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ABSTRACT

Vision-Language-Action (VLA) models represent a critical milestone toward em-
bodied intelligence in robotic manipulation. To support their training, recent
research has developed high-performance simulation engines for data synthesis.
However, their effectiveness is still significantly limited by the simulation-to-reality
(Sim2Real) gap, as policies trained on synthetic data often fail to generalize reli-
ably to the real world. To address this challenge, we present Sim2Real-VLA, a
generalist robot control model trained exclusively on synthetic data, yet capable of
transferring seamlessly to real-world manipulation tasks. Sim2Real-VLA features
a dual-system architecture: a high-level planner that infers chains-of-affordances,
and a low-level actor that executes and validates these plans in real time via a
tokenized action space. This design filters out manipulation-irrelevant features and
prioritizes motion-critical dynamics, thereby enhancing Sim2Real domain transfer.
Besides, a notable advantage of Sim2Real-VLA lies in its tight integration with
automated data generation for manipulation skills, eliminating the need for manual
fine-tuning and enabling scalable, hands-free training. Empirical evaluations across
bimanual, dexterous, and long-horizon tasks show that Sim2Real-VLA consistently
outperforms previous VLA baselines under diverse real-world environments and
domain shifts.

1 INTRODUCTION

Designing precise and scalable robotic manipulation policy represents a key milestone toward
realizing artificial general intelligence (AGI) (Smith et al., 2012). Despite significant advances in
hardware design, control algorithms, and simulation platforms, traditional robotic systems remain
highly specialized, often requiring task-specific engineering and extensive manual tuning. Recent
advances in large foundation models provide a promising pathway to address these limitations with
the development of generalizable manipulation policies (Zhao et al., 2023b; Zhang et al., 2024).
The Vision-Language-Action (VLA) models, which integrate visual observations, natural language
commands, and robotic control actions, have emerged as a prevailing architecture for implementing
generalist agents in real-world robotic applications (Ma et al., 2024b; Zheng et al., 2025).

As a foundation model for robotic control, VLA training typically follows a data-driven pipeline.
This process demands a large amount of robot-operating data, the collection of which involves
intensive manual effort and access to specialized hardware. While previous studies have demonstrated
the effectiveness of VLA pre-training on internet videos (Luo et al., 2025) and cross-embodiment
datasets (O’Neill et al., 2024), deploying these models typically requires additional rounds of
fine-tuning on the target robot and task-specific skills. To enable more scalable training, recent studies
have explored the use of synthesized or simulated data (Mandlekar et al., 2023; Deng et al., 2025;
Liu et al., 2025a). A key advantage of such data is that it can be generated at a large scale using
high-performance computing clusters via automatic skill acquisition (Nasiriany et al., 2024; Wang
et al., 2024b; Mu et al., 2024; Hua et al., 2024; Zhao et al., 2024). Nevertheless, models trained
exclusively on these datasets are subject to a Sim2Real domain gap when deployed in practice.

To close this domain gap, mainstream research has focused on developing photo-realistic and
physics-accurate simulation environments (Hua et al., 2024; Puig et al., 2024) or world models (Agar-
wal et al., 2025). However, accurately modeling real-world dynamics remains a significant challenge
that has yet to be solved (Bharadhwaj, 2024). More importantly, recent studies (Xie et al., 2024; Liu
et al., 2025a) have shown that factors such as lighting conditions and background textures, despite
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consuming substantial modeling resources, are essentially irrelevant to manipulation performance.
These findings call for an alternative approach: instead of focusing on generating high-fidelity data,
we propose addressing the Sim2Real by redesigning the VLA architecture.

In this study, we introduce Sim2Real-VLA, which, despite being trained solely on synthetic data,
demonstrates generalizable and sustained manipulation performance across diverse real-world envi-
ronments. To address the enduring domain gap between synthesized and realistic data, Sim2Real-VLA
integrates a generalization mechanism in model design. Specifically, Sim2Real-VLA utilize a dual
system design, encompassing a high-level planner and lower-level actor, interconnected by affordance
signals in finishing the given task. Such affordances play a fundamental role in robotic manipulation
within our Sim2Real-VLA design because: 1) The key steps in executing a long-horizon task can be
abstracted as a chain of affordances, thereby providing a structured basis for embodied reasoning
within the planning system; 2) The predicted affordance signals function as critical supervision
for producing robot control outputs within the acting system; and 3) Contemporary methods for
manipulation skill acquisition (Ma et al., 2024a; Mu et al., 2024; Wang et al., 2024b) are grounded in
affordances, which can be consistently derived in simulation environments1 and provide supervision
signals for training Sim2Real-VLA. By coupling reasoning and acting with manipulation affordances
derived from object-oriented observations, Sim2Real-VLA filters out manipulation-irrelevant features
and concentrates on task-relevant dynamics, thereby effectively closing the Sim2Real gap.

We conduct extensive studies across multiple tasks involving bimanual, dexterous, and long-horizon
manipulation. Our findings reveal that even state-of-the-art VLA models, when trained solely on
synthesized data, struggle to perform effectively in real-world manipulation scenarios. In contrast,
Sim2Real-VLA outperforms baselines with a minimal Sim2Real gap, achieving over 35% higher
success in realistic environments. More importantly, our quantitative experiments demonstrate that
its zero-shot Sim2Real capability generalizes reliably across a wide range of domain shifts.

2 RELATED WORKS

In this section, we review prior works most relevant to our study.

VLA Model for Robot Manipulation. In recent years, VLA models have emerged as a prevailing
paradigm in multi-modal foundation models and have been successfully applied to robot control
tasks (Ma et al., 2024b; Firoozi et al., 2024). Among these tasks, a critical application is dexterous
manipulation, which requires the model to comprehend the given commands, interact with various
objects, and dynamically respond to changing environments (Zheng et al., 2025). Building upon
the VLM backbone (Zhang et al., 2024), earlier VLA models, such as OpenVLA (Kim et al.,
2024), Otco (Ghosh et al., 2024), RTs (Brohan et al., 2023; Zitkovich et al., 2023), RDT (Liu
et al., 2025b), and π0 (Black et al., 2024), typically utilized an end-to-end model architecture.
To enhance the efficiency of policy inference, recent approaches, such as HelixFigure AI (2025),
Gr00NtBjorck et al. (2025), Gemini (Team et al., 2025), AgiBot (Bu et al., 2025), and other dual-
system frameworks (Shentu et al., 2024; Han et al., 2024; Bu et al., 2024; Chen et al., 2025; Wen
et al., 2025; Zhang et al., 2025), have adopted a two-level architecture. This design comprises a low-
frequency VLM system responsible for semantic understanding and embodied reasoning, alongside a
high-frequency policy model that efficiently predicts control signals at a faster rate. Despite these
advancements, training such models often demands collecting real-world datasets and fine-tuning the
VLA models for specific robotic tasks (Nasiriany et al., 2024; Mu et al., 2024).

Sim2Real Generalization. In the application of robot Manipulation, Sim2Real generalization
techniques often involve: 1) Domain randomization tackles Out-of-Distribution (OoD) scenarios
in practical applications augmenting the training dataset with randomized visual and physical fea-
tures (Chen et al., 2022). To determine the scale of randomization, recent studies have determined
relevant parameters by automatic learning (OpenAI et al., 2019), active exploration (Mehta et al.,
2019), Bayesian update (Muratore et al., 2021b;a), offline inference (Tiboni et al., 2023) and continual
learning (Josifovski et al., 2024). 2) Domain adaptation reduces the gap between simulated and
real-world domains by aligning them within a shared feature space, such as 2D images (Bousmalis
et al., 2018; Zhang et al., 2019), 3D point clouds (Lobos-Tsunekawa & Harada, 2020; Qin et al., 2022;
Chen et al., 2023), or environmental dynamics (Memmel et al., 2024; ?). 3) Real2Sim projection maps
real-world scenes into the simulation environment, enabling the system to better capture realistic

1The simulation system provides complete access to the spatial, physical, semantic, and morphological
properties of objects, which substantially facilitates accurate affordance estimation.
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semantics (Villasevil et al., 2024; Liu et al., 2025a; Tai et al., 2025). However, it lacks principled
studies on redesigning VLA models to close the Sim2Real gap.

3 PROBLEM FORMULATION

Environment for Robotic Manipulation. To formulate the problem of Sim2Real robot manipulation,
we can formulate the real-world robot deploying environment into a Partially Observable Markov
Decision Process (POMDP) M = (S,A,O, PT , R, µ0, γ) where: 1) The state st ∈ S captures the
semantic information of a scene, encompassing the configuration (e.g., layouts, appearance, and
physical characteristics) of various types of objects and the robots. 2) The action at ∈ A indicates
control signals for the target robot. We follow diffusion policies (Chi et al., 2023; Liu et al., 2025b),
and utilize the joint angles in the robot for presenting actions. 3) The observation o ∈ O represents
the perceptual signals captured by sensors. These observations are typically non-Markovian and
provide only partial information about the current state. 4) Transition function PT characterizes
the impact of robot action at to the configuration of current state st, thereby projecting the st to a
new scene represented by st+1 . 5) The reward function R(s, a) represents how effectively a robot
completes a targeted task after taking action a in state s (Appendix A.2 introduces more details). 6)
ρ0 denotes the initial state distribution and γ ∈ (0, 1] denotes the discounting factor which weights
the importance of future rewards relative to immediate rewards.

Zero-Shot Sim2Real Learning for Control Policy. Within the robot’s operational environment, our
objective is to learn a control policy π(at, . . . , at+M | ot−H , . . . , ot, l) that predicts a sequence of
M future actions at, . . . , at+M based on a history of H past observations ot−H , . . . , ot and tasks
annotation l (Zhao et al., 2023a). At a time step t, ot captures both proprioception opt and visual
signals ovt from multi-view cameras. By leveraging observations and language-based task annotations,
the control policy can be effectively instantiated as a VLA model (Kim et al., 2024). In this study, we
consider learning a control policy under a Sim2Real transferable setting:

Definition 3.1 (Sim2Real Transferable Policy Learning) Let M denote the real-world environ-
ment, and M̂ = (Ŝ, Â, Ô, P̂T , r̂, µ̂0, γ̂) denote a corresponding simulated environment. Let π denote
the policy trained on a collection of skill trajectories τ̂ = [ô0, â0, ô1, â1, . . . , ôT , âT , l] generated
in M̂, where ôt ∈ Ô, ât ∈ Â, and l is a task description such that π = argmaxπ Eτ̂ [J (τ̂ , π; l)]2.
Nevertheless, we expect goal π to achieve the optimal performance in the realistic environment M.

Notably, this Sim2Real transfer is conducted in a zero-shot manner, where no real-world demon-
strations are used during training, but the learned policy must generalize to and solve real-world
manipulation tasks. However, as demonstrated by prior studies (Nasiriany et al., 2024; Wang et al.,
2024a), the discrepancy between the simulated environment M̂ and the real-world environment M
poses significant challenges (as also evidenced by our experiment results in Section 5.1). Directly
using simulated skills τ̂ to supervise the training of real-world policies π often leads to suboptimal
performance due to this domain gap. Although domain randomization and adaptation methods have
demonstrated successful examples in general robotic control (Mehta et al., 2019; Muratore et al.,
2021a; Tiboni et al., 2023; Josifovski et al., 2024), their applicability to manipulation tasks in the
context of VLA models remains an open question. This work aims to design a structured framework
that enables learning a zero-shot Sim2Real transferable object manipulation policy.

4 VLA MODEL FOR ZERO-SHOT SIM2REAL GENERALIZATION

To bridge the Sim2Real gap, rather than constructing a more sophisticated data engine to replicate
real-world dynamics, our study considers a model-side solution. This approach acts as a filter for
realistic dynamics, focusing exclusively on features critical for manipulation, guided by the simulation
engine. This strategy not only significantly reduces modeling complexity but, more importantly,
enables the skills learned from simulated data to effectively drive the VLA model.

To implement the Sim2Real VLA model, we design an affordance-driven, object-oriented framework
that integrates planning and acting, structured as follows:

4.1 PLANNING SYSTEM: ROBOTIC MANIPULATION AS CHAIN-OF-AFFORDANCE

The goal of the planning system is to reason about the essential steps for finishing the given tasks
described by the language command l. Specifically, our planning system predicts a chain of affordance

2We use J (·, ·; l) to denote the objective parameterized by language command l.
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Figure 1: The pipeline of our Sim2Real-VLA model consists of two main components: a planning
system ( Section 4.1) that enables embodied reasoning through a chain of affordances, and an acting
system (Section 4.2) that drives the model by executing the planned affordances. This design allows
the model to transfer seamlessly to real-world manipulation tasks.

[q0, . . . , qK ] to represent these essential robot motions. To support the characterization and prediction
of affordance, we adapt the visual observation into the object-oriented representation and design an
affordance reasoning process to finish the given tasks.

Object-Oriented Adaptation in Observation Space. Since some key waypoints in manipulation
trajectories are inherently object-centric, synthesizing feasible manipulation trajectories requires
access to each object’s pose and morphology (e.g., position, orientation, and shape parameters).
While such information is typically unavailable from real-world cameras, it can be recovered in
simulation. Given a fixed camera configuration, we render observations as ôt = fξ(e0, e1, e2, . . . )
where ei denotes an object (e.g., including those with articulated, rigid and soft body) in the simulated
scene and fξ is the rendering function parameterized by the semantic configuration ξ (including
layouts, camera view). Performing object-oriented adaptation is essentially learning the reverse of fξ
by minimizing the following negative log-likelihood loss function:

L(θ) = Eτ̂ ,[mi
t]

I,T
i,t=0

[
−

T∑
t=0

I∑
i=0

log
(
pRθ (m

i
t|o

ξ
t , . . . , o

ξ
t−H) · pd(oξt |ôt, ξ)

)]
(1)

where τ̂ and mi
t denote the skill trajectory and object mask. As objects are not necessarily fully

observable, we adopt a probabilistic predictor pRθ for object recovery, thereby accounting for the
underlying uncertainty. Moreover, because training data are generated in simulation and rendered
objects may deviate from real-world appearance, pd incorporates Domain Randomization (DR) into
the observation ôt under the scene configuration ξ. Specifically, it performs the following operations

Figure 2: The set of DR features for charaterizing the
Sim2Real generalization gap in robotic manipulation
tasks (Xie et al., 2024).

Scene
Level

Lighting, Table Texture,
Background, Distractors,

Object Locations, Object Orientations,
Object Texture and Object Shape

Robotic
Level

Cameras Position,
Cameras Orientation,

Cameras Field of View,
Initial end-effector pose

1) Strategic DR Features Selection. Sim2Real-
VLA incorporates a large foundation model
(e.g., a vision–language model such as GPT-5)
into the domain randomization (DR) process.
It leverages the model’s reasoning ability to
rank DR features and define their sampling
ranges (see Table 2), using the task description,
current observations ôt, and the simulated en-
vironment configuration ξ. For simplicity, we
characterize pd as a joint uniform distribution
over the selected features within their respec-
tive ranges (Mehta et al., 2019).
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2) Flows of DR in Sequence Observation. At each time step, unlike previous methods that rely on a
fixed set of randomized features to generate a trajectory Mu et al. (2024), pd develops a flow of DR
by resampling action-invariant features, such as lighting, textures, and backgrounds, whose values
have limited influence on the robot’s actions. By performing DR at a higher frequency, our approach
enhances the generalization capability of the learned policy. Figure 3 (left) shows an example of DR
for the observations of water pouring motions.

Cup
Bottle

𝒒𝟏: Grasp the cup and the 
bottle 𝒒𝟐: Move  the bottle 𝒒𝟑: Rotate the bottle

Cup

Bottle Bottle

Cup

Figure 3: An example of the DR flow (left three images) and the chain of affordances (right three
images) generated in the simulated environment for the water-pouring task.

Reasoning via Chain-of-Affordance. Conditioned on the visual observation and the instruction l, the
planning system infers the appropriate chain-of-affordance q = [q0, . . . , qK ]. Each qτ corresponds to
a series of geometrically structured keypoints that represent a key end-effector pose that governs the
robot–object interaction necessary to accomplish an atomic task. By predicting q, our planning system
of Sim2Real VLA essentially reasons about the sequence of atomic tasks based on the provided
instruction, alongside the robot’s key motion in finishing these tasks. Unlike the embodied Chain-of-
Thoughts (CoT) reasoning based on language description (Zawalski et al., 2024), Sim2Real VLA
performs reasoning with affordances, thereby better aligning the planned atomic tasks with objects,
robot configurations, and commands l. During implementation, the objective of Sim2Real VLA
is to learn the predictive distribution pAϕ (qk,t, . . . , qK,t | m̂t, o

ξ
t , . . . , o

ξ
t−H , l), where m̂t represents

the predicted mask of the target object in equation 1 and qk denotes the next affordance based
on the current observation. To facilitate implementation, we decompose the joint distribution into
conditional components and optimize the model by minimizing the following loss function:

L(ϕ) = Eτ̂ ,[qk]
K,T
k,t=0

[
−

T∑
t=0

(
K∑

k=1

log pAϕ (qk,t | qk−1,t, m̂t, o
ξ
t , . . . , o

ξ
t−H , l) · pd(oξt |ô, ξ)

)]
(2)

where pd is the aforementioned domain randomization function. Conditioning on the previous
affordance, the target object, and visual observations, and the command, pA can perform in-time
prediction of the future affordance to finish the given task, but at a frequency of muster smaller than
that of the robot acting system 4.2. Figure 3 (right) illustrates the chain of affordances generated in
the simulation environment.

4.2 ACTING SYSTEM: PREDICTIVE CONTROL AS AFFORDANCE EXECUTION

Upon receiving the predicted affordance sequence [q0, . . . , qK ] from the high-level planning module,
the low-level acting system πω(at, . . . , at+M | qk, m̂t, ot−H , . . . , ot)

3 iteratively executes each
affordance by guiding the end-effector toward the designated target pose, and verifies at each step
that the resulting motion successfully achieves the intended affordance.

Affordance Execution. To execute affordances both efficiently and accurately, the acting system
leverages a tokenized action space and employs a decoupled estimation strategy for controlling the
manipulation actions of a bimanual robot. This design enables the system to remain both flexible and
modular while reducing unnecessary dependencies between the two arms.

Arm-Decoupled Estimation. In the decoupled estimation framework, the policy πω is split into
two independent components, πωl

and πωr
, which control the left and right arms of the robot,

respectively. Although these models are jointly trained to complete bimanual manipulation tasks, they
are independently parameterized. Each model only has access to its own relevant visual observations
(from arm-mounted and top-down cameras) and to the specific affordance target associated with its
arm. This independence is crucial for reliable affordance tracking, as it prevents the acting model
from misattributing attention to the other arm’s goals or state when computing its own actions.

3Here, at−1 denotes the final action taken to achieve the previous affordance qk−1.
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Tokenized Action Space. Rather than operating directly in high-dimensional, continuous control space,
we apply a frequency-domain representation named Discrete Cosine Transform (DCT) (Ahmed et al.,
2006; Pertsch et al., 2025) to a normalized segment of continuous actions. This transformation
converts the signal into the frequency domain, where we can efficiently compress it. The resulting
DCT coefficients are then quantized, and we apply Byte-Pair Encoding (BPE) (Gage, 1994) to
compress the sequence of per-dimension coefficients into a compact action token sequence, denoted
as aDCT . This tokenization significantly reduces the complexity of the action space, enabling faster
and more robust learning while retaining the essential temporal and spatial characteristics of the
original motion.

Affordance Validation. Since the chain of affordances is sequentially dependent, the acting model
must successfully execute the earlier ones before implementing the later ones, especially in long-term
tasks. To achieve this, we develop a validation model that dynamically determines whether the target
pose has been tracked and whether the system should proceed to the next affordance. In this way, the
acting system can be reactive to the failure case, which greatly improves the system’s robustness.

4.3 AUTOMATIC DATA GENERATION PIPELINE FOR SIM2REAL VLA TRAINING

Since Sim2Real-VLA is trained exclusively on simulated data, its performance heavily depends
on the efficiency and scalability of simulated data generation. Recent advances in agentic skill
acquisition (Ma et al., 2024a; Wang et al., 2024b) have made it possible to generate such data
automatically, without manual intervention or additional hardware, thereby enabling a more scalable,
efficient, and cost-effective process for generating training data. This section introduces our automated
data generation pipeline, highlighting the core components that can, in principle, generate the
integration of Sim2Real-VLA with training environment construction, skill dataset generation, and
the provision of relevant guiding signals.

1) Real2Sim Data Projection maps descriptive observations of the target task from real-world
applications to the simulated environment. Following (Dai et al., 2024; Liu et al., 2025a), the project
encompasses static scene information, including the orientation, position, and morphological features
of objects as well as their spatial layout, and dynamic action trajectories derived from teleoperation
and human demonstration videos. The resulting simulation environment faithfully preserves the
semantic structure of both the tasks and their contexts. Check Appendix A.3 for more details.

2) Generative Scene Scaling samples diverse configurations within the simulated environment based
on the Real2Sim prior information obtained from the aforementioned projection. The sampling
process spans both scene-level and robot-level features in Table 2. Each sampled configuration
defines a distinct scene, resulting in a set of candidate environments derived from the target scene.
Figure 4 illustrates an example of the Real2Sim projection along with the corresponding environment
scaling. The spatial and morphological information of objects is available in the simulation engines,
enabling the generation of object masks mi during robot operation. These masks can serve as effective
supervision signals in the objective (1). We present more details in Appendix A.4.

Teleoperation Data for Real2Sim

Human Demonstration for Real2Sim

Projected Scene and Action Trajectory in the Simulation Environment 

Object Type Object 
Location Type + Location Type + Location

Scene Scaling by Sampling across Different Features

Proj.

Figure 4: An example of our data generation pipeline, which projects scenes and action trajectories
from heterogeneous sources (videos or teleoperation) into the simulated environment, and then scales
the environment with diverse randomized features.

3) Automatic Skill Acquisition generates operation trajectories for accomplishing the target task.
The embodied agent, equipped with a vision–language model, decomposes the task into atomic
units (Nasiriany et al., 2024), identifies the target object from the input instruction (Fang et al., 2023),
and produces candidate grasping and manipulation poses for the end-effector (Mu et al., 2024).
From these key poses, a generalized inverse kinematics (IK) algorithm is applied to compute the
corresponding joint angles required to drive the robot arms. The key poses at the end of each atomic
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task are utilized as an affordance supervision (q = [q0, . . . , qK ] in the objective (2), which aligns the
tracking of the affordance with finishing atomic tasks. The instructions of atomic tasks, the computed
joint angles, the identified affordances, and the rendered images from the simulator are utilized as the
training data for our Sim2Real-VLA model. Appendix A.5 shows more details.

5 EMPIRICAL EVALUATION

We conduct an extensive experimental study of Sim2Real-VLA, evaluating its performance from
the following perspectives: 1) applicability to real-world manipulation tasks and 2) generalizability
across diverse domain gaps. Additionally, we visualize the attention maps during the operation of
robotic manipulation, demonstrating the rationality of Sim2Real-VLA during robotic manipulation.
Our experiments are conducted based on the Agilex CobotMagic robot by following (Fu et al., 2024).

5.1 APPLICABILITY: TOWARD ROBUST SIM2REAL PERFORMANCE IN LONG-HORIZON TASKS

While prior studies have demonstrated zero-shot Sim2Real performance in short-term tasks such as
object grasping and placing (Collins et al., 2019; Xie et al., 2024; Deng et al., 2025), the extent to
which this performance generalizes to long-horizon manipulation remains largely unexplored. In this
study, we evaluate our method using the manipulation tasks summarized in Table 1. For each task, we
generate training data in the simulation environment (Section 4.3), learn a manipulation policy from
the synthesized data, and evaluate its generalization performance across different environments.

Table 1: Task descriptions with decomposed action steps and arm type.

Task Steps Arm Type
Single-Arm Water Pour (1) Grasp bottle → (2) Move bottle to cup → (3) Pour water →

(4) Return bottle
Single-Arm

Dual-Arm Water Pour (1) Grasp bottle → (2) Grasp cup → (3) Move bottle to pouring
position → (4) Move cup to receiving position → (5) Pour water
→ (6) Return cup → (7) Return bottle

Dual-Arm

Table Rearrangement (1) Grasp fork → (2) Place fork beside plate → (3) Grasp spoon
→ (4) Place spoon beside plate

Dual-Arm

Items Hand-Over and Place (1) Grasp an item → (2) Transfer the item to the other hand in
the air → (3) Place the item into the holder

Dual-Arm

Basket Pick-and-Place (1) Grasp an item → (2) Place the item into basket → (3) Grasp
basket → (4) Place basket down

Dual-Arm

Pan Open-Pick-and-Place (1) Grasp lid → (2) Open lid → (3) Grasp an item → (4) Place
the item into pot → (5) Close lid

Dual-Arm

Evaluation Metrics. We evaluate the robotic manipulation policy in both simulation (Sim.) and real-
world (Real.) environments. To prevent overfitting and to examine generalization performance, we
sample different feature configurations from Table 2 in both environments at each run. The simulation
environment (Sim.) incorporates a certain level of randomness to better reflect the variability and
uncertainties the robot may encounter in real-world scenarios. In this way, simply replaying training
data is insufficient to achieve strong performance in both simulation and real-world environments.
We report the number of runs, the times of success manipulation, and the average number of steps
required to complete the tasks in the real-world environment. Additionally, to reflect the efficiency of
robotic manipulation, we also report the average number of steps required to complete each task, as
more effective policies tend to complete tasks in fewer steps. For unsuccessful trials where the robot
fails to complete the task, we report the predefined maximum step limit as an upper bound.

Baselines. To benchmark our Sim2Real-VLA , we compare it against several representative baselines,
including 1) Action Chunking with Transformers (ACT) (Zhao et al., 2023a) leverages sequence
modeling to learn temporally extended action policies, 2) Diffusion Policy (DP) applies diffusion-
based generative models to represent and sample robot actions in continuous spaces. 3) Robotics
Decision Transformer (RDT) (Liu et al., 2025b) adapts the Decision Transformer framework to
robotic tasks, enabling goal-conditioned policy learning from offline data. 4) π0 (Black et al., 2024)
serves as a strong pretrained policy prior that provides generalizable low-level skills across different
domains. 5) GR00T (Bjorck et al., 2025) is a large-scale, foundation model for robot control trained
on diverse multimodal datasets. These models are fine-tuned on the same offline simulator data (FwS
indicates Finetuned with Simulated data) generated from our automatic data generation pipeline
(Section 4.3) and then deployed zero-shot to real-world applications.
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Table 2 presents the evaluation results. Across all six tasks, our method consistently achieves the
highest success rates in both simulation and real-world environments, while also completing tasks
with fewer average steps. In particular, our method attains an average real-world success rate of
60.8%, significantly outperforming the best baseline with an absolute improvement of over 35%. This
substantial margin highlights the robustness and generalization capabilities of our approach, especially
under domain shift from simulation to the real world. The performance gap is even more pronounced
in complex, long-horizon tasks such as Dual-Arm Water Pouring, Pan Open and Place, and Items
Hand-Over and Place, where baseline models frequently fail or struggle to generalize beyond their
training distributions. These tasks require temporally extended reasoning and precise coordination,
which our method handles reliably, while others often exhibit brittle or erratic behavior during real-
world execution. Moreover, another important finding is that while small-scale models like ACT and
DP demonstrate competence in short-horizon or low-variance settings, they consistently underperform
in more challenging, long-horizon tasks. Their limited model capacity, lack of hierarchical planning,
and inability to generalize across diverse tasks hinder their effectiveness in realistic, multi-stage
manipulation scenarios. These results collectively demonstrate that our method is not only capable of
mastering complex individual tasks but also exhibits the scalability and generalization ability required
for real-world, multi-task, long-horizon robotic manipulation, which represents a critical step toward
building reliable, general-purpose robotic agents.

Table 2: Robotic manipulation performance (mean ± 95% confidence interval) across different long
horizon tasks.

Tasks Singe-Arm Water Pouring (200) Dual-Arm Water Pouring (250) Table Rearrangement (250)
Methods Sim. Real. Steps Sim. Real. Steps Sim. Real. Steps
ACT(FwS) 6/50±0.09 0/20±0.00 200.00±0.00 6/50±0.09 1/20±0.10 247.65±4.92 2/50±0.05 0/20±0.00 250.00±0.00
DP(FwS) 11/50±0.11 2/20±0.13 199.00±1.63 5/50±0.08 2/20±0.13 247.60±3.72 7/50±0.10 2/20±0.13 246.30±5.33
RDT(FwS) 33/50±0.13 3/20±0.16 197.35±3.44 21/50±0.14 3/20±0.16 243.95±6.99 18/50±0.13 2/20±0.13 248.05±3.16
π0(FwS) 38/50±0.12 6/20±0.20 194.30±4.20 25/50±0.14 5/20±0.19 241.70±7.72 11/50±0.11 4/20±0.18 237.55±12.41
π0− FAST(FwS) 31/50±0.13 11/20±0.22 185.95±8.06 30/50±0.14 8/20±0.21 223.95±15.50 23/50±0.14 7/20±0.21 230.60±12.95
GR00T N1.5(FwS) 29/50±0.14 9/20±0.22 189.05±7.05 22/50±0.14 7/20±0.21 231.80±12.81 16/50±0.13 4/20±0.18 237.20±8.87
Sim2Real-VLA 46/50±0.08 17/20±0.16 174.60±8.63 47/50±0.07 16/20±0.18 195.15±16.05 44/50±0.09 16/20±0.18 197.05±14.44

Tasks Items Hand-Over and Place (400) Basket Pick-and-Place (400) Pan Open and Place (550)
Methods Sim. Real. Steps Sim. Real. Steps Sim. Real. Steps
ACT(FwS) 0/50±0.00 0/20±0.00 400.00±0.00 0/50±0.00 0/20±0.00 400.00±0.00 0/50±0.00 0/20±0.00 550.00±0.00
DP(FwS) 0/50±0.00 0/20±0.00 400.00±0.00 0/50±0.00 0/20±0.00 400.00±0.00 0/50±0.00 0/20±0.00 550.00±0.00
RDT(FwS) 8/50±0.10 1/20±0.10 397.15±5.97 12/50±0.12 1/20±0.10 396.50±7.33 15/50±0.13 2/20±0.13 539.65±15.09
π0(FwS) 12/50±0.12 4/20±0.18 388.50±12.17 15/50±0.13 2/20±0.13 395.95±5.83 12/50±0.12 1/20±0.10 546.40±7.53
π0− FAST(FwS) 10/50±0.11 1/20±0.10 398.70±2.72 13/50±0.12 3/20±0.16 396.35±4.26 11/50±0.11 3/20±0.16 547.50±5.23
GR00T N1.5(FwS) 18/50±0.13 3/20±0.16 395.50±5.33 9/50±0.11 2/20±0.13 397.95±2.95 17/50±0.13 1/20±0.10 545.35±9.73
Sim2Real-VLA 31/50±0.13 8/20±0.21 370.20±19.11 29/50±0.14 9/20±0.22 364.15±19.76 30/50±0.14 7/20±0.21 525.35±16.34

We conduct a quantitative analysis to evaluate how well Sim2Real-VLA generalizes across different
types of configurations in realistic environments. More specifically, we intentionally alter the
original configuration of the real-world environment to introduce domain gaps, including variations
in background texture, manipulation objects’ location, texture, and shape, and the table’s surface
texture. Besides, we also experiment Sim2Real-VLA robustness to the combination of these gaps.
Figure 5 shows the environment configuration at the first run of the experiment. For each domain gap,
we evaluate Sim2Real-VLA; over 20 trials, each with a different sampled configuration, and report
the number of successful manipulations.

Figure 5: Visualization of environment configurations under the domain gaps of background texture,
object features, and table texture across different manipulation tasks.
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Table 3 illustrates the generalization ability of Sim2Real-VLA under different domain gaps. Despite
variations in background, object properties, and table texture, as well as their combinations Sim2Real-
VLA achieves comparable success rates across most tasks. These results indicate that the model
maintains stable performance and demonstrates strong robustness to real-world differences. Another
intriguing finding is that, for some tasks, performance actually improves under certain domain
variations. This effect can be explained by domain shifts reducing spurious correlations present in
the original setup, thereby encouraging the policy to rely on task-relevant features. Moreover, some
variations may inadvertently simplify specific trials or align more closely with conditions encountered
during training, resulting in higher success rates.

Table 3: Number of successful/total trials across different manipulation tasks and domain gaps.

Task / Domain Gap Original Background Object Table Multiple Gaps
Single-Arm Water Pour 17/20 17/20 16/20 17/20 16/20 (Table + Object)
Dual-Arm Water Pour 16/20 16/20 16/20 17/20 17/20 (Table + Object)
Table Rearrangement 16/20 15/20 14/20 16/20 15/20 (Table + Object)
Item Hand-Over and Place 8/20 9/20 8/20 6/20 8/20 (Table + Object)
Basket Pick-and-Place 9/20 9/20 10/20 9/20 7/20 (Table + Background + Object)
Pan Open Pick-and-Place 7/20 6/20 7/20 7/20 8/20 (Table + Background + Object)

Analyzing Attention Maps in VLA Models Attention maps serve as a useful diagnostic tool for
analyzing how and why performance improves through the incorporation of a chain-of-affordances.
By inspecting where the model allocates its attention during action prediction, we gain insights into
whether the reasoning is aligned with task-relevant visual and proprioceptive cues.

Attentions from 
RDT (Sim.)

Attentions from 
Sim2Real-VLA (Sim.)

Relevant Motions Guide 
by Attentions（Sim.）1.0

0.0

Attentions from 
RDT (Sim.)

Attentions from 
Sim2Real-VLA (Sim.)

Relevant Motions Guide 
by Attentions（Sim.）1.0

0.0

Figure 6: Visualization of attention maps and relevant robot motions during robotic manipulation.

Figure 6 visualizes the attention maps of Sim2Real-VLA’s action transformer blocks and compares
them against those from a vanilla RDT baseline without affordance integration. The contrast is
clear: without the guidance of affordance, the model’s attention is broadly distributed, often covering
irrelevant background regions, entire objects regardless of their role, or robot joints unrelated to the
current manipulation step. In contrast, the affordance-driven Sim2Real-VLA directs its focus to
precisely those spatial regions that are critical for the current sub-task. These observations shows
that affordances encourage localized attention, ensuring that each action step conditions on the most
informative object parts and motion-critical pixels.

6 CONLUSION

In this work, we introduced Sim2Real-VLA, an affordance-driven Vision-Language-Action model that
achieves zero-shot generalization from exclusively synthetic training data to diverse real-world robotic
manipulation tasks. By reformulating manipulation as a structured chain-of-affordances and coupling
high-level reasoning with low-level execution through a dual-system architecture, the framework
effectively filters out irrelevant variability and focuses on task-critical dynamics. Our automatic
data generation pipeline further enables scalable training without manual demonstrations, while
extensive experiments across dexterous, bimanual, and long-horizon scenarios demonstrate significant
improvements—over 35% higher real-world success rates compared to competitive baselines. Beyond
its empirical performance, Sim2Real-VLA highlights the importance of model-side design choices,
rather than solely pursuing high-fidelity simulation, for bridging the long-standing Sim2Real gap.
These findings point toward a promising paradigm shift: building robotic foundation models that are
trained entirely in simulation, yet are robust to realistic deployment. Future research will extend our
framework to multi-agent collaboration, interactive environments beyond tabletop settings, and the
integration of reinforcement learning for continual policy refinement.
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ETHICS STATEMENT

Our study focuses on developing a Vision-Language-Action (VLA) framework for robotic manip-
ulation, trained entirely in simulation and evaluated in controlled real-world environments. We
have carefully considered potential ethical concerns in accordance with the requirements of ICLR.
Specifically:

• All training data were either automatically generated in simulation environments or sourced from
publicly available datasets released for research purposes. No personally identifiable information or
human subject data were used at any stage. Real-world demonstrations involved only non-sensitive
household objects, ensuring no compromise to privacy or human welfare.

• To minimize potential harm, the proposed framework was developed and rigorously tested under
strict monitorty protocols. All real-world evaluations took place in controlled laboratory settings,
ensuring that the robot operated within defined safety boundaries and posed no risk to humans,
property, or the environment.

• The primary goal of this research is to advance embodied AI systems for beneficial real-world
applications, including assistive robotics, resource handling, and safe automation. We explicitly
discourage any harmful or malicious use of this technology. Future deployment should adhere
to domain-specific safety standards and ethical guidelines to ensure responsible use and positive
societal impact.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our results. Details of our Vision-
Language-Action (VLA) framework, including model architecture and training procedures, are
provided in Section 4.1 and Section 4.2 and further elaborated in Appendix A. We include compre-
hensive descriptions of all simulation environments, task definitions, and evaluation protocols in
Section 5. To facilitate reproducibility, we have submitted anonymized robot manipulation videos
as part of the supplementary materials. While we have not included the model parameters and
environment source code due to their large size, we will open-source them alongside the code on
GitHub upon publication. These resources will enable researchers to replicate our experiments and
validate our findings.
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A DETAILS OF SETTING AND IMPLEMENTATION FOR SIM2REAL-VLA

A.1 KEY PARAMETERS

Regarding the model architecture, we employ DiNOv2 as the visual encoder and T5-XXL as the
language encoder. The action expert model comprises approximately 200M parameters, structured
with an 8-layer transformer backbone featuring 256 hidden dimensions and 8 attention heads for
action processing. The specific archiutecture of our action moodel can be seen in the Figure 7 below.
This architecture is complemented by two additional transformer blocks of identical configuration
dedicated to affordance inference and guidance, alongside multiple MLP adapters that facilitate
dimensional alignment across action, observation, and affordance inputs.

Figure 7: The detailed architecture of action model.

Regarding visual observation masking, the mask prediction module utilizes a standard CNN-based
architecture to process raw visual inputs and yield stable object masks. Through the implementation
of joint training and domain randomization, the module ensures robust generalization across diverse
objects and environmental conditions.

These masked visual observations, combined with language instructions, are subsequently fed into the
affordance prediction model. Structured as a regressive transformer, this model outputs a sequence of
2D keypoints projected from key poses into the camera image space as affordances, which effectively
serve as high-level plans.

To bridge the affordance-prediction subsystem and the acting policy, the action model is formally
constructed as a conditional autoregressive transformer. The pipeline initiates by employing a
diffusion-based action expert to generate action trajectories through denoising, conditioned on
the aforementioned masked visual observations and proprioceptive inputs. These refined action
chunks are tokenized by a pretrained FAST tokenizer and embedded. Utilizing a tokenize-then-
concatenate strategy, the model fuses these action embeddings with the predicted affordance outputs.
ly, conditioned on language instructions and visual inputs, the transformer predicts logits for action
tokens (or the <EOS> token), which are decoded into executable action chunks. Empirical evaluations
demonstrate that this binding strategy significantly outperforms alternative architectures.

A pretrained validation model is also needed in affordance chain inferrence. Constructed as a
regressive transformer classifier, the validtion modeal takes maksed visual observation and state as
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input, current target affordance as condation, and output a validation signal to label if the target
affordance is achieved.

For the training protocol, we implement a cosine-annealing learning rate schedule with a maximum
value of 1e-5 across 40,000 epochs, incorporating exponential moving average (EMA) to enhance
training stability. The training configuration utilizes a batch size of 8, requiring approximately 36
GPU hours to complete under these specified conditions.

A.2 CONFIGURING REWARDS IN VLA MODELS

Note that in robotic manipulation tasks, reward signals are not always explicitly defined; instead,
they are often implicitly specified by the task goals themselves. For instance, in widely used robot
control frameworks such as Vision-Language-Action (VLA) (Kim et al., 2024), reward information
is typically embedded in the language commands l that describe the desired outcome (e.g., "Please
close the door"). In such cases, the reward function can be interpreted as R(s, a) = 1 if the robot
successfully completes the task, and R(s, a) = 0 otherwise. When more detailed or nuanced reward
structures are needed, AI agents can design sophisticated reward functions (Ma et al., 2024a). These
functions are crucial for reinforcement learning (RL), particularly following Supervised Fine-Tuning
(SFT) of VLA models.

A.3 DETAILS ON REAL2SIM DATA PROJECTION

The goal of heterogeneous data projection is to map descriptive observations of real-world tasks into
a simulated environment, ensuring that the generated skills remain applicable to the target application.
Following the approach in (Liu et al., 2025a), this projection encompasses both scene-level and
action-level mappings, as detailed below.

Scene Projection. We project the static scene information from the real world into a simulated
environment. Inspired by Digital Cousins Dai et al. (2024), we first extract per-object information
from input RGB images. Each detected object is then matched to its corresponding "digital cousin"—a
visually and functionally similar asset from our simulation dataset. For articulated objects (e.g.,
drawers, boxes), we further post-process them to create fully interactive simulated counterparts
by aligning them with CAD models or synthesized assets. However, in cases where three-view
images capture only partial scene information (e.g., occluded object surfaces), or when the retrieved
scene fails to semantically align with the real-world context, we leverage a Vision-Language Model
(VLM) to identify problematic objects, revise the scene configuration, and regenerate a corrected
version using an objective generation model (Zhao et al., 2025). Such a pipeline can be automatically
implemented in the simulated environment. The specific prompts used to instruct the VLM for this
corrective process are provided in Listing 1 and Listing 2 below.
Action-Trajectory Projection. Given either an egocentric video of a human manipulating objects
or teleoperated demonstrations performed in the real environment, we project both the actions and
object interactions onto robot control signals within a simulated environment. These trajectories
capture dynamic motion information and serve as seed demonstrations for downstream automatic
skill acquisition.

1) Robot-Action Projection. We extract hand movement trajectories from two sources: (1) human
hand motion in egocentric videos and (2) teleoperated demonstrations using robotic interfaces. These
trajectories are then retargeted to robotic end effectors, such as parallel grippers or dexterous hands, by
transforming human or teleoperated hand poses into control signals compatible with the target robot.
In this work, we primarily execute manipulations using a gripper as the end effector. Accordingly,
two representative fingers are selected as proxies for grasping, and their trajectories are retargeted to
drive the open-close motion of the gripper jaws.

2) Robot-Object Interaction. To accurately capture the interaction between robot and object, we
reconstruct the manipulated objects and their spatial relationship with the operator Liu et al. (2025c).
This involves determining the 3D pose at which the end effector (e.g., hand or gripper) engages
with the object (e.g., a cup), ensuring that the projected action trajectory reflects realistic physical
interactions. We reconstruct 3D object meshes and poses from sequences of image frames within the
demonstration videos or teleoperation logs. These object trajectories are then jointly optimized with
the corresponding end-effector trajectories to ensure proper alignment in 3D space. This process is
fully automatic and does not require manual intervention. For each frame, the optimization refines the
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You are a visual-inspection agent responsible for ensuring camera
coverage of specified objects.

Task: {task_description}
Target object list: {object_list}

Instructions:
1. Examine the provided image carefully.
2. For each object in the target list, determine whether the object is
**completely visible** (i.e., no obstruction) in the image.
3. If you find any object that is **obstructed** (partially or fully
blocked from view), output **only** the name(s) of those object(s)
from the list, in a comma-separated list.
4. If no object is obstructed, output "All objects fully visible".

Output format (exact):
Obstructed objects: [object_name1, object_name2, ...]
(or)
All objects fully visible

Listing 1: Prompt for visual inspection agent to avoid occlusion by ensuring complete object visibility.

You are a visual and task-feasibility evaluator for image-based asset
inspection.

Task: {task_description}
Target object list: {object_list}
Real-world task context image/asset description:
{real_world_image_description}

Instructions:
1. Examine the image carefully to check whether each object from the
target list is captured without obstruction.

- If any object is obstructed, output the names of those object(s)
from the list.

- Format: Obstructed objects: [...] or "All objects fully visible".
- Then proceed to step 2.

2. Assess whether the visual assets (i.e., what is shown in the image)
would realistically support executing the real-world task described
(i.e., {real_world_image_description}).

- If you determine that the assets are **insufficient** to complete
the real task, identify **which object(s)** do not match realistic
observation (for example: object missing, object appearance
unrealistic, object placement wrong etc.).

- Output: "Task feasibility: No - issues with [object_name1,
object_name2, ...]"

- If the assets are sufficient, output: "Task feasibility: Yes".

Combined output format (exact):
Obstructed objects: [object_name1, object_name2, ...]
Task feasibility: Yes
(or)
Obstructed objects: [object_name1, object_name2, ...]
Task feasibility: No - issues with [object_name3, object_name4, ...]

Listing 2: Prompt for comprehensive task feasibility evaluation, combining visibility assessment with
real-world context alignment.
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physical contact between objects and end effectors, modeling accurate contact dynamics such as grasp
stability and force application. We further smooth and regularize the resulting action trajectories to
ensure temporal coherence and realism in the simulated environment.

Clarification on the Real2Sim prior and “zero-shot” Sim2Real transfer. In this work, we
follow the convention in recent real-to-Sim2Real approaches (Fang et al., 2025; Torne et al., 2024)
and use the term zero-shot Sim2Real to indicate that the control policy is learned entirely from
simulated experience, without any fine-tuning or gradient-based updates on real-world robot data.
Our Real2Sim module consumes a small set of real teleoperation and human video trajectories
solely to reconstruct task instances and configure simulation environments (e.g., initial states, camera
viewpoints, and target poses). These real trajectories are not used as direct supervision signals for the
policy network: the policy is trained only on rendered simulated observations and rewards generated
in the reconstructed environments. Thus, Real2Sim acts as a prior over task configurations rather
than an additional source of real-robot training data, and our reported results should be interpreted
as zero-shot deployment of a policy that has never been updated on real sensor frames or real robot
trajectories.

A.4 DETAILS ON GENERATIVE SCENE SCALING

The goal of generative scene scaling is to bridge the Sim2Real gap and enhance the generalization
capabilities of robot policies. Policies trained in simulation often fail when deployed in real-world
environments due to domain gaps and distribution shifts between the two domains. We primarily adopt
the approach described in (Liu et al., 2025a) for scene-level feature sampling, which provides a good
initial range for simulation parameters. However, the kinematic constraints of robot manipulators are
typically not fully captured by large language models, leading to sampled scene-level features (e.g.,
object poses) that may result in kinematically infeasible trajectories.

To achieve more efficient and higher-quality trajectory generation, we implement a robot workspace-
aware scene scaling method. First, we develop a robot workspace analyzer that precomputes the
reachable workspace region using uniform or Monte Carlo joint position sampling combined with
forward kinematics. This analysis provides the complete reachable Cartesian space of the robot
end-effector. Subsequently, we perform pose sampling within the intersection of the reachable
workspace and the object distribution range obtained from the initial scene-level feature sampling.
This approach ensures that generated object poses remain within the robot’s kinematic reach, thereby
guaranteeing feasible trajectory generation. An example can be seen in the Figure 8.
Beyond object-level constraints, we extend the workspace-aware sampling to robotic-level features.
We leverage the same robot workspace analyzer to validate that sampled robot end-effector poses fall
within the kinematically reachable region. For camera configuration sampling, including position,
orientation, and field of view parameters, we compute the intersection ratio between the camera’s
view frustum and the robot’s reachable workspace volume. By constraining the camera placement
such that a substantial portion of its view frustum overlaps with the robot’s operational space, we
ensure optimal visual coverage of task-relevant regions. This workspace-aware camera positioning
strategy enhances the quality of visual observations and improves the robustness of vision-based
robotic policies.

A.5 DETAILS ON AUTOMATIC SKILL ACQUISITION

To construct the dataset used for training Sim2Real-VLA, we designed a multi-stage pipeline for
automatic skill acquisition, which combines atomic action primitives with large multi-modal language
models (MLLMs). The process unfolds as follows.

Action Bank Construction. We first curated a set of atomic actions (e.g., grasp, lift, rotate, etc) that
serve as the basic building blocks for manipulation. Each action is implemented with a standardized
interface, enabling consistent invocation by higher-level planning modules. This collection forms our
Action Bank.

Task Decomposition with Task Agent. For each target task, we employ a multi-modal LLM (GPT-4o
in this paper) as a task agent. Given a natural-language instruction and visual context, the task agent
decomposes the overall objective into a sequence of sub-goals. It generates a step-by-step plan,
specifying both the order of execution and the high-level rationale behind each step.
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(a) Workspace examination result showcase

(b) context (scale here, identified by VLM) examination

Figure 8: Succees and fail cases of real2sim projection eamined by workspace analyzer and VLM
respectively on asset and action level.
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Action Invocation with Code Agent. To translate high-level plans into executable robot behaviors,
we introduce a second MLLM, the code agent. Conditioned on the sub-goals and reasoning generated
by the task agent, the code agent selects and invokes the appropriate atomic actions with appropriate
configurations (e.g., rotation degrees) from the Action Bank. This design separates task reasoning
from low-level control, reducing hallucinations and ensuring that generated action sequences remain
grounded in available primitives.

Key Pose and Trajectory Generation. Each atomic action is associated with a representative key
pose of the end-effector (e.g., pre-grasp pose, lifted pose, rotated pose). For each key pose, we apply a
generalized inverse kinematics (IK) solver to obtain feasible joint configurations. A trajectory planner
then interpolates between consecutive poses, producing smooth and executable motion trajectories.

Success Condition Generation. Beyond producing trajectories, it is essential to determine whether
a task is completed successfully. We prompt the task agent to propose success conditions for each
sub-goal (e.g., the bottle is lifted above the cup). These conditions are refined through human feedback
and integrated into the pipeline as automatic evaluation signals during data collection.

Dataset Assembly. Finally, we store the atomic instructions, joint trajectories, success conditions,
detected affordances, and rendered visual observations as structured training samples. This ensures
that each data point captures not only robot motion but also the reasoning and affordance information
underlying it.

A.6 SPECIFICATION OF SIMULATION ENGINE

The simulation platform we use is EmbodiChain (Developers, 2025), which is a next-generation
robotics simulation and learning platform designed to accelerate research in robot skill acquisition,
Sim2Real transfer, and large-scale training. By integrating GPU-accelerated physics simulation,
high-fidelity rendering, modular learning environments, and multimodal large language model
(MLLM) agents with embodied reasoning capabilities, EmbodiChain provides a unified framework
for developing and benchmarking robotic intelligence at scale. Its architecture emphasizes efficiency,
realism, and extensibility, enabling researchers to rapidly prototype and evaluate advanced algorithms
across diverse tasks and robot morphologies. Below, we detail its core specifications:

System Architecture. EmbodiChain is built on a modular, GPU-accelerated framework with three
interconnected subsystems:

• Simulation Engine: A high-performance rendering and physics backend that supports real-time
interaction, large-scale parallelism with extensible APIs, and seamless integration with learning
frameworks.

• Robot Learning Environments: A suite of standardized, OpenAI Gym-compatible environments
with modular functionality for domain randomization, affordable and trajectory generation, reward
design, offline dataset collection, online data streaming and more.

• Embodied Intelligence Framework: A unified architecture for vision-language-action (VLA) and
vision-language model (VLM) design, training, and deployment. It supports both imitation learning
from demonstrations and reinforcement learning through environmental interaction, enabling
scalable development of multi-modal robotic agents.

A.7 EMPIRICAL STUDY ON AFFORDANCE CHAIN LENGTH K

Since the proposed method utilizes the affordance chain for reasoning, it is anticipated that the
length of the inferred affordance chain significantly influences the overall performance of the model.
To quantitatively assess the impact of the inferred affordance chain length, we conduct real-world
experiments across all six tasks, with models trained using affordance chain lengths ranging from
K = 1 to K = 3. The results are presented in Table 4 below.
The result above have indicated that, K=1 produced the best performance across all six tasks. We
interpret this outcome as indicating that, for our domain, extending the chain beyond one affordance
introduces redundancy rather than helpful contextual action guidance.
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Table 4: Number of successful/total trials across different manipulation tasks and affordance chain
lengths.

Task / Affordance Chian Length K=1 K=2 K=3
Single-Arm Water Pour 17/20 10/20 11/20
Dual-Arm Water Pour 16/20 11/20 8/20
Table Rearrangement 16/20 12/20 13/20
Item Hand-Over and Place 8/20 5/20 4/20
Basket Pick-and-Place 9/20 9/20 4/20
Pan Open Pick-and-Place 7/20 3/20 5/20

A.8 REAL-WORLD EXPERIMENT SETUP

To enhance the reproducibility of our experiment results, we listed several critical initialization details
here:

1. Regarding the random seed, we use a seed value of 42 for all random sampling processes.

2. The initial object poses are sampled independently, the distribution for all six tasks is outlined in
Table 5, and it mirrors the simulation setup, with the same original reference point located at the base
of the robot.

Table 5: Task details including object, xy position, and Z axis rotation.

Task Object XY Position Z Axis Rotation
Single-Arm Water Pouring Bottle [0.67, 0.83], [0.06, 0.22] [0, 0]

Cup [0.67, 0.83], [-0.22, -0.06] [0, 0]
Dual-Arm Water Pouring Bottle [0.67, 0.83], [0.06, 0.22] [0, 0]

Cup [0.67, 0.83], [-0.22, -0.06] [0, 0]
Table Rearrangement Plate [0.575, 0.675], [-0.05, 0.05] [0, 0]

Fork [0.35, 0.50], [0.11, 0.21] [-45, +45]
Spoon [0.35, 0.50], [-0.21, -0.11] [-45, +45]

Items Hand-Over and Place Pen [0.52, 0.68], [0.035, 0.195] [-45, +45]
Holder [0.5, 0.65], [-0.4, -0.2] [0, 0]

Basket Pick-and-Place Milk box [0.81, 0.93], [0.06, 0.22] [-15, +15]
Basket [0.65, 0.85], [-0.2, 0.0] [-15, +15]

Pan Open and Place Pan [0.4, 0.6], [0.0, 0.2] [0, 0]
Carrot [0.51, 0.71], [-0.1, -0.3] [-15, +15]

3. The initialization of the robotic arm joint angles for these tasks is also detailed in Table 6, which
corresponds to the random initial xpos setup in the simulation, with a range of ±0.02m in xyz direction
for all tasks.

Table 6: Initialization of robotic arm joint angles for each task.

Task Initial joint (following the parsing order in PhysX)
Singe-Arm Water Pouring [-0.3,0.3,1.0,1.0,-1.2,-1.2,0.0,0.0,0.6,0.6,0.0,0.0,0.05,0.05,0.05,0.05]
Dual-Arm Water Pouring [-0.3,0.3,1.0,1.0,-1.2,-1.2,0.0,0.0,0.6,0.6,0.0,0.0,0.05,0.05,0.05,0.05]
Table Rearrangement [-0.15,0.15,1.0,1.0,-1.2,-1.2,0.0,0.0,1.2,1.2,0.0,0.0,0.05,0.05,0.05,0.05]
Items Hand-Over and Place [-0.15,0.15,1.0,1.0,-1.2,-1.2,0.0,0.0,1.2,1.2,0.0,0.0,0.05,0.05,0.05,0.05]
Basket Pick-and-Place [-0.3,0.3,1.0,1.0,-1.2,-1.2,0.0,0.0,0.6,0.6,0.0,0.0,0.05,0.05,0.05,0.05]
Pan Open and Place [-0.3,0.3,1.0,1.0,-1.2,-1.2,0.0,0.0,1.2,1.2,0.0,0.0,0.05,0.05,0.05,0.05]

4. The extrinsic parameters of the wrist camera, or more precisely, its relative pose to the attached
link, are taken directly from the official URDF of the CobotMagic. For the main binocular camera,
calibration is conducted using the CCTag algorithm, yielding an error of 3.8mm.
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A.9 ABLATION STUDY ON ARM-DECOUPLING VS. JOINT LEARNING

To assess the effectiveness of the proposed arm-decoupling design, we conducted an ablation study
comparing it with a joint-learning baseline. In the joint-learning setting, a single control module
predicted the actions of both arms based on the full visual observation. In contrast, the arm-decoupling
design employed two separate control modules, each receiving only the visual feedback associated
with its corresponding arm.

We evaluated both models on two representative tasks: (i) a single-arm “Water Pouring” task and
(ii) a bimanual “Items Hand-Over and Place” task. For each task, we measured the success rate in
simulation, the success rate in the real world, and the average number of control steps required to
complete the task. The results are summarized in Table 7.
Table 7: Comparison between the joint-learning baseline and the proposed arm-decoupling design
on two manipulation tasks. We report success rates in simulation and the real world, as well as the
average number of control steps.

Method Single-Arm Water Pouring Items Hand-Over and Place
sim real steps sim real steps

Joint learning 0.86 0.75 178.6 0.32 0.15 390.0
Arm decouple 0.92 0.85 174.6 0.62 0.40 370.2

As shown in Table 7, the arm-decoupling strategy achieved comparable or slightly better performance
than joint learning on the single-arm pouring task in both simulation and real-world settings, while also
reducing the average number of control steps. More notably, the arm-decoupling design substantially
improved both simulation and real-world success rates for the bimanual hand-over task, together with
a reduction in the average number of steps. We interpret these results as evidence that decoupling
reduces cross-arm interference: each arm controller can focus on its own relevant visual feedback,
thereby avoiding the redundancy and complexity introduced by processing combined wrist-camera
observations for simultaneous joint control.

A.10 FEW-SHOT REAL-WORLD ADAPTATION AND EFFICIENCY

The quantitative results are summarized in Table 8. We analyze the impact of data quantity in Figure 9
and detail the training efficiency in Figure 10.

Impact of Real Data Quantity (Scaling). As visualized in Figure 9, baseline methods (π0 and
πfast
0 ) exhibit a monotonic improvement with increasing real data, relying heavily on demonstrations

to correct their poor zero-shot performance. In contrast, our Sim2Real VLA starts with a strong
zero-shot baseline (85% on Rearrangement). Notably, we observe a temporary performance dip at 5
demonstrations (dropping to 60%) before recovering to peak performance (90%) at 10 demonstrations.
This suggests that a very small amount of real data (5 eps) may initially disrupt the strong simulation
prior due to distribution shift ("unlearning" the sim policy), whereas 10 demonstrations are sufficient
for the model to effectively adapt and bridge the Sim-to-Real gap.

Training Dynamics and Efficiency. Figure 10 (Top Row) details the training curves across different
data strategies. While baselines require real data to reach acceptable performance, our method
maintains high success rates throughout the training process. We further analyze the cost required to
reach these results in the bottom two rows of Figure 10. We estimate FLOPs using the formula from
FlashVLA (Tan et al., 2025):

FLOPs = (1−R)×
[
Lp · (4nd2 + 2n2d+ 2ndm) + (L− Lp) · (4npd

2 + 2n2
pd+ 2npdm)

]
Our method proves significantly more efficient in both metrics. As shown in Figure 10 (Bottom Row),
the Sim2Real VLA converges to high performance in approximately 4 hours, whereas π0 requires
over 10 hours to achieve comparable results.
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Table 8: Success Rates with Few-Shot Real Data. Comparison across Sim Only, Real Only (10
demos), and Sim-then-Real (5/10 demos) strategies. Note the non-monotonic behavior ("dip") in our
method at 5 eps compared to baselines. Best results per task are bolded.

Model Data Strategy Rearrangement Basket

π0

Sim Only 0.30 0.15
Real Only (10 eps) 0.65 0.40
Sim-then-Real (5 eps) 0.65 0.35
Sim-then-Real (10 eps) 0.70 0.45

πfast
0

Sim Only 0.40 0.25
Real Only (10 eps) 0.80 0.50
Sim-then-Real (5 eps) 0.70 0.45
Sim-then-Real (10 eps) 0.85 0.55

Ours

Sim Only 0.85 0.50
Real Only (10 eps) 0.75 0.40
Sim-then-Real (5 eps) 0.60 0.35
Sim-then-Real (10 eps) 0.90 0.60

(a) Rearrangement (b) Basket Placement

Figure 9: Data Efficiency Scaling. Success rates (at 40k steps) vs. number of real demonstrations.
Baselines improve monotonically. Our method shows a "dip" at 5 eps (due to distribution shift
disrupting the sim prior) but recovers to SOTA performance at 10 eps.

A.11 ROBUSTNESS AND ACCURANCY OF OUR METHOD FACING SIM2REAL PERCEPTION GAP

Our segmentation module is a CNN-based mask-prediction network trained purely on domain-
randomized simulation data and jointly optimized with the control policy. The main paper (Table 3)
shows that the overall system relying on these masks performs well in real-world manipulation.
Here we provide additional quantitative evidence of the robustness and Sim2Real transfer of this
segmentation model.

For each of the six manipulation tasks, we first sample 20 observation states from simulator rollouts,
together with the corresponding proprioceptive states and predicted masks. We then replay these
proprioceptive states on the real robot to collect the corresponding real images and their policy-
generated masks. The real images are segmented by SAM, and the SAM masks are downsampled to
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(a) Training Curves: Data Strategies (Rearr) (b) Training Curves: Data Strategies (Basket)

(c) Efficiency: Success vs. Compute (Rearr) (d) Efficiency: Success vs. Compute (Basket)

(e) Efficiency: Success vs. Time (Rearr) (f) Efficiency: Success vs. Time (Basket)

Figure 10: Analysis of Training Dynamics and Efficiency. (a-b) Training curves of Sim2Real VLA
under different data strategies. The Sim-then-Real (10 eps) strategy yields the best final performance.
(c-d) Success rate vs. compute (TFLOPs). (e-f) Success rate vs. wall-clock time (Hours). All
efficiency plots (c-f) use the Sim-then-Real (10 eps) setting. Our method converges significantly
faster (∼4 hours) and with less compute than baselines.

match the resolution of our model. We compute the mean IoU for two comparisons: (i) real vs. sim
masks, and (ii) real vs. SAM masks. The results are summarized in Table 9.
And a example result can be seen in Figure 11 below.

Figure 11: Visualization of predicted mask by segmentation model from our method and SAM, first
taken in simulator, the rest two fromthe real-world replay.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 9: Mean IoU between segmentation outputs across six tasks. “real vs. sim” compares masks
predicted on real vs. simulated images under matched robot states. “real vs. SAM” compares masks
predicted on real images with SAM-generated pseudo ground-truth.

Task real vs. sim real vs. SAM

Single-Arm Water Pouring 0.85 0.78
Dual-Arm Water Pouring 0.83 0.81
Table Rearrangement 0.76 0.70
Items Hand-Over and Place 0.78 0.75
Basket Pick-and-Place 0.77 0.82
Pan Open and Place 0.65 0.69

To test generalization across sensor configurations and action distributions, we additionally collect 20
teleoperated executions of the single-arm water-pouring task using a camera with different placement
and calibration from our standard setup. We apply the segmentation model from the pour-water
pretrained checkpoint and compute IoU between its predictions on the new real images and the
corresponding SAM masks. The result is reported in Table 10.

Table 10: IoU between segmentation predictions on real images from a different camera setup and
SAM masks for the single-arm water-pouring task.

IoU / Task Single-Arm Water Pouring

real vs. SAM 0.78

And a example result can be seen in Figure 12 below.

Figure 12: Visualization of predicted mask by segmentation model from our method and SAM on
out-of-domain images from a different robot and camera setup.
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