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Abstract

Best-of-N (BoN) sampling with a reward model has been shown to be an effective strategy
for aligning Large Language Models (LLMs) with human preferences at the time of decoding.
BoN sampling is susceptible to a problem known as reward hacking. Since the reward model
is an imperfect proxy for the true objective, an excessive focus on optimizing its value can
lead to a compromise of its performance on the true objective. Previous work proposes Reg-
ularized BoN sampling (RBoN), a BoN sampling with regularization to the objective, and
shows that it outperforms BoN sampling so that it mitigates reward hacking and empirically
(Jinnai et al., 2024). However, Jinnai et al. (2024) introduce RBoN based on a heuristic
and they lack the analysis of why such regularization strategy improves the performance of
BoN sampling. The aim of this study is to analyze the effect of BoN sampling on regular-
ization strategies. Using the regularization strategies corresponds to robust optimization,
which maximizes the worst case over a set of possible perturbations in the proxy reward.
Although the theoretical guarantees are not directly applicable to RBoN, RBoN corresponds
to a practical implementation. This paper proposes an extension of the RBoN framework,
called Stochastic RBoN sampling (SRBoN), which is a theoretically guaranteed approach
to worst-case RBoN in proxy reward. We then perform an empirical evaluation using the
AlpacaFarm and Anthropic’s hh-rlhf datasets to evaluate which factors of the regularization
strategies contribute to the improvement of the true proxy reward. In addition, we also
propose another simple RBoN method, the Sentence Length Regularized BoN, which has a
better performance in the experiment as compared to the previous methods.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities in many NLP tasks related to
natural language understanding and text generation (Stiennon et al., 2020; Ouyang et al., 2022; Touvron
et al., 2023; Dubey et al., 2024; OpenAI et al., 2024). Despite the strengths, LLMs are not always adept at
interpreting a wide range of instructions and can produce undesirable outputs, such as biased, hallucinated,
or toxic responses (Bai et al., 2022; Lin et al., 2022; Touvron et al., 2023; Casper et al., 2023; Guan et al.,
2024). This problem underscores the challenge of language model alignment; ensuring LLMs’ behaviors align
with human objectives and safety considerations (Ziegler et al., 2020; Stiennon et al., 2020; Ouyang et al.,
2022). There is now a rich set of approaches to address this problem (Stiennon et al., 2020; Ouyang et al.,
2022; Rafailov et al., 2023). These papers have shown that training language models with human feedback
can improve their performance. However, training language models is a computationally intensive task. In
other words, improved performance comes at the cost of increased computational resources.

This paper focuses on the Best-of-N (BoN) sampling strategy, a method that involves generating N outputs
from a model and selecting the most preferred output among the N samples. Despite its simplicity and the
fact that it does not require an additional training phase, BoN sampling has been shown to be surprisingly
effective in practice (Stiennon et al., 2020; Nakano et al., 2022). However, the BoN strategy does not scale
with the number of samples N due to the reward hacking problem (Amodei et al., 2016; Ziegler et al., 2020;
Stiennon et al., 2020; Skalse et al., 2022; Gao et al., 2023). Reward hacking is a behavior that satisfies the
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given objective without achieving the intended result. It is caused by the misspecification of the preference
model used by the BoN to select the most preferred output (Pan et al., 2022; Lambert & Calandra, 2024).

Previous work to mitigate the reward hacking problem has proposed Regularized Best-of-N sampling (RBoN),
BoN strategy with the addition of a regularization term to the objective (Jinnai et al., 2024). This paper
shows that the RBoN strategy is effective compared to BoN sampling in various experiments. However, why
such a regularization strategy is effective against reward uncertainty is unclear in the previous work.

In this paper, we propose Stochastic RBoN sampling (SRBoN), which adds a regularization term similar to
RBoN. We then draw a connection between the Reinforcement Learning (RL) problems (Sutton & Barto,
2018) and the BoN strategies: BoN sampling corresponds to solving the RL problem, and SRBoN sampling
strategies correspond to solving the Regularized Reinforcement Learning (RRL) problem (Neu et al., 2017;
Geist et al., 2019; Yang et al., 2019; Derman et al., 2021).

First, we exploit the knowledge of RRL. Some work has shown that regularization terms in probability
distributions over outputs provide robustness to reward perturbations (Ortega & Lee, 2014; Husain et al.,
2021; Derman et al., 2021; Eysenbach & Levine, 2022; Pan et al., 2022; Derman et al., 2021). SRBoN can
also apply this analysis to RRL. Its insights provide an answer to why reward hacking can be mitigated:
when a regularization term is added to the BoN sampling, it also becomes an adversarial perturbation to
the reward.

We then evaluate the effectiveness of our approach against alternative decoder methods in a series of ex-
periments, with the goal of determining the relative resilience of each method to potential exploitation by
reward hacking. The results show that our proposed method outperforms many existing approaches in a
variety of settings. In other words, a theoretically guaranteed, effective algorithm is proposed.

In addition, while RBoN consists of complex formula structures, we proposed a simpler RBoN, Sentence
Length Regularized BoN that, despite its simple implementation, shows comparable or even better perfor-
mance in experiments with the methods of previous studies.

2 Background

In this paper, we formalize the problem of decoding time alignment as Regularized Markov Decision Processes
(MDPs) problem (Neu et al., 2017; Geist et al., 2019; Yang et al., 2019; Derman et al., 2021). For brevity,
we refer to reinforcement learning within Regularized MDPs as Regularized Reinforcement Learning (RRL)
throughout this paper. In Section 2.1, we describe the Reinforcement Learning (RL) problem and the RRL
problem. Then, we describe two sampling algorithms used for decoding time alignment, Best-of-N (BoN)
sampling in Section 2.2, and the Regularized Best-of-N sampling (RBoN) in Section 2.3.

2.1 Adversarial Interpretation in Regularized Reinforcement Learning

We consider the problem of selecting an output y from a set of outputs Yref ⊆ Y (e.g., response text from
the system) given an input x ∈ X (e.g., input prompt by a user), where the objective is to select the best
output according to a reward function R: X ×Yref → R. Let ∆(Y) denote the set of probability distributions
over a set Y. We define the goal of the Reinforcement Learning (RL) problem as finding the best policy
π : X → ∆(Yref) that maximizes the expected reward for x:

arg max
π∈Π

fRL(π) = arg max
π∈Π

∑
y∈Yref

π(y | x)R(x, y)

= arg max
π∈Π

Ey∼π(·|x)[R(x, y)]
(1)

where Π is a set of all possible policies. Note that there exists a deterministic policy that maximizes fRL
(Sutton & Barto, 2018) and this formulation can be seen as a contextual bandit problem. Specifically, the
policy observes a context x, chooses an output y based on that context, and receives a reward R(x, y).
Importantly, we do not use sequential decision operations or consider state transitions. Each decision is
made independently based on the current context x.
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The underlying assumption of the RL problem is that the reward model R is correctly defined and observable.
That is, we consider the solution that maximizes the expected reward to be the optimal solution. However,
real-world applications often suffer from the reward misspecification problem – the reward model observable
to the agent is only a proxy for the true underlying reward of the problem (Ortega & Lee, 2014; Husain
et al., 2021; Derman et al., 2021; Eysenbach & Levine, 2022; Pan et al., 2022; Derman et al., 2021). Prior
work has investigated strategies to optimize under the uncertainty in the observed reward. In contrast to
the RL problem, Regularized Reinforcement Learning (RRL) incorporates regularization terms to achieve
a solution that is robust to the reward misspecification (Neu et al., 2017; Geist et al., 2019; Yang et al.,
2019; Derman et al., 2021). The objective of the RRL problem is to find the best policy π : X → ∆(Yref)
that maximizes the reward with an additional regularization function Ω(π) : ∆(Yref) → R ∪ {+∞}. Let
fΩ

RRL(π) := Ey∼π(·|x)[R(x, y)] − Ω(π) be the objective function of RRL problem with Ω. Then, we define the
following as the optimal solution to the RRL problem:

arg max
π∈Π

fΩ
RRL(π) = arg max

π∈Π
Ey∼π(·|x)[R(x, y)] − Ω(π). (2)

Note that, unlike the RL problem, there may not exist an optimal policy that is deterministic for the RRL
problem (Geist et al., 2019).

Brekelmans et al. (2022) uses Legendre–Fenchel transformation (Touchette, 2005) to show that the RRL
problem can be viewed as a variant of the RL problem with an adversarial agent adding perturbations to
the reward ∆R : X × Yref → R if the regularization term Ω is convex and lower semi-continuous function
(Boyd & Vandenberghe, 2004):

arg max
π∈Π

fΩ
RRL(π) = arg max

π∈Π
min

∆R∈R∆
Ey∼π(·|x)[R(x, y) − ∆R(x, y)] + Ω∗(∆R), (3)

where Ω∗ ∈ RX ×Yref is the conjugate function of Ω (Boyd & Vandenberghe, 2004), and R∆ :={
∆R ∈ RX ×Yref | FΩ(∆R) ≤ 0

}
, where FΩ is a function or operator dependent to Ω that imposes a con-

straint or condition on the values of ∆R.

Eq. (3) shows that the problem of maximizing fRRL can be reformulated as the max-min problem and
the regularizer Ω is effectively an adversarial reward perturbation that forces us to optimize the worst case
performance (Derman et al., 2021).

2.2 Best-of-N (BoN) Sampling

BoN sampling has emerged as an effective method for preference optimization in LLMs (Stiennon et al.,
2020; Nakano et al., 2022). BoN sampling has several advantages over preference learning methods. First, it
is straightforward and does not require additional training in the language model. Although learning-based
alignment methods require retraining the LLMs whenever human preferences are updated, BoN sampling can
be applied immediately, requiring only an update of the reward model. This is particularly advantageous since
training LLMs is the most resource-intensive process. Second, BoN sampling is an effective strategy in its own
right, with numerous studies demonstrating that it can outperform learning-based adaptation methods (Gao
et al., 2023). Recent literature has expanded our understanding of BoN sampling. In particular, Beirami
et al. (2024) conducted an analysis comparing the policies selected by BoN sampling with the base policies
used for sample generation. In addition, Gui et al. (2024) showed that BoN sampling achieves an optimal
balance between win rate and KL divergence when aligning large language models to human preferences.

BoN sampling has similarities to the objective function used in RL (e.g., the response with the highest reward
score, determined by a proxy reward model R(x, y), is selected). The objective function of BoN is given by:

yBoN(x) := arg max
y∈Yref

R(x, y).

We also mention that the objective function of BoN sampling is equal to the objective function of the
(unregularized) RL problem (Eq. (1)):
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yBoN(x) : = arg max
y∈Yref

R(x, y)

= arg max
y∈Yref

max
πy∈Πdet

Ey∼πy
[R(x, y)]

= arg max
y∈Yref

max
πy

fRL(πy).

(4)

where Πdet is a set of deterministic policies and πy is a deterministic policy that selects y given x with a
probability of 1.

2.3 Regularized Best-of-N Sampling (RBoN)

Although BoN sampling is shown to be effective, it is prone to the reward hacking problem (Amodei et al.,
2016; Ziegler et al., 2020; Stiennon et al., 2020; Skalse et al., 2022; Gao et al., 2023). The reward hacking
problem is a phenomenon where the decision to optimize the proxy reward is made without considering its
potential misspecification, resulting in worse performance on the actual reward objective. Dubois et al. (2023)
showed that with 25% label noise, which is the amount of disagreement observed in real-world preference
annotations (Stiennon et al., 2020; Ouyang et al., 2022), BoN sampling degrades performance with N greater
than 16 (Figures 12 and 13 in Dubois et al. 2023).

Regularized Best-of-N sampling (RBoN) is proposed to mitigate the reward hacking problem for BoN sam-
pling (Jinnai et al., 2024). Jinnai et al. (2024) presented two variants of RBoN: using the KL divergence as
a regularizer (RBoNKL; Section 2.3.1) and using the Wasserstein Distance as a regularizer (RBoNWD; Sec-
tion 2.3.2). In the following, we describe the two variants of RBoN and draw its connection to the objective
function of RRL (Eq. (2)).

2.3.1 KL divergence Regularized BoN Sampling (RBoNKL)

The objective function of RBoNKL (KL divergence Regularized BoN Sampling) is given by:

yKLBoN(x) = arg max
y∈Yref

R(x, y) − βDKL [πy(· | x)∥πref(· | x)] ,

= arg max
y∈Yref

max
πy∈Πdet

fKL
RRL(πy).

where β is a regularization parameter, reference policy πref: X → ∆(Yref), and DKL denotes the KL
divergence.

By incorporating the KL divergence as a regularization term in the objective function, RBoNKL encourages
the learned policy to be close to the reference policy πref. A higher value of β emphasizes the regularization
term, encouraging the learned policy to be closer to the reference policy, while a lower value of β prioritizes
maximizing the reward function.

2.3.2 Wasserstein Distance Regularized BoN Sampling (RBoNWD)

The objective function of RBoNWD (Wasserstein Distance Regularized BoN Sampling) is defined as follows:

yWDBoN(x) = arg max
y∈Yref

R(x, y) − βWD [πy(· | x)∥πref (· | x)] ,

= arg max
y∈Yref

max
πy∈Πdet

fWD
RRL(πy).

where WD denotes 1-Wasserstein Distance.

The WD (Wang, 2012) is defined as:

WD[ν∥µ] = inf
γ∈Γ(ν,µ)

∑
(i,j)∈N×N

γij Cij , (5)

4



Under review as submission to TMLR

where N : the total number of samples, consisting of the set {y1, y2, . . . , yN }, ν, µ ∈ ∆(N): probability
measure on the aforementioned sets (νi, µi refer to the probability value ν(yi), µ(yi)), C: N × N → R a cost
function measuring the distance between two outputs (e.g. Cij refers to the amount to be transported from
place yi to palace yj), and Γ(ν, µ) denotes the set of all joint distributions γ whose marginals are ν and µ.
The constraints on γ are given by: ∑

j∈n

γij = νi, ∀i ∈ n,

∑
i∈n

γij = µj , ∀j ∈ n,

γij ≥ 0, ∀i, j ∈ n.

The WD, also known as the Earth Mover’s Distance (EMD), is a metric used to quantify the dissimilarity
between two probability distributions. Intuitively, it measures the minimum cost required to transform one
distribution into the other. This cost is conceptualized as the amount of probability mass that must be
moved multiplied by the distance that would be moved. The concept has been used in NLP to measure the
dissimilarity of texts (Kusner et al., 2015; Zhao et al., 2019).

The exact computation of WD [πy(· | x)∥πref (· | x)] is intractable due to the enormous size of the output
space. To address this computational challenge, prior work (Jinnai et al., 2024) has employed sample-based
approximation techniques. Let π̂ref represent the empirical distribution computed using a set of samples
Yref. This distribution is defined as: π̂ref(y | x) = 1

N

∑
y′∈Yref

I (y = y′) where N is the total number of
samples in Yref. The objective function can then be approximated as follows:

yWDBoN(x) = arg max
y∈Yref

R(x, y) − βWD [πy(· | x)∥π̂ref (· | x)] .

For practical implementation aspects, the WD term for Jinnai et al. (2024) is computed as follows:

WD [πy(· | x)∥π̂ref(· | x)] =
∑

y′∈Yref

1
N

C (y, y′) , (6)

The cosine distance is used as C to measure the distance between the outputs (Reimers & Gurevych, 2019).

C (y, y′) = 1 − cos (emb(y), emb (y′)) , (7)

where emb(y) and emb (y′) represent the embeddings of output y and y′, respectively.

3 Stochastic RBoN (SRBoN)

We propose the stochastic version of RBoN, Stochastic RBoNKL (Section 3.1) and Stochastic RBoNWD
(Section 3.2). These novel algorithms, while similar to the original RBoN (deterministic version), allow for
the optimal policy π to a probabilistic output distribution. By relaxing the deterministic constraint, we
can apply theoretical tools that were previously inaccessible. Our approach focuses on the analysis of this
stochastic version, aiming to provide theoretical results that shed light on the underlying mechanisms of
RBoN’s effectiveness.

3.1 Stochastic RBoNKL (SRBoNKL)

First, consider a stochastic version of RBoNKL. The policy of SRBoNKL is given by:

πSRBoNKL(x) = arg max
π∈Π

Ey∼π(·|x)[R(x, y)] − βDKL [π(· | x)∥πref(· | x)]

= arg max
π∈Π

fKL
RRL(π).

(8)

We define SRBoNKL as a method to sample a response y that follows the probability distribution of πSRBoNKL :

ySRBoNKL(x) ∼ πSRBoNKL(x). (9)

In Section 4 we evaluate the performance of this stochastic text generation algorithm defined by Eq. (9).
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3.1.1 Theoretical Guarantee of SRBoNKL

By relaxing the deterministic policy constraint of RBoNKL, SRBoNKL follows the formulation of the RRL
with adversarial perturbations studied by Brekelmans et al. (2022). As such, the computation of SRBoNKL
can be transformed into a max-min problem using Legendre-Fenchel transformation (Touchette, 2005) as in
Eq. (3). In this way, SRBoNKL has the following theoretical guarantee proven by Brekelmans et al. (2022):
Theorem 3.1. (Brekelmans et al. (2022), Proposition 1) The problem of maximizing fKL

RRL(π) can be
interpreted as a robust optimization problem with an adversarial perturbation ∆R:

arg max
π∈Π

fKL
RRL(π) = arg max

π∈Π
min

∆R∈R∆
Ey∼π(·|x)[R(x, y) − ∆R(x, y)], (10)

where the feasible set of reward perturbations R∆ available to the adversary is bounded:

R∆ :=
{

∆R ∈ RX ×Yref |
∑
Yref

πref (y | x) exp(β−1∆R(x, y)) ≤ 1
}

(11)

The theorem shows that SRBoNKL is an algorithm that optimizes the worst-case performance under the
assumption that the error between the true reward and the given proxy reward model is guaranteed to be
within R∆ (Eq. (11)).

Let R′ be a set of possible reward models under the reward perturbations: R′ := {R − ∆R | ∆R ∈ R∆}.
Let fKL

RRL(π; R) be the objective of the policy given a (proxy) reward model R. Then,

arg max
π∈Π

fKL
RRL(π; R) = arg max

π∈Π
min

∆R∈R∆
Ey∼π(·|x)[R(x, y) − ∆R(x, y)]

= arg max
π∈Π

min
R′∈R′

Ey∼π(·|x)[R′(x, y)]

= arg max
π∈Π

min
R′∈R′

fKL
RRL(π; R′). (12)

Thus, SRBoNKL is a robust optimization of the policy for a set of possible reward models in R′. In other
words, it assumes that the true payoff model is in R∆ and optimizes for the worst case.

The theorem is derived by translating the proposition proved by Brekelmans et al. (2022) for the generic
RRL problems to the text generation scenario. The contribution of our work is to show the relation of their
theoretical result to the RBoN sampling algorithm in LLMs alignment.

3.2 Stochastic RBoNWD (SRBoNWD)

We now consider an optimization problem over a space of probability functions, to derive an optimal proba-
bilistic policy π with the Wasserstein distance as the regularization term. The objective function of RBoNSWD
is the following:

πSRBoNWD(x) = arg max
π∈Π

Ey∼π(·|x)[R(x, y)] − βWD[πref(· | x)∥π(· | x)]

= arg max
π∈Π

fWD
RRL(π).

(13)

3.2.1 Theoretical Guarantee of SRBoNWD

Similar to SRBoNKL, SRBoNWD can also be reformulated as a max-min problem, and thus we can show
that it optimizes the worst-case performance under certain constrain:
Theorem 3.2. The problem of maximizing fWD

RRL(π) can be interpreted as a robust optimization problem
with an adversarial perturbation ∆R:

arg max
π∈Π

fWD
RRL(π) = arg max

π∈Π
min

∆R∈R∆
Ey∼π(·|x)[R(x, y) − β∆R(x, y)] + β

∑
y∈Yref

πref (y | x)∆R(x, y) (14)
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where the feasible set of reward perturbations R∆ available to the adversary is bounded:

R∆ :=
{

∆R ∈ RX ×Yref | |∆R(x, y) − ∆R (x, y′)| ≤ C (y, y′) ∀y, y′ ∈ Yref
}

, (15)

The proof is provided in Appendix A.

This expression represents an optimization problem with strategies π and perturbation ∆R. The goal is to
find the optimal strategy π∗ under the modified reward R′ (= R − β∆R).

The intuition behind the second term
∑

y∈Yref πref (y | x)∆R(x, y) can be understood by examining ∆R
constraints (Eq. (15)). While this feasible set does not explicitly constrain ∆R to avoid large values, the
second term, min∆R Eπ[R(x, y) − β∆R(x, y)], helps to avoid such huge values. Additionally, it reveals a
mechanism that inherently limits the magnitude of perturbations for actions that have high probability
under πref and this is consistent with the WD distance intuition.

We have analyzed the role of the regularization term for BoN sampling in the previous section 3.1.1 and
section 3.2.1. Since the previous study (Jinnai et al., 2024) imposed deterministic constraints, the results are
not exactly the same, but we consider that the analysis performed here helps to explain why the previous
study performed better.

Note The feasible set of reward perturbations R∆ is bounded to be a Lipschitz continuous function with
respect to a cost function C, which generally takes a non-negative value in applications. The perturbation
behavior corresponds to the Lipschitz continuity condition, which has traditionally been well-treated in the
RL community. For example, previous studies such as Rachelson & Lagoudakis (2010); Pirotta et al. (2015)
considered continuous state and action spaces in RL and derived Lipschitz continuity for reward functions
to aid their analysis.

4 Experimental Evaluation

We evaluate the performance of SRBoN compared to other text generation approaches. The datasets and
models used in the experiments are all publicly available (Appendix H).

Datasets. We conduct experiments using two datasets: the AlpacaFarm dataset (Dubois et al., 2023) and
Anthropic’s hh-rlhf datasets (HH) dataset, which we use the Harmlessness and Helpfulness subsets (Bai
et al., 2022). For the AlpacaFarm dataset, we use the first 1000 entries of the train split (alpaca human
preference) as the development set and the 805 entries of the evaluation split (alpaca farm evaluation) for
evaluation. For Anthropic’s datasets, we separately conduct experiments on the helpful-base (Helpfulness)
and harmless-base (Harmlessness). For each dataset, we use the first 1000 entries of the train split as the
development set and the first 1000 entries of the evaluation split for evaluation.

Language Model, Reward Model, and Embedding Model. We employ Mistral 7B SFT β (Jiang
et al., 2023a) as the language models. We set the maximum entry length and the maximum output length to
be 256 tokens. We sample response texts using nucleus sampling (Holtzman et al., 2020) with temperature
set to 1.0 and top-p set to 0.9. For each entry, in the AlpacaFarm dataset and Anthropic’s datasets, 128
responses are generated using Mistral 7B SFT β.

To evaluate the performance of the algorithms under different preferences, we use OASST (reward-model-
deberta-v3-large-v2), SHP-Large (SteamSHP-flan-t5-large), SHP-XL (SteamSHP-flan-t5-xl), PairRM, RM-
Mistral-7B and Eurus-RM-7b (Köpf et al., 2023; Ethayarajh et al., 2022; Jiang et al., 2023b; Dong et al.,
2023; Yuan et al., 2024) as reward models. For the text embedding model we use all-mpnet-base-v2 (Song
et al., 2020), a sentence transformer model (Reimers & Gurevych, 2019) shown to be effective in various
sentence embedding and semantic search tasks.

Baselines. The list of text generation methods we evaluate is present in Table 1. The baseline methods
include random sampling (nucleus sampling; Holtzman et al. 2020), Best-of-N (BoN) sampling, Minimum
Bayes Risk (MBR) decoding, and RBoNL, which we describe in the following.
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Table 1: Description of the text generation algorithms evaluated in the experiments. A checkmark (✓)
indicates that the method uses the specified function, while a blank space means that it does not.

Method Reward
Function

Similarity
Function Description

Random sampling Use an output that is randomly sampled from
the reference model.

Best-of-N (BoN)
(Stiennon et al.,

2020)
✓

Generate N outputs, evaluate with reward
function, select the best.

MBR (Eikema &
Aziz, 2022) ✓

Generate N outputs, evaluate with expected
utility function, select the best. (Details in
section 4)

RBoNKL (Jinnai
et al., 2024) ✓

Maximize the mixture of the reward function
and KL divergence with a constraint that the
resulting policy is deterministic.

RBoNWD (Jinnai
et al., 2024) ✓ ✓

Maximize the mixture of the reward function
and WD distance with a constraint that the
resulting policy is deterministic.

SRBoNKL
(Section 3.1) ✓

Maximize the mixture of the reward function
and KL divergence.

SRBoNWD
(Section 3.2) ✓ ✓

Maximize the mixture of the reward function
and WD distance.

RBoNL
(Section 4) ✓

Consider both the reward function and the to-
ken length of the sentence. (Details in sec-
tion 4 and Appendix G)

Minimum Bayes Risk (MBR) decoding (Kumar & Byrne, 2002; 2004; Eikema & Aziz, 2022) is a text
generation strategy that selects an output from N outputs that maximizes the expected utility (Berger,
1985). Let a utility function u(h, y) quantify the benefit of choosing h ∈ Yref if y is the correct output.
Then, MBR decoding is defined as follows:

yMBR(x) = arg max
h∈Yref

∑
y∈Yref

1
N

u (h, y) . (16)

We include MBR decoding as one of the baselines because it has been shown to be effective in a variety of
text generation tasks (Suzgun et al., 2023; Bertsch et al., 2023; Li et al., 2024; Heineman et al., 2024). We
follow the implementation of Jinnai et al. (2024) and use the cosine similarity of the sentence embedding
as the utility function. We use the same embedding model as the RBoNWD, all-mpnet-base-v2. Note that
MBR corresponds to RBoNWD with u(h, y) = 1 − C(h, y) with no reward function or β → +∞ (Eq. (6))
(Jinnai et al., 2024).

As an additional evaluation method, we propose Sentence Length Regularized BoN (RBoNL), a simple
baseline that adjusts the output token length to the target reward model. In RBoNKL and SRBoNKL, πref
was used for regularization. However, we have observed a bias in language models with respect to sentence
length, namely that these models tend to produce shorter sentences with higher probability (Appendix B).
To this end, we propose a simple implementation of RBoN that regularizes the generation probability of
the sequence token length instead of the generation probability of each sequence. The objective function of
RBoNL is given by:

yRBoNL(x) = arg max
y∈Yref

R(x, y) − β

|y|
, (17)

where β is a regularization parameter and |y| denotes the sequence length (i.e., the number of tokens).
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The rationale for this particular form of the regularization term and the experimental details of this approach
are described in Appendix G.

4.1 Evaluation of the Algorithms

Setup. We compare the 7 methods using win rates vs. BoN sampling on the evaluation splits of the
datasets. Since the RBoN method has a hyperparameter β, we first find the optimal β∗ on the train splits.
Hyperparameter β range is {1.0 × 10−4, 2.0 × 10−4, 5.0 × 10−4,1.0 × 10−3,..., 2.0 × 101}. We first find the
optimal beta value β∗ in the train split, then we use the optimal values in the development split for the
evaluation split. In this experiment, we use OASST, SHP-Large, SHP-XL, PairRM, and RM-Mistral-7B as
proxy reward models. As as the gold reward model, we use Eurus-RM-7B to evaluate the performance of the
algorithms. We evaluate the performance of the algorithms as the win rate against BoN sampling according
to the reward score of the gold reward model (we count ties as 0.5 wins). We use Eurus-RM-7B as the gold
reward model because it is reproducible as it is open source and has been shown to have a high correlation
with human preference in RewardBench (Lambert et al., 2024b).

Results. Table 2 reveals several noteworthy results for the AlpacaFarm, Harmlessness, and Helpfulness
datasets and the optimal beta β∗ is Table 4. The win rate result shows that higher Spearman rank correlation
values (Table 3) correspond to better BoN sampling accuracy. This observation is intuitive.

Table 2 shows that the win rate of SRBoNKL is inferior to the deterministic version RBoNKL. While
SRBoNKL is proposed as a theoretically robust algorithm (section 3.2.1), its performance in our experiments
did not fully meet expectations. One possible factor contributing to this discrepancy could be related to the
perturbation range of ∆R. In our experimental setup, it is plausible that the actual perturbations of ∆R
may have exceeded the assumed theoretical limits.

Other reasons for suboptimal performance, applicable to both deterministic and stochastic versions, concern
the relationship between the reference policy πref and the reward model. If the correlation between πref and
the reward model is weak, the regularization effect may not contribute positively to the performance of the
algorithm (Appendix B).

SRBoNWD shows superior performance across several settings and achieves comparable performance to
RBoNWD. This robust performance is remarkable given the low positive correlation between the reference
policy πref and the reward model.

A plausible explanation for this effectiveness, especially in contrast to SRBoNKL, is the constraint on the
reward perturbation ∆R in SRBoNWD. Unlike SRBoNKL, the constraint on ∆R in SRBoNWD is independent
of πref , which mitigates low performance when there is no correlation between the reward model and πref .

Despite its simple implementation, RBoNL consistently outperformed BoN sampling, achieving a higher win
rate on almost all tasks and models with no instances of underperformance. A detailed discussion of RBoNL
is presented in Appendix G.

4.2 RBoN Sensitiveness of Parameters

Setup. In this section, we evaluate the generalization performance of the model using β. values {1.0×10−4,
2.0 × 10−4, 5.0 × 10−4,1.0 × 10−3,..., 2.0 × 101} to the evaluation splits. We also use several models as proxy
reward models, including OASST, SHP-Large, SHP-XL, PairRM, and RM-Mistral-7B. As a gold reward
model, we use Eurus-RM-7B to evaluate the performance of the proxy models. The results are visualized as
a plot showing the win rates of each method compared to BoN sampling on the evaluation splits. We assign
1 point for a win and 0.5 points for a tie.

Results The performance result of RBoN method in AlpacaFarm is illustrated in Figures 1. This result
reveals that the optimal parameters for the RBoNWD and SRBoNWD method vary between different models
and reveals the performance of SRBoNWD across various problem settings, as the value of the regularization
parameter β increases, we observe a degradation performance. Intuitively, upon examining the adversarial
formulation of SRBoNWD, we can infer that as the regularization parameter β increases, the magnitude of

9
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Table 2: The win rate of various methods against BoN sampling.

Method OASST SHP-Large SHP-XL PairRM RM-Mistral-7B

AlpacaFarm

BoN 50.0 50.0 50.0 50.0 50.0
MBR 36.0 42.8 40.8 39.1 13.0
Random 20.5 30.3 29.4 27.1 3.0
RBoNWD 50.6 50.2 49.0 50.7 49.9
RBoNKL 47.7 26.4 26.2 50.0 48.6
RBoNL 52.0 50.3 50.2 50.1 50.8
SRBoNWD 50.1 50.6 49.5 50.0 50.1
SRBoNKL 12.6 20.9 18.7 28.0 4.7

OASST SHP-Large SHP-XL PairRM RM-Mistral-7B

Harmlessness

BoN 50.0 50.0 50.0 50.0 50.0
MBR 40.8 57.4 50.7 42.7 14.8
Random 26.7 52.7 46.3 28.0 7.1
RBoNWD 52.1 62.2 57.1 50.0 49.9
RBoNKL 48.2 46.9 40.4 50.0 47.4
RBoNL 52.2 54.8 54.2 50.0 51.6
SRBoNWD 49.7 51.2 49.8 50.0 49.9
SRBoNKL 20.5 42.3 37.1 30.4 5.5

OASST SHP-Large SHP-XL PairRM RM-Mistral-7B

Helpfulness

BoN 50.0 50.0 50.0 50.0 50.0
MBR 41.4 39.2 33.2 40.0 6.1
Random 23.6 23.7 15.1 23.3 0.8
RBoNWD 52.5 52.4 50.1 50.1 49.9
RBoNKL 44.9 19.9 13.9 50.0 50.0
RBoNL 52.7 49.9 50.8 50.0 50.2
SRBoNWD 50.4 49.5 49.6 50.0 50.0
SRBoNKL 13.4 18.5 11.8 24.3 1.4

Table 3: Spearman’s rank correlation between Eurus-RM-7B and each proxy reward. The comprehensive
Spearman’s rank correlation results for all the aforementioned analyses are presented in Appendix D.

Dataset OASST SHP-Large SHP-XL PairRM RM-Mistral-7B

AlpacaFarm 0.39 0.29 0.35 0.33 0.62

Harmlessness 0.37 0.09 0.14 0.36 0.60

Helpfulness 0.39 0.38 0.50 0.34 0.75

potential perturbations ∆R also increases. Furthermore, as evidenced in Table 4, the optimal β value for
SRBoNWD is typically smaller than that for RBoNWD.

This result shows that SRBoNKL consistently underperforms within the β range examined in our experiments.
In particular, as shown in Table 4, the optimal regularization parameter β∗ for SRBoNKL is often found to
be β∗ = 20 across different problem settings. This observation leads to an intriguing hypothesis, that the
performance of SRBoNKL could potentially improve with higher values of β.

The performance result of RBoNL demonstrates superior performance across a wide range of β values,
exhibiting performance characteristics comparable to RBoNWD. Notably, this robust performance across
varying β values indicates that RBoNL exhibits low sensitivity to changes in the regularization parameter.

10
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Table 4: Optimal beta β∗ in the train split

Method OASST SHP-Large SHP-XL PairRM RM-Mistral-7B

AlpacaFarm

RBoNWD 20 0.5 0.5 20 0.1
RBoNKL 0.0001 0.0001 0.0001 0.0001 0.0001
RBoNL 20 0.5 0.2 20 15.0
SRBoNWD 0.5 0.0002 0.0001 0.0001 1.0
SRBoNKL 20 0.05 0.05 20 20

Harmlessness

RBoNWD 20 1.0 1.0 0.0001 5.0
RBoNKL 0.0001 0.0001 0.0001 0.0001 0.0001
RBoNL 20 5.0 5.0 0.0001 20
SRBoNWD 0.05 0.0001 0.0001 0.0001 0.02
SRBoNKL 20 0.05 20 20 20

Helpfulness

RBoNWD 15.0 0.05 0.1 20 0.5
RBoNKL 0.0001 0.0001 0.0001 0.0001 0.0001
RBoNL 20 0.02 0.2 5.0 20
SRBoNWD 0.5 0.001 0.005 5.0 0.0002
SRBoNKL 20 0.05 20 20 20
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Figure 1: Evaluation of RBoN sensitiveness on the AlpacaFarm dataset with varying parameter β. We
use proxy reward models, OASST, SHP-Large, SHP-XL, PairRM, and RM-Mistral-7B. As the gold reward
model, we utilize Eurus-RM-7B.

The results for Harmlessness and Helpfulness datasets are presented in Appendix C.
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5 Related Work

Robust MDPs Several studies have investigated RL considering the worst-case scenario for rewards.
Ortega & Lee (2014) considers only a single-step analysis for the reward robust problem. Husain et al.
(2021) proposes a deep RL algorithm related to Q learning for the reward robust problem. Derman et al.
(2021) considers both a reward function and the transition probability as unknown. The policy regularization
is considered a perturbation of the rewards, while the transition probability perturbations address the worst-
case scenario with respect to the associated set of value functions. They define specific uncertainty sets and
conduct thorough experiments. Eysenbach & Levine (2022) shows that incorporating the policy’s Shannon
entropy into the reinforcement learning objective function represents the worst-case scenario for a given
uncertainty set of rewards.

Alignment Strategies Two notable adaptation strategies have recently gained attention: Reinforcement
Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) (Stiennon et al., 2020;
Rafailov et al., 2023). RLHF incorporates human feedback into the reinforcement learning process to align
the agent’s behavior with human preferences. By using human feedback as a reward signal, RLHF aims to
optimize it. This approach has been successfully used in LLM (Ouyang et al., 2022). On the other hand,
DPO uses the same objective function as RLHF without an explicit reward function. However, it still suffers
more than RLHF from overoptimization when dealing with out-of-distribution data (Xu et al., 2024). Beyond
the methods discussed, there is research in robust optimization that addresses the development of robust
algorithms for scenarios with unstable preference information (Wu et al., 2024). In particular, Chowdhury
et al. (2024) have introduced a robust DPO approach that achieves robustness without explicitly employing
robust optimization techniques.

6 Conclusions

This paper introduces three novel BoN sampling methods: SRBoNKL, SRBoNWD, and RBoNL. To rigorously
evaluate the effectiveness of these proposed methods, we conducted extensive experiments using two datasets:
AlpacaFarm and Anthropic’s hh-rlhf.

The SRBoNKL and SRBoNWD methods extend the previous RBoNKL and RBoNWD methods, respectively.
In particular, SRBoNKL and SRBoNWD produce a stochastic optimal policy that differs from their deter-
ministic counterparts. The theoretical guarantees of their robustness increase the reliability of the methods
in different scenarios.

The RBoNL method is a significant contribution to the field of RBoN sampling, providing a simple yet
effective approach. Despite its simplicity, our experiments show that RBoNL achieves performance compa-
rable to the more complex RBoNWD. This finding highlights the potential of RBoNL as a computationally
efficient alternative to more complicated methods, making it particularly attractive for applications with
limited resources or stringent performance requirements.

In conclusion, this paper presents three innovative BoN sampling methods that significantly contribute to
the field. The experimental results and theoretical guarantees underscore the effectiveness and reliability of
these methods. Our work lays the foundation for further research and applications of robust BoN sampling
techniques in a wide range of domains.
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A Detailed proof of Theorem 3.2

Definition A.1 (Similarity-based Lipschitz Continuity). A function f is said to have Similarity-based Lip-
schitz Continuity if, for any y, y′ ∈ Y, the following holds:

|f(y) − f(y′)| ≤ C(y, y′)

where
C(y, y′) = 1 − cos (emb(y), emb(y′))

We first explain how the objective function is reformulated to a max-min problem. Let us focus on the
regularization term, 1-WD term rewrite related to π, πref

The following analysis is done in the framework of finite probability spaces. To simplify the following proof,
we introduce the following notation. Let x1, x2, · · · , xn be n places and consider the function f , where fi

refers to the value f(xi).
WD[ν∥µ] = min

γ∈Γ(ν,µ)

∑
(i,j)∈Y×Y

Cijγij

= min
γ∈RY ×Y ′

∑
(i,j)∈Y×Y

Cijγij + Ψ(γ),
(18)

where γ is a coupling of the probability measure ν and µ, Γ(ν, µ) ={
γ ∈ RY ×Y ′ |

∑
j∈Y γij = νi,

∑
i∈Y , γij = µj , γij ≥ 0 for all i, j

}
, Y and Y ′ (= Y) is sample space re-

spectively, corresponding to outcomes i and j respectively and Ψ(γ) = 0 if γ ∈ Γ(ν, µ), +∞ otherwise.

Constraint terms, a coupling of the probability measure γ needs to satisfy:∑
j

γij = νi ∀i ∈ Y

∑
i

γij = µj ∀j ∈ Y

γij ≥ 0 ∀i, j ∈ Y

(19)

This constraint can be expressed in Aγ = b, indicating its linear nature. Specifically, A and b are defined
as A =

(Ii⊗1⊤
j

Ij⊗1⊤
i

)
, b =

(
ν
µ

)
. In this formulation, Ii and Ij denote identity matrices of dimension Y × Y, while

1i and 1j represent column vectors of dimension Y with all components equal to 1. The symbol ⊗ denotes
the Kronecker product.
Lemma A.2. Eq. (18) is reformulated as a max problem from a min problem.

max
f

|fi−fj |≤Cij

∑
i

fiνi −
∑

j

fjµj (20)

Proof. Taking into account the constraints specified in Eq. (19), we proceed with the application of the
Lagrange multiplier method:

WD[ν∥µ] = min
γ∈RY ×Y ′

∑
i,j

Cijγij + max
f,g

{
∑

i

fiνi +
∑

j

gjµj −
∑
i,j

(fi + gj)γij}

For a more intuitive understanding, f and g can be considered analogous to Lagrange multipliers. Except
for the first term, all subsequent entries refer to constraints on γ.

WD[ν∥µ] = min
γ∈RY ×Y ′

max
f,g

∑
i,j

(Cij − fi − gj)γij +
∑

i

fiνi +
∑

j

gjµj

19



Under review as submission to TMLR

can be seen from Eq. (19), these constraints are linear. From Theorem 5.2 (Vanderbei, 2020), in linear
programming, there is never a gap between the primal and the dual optimal objective values. Under the
strong duality theorem (e.g., minx maxy f(x, y) = maxy minx f(x, y)), we can exchange the min max term.

WD[ν∥µ] = max
f,g

min
γ∈RY ×Y ′

∑
i,j

(Cij − fi − gj)γij +
∑

i

fiνi +
∑

j

gjµj

If Cij − fi − gj ≥ 0 for all i, j, the optimal value of minγ

∑
i,j(Cij − fi − gj)γij is 0, otherwise ∞. This

observation allows us to derive the inequality constraint for the first item. We can include this as a constraint
in the equation:

WD[ν∥µ] = max
f,g

fi+gj≤Cij

∑
i

fiνi +
∑

j

gjµj

Our next goal is to express the above function, currently represented by f and g, exclusively in terms of
the function f . From the given constraints, we have established that fi + gj ≤ Cij for all i and j. We can
express this as follows:

gj ≤ min
i

{Cij − fi} (21)

To fix i = i∗, since mini picks the minimum value. The index i∗ gives this minimum, and fixing i to i∗ turns
the inequality in Eq. (21) into the equality in Eq. (22).

gj = {Ci∗j − fi∗} (22)

Eq. (22) gives us a function which is called the c-transform of fj and is often denoted by f c
j ,

f c
j = gj = {Ci∗j − fi∗}

We can now rewrite WD with f c
j as

WD[ν∥µ] = max
f

∑
i

fiνi +
∑

j

f c
j µj (23)

If f is similarity-based Lipschitz, f c is also similarity-based Lipschitz, for all i and j we have∣∣f c
j − f c

i

∣∣ ≤ Cij

=⇒ −Cij ≤ f c
j − f c

i ≤ Cij

=⇒ −f c
i ≤ Cij − f c

j

=⇒ −f c
i ≤ min

j

{
Cij − f c

j

}
Upper bound of minj

{
Cij − f c

j

}
is choosing j → i

min
j

{
Cij − f c

j

}
≤ −f c

i

It can be shown that f cc
i = fi = minj

{
Cij − f c

j

}
. This means that −g = −f c = f . Substituting f c

j = −fj

into Eq. 23, we get
max

f
|fi−fj |≤Cij

∑
i

fiνi −
∑

j

fjµj (24)

which is the dual form of 1-Wasserstein distance.
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Finally, by substituting ∆R for f , we get:

πSRBoNWD(x) = max
π∈Π

Ey∼π(·|x)[R(x, y)] − Ω(π)

= max
π∈Π

Ey∼π(·|x)[R(x, y)] − max
∆R∈R∆

β

(∑
Yref

∆R(x, y)πref (y | x) −
∑
Yref

∆R(x, y)π(y | x)
)

= max
π∈Π

Ey∼π(·|x)[R(x, y)] − min
∆R∈R∆

β

(
−
∑
Yref

∆R(x, y)πref (y | x) +
∑
Yref

∆R(x, y)π(y | x)
)

where Ω(π) = βWD[πref (· | x)∥π(· | x)].

πSRBoNWD(x) = max
π∈Π

min
∆R∈R∆

Ey∼π(·|x) [R(x, y) − β∆R(x, y)] + β
∑

y∈Yref

πref (y | x)∆R(x, y)

where R∆ :=
{

∆R ∈ RX ×Yref | |∆R(x, y) − ∆R (x, y′)| ≤ C (y, y′) ∀y, y′ ∈ Yref
}
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B Relationship Between πref and the Proxy Reward Model

Despite the theoretical robustness of SRBoNKL demonstrated in the analyses presented in section 3.1.1, the
experimental results (section 4.1 and section 4.2) did not show comparable robustness. This section aims to
explain the reasons for this discrepancy. Recall the objective function of SRBoNKL:

πSRBoNKL(x) = max
π

Ey∼π(·|x)[R(x, y)] − Ω(π)

= max
π

Ey∼π(·|x)[R(x, y)] −
∑
Yref

π(y | x) log π(y | x)
πref (y | x)

This implies that ideally, πref and the reward function R should have some form of relationship (e.g. positive
correlation) that facilitates learning. However, πref is influenced by complex factors such as length bias.

To verify this hypothesis, we examine two aspects: (1) the correlation between the Eurus-RM-7B reward
values, which were used as the gold reward model in our experiments, and the probabilities assigned by πref ;
(2) the relationship between the length of the outputs generated by πref and the generation probabilities of
those outputs.

Table 5: The correlation between the Eurus-RM-7B reward values and the probabilities assigned by πref

AlpacaFarm Harmlessness Helpfulness
−0.224 0.088 −0.097

Table 6: The relationship between the length of the outputs generated by πref and the generation probabilities
of these outputs.

AlpacaFarm Harmlessness Helpfulness
−0.877 −0.924 −0.854

As can be seen from Table 5, there is negligible correlation between πref and Eurus-RM-7B (gold reward
model) in terms of Harmlessness and Helpfulness. In addition, the domain of the AlpacaFarm dataset tends
to be negatively correlated.

These results explain the performance degradation observed when this relationship is included in the reg-
ularization term. Table 6 shows that πref has a bias towards shorter sentences, with output probabilities
increasing as sentence length decreases.
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C Supplemently Results

Figures 2 and 3 show evaluation of RBoN sensitivity on the Harmlessness subset and Helpfulness of the
hh-rlhf dataset. These results were similar to those seen in AlpacaFarm using section 4.2. This means that
each method is not necessarily dependent on the dataset.

Figures 4 to 6 compare RBoNWD and SRBoNWD and Figures 7 to 9 compare RBoNKL and SRBoNKL. These
results show that SRBoN is not superior to RBoN. This is for reasons also discussed in section 4
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Figure 2: Evaluation of RBoN sensitiveness on the Harmlessness subset of the hh-rlhf dataset with varying
parameter β. We use proxy reward models, OASST, SHP-Large, SHP-XL, PairRM, and RM-Mistral-7B. As
the gold reward model, we utilize Eurus-RM-7B.
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Figure 3: Evaluation of RBoN sensitiveness on the Helpfulness subset of the hh-rlhf dataset with varying
parameter β. We use proxy reward models, OASST, SHP-Large, SHP-XL, PairRM, and RM-Mistral-7B. As
the gold reward model, we utilize Eurus-RM-7B.
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Figure 4: Evaluation of RBoNWD and SRBoNWD sensitiveness on the AlpacaFarm dataset with varying
parameter β. We use proxy reward models, OASST, SHP-Large, SHP-XL, PairRM, and RM-Mistral-7B. As
the gold reward model, we utilize Eurus-RM-7B.
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Figure 5: Evaluation of RBoNWD and SRBoNWD sensitiveness on the Harmlessness subset of the hh-rlhf
dataset with varying parameter β. We use proxy reward models, OASST, SHP-Large, SHP-XL, PairRM,
and RM-Mistral-7B. As the gold reward model, we utilize Eurus-RM-7B.
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Figure 6: Evaluation of RBoNWD and SRBoNWD sensitiveness on the Helpfulness subset of the hh-rlhf
dataset with varying parameter β. We use proxy reward models, OASST, SHP-Large, SHP-XL, PairRM,
and RM-Mistral-7B. As the gold reward model, we utilize Eurus-RM-7B.
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Figure 7: Evaluation of RBoNKL and SRBoNKL sensitiveness on the AlpacaFarm dataset with varying
parameter β. We use proxy reward models, OASST, SHP-Large, SHP-XL, PairRM, and RM-Mistral-7B. As
the gold reward model, we utilize Eurus-RM-7B.
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Figure 8: Evaluation of RBoNKL and SRBoNKL sensitiveness on the Harmlessness subset of the hh-rlhf
dataset with varying parameter β. We use proxy reward models, OASST, SHP-Large, SHP-XL, PairRM,
and RM-Mistral-7B. As the gold reward model, we utilize Eurus-RM-7B.
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Figure 9: Evaluation of RBoNKL and SRBoNKL sensitiveness on the Helpfulness subset of the hh-rlhf dataset
with varying parameter β. We use proxy reward models, OASST, SHP-Large, SHP-XL, PairRM, and RM-
Mistral-7B. As the gold reward model, we utilize Eurus-RM-7B.
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Figure 10: Evaluation of the decoder method on the AlpacaFarm dataset with varying parameter β. We
use proxy reward models, OASST, SHP-Large, SHP-XL, PairRM, and RM-Mistral-7B. As the gold reward
model, we utilize Eurus-RM-7B.

27



Under review as submission to TMLR

10
4

10
3

10
2

10
1

10
0

10
1

Beta

20

25

30

35

40

45

50

55

W
in

 R
at

e 
(%

)

OASST

RBoNWD
RBoNKL
SRBoNKL
SRBoNWD
RBoNL
MBR
random
Optimal Beta (RBoNWD) : 20.0
Optimal Beta (RBoNKL) : 0.0001
Optimal Beta (SRBoNKL) : 20.0
Optimal Beta (SRBoNWD) : 20.0
Optimal Beta (RBoNL) : 20.0

10
4

10
3

10
2

10
1

10
0

10
1

Beta

45

50

55

60

W
in

 R
at

e 
(%

)

SHP-Large
RBoNWD
RBoNKL
SRBoNKL
SRBoNWD
RBoNL
MBR
random
Optimal Beta (RBoNWD) : 1.0
Optimal Beta (RBoNKL) : 0.0001
Optimal Beta (SRBoNKL) : 0.05
Optimal Beta (SRBoNWD) : 1.0
Optimal Beta (RBoNL) : 5.0

10
4

10
3

10
2

10
1

10
0

10
1

Beta

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

57.5

W
in

 R
at

e 
(%

)

SHP-XL

RBoNWD
RBoNKL
SRBoNKL
SRBoNWD
RBoNL
MBR
random
Optimal Beta (RBoNWD) : 1.0
Optimal Beta (RBoNKL) : 0.0001
Optimal Beta (SRBoNKL) : 20.0
Optimal Beta (SRBoNWD) : 1.0
Optimal Beta (RBoNL) : 5.0

10
4

10
3

10
2

10
1

10
0

10
1

Beta

20

25

30

35

40

45

50

W
in

 R
at

e 
(%

)

PairRM

RBoNWD
RBoNKL
SRBoNKL
SRBoNWD
RBoNL
MBR
random
Optimal Beta (RBoNWD) : 0.0001
Optimal Beta (RBoNKL) : 0.0001
Optimal Beta (SRBoNKL) : 20.0
Optimal Beta (SRBoNWD) : 0.0001
Optimal Beta (RBoNL) : 0.0001

10
4

10
3

10
2

10
1

10
0

10
1

Beta

10

20

30

40

50

W
in

 R
at

e 
(%

)

RM-Mistral-7B

RBoNWD
RBoNKL
SRBoNKL
SRBoNWD
RBoNL
MBR
random
Optimal Beta (RBoNWD) : 5.0
Optimal Beta (RBoNKL) : 0.0001
Optimal Beta (SRBoNKL) : 20.0
Optimal Beta (SRBoNWD) : 5.0
Optimal Beta (RBoNL) : 20.0

Figure 11: Evaluation of the decoder method on the Harmlessness dataset with varying parameter β. We
use proxy reward models, OASST, SHP-Large, SHP-XL, PairRM, and RM-Mistral-7B. As the gold reward
model, we utilize Eurus-RM-7B.
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Figure 12: Evaluation of the decoder method on the Helpfulness dataset with varying parameter β. We
use proxy reward models, OASST, SHP-Large, SHP-XL, PairRM, and RM-Mistral-7B. As the gold reward
model, we utilize Eurus-RM-7B.
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D Spearman’s Rank Correlation (Spearman, 1904)

Figure 13, Figure 14, and Figure 15 show the average Spearman’s rank correlation coefficient (ρ) between
pairs of reward models (Spearman, 1904). These results suggest that pairs of reward models with higher
correlation values are more similar, indicating a preference for greedy methods in such cases.
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Figure 13: The average Spearman’s rank correlation coefficient (ρ) between pairs of reward models in the
AlpacaFarm dataset.
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Figure 14: The average Spearman’s rank correlation coefficient (ρ) between pairs of reward models in the
Harmlessness dataset.
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Figure 15: The average Spearman’s rank correlation coefficient (ρ) between pairs of reward models in the
Helpfulness dataset.
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E Supplementary Result on Meta-Llama-3-8B-Instruct (Dubey et al., 2024)

We compared the average Spearman’s rank correlation coefficient of the reward model and the performance
of RBoNWD on the evaluation split using the Llama (Meta-Llama-3-8B-Instruct) language model. The
purpose of this analysis is to verify the performance of RBoNWD, even when applied to samples generated
by state-of-the-art language models.
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Figure 16: The average Spearman’s rank correlation coefficient (ρ) between pairs of reward models in the
AlpacaFarm dataset, using Llama as the language model.
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Figure 17: The average Spearman’s rank correlation coefficient (ρ) between pairs of reward models in the
Harmlessness dataset, using Llama as the language model.
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Figure 18: The average Spearman’s rank correlation coefficient (ρ) between pairs of reward models in the
Helpfulness dataset, using Llama as the language model.
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Figure 19: Evaluation of the RBoN method on the AlpacaFarm dataset with varying parameter β. We
use proxy reward models, OASST, SHP-Large, SHP-XL, PairRM, and RM-Mistral-7B. As the gold reward
model, we utilize Eurus-RM-7B, and Llama as the language model.
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Figure 20: Evaluation of the RBoN method on the Harmlessness dataset with varying parameter β. We
use proxy reward models, OASST, SHP-Large, SHP-XL, PairRM, and RM-Mistral-7B. As the gold reward
model, we utilize Eurus-RM-7B, and Llama as the language model.
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Figure 21: Evaluation of the RBoN method on the Helpfulness dataset with varying parameter β. We
use proxy reward models, OASST, SHP-Large, SHP-XL, PairRM, and RM-Mistral-7B. As the gold reward
model, we utilize Eurus-RM-7B, and Llama as the language model.
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F Robustness of RBoN Under Suboptimal Reward Models

We evaluate the performance of suboptimal reward models, Beaver (beaver-7b-v1.0-reward) (Dai et al.,
2024), Open Llama (hh-rlhf-rm-open-llama 3b) (Diao et al., 2024), and Tulu (tulu-v2.5-13b-uf-rm) (Ivison
et al., 2024) selected from Lambert et al. (2024a), which underperforms compared to other reward models
in some cases. We set these models as proxy models, set Eurus-RM-7B (Eurus) as the gold model, and also
show the reward correlation of these models.
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Figure 22: Evaluation of RBoN sensitiveness on the AlpacaFarm dataset with varying parameter β. We use
proxy reward models, Beaver, Open Llama, and Tulu. As the gold reward model, we utilize Eurus.
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Figure 23: The average Spearman’s rank correlation coefficient (ρ) between pairs of reward models in the
AlpacaFarm dataset.
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Figure 24: Evaluation of RBoN sensitiveness on the Helpfulness dataset with varying parameter β. We use
proxy reward models, Beaver, Open Llama, and Tulu. As the gold reward model, we utilize Eurus.
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Figure 25: The average Spearman’s rank correlation coefficient (ρ) between pairs of reward models in the
Helpfulness dataset.
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Figure 26: Evaluation of RBoN sensitiveness on the Harmlessness dataset with varying parameter β. We
use proxy reward models, Beaver, Open Llama, and Tulu. As the gold reward model, we utilize Eurus.
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Figure 27: The average Spearman’s rank correlation coefficient (ρ) between pairs of reward models in the
Harmlessness dataset.

G Sentence Length Regularized BoN (RBoNL)

The objective function of RBoNL (Sentence Length Regularized BoN) is given by:

yLBoN(x) = arg max
y∈Yref

R(x, y) − β

|y|

where β is a regularization parameter, |y| denotes the token length of the sentence y .

This approach aims to address the inherent bias toward shorter outputs often observed in a large language
model we used in experiments. We now explain the rationale behind the specific form of the regularization
term in RBoNL. Let µ represent a probability that is inversely proportional to the token length of the text
y.

For example, we could define µ(y|x) = 1/|y| (e.g. µ(y′|x) = 1/|y′|, µ(y′′|x) = 1/|y′′|...), where |y| represents
the token length of output y.

Definition G.1. We define a newly normalized distribution µ′:

µ′(y | x) = 1/|y|∑
Yref

µ(· | x)

= 1/|y|
Z

(
where

∑
Yref

µ(· | x) = Z

)

Proposition G.2. The objective function of RBoNL is derived by considering the TV distance between the
output probability 1y(· | x) and µ′(· | x) as a regularization term.
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Proof. Let us examine how the objective function of RBoNL is derived using definition G.1.

yLBoN(x) = arg max
y∈Yref

R(x, y) + βTV [1y(· | x)∥µ′(· | x)] ,

= arg max
y∈Yref

R(x, y) + β

2
∑

y∈Yref

|1y(· | x) − µ′(· | x)|

= arg max
y∈Yref

R(x, y) + β

2


∣∣∣∣1 − 1

Z|y|

∣∣∣∣+ 1
Z|y′|

+ 1
Z|y′′|

+ · · · + 1
Z|y′′′|︸ ︷︷ ︸

=1− 1
Z|y|


= arg max

y∈Yref

R(x, y) + β

(
1 − 1

Z|y|

)
= arg max

y∈Yref

R(x, y) − β

Z|y|

= arg max
y∈Yref

R(x, y) − β′

|y|

(
β′ = β

Z

)

where β′ is a regularization parameter and TV denotes TV distance.

The purpose of this normalization is to counteract the effect of SRBoNKL, which tends to favor shorter
outputs. This formulation provides a theoretical basis for understanding how RBoNL achieves its length-
aware behavior, and offers insight into its potential advantages over other decoding methods that may
inadvertently bias toward shorter outputs.

Our methodological approach to assessing the divergence of output distributions from the length distribution
µ′ involves a comparative analysis of BoN sampling and RBoNL. For each output y selected, we construct
the corresponding 1y(· | x) distribution. We then measure the TV distance between 1y(· | x) and µ′(· | x).

The results of this comparative analysis are visualized in Figure 28, Figure 29, and Figure 30.
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Figure 28: BoN sampling and RBoNL methods by measuring the TV distance between their output dis-
tributions and sentence length distribution µ′ in AlpacaFarm. This allows us to evaluate how closely each
method’s outputs align with the desired distribution, with a smaller TV distance indicating a preference for
shorter sentences.
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Figure 29: BoN sampling and RBoNL methods by measuring the TV distance between their output distri-
butions and sentence length distribution µ′ in Harmlessness. This allows us to evaluate how closely each
method’s outputs align with the desired distribution, with a smaller TV distance indicating a preference for
shorter sentences.
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Figure 30: BoN sampling and RBoNL methods by measuring the TV distance between their output dis-
tributions and sentence length distribution µ′ in Helpfulness. This allows us to evaluate how closely each
method’s outputs align with the desired distribution, with a smaller TV distance indicating a preference for
shorter sentences.

Our analysis shows that the output probability of RBoNL deviates more from µ′ than the output probability
of BoN sampling. Table 7 illustrates the correlation between the length of the sequence and the values of
gold reference reward (Eurus-RM-7B), focusing on subsets of sentences comprising the top 5, 10, 15 based
on the proxy reward values. The strength of this correlation is an indication of the effectiveness of RBoNL;
a stronger correlation indicates greater effectiveness of the method.

In Table 7, we have highlighted in bold the instances of high correlation compared to all samples used
correlation, which corresponds to superior performance as shown in Table 2. In contrast, areas with lower
correlation tend to show lower performance. This pattern shows a consistent relationship between correla-
tion strength and method effectiveness. We also explored an alternative view of PairRM that had a high
correlation but did not produce correspondingly strong results in Table 2.

We hypothesized that this discrepancy might be due to the range of the regularization parameter β. To
investigate this hypothesis and to demonstrate the potential of RBoNL, we performed an extensive analysis
by varying β over a wide range, from 10 to 5000 Figure 31.

H Reproducibility Statement

All datasets and models used in the experiments are publicly available (Table 8). Our code will be available
as open source upon acceptance.
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Table 7: The correlation between sequence length and gold reference reward (Eurus-RM-7B) values, focusing
on a subset of sentences that include the top 5, 10, 15 based on proxy reward values.

Top N OASST SHP-Large SHP-XL PairRM RM-Mistral-7B

AlpacaFarm

All 0.11 (0.33) 0.11 (0.33) 0.11 (0.33) 0.11 (0.33) 0.11 (0.33)

5 0.27 (0.55) -0.04 (0.56) 0.05 (0.55) 0.15 (0.59) 0.10 (0.56)

10 0.24 (0.44) -0.02 (0.44) 0.06 (0.41) 0.17 (0.48) 0.09 (0.56)

20 0.21 (0.39) -0.02 (0.37) 0.06 (0.36) 0.16 (0.41) 0.08 (0.44)

Harmlessness

All 0.08 (0.45) 0.08 (0.45) 0.08 (0.45) 0.08 (0.45) 0.08 (0.45)

5 0.24 (0.58) 0.10 (0.57) 0.13 (0.58) 0.20 (0.62) 0.37 (0.51)

10 0.25 (0.50) 0.11 (0.46) 0.12 (0.47) 0.19 (0.54) 0.36 (0.41)

20 0.22 (0.47) 0.11 (0.41) 0.11 (0.43) 0.21 (0.49) 0.34 (0.39)

Helpfulness

All 0.07 (0.40) 0.07 (0.40) 0.07 (0.40) 0.07 (0.40) 0.07 (0.40)

5 0.28 (0.56) -0.04 (0.58) 0.11 (0.54) 0.14 (0.62) 0.06 (0.54)

10 0.27 (0.47) -0.05 (0.45) 0.11 (0.42) 0.15 (0.52) 0.06 (0.40)

20 0.24 (0.43) -0.06 (0.40) 0.10 (0.37) 0.17 (0.46) 0.03 (0.36)
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Figure 31: Performance analysis of RBoNL with varying β (10 to 5000) across AlpacaFarm, Harmlessness,
and Helpfulness datasets. PairRM and Eurus-RM-7B are used as proxy and gold reward models, respectively.
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Table 8: List of datasets and models used in the experiments.

Name Reference
AlpacaFarm Dubois et al. (2023) https://huggingface.co/datasets/

tatsu-lab/alpaca_farm

Anthropic’s hh-rlhf Bai et al. (2022) https://huggingface.co/datasets/Anthropic/
hh-rlhf

mistral-7b-sft-beta (Mistral) Jiang et al. (2023a); Tunstall et al. (2023) https://huggingface.
co/HuggingFaceH4/mistral-7b-sft-beta

Meta-Llama-3-8B-Instruct (Llama) Dubey et al. (2024) https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

SHP-Large Ethayarajh et al. (2022) https://huggingface.co/stanfordnlp/
SteamSHP-flan-t5-large

SHP-XL Ethayarajh et al. (2022) https://huggingface.co/stanfordnlp/
SteamSHP-flan-t5-xl

OASST Köpf et al. (2023) https://huggingface.co/OpenAssistant/
reward-model-deberta-v3-large-v2

PairRM Jiang et al. (2023b) https://huggingface.co/llm-blender/
PairRM

RM-Mistral-7B Dong et al. (2023) https://huggingface.co/weqweasdas/
RM-Mistral-7B

Eurus-RM-7B Yuan et al. (2024) https://huggingface.co/openbmb/
Eurus-RM-7b

Beaver Dai et al. (2024)https://huggingface.co/PKU-Alignment/
beaver-7b-v1.0-reward

Tulu Ivison et al. (2024) https://huggingface.co/allenai/tulu-v2.
5-ppo-13b-uf-mean-70b-uf-rm

Open Llama Diao et al. (2024) https://huggingface.co/weqweasdas/hh_
rlhf_rm_open_llama_3b

MPNet Song et al. (2020) https://huggingface.co/
sentence-transformers/all-mpnet-base-v2
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