapse. While our
demonstration utilizes the InfoNCE loss, this conclusion generalizes to most current loss functions
relying solely on cosine similarity as their metric, encompassing unsupervised Henaff (2020); Chen
et al. (2020); Cui et al. (2021); Xiao et al. (2020); Yeh et al. (2022); Wang et al. (2022a); Li &
Pimentel-Alarcón (2024), semi-supervised Hu et al. (2021); Shen et al. (2021), and supervised
contrastive learning Khosla et al. (2020); Cui et al. (2021); Peeters & Bizer (2022); Li et al. (2022).

The InfoNCE loss (Eq. (1)) aims to encourage the embeddings to form distinguishable clusters
in high-dimensional space, thereby facilitating classification for downstream models. However, in
Lemma 1, we demonstrate that the worst-case scenario — where all embeddings become identical or
co-linear — also constitutes a local optimum for the InfoNCE loss. This observation suggests that,
from a theoretical perspective, InfoNCE exhibits instability, as both the best and worst solutions can
lead to stationary points.

Lemma 1. Let F : Rm → Rm′
be a family of Contrastive Learning structures, where m and m′

denote the dimensions of the inputs and embeddings, respectively. If a function f ∈ F is trained
using the InfoNCE loss, then there exist infinitely many local stationary points where all embeddings
produced by f are all equal or co-linear.
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(a) No Collapse (b) Mild Collapse (c) Strong Collapse

Figure 1: Simulation with Repulsive Force on 50 simulated points in 50-dimensional space.

The proof of Lemma 1 relies on the observation that the embeddings are only compared against each
other. If all embeddings are either identical or co-linear, the gradient vanishes due to the lack of
angular differences, as well as the normalization process. The full proof is presented in Appendix.

To understand the dynamics of contrastive learning, it is crucial to consider two forces acting on each
embedding: the gravitational force within the same pseudo class and the repulsive force between
different pseudo classes. Contrary to the common belief that the gravitational force is responsible for
inducing collapse, we observe that the overshooting of the repulsive force could be directly related to
the dimensional collapse in contrastive learning.

To better illustrate the repulsive force, we conducted a simulation using 50 randomly generated
embeddings in 50-d space, where positive pairs initially coincide at a single point, reflecting a
scenario where the model has successfully merged augmented variants from the same input source
into one embedding. We subsequently performed gradient descent on these embeddings using the
InfoNCE loss with temperature of 0.1, recording the embedding trajectories throughout training. The
simulations show three observations on No Collapse, Mild Collapse, and Strong Collapse, which
are achieved using learning rates of 0.01, 0.1, and 1. The embedding singular value spectrum and
the first two principal components of these embeddings are visualized in Figure 1. At Figure 1 (a),
the repulsive force inherent to the InfoNCE loss effectively redistributes the embeddings across a
more uniform space, as indicated by the more evenly dispersed singular values across the embedding
dimensions. Conversely, at Figure 1 (c), the embeddings fail to redistribute and instead collapse into
a one-dimensional subspace, corroborating the stationary point described by Lemma 1. Furthermore,
analysis of the first two principal components clearly illustrates a significant shift in the embedding
mean and a reduction in variance throughout the training iterations. This observation indicates that
repulsive force could induce a substantial shift in the embedding mean, consequently accelerating the
collapse process by aligning gradients in similar directions.

In the Appendix, we conducted a theoretical analysis of the gradient descent process using the
InfoNCE loss. Briefly, our analysis reveals that, after performing a single gradient descent step,
the upper bound on the norm of the embedding mean is scaled by the factor, involving minimum
embedding norm before normalization and number of negative samples within the batch.

CLOP: POPULATING EMBEDDING RANK WITH ORTHONORMAL PROTOTYPES

To avoid the issue of embedding collapsing into a rank-1 linear subspace, we introduce a novel
approach that promotes point isolation by adding an additional term to the loss function for contrastive

4
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Table 1: SupCon vs. CLOP under different label usage

learning. Specifically, we initialize a group of orthonormal prototypes. The number of orthonormal
prototypes matches the total number of classes in the dataset. We then maximize the similarity
between the orthonormal prototypes and the labeled samples in the training set.

Formally, let S be the labeled training set containing pairs of embeddings and labels, denoted as
S = {(zi, yi) | i ∈ {1, . . . , |S|}}. The set of prototypes, denoted as C, is defined as C = {c1, . . . , ck},
where k represents the number of classes in the dataset. To generate the prototypes C, we randomly
sample k i.i.d. vectors from an m′-dimensional space, where |zi| = m′. Subsequently, we apply
singular value decomposition (SVD) to obtain the orthonormal basis, denoted as C. This ensures that
each prototype ci is initialized as a unit vector, orthogonal to all other prototypes, at the beginning of
the training process. The CLOP loss is formulated as follows:

LCLOP = LinfoNCE + λ
1

|S|

|S|∑
i=1

(1− s(zi, cyi
)), (2)

where s(·, ·) denotes the similarity metric, typically chosen to be the same as that used in LinfoNCE,
namely cosine similarity.

The primary objective of the CLOP loss is to align all embeddings corresponding to the same class
towards a common target prototype, cyi

. Beyond the “gravitational force" and “repulsive force"
provided by the main contrastive loss, the CLOP loss introduces a supervised “pulling force" that
prevents collapse by pulling labeled embeddings into class-specific orthogonal subspaces. It is
important to note that, without additional constraints, samples outside of set S may still converge to
other unspecified embeddings, potentially collapsing into a rank-1 subspace. However, a fundamental
assumption in contrastive learning is that augmented samples are treated as being drawn from the same
distribution as the original input data from the same class. Thus, the “gravitational force” between
embeddings of the same class should pull unsupervised embeddings toward the target prototypes.

To assess the supervisory efficacy of CLOP, we visualized the CIFAR100’s representations learned
by both CLOP and SupCon under two label regimes (10% and 100%) in Table 1. Embeddings were
projected to two dimensions using t-distributed Stochastic Neighbor Embedding (t-SNE) Van der
Maaten & Hinton (2008), and we also examined each model’s singular value spectrum. Both methods
employ a ResNet-50 backbone with linear projection heads four times wider than standard (denoted
as ResNet-50 (4x)), trained for 500 epochs with a batch size of 256 and an initial learning rate

5
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Methods 10% Labels 50% Labels

Top-1 Top-5 Top-1 Top-5

SupCon 0.595 0.865 0.625 0.884
FixMatch 0.588 0.883 0.611 0.887
SsCL 0.715 0.829 0.746 0.887
CCSSL 0.735 0.841 0.757 0.894
SimMatch 0.719 0.829 0.724 0.866
SimMatch-V2 0.729 0.840 0.729 0.877
CLOP 0.743 0.904 0.76 0.92

Table 2: Top 1 and 5 accuracy on CIFAR-100.

Methods 10% Labels 50% Labels

Top-1 Top-5 Top-1 Top-5

SupCon 0.704 0.874 0.734 0.830
FixMatch 0.720 0.886 0.774 0.911
SsCL 0.721 0.909 0.786 0.899
CCSSL 0.751 0.923 0.771 0.907
SimMatch 0.740 0.930 0.776 0.904
SimMatch-V2 0.748 0.917 0.788 0.916
CLOP 0.791 0.927 0.829 0.949

Table 3: Top 1 and 5 accuracy on ImageNet.

Methods CIFAR-100 ImageNet-200 ImageNet

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

SupCon 0.585 0.858 0.505 0.749 0.672 0.780
FixMatch 0.576 0.840 0.621 0.759 0.708 0.860
SsCL 0.719 0.860 0.585 0.733 0.730 0.862
CCSSL 0.744 0.874 0.631 0.889 0.710 0.865
SimMatch 0.685 0.829 0.527 0.768 0.705 0.855
SimMatchV2 0.689 0.862 0.659 0.846 0.733 0.845
CLOP 0.763 0.918 0.689 0.898 0.799 0.932

Table 4: Top-1 and Top-5 accuracy on CIFAR-100, ImageNet-200, and ImageNet under imbalanced-
class training.

of 1.0. CLOP yields a higher effective rank in its embedding space and produces more compact,
well-separated clusters under both limited (10%) and full (100%) supervision. Quantitatively, linear
fine-tuning on ImageNet confirms this advantage: at 10% label usage, CLOP achieves a top-1 accuracy
of 59.57%, outperforming SupCon’s 55.01% by 4.56%; at 100% label usage, CLOP reaches 82.06%
versus SupCon’s 74.75%, a gain of 7.31%. This experiment is conducted on a single NVIDIA A100
GPU, with each run completing within 4 hours of training.

EXPERIMENT

In this section, we evaluate the performance of CLOP in various learning settings. First, we compare
CLOP against existing semi-supervised contrastive learning methods on image classification tasks.
Furthermore, we show that CLOP consistently outperforms competitors under both balanced and
imbalanced class distributions. Next, we highlight the generalizability of CLOP by presenting its
outstanding transfer learning results on image classification and object detection tasks. Finally, we
conduct extensive ablation studies on key hyperparameters, including learning rate, batch size, λ,
similarity metrics, and augmentation strategies, highlighting CLOP’s robustness to varying learning
rates and its effectiveness in small-batch learning.

SEMI-SUPERVISED IMAGE CLASSIFICATION

For balanced-class training, we utilize the full CIFAR-100 Krizhevsky et al. (2009) and Ima-
geNet Deng et al. (2009) datasets, considering scenarios where either 10% or 50% of labels are
available for contrastive learning. CLOP is implemented with a ResNet-50 (4x) backbone using
the SimCLR loss function. We benchmark CLOP against several state-of-the-art semi-supervised
contrastive learning methods, including SupCon Khosla et al. (2020), FixMatch Sohn et al. (2020),
SsCL Zhang et al. (2022), CCSSL Yang et al. (2022b), SimMatch Zheng et al. (2022), and SimMatch-
V2 Zheng et al. (2023). The classification results for CIFAR-100 and ImageNet are presented in
Table 2 and Table 3, respectively. Our findings indicate that CLOP consistently outperforms all
competing methods across all experimental settings. Notably, on CIFAR-100, CLOP achieves the

6
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Method Food CIFAR10 CIFAR100 SUN397 DTD Caltech-101 Flowers

SimCLR 0.8820 0.9770 0.8590 0.6350 0.7320 0.9210 0.9700
SupCon 0.8723 0.9742 0.8427 0.5804 0.7460 0.9104 0.9600
FixMatch 0.8824 0.9639 0.8553 0.5774 0.7269 0.9123 0.9669
SsCL 0.8546 0.9866 0.8481 0.5800 0.7300 0.9115 0.9574
CCSSL 0.8663 0.9637 0.8352 0.5818 0.7270 0.9029 0.9456
SimMatch 0.8881 0.9759 0.8435 0.6004 0.7306 0.9013 0.9646
SimMatch-V2 0.8568 0.9638 0.8270 0.5886 0.7526 0.9185 0.9613
CLOP (this paper) 0.8792 0.9989 0.8809 0.6267 0.7385 0.9331 0.9718

Table 5: Transfer learning results for classification tasks (pretrained on ImageNet). Numbers are
mean-per-class accuracy for Caltech and Flowers; and top-1 accuracy for all other datasets.

Method Birdsnap Cars Aircraft VOC2007 Pets

SimCLR 0.7590 0.9130 0.8785 0.8410 0.8920
SupCon 0.7515 0.9169 0.8409 0.8517 0.9347
FixMatch 0.7545 0.9004 0.8462 0.8372 0.9515
SsCL 0.7343 0.9089 0.8341 0.8504 0.9288
CCSSL 0.7613 0.9247 0.8528 0.8580 0.9471
SimMatch 0.7562 0.9127 0.8269 0.8393 0.9200
SimMatchV2 0.7516 0.9186 0.8453 0.8546 0.9494
CLOP 0.7794 0.9171 0.8810 0.8646 0.8982

Table 6: Transfer learning results for objects detection task (pretrained on ImageNet). Numbers are
mAP for VOC2007; mean-per-class accuracy for Aircraft and Pets; and top-1 accuracy for Birdsnap.

highest Top-1 accuracy of 0.743 with only 10% of labels and maintains a strong lead at 0.760 with
50% labels, while also significantly improving Top-5 performance. On ImageNet, CLOP achieved
a Top-1 accuracy of 0.791 at 10% label availability and 0.829 at 50%, outperforming the next best
methods by margins of over 4% in some cases.

For imbalanced-class training, we generate class-wise sample ratios by sampling from a uniform
distribution in the range of [0.001, 1], while maintaining all other experimental settings identical to
the balanced-class training setup. The results are presented in Table 4, demonstrating that CLOP
significantly outperforms all benchmark methods.

TRANSFER LEARNING ON IMAGE CLASSIFICATION AND OBJECT DETECTION

To assess CLOP’s generalization capability on unseen datasets, we conduct transfer learning ex-
periments on both image classification and object detection tasks. Specifically, we first pretrain the
ResNet-50 (4x) backbone using various contrastive loss functions on ImageNet with all labels. Subse-
quently, we replace the projection head with either a one-layer prediction head or a two-layer object
detection head with ReLU activation and fine-tune the network on the nature image datasets, including
Food Bossard et al. (2014), CIFAR-10 Krizhevsky et al. (2010), CIFAR-100 Krizhevsky et al. (2009),
SUN397 Xiao et al. (2010), DTD Qu et al. (2023), Caltech-101 Fei-Fei et al. (2004), Flowers Nilsback
& Zisserman (2008), Birdsnap Berg et al. (2014), Cars Yang et al. (2015), Aircraft Maji et al. (2013),
VOC2007 Everingham (2007), Pets Patino et al. (2016). For image classification tasks, we report the
accuracy results in Table 5. Following the standard evaluation metrics in Chen et al. (2020); Khosla
et al. (2020), we present mean-per-class accuracy for Caltech and Flowers, while reporting top-1
accuracy for all other datasets. The results indicate that CLOP generally outperforms competing
methods. Although SimMatch and SimMatch-V2 achieve slightly higher accuracy on the Food and
DTD datasets, the performance gain is less than 2%. In contrast, CLOP surpasses these methods on
the remaining four datasets, with the most significant improvement exceeding 3.5% on CIFAR-100.
For object detection tasks, we report mean average precision (mAP) for VOC2007, mean-per-class
accuracy for Aircraft and Pets, and top-1 accuracy for Birdsnap. The results, presented in Table 6,
demonstrate that CLOP outperforms competing methods on three out of five datasets.
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Statistic Non-Orthonormal Orthonormal
Mean 0.768 0.780
Median 0.762 0.781
Std 0.015 0.009
Lower Quantile 0.760 0.775
Upper Quantile 0.775 0.786

Table 7: Ablation study on the effect of prototype initialization. We compare non-orthonormal and
orthonormal initialization over 10 independent runs on CIFAR-100 under the full label setting. Results
report the distribution statistics of Top-1 classification accuracy.
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Figure 2: Top-1 classification accuracy across different learning rates. The percentage of labels used
for supervised training is indicated in the legend.

ABLATION STUDIES

In this section, we present the experimental results for image classification, conducted with various
batch sizes and learning rates on the CIFAR-100 and ImageNet datasets. For baseline methods, we
implement the InfoNCE Wu et al. (2018) with a supervised linear classifier for semi-supervised
learning and the SupCon Khosla et al. (2020) for fully-supervised learning. All experiments are
performed using the SimCLR Chen et al. (2020) framework with ResNet-50 (4x) He et al. (2016).

Effect of Prototype Initialization. To assess the impact of prototype initialization in our framework,
we conduct an ablation study comparing non-orthonormal prototypes with orthonormal prototypes on
CIFAR-100 under full supervision. As shown in Table 7, initializing prototypes with orthonormal
vectors consistently yields better performance across all statistical measures. Specifically, orthonormal
initialization improves the mean top-1 accuracy from 0.768 to 0.780 and reduces the standard deviation
from 0.015 to 0.009, indicating both improved performance and training stability.

Orthonormal (CLOP) vs ETF prototypes. To ensure a fair comparison with ETF, we also eval-
uate performance using ETF prototypes as an alternative to the orthonormal prototypes. For fully-
supervised learning, we utilize all labels in the training datasets for both SupCon and CLOP. In the
semi-supervised setting, we employ 10% of the labeled data for both linear classifier and CLOP
training. We report top-1 classification accuracies on ImageNet, CIFAR100 and Tiny-ImageNet in
Figure 2 and top-5 accuracies in Appendix using the supervised linear classifier.

CLOP Prevents Collapse with Large Learning Rates. We trained models with learning rates
ranging from 0.1 to 10 on CIFAR-100 and ImageNet for 200 epochs and Tiny-ImageNet for 100
epochs, using a batch size of 1024. The corresponding classification accuracies are presented in
Figure 2 for top-1 and in Appendix for top-5 accuracies. Across both datasets, CLOP consistently
outperforms the baseline methods. Moreover, as demonstrated by Section , excessively large learning
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Figure 3: Top-1 classification accuracy across different batch sizes. The percentage of labels used for
supervised training is indicated in the legend.
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Table 8: Ablation studies on λ, similarity metric for CLOP, and augmentation strategies.

(a) Acc of different λ.

λ Top-1 Top-5

0.1 0.745 0.935
0.5 0.740 0.931
1.0 0.754 0.938
1.5 0.760 0.937

(b) Acc of different similarity metric.

Similarity Metric Top-1 Top-5

Cosine 0.754 0.938
Euclidean 0.749 0.933
Manhattan 0.715 0.899

(c) Acc of augmentation strategies.

Augmentation Top-1 Top-5

AutoAugment 0.625 0.847
SimCLR 0.754 0.938
RandAugment 0.726 0.899

rates can lead to complete collapse, as clearly observed in the baseline methods at a learning rate of
10 on both datasets. However, with the incorporation of CLOP into the loss function, we observe a
significantly smaller performance degradation on both datasets.

CLOP Enables Smaller Batch Sizes. We trained models with batch sizes of 32, 64, 128, 256, 512,
1024, and 2048 on CIFAR-100 and ImageNet for 200 epochs and on Tiny-ImageNet for 100 epochs.
The learning rate was fixed at (0.3× batch size/256) for optimal performance. The corresponding
top-1 classification accuracies are presented in Figure 3 and top-5 accuracies are in Appendix. CLOP
consistently outperformed the baseline methods across all batch sizes. As reported in the original
papers Chen et al. (2020); Khosla et al. (2020), contrastive learning performs optimally when the
batch size exceeds 1024, a finding corroborated by our experiments. However, with the addition of
CLOP, we observe significantly less performance degradation at smaller batch sizes. Remarkably,
CLOP achieved similar accuracy with a batch size of 32 compared to the baseline SupCon with a
batch size of 2048 for CIFAR-100.

Tuning λ. To evaluate the sensitivity of the tuning parameter λ in CLOP, we trained the model
with SupCon loss across different λ values, keeping the batch size fixed at 1024. The classification
accuracy on both CIFAR-100 is reported in Table 8(a). We observe that the performance remains
stable for λ values ranging from 0.1 to 1.5, with λ = 1.0 and λ = 1.5 yielding the best overall
performance.

Choice of Similarity Metric. To evaluate the impact of different similarity functions on Eq. (2),
we trained the same ResNet-50 (4x) architecture on CIFAR-100 using cosine similarity, Euclidean
similarity, and Manhattan similarity. The results, presented in Table 8(b), indicate that cosine similarity,
which aligns with LCL in Eq. (2), achieves the highest performance.

Augmentation Strategies. To evaluate the impact of augmentation strategies on CLOP, we trained the
same ResNet-50 (4x) model on CIFAR-100 with a batch size of 1024. We selected three commonly
used augmentation methods: 1) RandAugment: Augmentation with three operations randomly chosen
from all image processing functions in PyTorch (e.g., padding, resizing, cropping, rotation, color jitter,
Gaussian blur, inversion, contrast adjustment, equalization); 2) AutoAugment using the ImageNet
policy proposed in Cubuk et al. (2018); 3) SimCLR Augmentation Policy from Chen et al. (2020).
The results are shown in Table 8(c), indicate that SimCLR augmentation works best with CLOP.

CONCLUSION AND LIMITATIONS

In this work, we addressed the challenge of dimensional collapse in contrastive learning losses
based solely on cosine similarity. We first demonstrated that such losses admit degenerate stationary
points, where embeddings collapse into a rank-1 subspace and yield uninformative representations.
To mitigate this issue, we introduced CLOP, a novel semi-supervised contrastive loss that aligns
embeddings with orthonormal prototypes, thereby preserving representational diversity. Extensive
experiments on image classification and object detection, under both balanced and imbalanced label
regimes, confirmed that CLOP consistently outperforms strong baselines. Beyond higher accuracy,
CLOP demonstrates robustness to reduced batch sizes and large learning rates, making it practical
for real-world training scenarios. While CLOP assumes a fixed number of well-separated classes
and relies on static prototype initialization, our results highlight its effectiveness as a step toward
more stable and generalizable contrastive learning. Future directions include adaptive prototype
mechanisms and extensions to fine-grained, hierarchical, or evolving label structures.
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PROOF OF LEMMA 1

Proof of Lemma 1. Consider Li as the i-th loss term of LInfoNCE, defined by the following expression:
Li := − logPi

where Pi denotes the probability that i-th embedding choose its positive pair as closest neighbor:

Pi :=
exp(z⊤i zj(i)/τ)

exp(z⊤i zj(i)/τ) +
∑

a/∈{i,j(i)} exp(z
⊤
i za/τ)

As detailed in Yeh et al. (2022), the gradient of Li with respect to zi, zj(i), and za can be derived as
follows:

− ∂Li

∂zi
:= (1− Pi)/τ

zj(i) −
∑

a/∈{i,j(i)}

exp(z⊤i za/τ)∑
b/∈{i,j(i)} exp(z

⊤
i zb/τ)

za


− ∂Li

∂zj(i)
:=

(1− Pi)

τ
zi

− ∂Li

∂za
:= − (1− Pi)

τ

exp(z⊤i za/τ)∑
b/∈{i,j(i)} exp(z

⊤
i zb/τ)

zi

In the standard setup of self-supervised learning, for any sample, there is one positive pair among I
and the remainder are all negative pairs. By aggregating all the gradient respect to a single sample,
we have the gradient of InfoNCE respect to zi:

−∂LInfoNCE

∂zi
:=

(1− Pi) + (1− Pj(i))

τ
zj(i)−

∑
a/∈{i,j(i)}

(1− Pi)

τ

exp(z⊤i za/τ)∑
b/∈{i,j(i)} exp(z

⊤
i zb/τ)

za

−
∑

a/∈{i,j(i)}

(1− Pa)

τ

exp(z⊤i za/τ)∑
b/∈{a,j(a)} exp(z

⊤
a zb/τ)

za

Now, considering the first scenario, where all embeddings equal, that means that zi = zj(i) = za = z∗

for all a ∈ I , the loss terms Pi, Pj(i), and Pa converge to a constant P∗, given by:

Pi = Pj(i) = Pa = − log
1

|I| − 1
:= P∗

Consequently, the gradient of LInfoNCE with respect to zi under this assumption reduces to zero,
aligning with our expectations:

−∂LInfoNCE

∂zi
=

2(1− P∗)

τ
z∗ − 2(|I| − 2)

(1− P∗)

τ

1

|I| − 2
z∗ = 0

We establish the existence of local minima in scenarios where all embeddings are identical. Now, we
consider the second scenario where all embeddings generated reside within the same rank-1 subspace.
Denoting z∗ as their unit basis, we can represent each embedding zi as:

zi = αz∗, α ∈ {−1, 1}, ∀i
The gradient of the loss function LInfoNCE with respect to zi simplifies to:

− ∂L
∂zi

= βzi

Here, β is a scalar that aggregates contributions from all relevant weights.

It is important to note that zi represents the normalized output of the function f , with xi denoting the
original, unnormalized embedding. This implies the following relation:

− ∂L
∂xi

= − ∂L
∂zi

∂zi
∂xi

=
1

∥xi∥2

(
I− xix

⊤
i

∥xi∥22

)
βzi =

β

∥xi∥2

(
zi −

xi

∥xi∥2

)
= 0,

where I represents the identity matrix.
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GRADIENT ANALYSIS OF REPULSIVE FORCE FROM INFONCE LOSS

Recall that

LinfoNCE = −
∑
i∈I

log
exp(z⊤i zj(i)/τ)∑
a̸=i exp(z

⊤
i za/τ)

Assume that the model can successfully merge the positive pair into the same embedding, the loss of
repulsive becomes:

Lrepulsive = −
∑
i∈I

log
exp(1/τ)∑

a̸=i,j(i) exp(z
⊤
i za/τ) + exp(1/τ)

We start by rewriting the loss for a given sample i:

ℓi = − log
exp(1/τ)

exp(1/τ) +
∑

a∈N (i) exp
(
z⊤i za/τ

) ,
where we denote

N (i) := { a : a ̸= i and a ̸= j(i) }.

Define the denominator

Di := exp(1/τ) +
∑

a∈N (i)

exp
(
z⊤i za/τ

)
.

Then
ℓi = log

[
Di

]
− 1

τ
.

Define Pia as the probability that sample i choose sample a as closest neighbor,

Pia :=
exp

(
z⊤i za/τ

)
exp(1/τ) +

∑
a∈N (i) exp

(
z⊤i za/τ

) =
exp

(
z⊤i za/τ

)
Di

Taking the gradient of ℓi with respect to zi,
∂

∂zi
exp

(
z⊤i za/τ

)
=

1

τ
exp

(
z⊤i za/τ

)
za.

Thus, differentiating the log term gives:

∂ℓi
∂zi

=
1

Di

∑
a∈N (i)

1

τ
exp

(
z⊤i za/τ

)
za.

Rewriting in terms of the softmax probabilities,

∂ℓi
∂zi

=
1

τ

∑
a∈N (i)

Pia za,

Taking the gradient of ℓi with respect to za,
∂

∂za
exp

(
z⊤i za/τ

)
=

1

τ
exp

(
z⊤i za/τ

)
zi.

Thus, differentiating the log term gives:

∂ℓi
∂za

=
1

Di

1

τ
exp

(
z⊤i za/τ

)
zi.

Rewriting in terms of the softmax probabilities,

∂ℓi
∂za

=
1

τ
Pia zi.
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Therefore, the gradient of Lrepulsive is:

∂Lrepulsive

∂zi
=

∂ℓi
∂zi

+
∑

a∈N (i)

∂ℓa
∂zi

=
1

τ

∑
a∈N (i)

Pia za +
1

τ

∑
a∈N (i)

Pai za =
1

τ

∑
a∈N (i)

(Pia + Pai) za

Since the probability matrix P is obviously symmetric,

∂Lrepulsive

∂zi
=

2

τ

∑
a∈N (i)

Piaza

Thus, for the gradient of the before the normalization,

∂L
∂xi

=
∂L
∂zi

∂zi
∂xi

=
1

∥xi∥2

(
I− xi(xi)

⊤

∥xi∥22

)
2

τ

∑
a∈N (i)

Piaza =
1

∥xi∥2
(
I− zi(zi)

⊤) 2

τ

∑
a∈N (i)

Piaza

Given the first iteration of points as {x0
i }, then, after the first iteration of descent, the next embeddings

are:

x1
i = x0

i − η
1

∥x0
i ∥2

(
I− z0i (z

0
i )

⊤) 2

τ

∑
a∈N (i)

Pia z
0
a

Thus, the mean of x1
i can be calculated as:

µ1 =
1

N

N∑
i=1

x1
i =

1

N

N∑
i=1

x0
i −

2η

Nτ

N∑
i=1

∑
a∈N (i)

1

∥x0
i ∥2

Pia

(
I− z0i (z

0
i )

⊤) z0a

Since the negative pair relationship is symmetric, ie. a ∈ N (i) ⇐⇒ i ∈ N (a), then

N∑
i=1

∑
a∈N (i)

Pia
1

∥x0
i ∥2

(
I− z0i (z

0
i )

⊤) z0a =

N∑
a=1

∑
i∈N (a)

Pia
1

∥x0
i ∥2

(
I− z0i (z

0
i )

⊤) z0a
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Thus,

µ1 =
1

N

N∑
i=1

x0
i −

2η

Nτ

N∑
a=1

∑
i∈N (a)

Pia
1

∥x0
i ∥2

(
I− z0i (z

0
i )

⊤) z0a
=

1

N

N∑
i=1

x0
i −

2η

Nτ

N∑
i=1

∑
a∈N (i)

Pia

∥x0
a∥2

(
I− z0a(z

0
a)

⊤) z0i
=

1

N

N∑
i=1

x0
i −

2η

Nτ

N∑
i=1

∑
a∈N (i)

Pia

∥x0
a∥2

z0i +
2η

Nτ

N∑
i=1

∑
a∈N (i)

Pia

∥x0
a∥2

z0a(z
0
a)

⊤z0i

=
1

N

N∑
i=1

x0
i −

2η

Nτ

N∑
i=1

∑
a∈N (i)

Pia

∥x0
a∥2

z0i +
2η

Nτ

N∑
i=1

∑
a∈N (i)

Pia

∥x0
i ∥2

z0i (z
0
i )

⊤z0a

=
1

N

N∑
i=1

x0
i −

2η

Nτ

N∑
i=1

∑
a∈N (i)

Pia
1

∥x0
a∥2

z0i +
2η

Nτ

N∑
i=1

∑
a∈N (i)

Pia
(z0i )

⊤z0a
∥x0

i ∥2
z0i

=
1

N

N∑
i=1

x0
i −

2η

Nτ

N∑
i=1

∑
a∈N (i)

Pia

(
1

∥x0
a∥2

− (z0i )
⊤z0a

∥x0
i ∥2

)
1

∥x0
i ∥2

x0
i

=
1

N

N∑
i=1

(1− 2η

τ

)
1

∥x0
i ∥2

∑
a∈N (i)

Pia

(
1

∥x0
a∥2

− (z0i )
⊤z0a

∥x0
i ∥2

)x0
i

=

(
1− 2η

τ

)
1

N

N∑
i=1

 1

∥x0
i ∥2

∑
a∈N (i)

Pia

(
1

∥x0
a∥2

− (z0i )
⊤z0a

∥x0
i ∥2

)x0
i

Since −1 ≤ z⊤i za ≤ 1, Denote

βia :=

 1

∥x0
i ∥2

∑
a∈N (i)

Pia

(
1

∥x0
a∥2

− (z0i )
⊤z0a

∥x0
i ∥2

)
≤ 1

∥x0
i ∥2

∑
a∈N (i)

Pia

(
1

∥x0
a∥2

+
1

∥x0
i ∥2

)
≤ 2

minj ∥x0
j∥22

∑
a∈N (i)

Pia

And we can lowerbound sum of probability by

∑
a∈N (i)

Pia =

∑
a∈N (i) exp

(
(z0i )

⊤(z0a)/τ
)

exp(1/τ) +
∑

a∈N (i) exp
(
(z0i )

⊤(z0a)/τ
) ≤ |N | exp(1/τ)

exp(1/τ) + |N | exp(1/τ)
=

|N |
1 + |N |

Thus, denote σ := minj ∥x0
j∥2, we show that

βia ≤ 2

σ2

|N |
1 + |N |

Therefore,

∥µ1∥2 ≤
∣∣∣∣(1− 2η

τ

)
2

σ2

|N |
1 + |N |

∣∣∣∣ ∥µ0∥2
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If we want to limit the increase of mean, we want the coefficient to be less than 1, which means that

−σ2(1 + |N |)
2|N |

< 1− 2η

τ
<

σ2(1 + |N |)
2|N |

−1− σ2(1 + |N |)
2|N |

< −2η

τ
< −1 +

σ2(1 + |N |)
2|N |

1 +
σ2(1 + |N |)

2|N |
>

2η

τ
> 1− σ2(1 + |N |)

2|N |
τ

2

(
1 +

σ2(1 + |N |)
2|N |

)
> η >

τ

2

(
1− σ2(1 + |N |)

2|N |

)

EXTRA EXPERIMENTS ON CLOP
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Figure 4: Top-5 classification accuracy across different learning rates. The percentage of labels used
for supervised training is indicated in the legend.
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Figure 5: Top-5 classification accuracy across different batch sizes. The percentage of labels used for
supervised training is indicated in the legend.
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