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Abstract
Attention mechanism is a fundamental component
of the transformer model and plays a significant
role in its success. However, the theoretical under-
standing of how attention learns to select tokens
is still an emerging area of research. In this work,
we study the training dynamics and generalization
ability of the attention mechanism under classifi-
cation problems with label noise. We show that,
with the characterization of signal-to-noise ratio
(SNR), the token selection of attention mechanism
achieves “benign overfitting”, i.e., maintaining
high generalization performance despite fitting
label noise. Our work also demonstrates an inter-
esting delayed acquisition of generalization after
an initial phase of overfitting. Finally, we provide
experiments to support our theoretical analysis
using both synthetic and real-world datasets.

1. Introduction
The transformer models (Vaswani et al., 2017) have greatly
succeeded across a wide range of fields, including natural
language (Devlin et al., 2018; Brown et al., 2020), vision
(Dosovitskiy et al., 2021; Touvron et al., 2021), and have be-
come a foundational architecture in modern machine learn-
ing. The key component that characterizes the transformer
model is the attention mechanism, which was originally
introduced in recurrent neural network (RNN) and long
short-term memory (LSTM) to capture the long-range struc-
ture of sequence (Bahdanau, 2014; Xu, 2015). The attention
architecture can process variable-length input sequences
and flexibly select important tokens based on the input. The
seminal work on the training dynamics of this token selec-
tion mechanism (Tarzanagh et al., 2023a;b; Vasudeva et al.,
2024; Sheen et al., 2024) studied the implicit bias of gradi-
ent descent to the max-margin token separator. However,
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it remains unclear whether such max-margin solutions ac-
tually generalize well. In contrast, theoretical studies such
as (Jelassi et al., 2022; Li et al., 2023a; Jiang et al., 2024)
analyzed the generalization ability of attention mechanisms,
but in the data models assumed by these works, token selec-
tion proceeds in the same direction for all training samples.
Under annotation errors or adversarial label flips, the behav-
ior of token selection in both clean and noisy samples and
its impact on generalization remain unclear. These existing
studies raise the following research questions: (Q1) How do
the training dynamics of token selection evolve under label
noise? (Q2) Does the obtained solutions generalize well?

To this end, we analyze the token selection of attention
mechanisms in the context of benign overfitting studies,
which allows us to study the training dynamics of gradient
descent and the generalization performance. Modern over-
parameterized neural networks achieve a high generaliza-
tion while perfectly fitting to the training data (Zhang et al.,
2021). This “benign overfitting” phenomenon has attracted
attention over the past few years because it contrasts with
the conventional wisdom that achieving better generaliza-
tion requires balancing training error and model complexity.
There are lines of studies analyzing the benign overfitting
phenomenon in various settings, including linear classifi-
cation and two-layer neural networks, but the analysis of
benign overfitting is mostly limited to these types of architec-
ture. In this paper, following the common setup in existing
attention work (Tarzanagh et al., 2023a;b; Oymak et al.,
2023; Sheen et al., 2024), we analyze a one-layer attention
network f(X;W,p) = ν⊤X⊤S(XW⊤p) ∈ R, where
S(·) is the softmax function, X = (x1, . . . ,xT )

⊤ ∈ RT×d

is the sequence of input tokens, W ∈ Rd×d is the trainable
key-query matrix, p ∈ Rd is a tunable token, and ν ∈ Rd

is a pretrained linear head, on a binary classification task.
Here, p corresponds to the trainable [CLS] token (Devlin
et al., 2018; Dosovitskiy et al., 2021) or prompt tuning (Li &
Liang, 2021; Lester et al., 2021) in the application of trans-
formers, and f represents the output at that token position.
To isolate the role of benign overfitting in token selection,
we fix the linear classifier ν, and focus our analysis on the
training dynamics and generalization behavior that arise
solely from optimizing the attention mechanism.
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Figure 1: Projection of one selected token per sequence. Each point indicates x(i)
t selected by attention from each input

X(i) = (x
(i)
1 , . . . ,x

(i)
T )⊤ in the direction of class signals µ+1 and µ−1 for the three scenarios of harmful overfitting, benign

overfitting, and not overfitting. Top: Training data with label noise. Bottom: Test data. The decision boundary is common
because the head ν is fixed, but the model can select an appropriate token that belongs to the desired output region.
Here, ∥µ∥2 denotes the strength of the class signal, d is the dimension of the data and parameters, σ2

ϵ is the variance of the
input noise, and n is the size of the training set.

Contribution. We show that, under the condition based
on SNR, benign overfitting occurs in the token selection
mechanism when optimizing W and p with gradient de-
scent from random initialization. Specifically, when SNR is
high, the model disregards fitting to noisy samples and fits
only clean samples, and the generalization ability is high
(not overfitting case). As SNR decreases, the model per-
forms distinct token selection for clean and noisy training
samples, fitting both while still generalizing well even in
the presence of label noise (benign overfitting case). This
reflects a balance where sufficient class signal strength is
required for generalization, while noise memorization is
necessary for fitting noisy samples. Figure 1 illustrates the
benign overfitting in token selection.

Technically, we provide a method to evaluate the evolution
of the softmax probabilities for each training example, both
from above and below. We need it because the learning
direction of the class signal is not determined solely by the
number ratio of clean to noisy data but requires careful eval-
uation of the softmax probability ratio at each time step.
Moreover, our results demonstrate that grokking (Power
et al., 2022; Nanda et al., 2023) occurs in the benign over-
fitting case. While fitting the training data is achieved at a
relatively early stage of training, further training in exponen-
tial order is required to learn the class signals sufficiently
and reduce the generalization error. In this paper, we con-
sider binary classification for simplicity of discussion, but as
shown in Appendix E.1, it can be extended to the multi-class

setting without fundamentally modifying the argument.

2. Related Work
Token-selection in Attention. The theoretical analyses
on the attention mechanism from the perspectives of gen-
eralization ability (Jelassi et al., 2022; Li et al., 2023a;b;
2024a) and training dynamics (Tian et al., 2023; 2024) have
been progressing in recent years. The most related line of
work to ours deals with the implicit bias of gradient descent
for a one-layer attention model (Tarzanagh et al., 2023a;b;
Li et al., 2024b; Vasudeva et al., 2024; Sheen et al., 2024).
While our work follows these studies in terms of model
settings, their primary focus is the training dynamics with-
out generalization analysis. Furthermore, our work is also
influenced by the problem setting of (Oymak et al., 2023).
However, they analyze the initial few steps of training under
the data model without label noise. As for the technical dif-
ferences in proof, we show in Appendix A that our results
cannot simply be obtained by adapting their analysis to the
context of benign overfitting. Table 1 provides a concise
comparison of the analysis focus with the existing studies
of the attention mechanism for classification.

Benign Overfitting. The success of modern over-
parameterized models has led to numerous studies attempt-
ing to understand why and when benign overfitting occurs.
The analysis is interesting because the standard generaliza-
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Table 1: Comparison of the theoretical works of the attention mechanism on the classification task. “Label Noise” indicates
whether distant token selections occur depending on the training example.

Paper Dynamics Generalization Label Noise Token Type

(Tarzanagh et al., 2023a;b) ✓ - One optimal, the others non-optimal
(Vasudeva et al., 2024) ✓ - One optimal, the others non-optimal

(Sheen et al., 2024) ✓ - One optimal, the others non-optimal
(Oymak et al., 2023) ✓ Relevant and irrelevant tokens

(Li et al., 2023a) ✓ ✓ Relevant and irrelevant tokens
(Jiang et al., 2024) ✓ ✓ One relevant, the others irrelevant

(Magen et al., 2024) ✓ ✓ One relevant, the others irrelevant
Ours ✓ ✓ ✓ One relevant, the others weakly or irrelevant

tion bound based on uniform convergence does not explain
this phenomenon well (Nagarajan & Kolter, 2019). For
comprehensive surveys of the literature on this topic, please
see work such as Bartlett et al. (2021); Belkin (2021).

Benign overfitting in regression has been studied in the lin-
ear model (Bartlett et al., 2020; Hastie et al., 2022) and ker-
nel regression (Liang & Rakhlin, 2020; Tsigler & Bartlett,
2023). It is complicated to analyze the classification task
because the explicit formula for the min-norm separator is
not obtained. One approach is to track the training dynamics
with gradient descent in the linear classifier and two-layer
neural network (Chatterji & Long, 2021; Frei et al., 2022;
Xu & Gu, 2023; Cao et al., 2022; Kou et al., 2023; George
et al., 2023; Meng et al., 2024; Xu et al., 2024). Another
line of work is built on the results of implicit bias to the max-
margin solution (Cao et al., 2021; Wang et al., 2021; Wang
& Thrampoulidis, 2022; Frei et al., 2023a). These studies
base their discussion of convergence on existing research on
implicit bias (Soudry et al., 2018; Ji & Telgarsky, 2019; Lyu
& Li, 2020; Frei et al., 2023b). Specifically, they analyze
the properties of the solution through the KKT conditions
of the max-margin problem in order to examine whether
the solution at convergence shows benign overfitting or not.
Furthermore, there is a research direction in investigating
the degree of benignity of overfitting (Mallinar et al., 2022;
Wen et al., 2023; Kornowski et al., 2024).

Recently, Jiang et al. (2024) studied benign overfitting in a
simplified vision transformer model. A major difference is
that our analysis is under label noise, where the direction
of token selection differs between clean and noisy data in
the same training run, and signal learning for generaliza-
tion competes between clean and noisy data. Concurrently,
Magen et al. (2024) has also analyzed benign overfitting
in a similar model setting; however, our analysis is beyond
the initial few training steps and is conducted on a more
general data model. Furthermore, our research put more
focus on the token selection mechanism than these stud-
ies, demonstrating that benign overfitting can be achieved

solely through optimization within the attention mechanism.
Please refer to Appendix A for further details.

3. Problem Setting
In this section, we introduce the notation and the problem
settings in the rest of the paper.

3.1. Notations

Let [n] be a shorthand for the set {1, . . . , n}. We de-
note a multivariate Gaussian distribution with mean vec-
tor η and covariance matrix Σ by N(η,Σ). Denote by
S : RT → RT ,S(v)t = exp(vt)/

∑
t′∈[T ] exp(vt′) the

softmax function. The standard Big-O notations O(·),Θ(·),
Ω(·), o(·), and ω(·) are used to hide absolute constants, and
we denote inequality ignoring constant factors by ≳,≲.

3.2. Data Model

In the analysis of benign overfitting, we typically need to
consider the specific shape of the data distribution to evalu-
ate the generalization error without using a uniform conver-
gence argument. We consider the following data distribution
P defined over (X, Y ) ∈ RT×d × {±1}. In this paper, we
consider binary classification for simplicity of discussion,
but the same argument applies to the multi-class case. Please
refer to Section E.1 in the appendix for more details.
Definition 3.1. Let µ+1,µ−1 ∈ Rd be fixed class sig-
nal vectors satisfying ∥µ∥2 = ∥µ+1∥2 = ∥µ−1∥2 and
⟨µ+1,µ−1⟩ = 0. The input X = [x1, . . . ,xT ]

⊤ ∈ RT×d

has T tokens that are split into three groups: relevant token
R = {1} containing the strong signal for true class, weakly
relevant token W ⊆ [T ] \ R containing weak class signals,
and irrelevant token I = [T ] \ (R∪W) containing only
noise. Let clean distribution P ∗ be the distribution over
RT×d × {±1} such that (X, Y ∗) is sampled as follows:

1. The clean label Y ∗ is sampled from Unif({±1}).

2. The noise vectors (ϵt)t∈[T ] are sampled independently
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from N(0, σ2
ϵ Id).

3. The relevant token is given by x1 = µY ∗ + ϵ1.

4. The weakly relevant tokens xu for u ∈ W are given
by xu = ρµwu

+ ϵu, where ρ ≪ 1 is a small scale
parameter and wu ∈ {±1} for u ∈ W . For simplicity,
we assume single confusing token x2 = ρµ−Y ∗ + ϵ2
and other tokens xu = ρµY ∗ + ϵu for u ∈ W \ {2}.

5. The irrelevant tokens are given by xv = ϵv for v ∈ I.

We use the notation W+1 = {u ∈ W | wu = +1} and
W−1 = {u ∈ W | wu = −1}. The data distribution P is
defined as the label-corrupted version of P ∗ with the level
of label noise η > 0. The data point (X, Y ) from P is
generated by first sampling (X, Y ∗) from clean distribution
P ∗ and then setting Y = −Y ∗ with probability η and Y =
Y ∗ with probability 1− η. We denote signal-to-noise ratio
by SNR = ∥µ∥2/(σϵ

√
d). For simplicity of notation, we

assumed a fixed scale ρ for weakly relevant tokens, but the
analysis holds even if the scale varies across examples.

Training data S = (X(i), Y (i))ni=1 are sampled i.i.d. from
P . We denote the clean data {i ∈ [n] | Y (i) = Y ∗(i)}
and noisy data {i ∈ [n] | Y (i) ̸= Y ∗(i)} by C and N ,
respectively. The set of data {i ∈ C | Y (i) = 1} are denoted
as C+, and {i ∈ C | Y (i) = −1} are denoted as C−. The
same notation is applied to N . The superscript (i) denotes
that the variable corresponds to the training data i ∈ [n].
For instance, we write x

(i)
t for t ∈ [T ], W(i) and I(i).

Data models based on signal and noise widely appear in the
existing benign overfitting studies (Chatterji & Long, 2021;
Frei et al., 2022; Cao et al., 2022; Jiang et al., 2024; Meng
et al., 2024). Such data models based on signal and noise
are not limited to benign overfitting works but are also com-
monly observed in other analyses of attention architecture
(Jelassi et al., 2022; Li et al., 2023a; Oymak et al., 2023).

Remark 3.2 (Weakly relevant token and label noise).
Weakly relevant tokens represent tokens with weak signal
strength and confusing class information, reflecting a more
realistic scenario than a clean separation into relevant and ir-
relevant tokens. Furthermore, such weak class information,
including that which is confusing, is likely to lead to lower
annotation quality, making it more plausible to consider the
presence of label noise.

3.3. Attention Model

Given a sequential input X = (x1, . . .xT )
⊤ ∈ RT×d, a

single-head self-attention layer fSA : RT×d → RT×m is

fSA(X) = S(XWQW
⊤
KX⊤)XWV Wo,

with trainable weights WQ,WK ,WV ∈ Rd×d, and
Wo ∈ Rd×m. Here, the softmax function S(·) is applied
row-wise with the abuse of notation.

In practice, an additional tunable token p ∈ Rd is concate-
nated to the input, and this position is used for the model
prediction. This setup is widely used in, for example, the
classification token [CLS] in BERT (Devlin et al., 2018) and
ViT (Dosovitskiy et al., 2021), and prompt-tuning technique
(Li & Liang, 2021; Lester et al., 2021). Let the concate-
nated input be Xp := [p,X⊤]⊤ ∈ R(T+1)×d; then the
cross-attention feature between Xp and X is given by[

f(X)⊤

fSA(X)

]
= S(XpWX⊤)XWV Wo

=

[
S(p⊤WX⊤)

S(XWX⊤)

]
XWV Wo,

where we use W to denote a key-query weight matrix
WQW

⊤
K , and the output corresponding to the position of

p is denoted by f(X) = W⊤
o W

⊤
V X

⊤S(XW⊤p) ∈ Rm.
In this work, we use the model output for binary classifica-
tion, leading to the output dimension being m = 1, and we
denote the value prediction head by ν = WV Wo ∈ Rd.
Therefore, the model under our analysis is of the form

f(X) = ν⊤X⊤S(XW⊤p). (1)

The output can be regarded as an affine combination of the
token scores {γt := ν⊤xt}t∈[T ], using the learned softmax
probabilities. Let s ∈ RT be a shorthand for the softmax
vector S(XW⊤p).

To clarify the role of token selection in the attention mech-
anism with respect to benign overfitting, we fix the linear
classifier ν, for which benign overfitting has already been
extensively studied (Bartlett et al., 2020; Chatterji & Long,
2021), and analyze the training dynamics and generaliza-
tion behavior arising solely from the optimization of the
token selection mechanism inside the softmax. To formu-
late the token selection problem based on given token scores
{γt}t∈[T ], we assume a pretrained head ν that assigns ap-
propriate scores to each token. Specifically, we consider ν
such that

k · cos θk > Θ(1), (2)

for k ∈ {±1}, where θk denotes the angle between ν and
µk. Jointly training ν is itself an intriguing setting, but
it would obscure whether benign overfitting occurs in the
softmax weights or in the linear classifier. The analytical
setup in this paper enables a stronger claim: that noise
memorization and benign overfitting can occur solely within
the token selection mechanism. We further discuss the
rationale behind Equation (2) in Appendix E.2.
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Remark 3.3 (Relevance to practical scenarios). The ana-
lytical setup is relevant to practical scenarios, especially in
the context of parameter-efficient fine-tuning. For example,
prompt-tuning (Li & Liang, 2021; Lester et al., 2021) trains
only the tunable input tokens, and LoRA (Hu et al., 2022) fo-
cuses on training only the attention weights. The results on
the training dynamics and the generalization performance
provide a guarantee regarding the required training time and
the generalization when applying the model to low-quality
downstream tasks containing label noise.

3.4. Gradient-descent Training

The learnable parameters (W,p) are trained to minimize
the empirical risk objective:

L̂(W,p) =
1

n

n∑
i=1

ℓ
(
Y (i) · f(X(i))

)
, (3)

ℓ(z) = log(1 + exp(−z)), (4)

where ℓ : R → R is a binary cross-entropy loss.

Let each element of W and p be initialized as W(0)i,j ∼
N(0, σ2

w) and p(0)i ∼ N(0, σ2
p), respectively. The param-

eters are optimized by gradient descent with a step size
α > 0:

W(τ + 1) = W(τ)− α∇WL̂(W(τ),p(τ)), (5)

p(τ + 1) = p(τ)− α∇pL̂(W(τ),p(τ)). (6)

Let fτ be the f after the τ gradient descent step and L̂(τ)
be a shorthand for L̂(W(τ),p(τ)). The weight updates
with specifically calculated loss gradients are provided in
Appendix B.1.

3.5. Assumption on Parameters

In this section, we first discuss the necessity of the assump-
tions on parameters and compare them with existing studies,
followed by a list of the assumptions used in our work.

The condition on d in Assumption A1 is necessary for
training in an over-parameterized setting, and similar terms
n∥µ∥22 can be found in (Chatterji & Long, 2021; Frei et al.,
2022; Xu & Gu, 2023; Kou et al., 2023). Assumption A2
is required for generalization. The lower bound with d1/4

appears in (Xu & Gu, 2023), and n1/4d1/4 and nd1/4 are
found in (Xu et al., 2024; Meng et al., 2024), respectively.
While these conditions may seem intricate, the key aspect
in the analysis is the relationship among d, ∥µ∥2, and n.
Assumption A3 is a natural setting to represent weak class
information. The lower bound is set such that the weak
signal strength is on a larger scale than the inner product of
the class signal and a random noise vector. Assumption A4
is for a sufficiently small learning rate, which is widely set

in the existing studies, including Frei et al. (2022); Cao et al.
(2022); Jiang et al. (2024). Assumptions A5 and A6 are
the common assumptions to evaluate the class balance in
the training data and the amount of noisy data. For exam-
ple, n = Ω(polylog(d)) is assumed in (Cao et al., 2022;
Jiang et al., 2024). Assumption A7 is put to focus on the
dependencies on d, ∥µ∥2 and n in the asymptotic notation,
following (Jiang et al., 2024). Finally, Assumption A8 en-
sures that the attention probabilities at initial weights are
reasonably uniform, and this type of condition is observed
in existing studies, including other architectures (Cao et al.,
2022; Kou et al., 2023; Meng et al., 2024; Jiang et al., 2024).

Now, we state our assumptions in the following. Let
σ̂ϵ = max{σϵ, 1/σϵ}. Given a small failure probability
δ > 0 and a large enough universal constant C, we make
the assumptions for each parameter as follows:

d ≥ Cσ̂ϵn∥µ∥4/32 log3(Tn/δ), (A1)

∥µ∥2 ≥ Cσϵd
3/8 log(Tn/δ), (A2)

C∥µ∥−1
2 σϵ log(Tn/δ) ≤ ρ ≤ 1/C, (A3)

α ≤ max{∥µ∥2
√
d, σϵd}−1/C, (A4)

n ≥ C log(d/δ), (A5)
η ≤ 1/C, (A6)
T = Θ(1), (A7)

σ2
w, σ

2
p = Θ

(
max{∥µ∥2

√
d, σϵd}−1 log−2(Tn/δ)

)
.

(A8)

4. Main Results
In this section, we provide the main results regarding the
training dynamics and generalization of attention mecha-
nisms. The key techniques used in the proof are presented
in Section 4.1. By dividing ranges for the signal-to-noise
ratio, we obtain the following results for the convergence.
Theorem 4.1. Suppose that the norm of the linear head
scales as ∥ν∥2 = O(1/∥µ∥2). Under the parameter as-
sumptions in Section 3.5, we have

1. (Not Overfitting) If SNR2 = ω(n−1), then with
probability at least 1 − δ, there exists a time step
τ = Θ

(
1

α∥ν∥2∥µ∥3
2dmax{σ2

w,σ2
p}

)
such that the weights

(W(τ),p(τ)) fit only the clean data, and the test loss is
sufficiently low:

∀i ∈ C, fτ (X(i)) = Y (i),

∀j ∈ N , fτ (X
(j)) ̸= Y (j),

Pr
(X,Y ∗)∼P∗

[sign (fτ (X)) ̸= Y ∗] < δ.

2. (Benign Overfitting) If SNR2 = o(n−1), then with
probability at least 1 − δ, there exists a time step
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τ = Θ
(

exp(n−1SNR−2)
αn−1σ2

ϵ∥ν∥2∥µ∥2d2 max{σ2
w,σ2

p}

)
such that the

weights (W(τ),p(τ)) overfit the training data, and the
test loss is sufficiently low:

∀i ∈ [n], fτ (X
(i)) = Y (i),

Pr
(X,Y ∗)∼P∗

[sign (fτ (X)) ̸= Y ∗] < δ.

The assumption ∥ν∥2 = O(1/∥µ∥2) in the theorem ensures
that the token scores remain bounded by a constant. This
condition can be easily satisfied by appropriately scaling
down the model output.

This theorem demonstrates that under the parameter assump-
tions in Section 3.5, the model does not fit noisy data and
achieves high generalization accuracy with high SNR, and
the model shows benign overfitting with low SNR. In both
cases, high generalization is achieved despite the presence
of label noise. Since both the signal required for generaliza-
tion and the noise memorization for fitting label noise are
significant, their balance is essential for benign overfitting.
An upper bound on this balance is provided in the state-
ment of the theorem, while the lower bound is determined
by the parameter assumption A2. Specifically, by extract-
ing the relationship among ∥µ∥2, d, and n, we see that
SNR2 = Ω(d−1/4) holds in this benign overfitting case.

Remark 4.2 (Harmful Overfitting). Theorem 4.1 presents
cases of not overfitting and benign overfitting, where the
test loss is sufficiently low. With a lower SNR that violates
Assumption A2, specifically SNR2 = o(d−1/2), even inner
products among the random noises in the input dominate the
selection of class signal (see Lemma B.1 in the appendix for
details). It becomes inherently challenging to select class-
relevant tokens and generalize effectively. The low SNR
case corresponds to the left column of Figure 1.

Remark 4.3 (Implication for Grokking). The time step
demonstrated in Theorem 4.1 is also an important result. In
the case of benign overfitting, fitting the training set requires
a similar time step order to the not-overfitting case; how-
ever, to sufficiently learn the signal components and achieve
high generalization, the exponential term of the SNR in the
numerator is necessary. This delayed generalization abil-
ity after fitting the training set implies a connection to the
phenomenon of grokking (Power et al., 2022; Nanda et al.,
2023). For the necessity of this exponential term, please
refer to the end of Section 4.1.

We illustrate the differences between the two scenarios of the
main theorem using Figure 2. Selecting the class-relevant
token x1, i.e., increasing s1 towards 1, leads to fitting clean
data but fails to adapt to noisy labels. For clean data, both
signal learning and noise memorization contribute to in-
creasing s1, whereas for noisy data, these two processes
are in competition. The learning direction is determined by

the strength of SNR, which leads to the different cases in
Theorem 4.1. The middle in Figure 2 corresponds to the
not-overfitting case, where signal learning dominates and
the model does not fit noisy data. The right figure illustrates
the benign overfitting case, where noise memorization be-
comes dominant. The vertical axis in Figure 2 represents
the value of s1(1 − s1), which determines the amount of
parameter updates. As attention probabilities become more
concentrated around 0 or 1, this value decreases, reducing
the influence of the example on parameter updates. This
makes analyzing the token selection dynamics inherently
challenging. Our analysis under the label noise setting must
account for two competing training directions within the
same training run: 1) between signal learning and noise
memorization (Figure 2), and 2) between clean and noisy
samples for learning the class signals. These balances de-
pend on softmax probabilities and are not determined by
pre-training quantities such as SNR or label noise η. This is
a specific difficulty with the attention mechanism, which is
absent in existing benign overfitting studies. For instance,
depending on the convergence speed—how quickly s(τ) ap-
proaches 0 or 1—it is possible that even when label noise η
is quite small, the actual contribution to the weight updates
at some time step can be dominated by noisy samples. This
motivates us to carefully analyze the dynamics of softmax
probabilities to evaluate the direction of these competing
relationships.

4.1. Key Techniques

In this section, we present the key techniques used in the
proof of Theorem 4.1. The whole proof is provided in
Appendix C. The proof for the not-overfitting case in the
theorem is more straightforward and is presented first in the
complete proof. In this section, to capture the essence of
the proof in the main text, we focus on the more non-trivial
benign overfitting case, i.e., SNR2 = o(n−1).

In the analysis of benign overfitting, it is necessary to track
the model behavior on the training data while also its gen-
eralization ability. We begin by presenting the results on
training dynamics, and the generalization result is shown at
the end of this section in Lemma 4.9. To this end, we intro-
duce the following values that represent the relative strength
of token selection of the learned weights. This quantity is
useful for evaluating the softmax probability at each time
step τ for a given training example.
Definition 4.4 (Attention gap). We define the attention gap
between a significant token and other tokens as follows:

Λi,t(τ) :=
(
x
(i)
1 − x

(i)
t

)⊤
W(τ)⊤p(τ),

Γi,u(τ) :=
(
x
(i)
2 − x(i)

u

)⊤
W(τ)⊤p(τ),

for i ∈ [n], t ∈ [T ] \ {1}, and u ∈ [T ] \ {2}.
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Figure 2: Illustration for the training dynamics of the probability assigned to relevant tokens s1 in clean data i ∈ C and
noisy data j ∈ N . The y-axis shows s1(τ)(1 − s1(τ)), which determines the magnitude of the gradient descent update.
This value converges to 0 as s1(τ) approaches 0 or 1, and consequently, the contribution of this training example to the
gradient update diminishes. The middle figure corresponds to the not-overfitting case in Theorem 4.1, and the right figure
represents the benign overfitting case.

In this paper, we first show that the training dynamics of
the attention gap can be described by the monotonically
increasing function g(x) = 2x + 2 sinh(x − log T ). This
function naturally arises when expressing the evolution of
the attention gap using the weight updates in Equations (5)
and (6) and evaluating the dynamics via the quadrature
method. Please refer to Appendix C for further details on
the derivation. By using this function, the token selection of
relevant token in clean data i ∈ C evolves as follows:
Lemma 4.5 (Attention gap dynamics of clean data). For any
T2 = Θ

(
exp(n−1SNR−2)

αn−1σ2
ϵ∥ν∥2∥µ∥2d2 max{σ2

w,σ2
p}

)
, with probability

at least 1− δ, we have for all time step τ ∈ [0, T2] that

g (Λi,t(τ)) = g (Λi,t(0))

+ τ ·Θ
(
αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}
)
,

for any t ∈ [T ] \ {1}.

This lemma is shown by tracking the gradient descent dy-
namics and conducting an induction argument with several
desirable properties. Due to the shape of the hyperbolic sine
function, the function g is close to linear around x = log T ,
and gradually becomes exponential as x moves away from
log T . This lemma states that while the value of g evolves
linearly over time, the actual evolution of the attention gap
becomes increasingly a logarithmic factor. This finding cor-
responds to the left in Figure 2, where s(i)1 (τ) approaches 1,
and the value of s(i)1 (τ)(1− s

(i)
1 (τ)), which determines the

scale of gradient updates, diminishes accordingly. This part
is also illustrated in Figure 4 in the appendix.

In contrast, the behavior of noisy data j ∈ N is described
across two training stages. During the initial Stage 1, the
softmax probability assigned to the relevant token x

(j)
1 is

suppressed. In this stage, as illustrated in the right column
of Figure 2, the influence of noise memorization dominates,
and the training progresses in a way that avoids selecting the
relevant token, unlike the clean data case. In the subsequent

Stage 2, learning progresses to select the confusing token
x
(j)
2 that can fit the label noise.

The next lemma shows that in Stage 1, the value of g de-
creases linearly over time, leading to a decrease in the atten-
tion gap Λj,t in contrast to Lemma 4.5.

Lemma 4.6 (Attention gap dynamics of noisy data in Stage
1). For some T1 = Θ

(
ρ−1

αn−1σ2
ϵ∥ν∥2∥µ∥2d2 max{σ2

w,σ2
p}

)
,

with probability at least 1 − δ, we have for all time step
τ ∈ [0, T1] that

g (Λj,t(τ)) = g (Λj,t(0))

− τ ·Θ
(
αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}
)
,

for any t ∈ [T ] \ {1}.

Subsequently, the training proceeds to select x(j)
2 , that is, to

increase the attention gap Γj,u.

Lemma 4.7 (Attention gap dynamics of noisy data in
Stage 2). Let T1 be the time step in Lemma 4.6. For any
T2 = Θ

(
exp(n−1SNR−2)

αn−1σ2
ϵ∥ν∥2∥µ∥2d2 max{σ2

w,σ2
p}

)
, with probability

at least 1− δ, we have for all time step τ ∈ [T1, T2] that

g
(
Γj,1(τ)− log ρ−1

)
= g

(
Γj,1(0)− log ρ−1

)
+ τ ·Θ

(
ραn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}
)
,

g (Γj,u(τ)) = g (Γj,u(0))

+ τ ·Θ
(
ραn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}
)
,

for any u ∈ [T ] \ {1, 2}.

Similarly to Lemma 4.5, these lemmas are proved by using
the parameter updates to track the evolution of the attention
gap and the softmax probabilities assigned to each token.
At this point, it is necessary to carefully evaluate several
factors: the softmax probabilities, the norms and inner prod-
ucts between the model weights and both signal and noise
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vectors, as well as the relative contributions of other training
examples. In particular, the presence of label noise com-
plicates the analysis involving softmax probabilities in the
attention mechanism. Since the gradient updates depend on
the softmax probabilities of training examples, the learning
direction of the class signal cannot be determined solely
by the ratio of clean to noisy data sample sizes, which is
different from the existing benign overfitting work on linear
or two-layer neural networks. Therefore, it is essential to
evaluate the ratio of softmax probabilities across different
training examples at each time step. This technique is useful
for the analysis when dealing with distinct token selection
behaviors among training samples, not limited to the label
noise setting. The whole proofs based on mathematical
induction are provided in Appendix C.
Remark 4.8 (Two-stage Analysis). In the two-stage analy-
sis in Lemmas 4.6 and 4.7, it is implicitly considered that
exp(n−1SNR−2) is of larger order than ρ−1, meaning that
the log ρ−1 > 0 scale is neglected on the benign overfitting
condition SNR2 = o(n). However, even if this is not the
case, the benign overfitting result can still be obtained by
replacing the numerator of T2 with ρ−2.

Finally, we present results related to generalization. The
attention value of the class signal at time step τ is bounded
from lower as follows:
Lemma 4.9 (Attention value of class signals). Let T2 be the
time step in Lemmas 4.5 and 4.7. With probability at least
1− δ, we have for all time step τ ∈ [0, T2] and k ∈ {±1}
that

µ⊤
k W(τ)⊤p(τ) ≳ µ⊤

k W(0)⊤p(0)

+ nSNR2 · log
(
τ · αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}
)
.

Please note that under the current condition SNR2 =
o(n−1), the value of nSNR2 is of a small order within the
range that satisfies the parameter assumptions. To select the
class relevant token for unseen examples and achieve a high
generalization performance, µ⊤

k W(τ)⊤p(τ) is required to
sufficiently exceed ϵ⊤W(τ)⊤p(τ), where ϵ is a random
noise vector. Lemma 4.9 states that this scenario is satisfied
if the training time τ becomes exponentially large, thereby
compensating for the smallness of nSNR2. This is why we
need a time step of exponential order in Theorem 4.1. Such
an exponential time scale is not necessary merely for fitting
training examples, which implies that a significantly longer
training period is required to achieve generalization.

5. Experiments
In this section, we provide experimental results to support
our analysis. The code is available on GitHub 1.

1https://github.com/keitaroskmt/
benign-attention

Synthetic experiments. We train the same model f as
defined in Equation (1) with gradient descent on W and p,
using the same data model as Definition 3.1 with σϵ = 1.
Specifically, we consider the setting with n = 20, T = 8,
η = 0.2, ρ = 0.1 and α =5e−3, changing the value of the
dimension d and the signal size ∥µ∥2. For simplicity, we set
|W+1| = |W−1| = 1 and ν ∝ µ+1 − µ−1, which aligns
with our problem setup.

Figure 3 shows the dynamics of softmax probabilities for
clean and noisy training samples from the initial weights.
The left column represents the harmful overfitting case,
where the dimension d is larger compared to ∥µ∥2. The
bottom figure shows that confusing weakly relevant token
x2 is not always selected for noisy data; instead, irrelevant
tokens that fit the label noise can be picked. This model can
fit the training data with noise components, which hinders
signal learning and reduces generalization ability. The mid-
dle figure shows the case where the balance between signal
and noise is achieved, and benign overfitting is observed. In
this figure, selecting the weakly relevant token 2 ∈ W−Y ∗(j)

for the noisy data j ∈ N aligns with our analysis in The-
orem 4.1. In the right figure, where signal norm ∥µ∥2 is
large, fitting the noisy data does not happen. The model is
trained to select relevant token x1 for both clean and noisy
samples, supporting the not-overfitting case in Theorem 4.1.
For additional synthetic experiments, please refer to Ap-
pendix F.1. We provide the loss heat-map when varying d
and ∥µ∥2, which supports the SNR boundary established in
the main theorem. Furthermore, we conduct similar experi-
ments using a more general one-layer transformer encoder,
providing results beyond our analytical setting.

Real-world experiments We further conducted real-
world experiments on image and natural language datasets
for classification. For each task, we used the pre-trained ViT
(Dosovitskiy et al., 2021) and BERT (Devlin et al., 2018)
models. To align as closely as possible with our analysis
setup, we initialized the weights within the final attention
layer and trained only these weights using a dataset with
label noise. This setup corresponds to treating the fixed
backbone model up to the last layer as a feature extractor
and its output as the input to a one-layer attention model.
We used datasets from various types: 10-class image classi-
fication with MNIST (LeCun et al., 2010) and CIFAR-10
(Krizhevsky et al., 2009), anomaly detection in medical im-
age with PneumoniaMNIST and BreastMNIST (Yang et al.,
2023), topic classification of text with AG-news (Zhang
et al., 2015), and question type classification with TREC (Li
& Roth, 2002). For detailed descriptions of these datasets,
please refer to Appendix F.2.

Table 2 presents the training loss and test accuracy when
varying the training size n. Since the SNR cannot be con-
trolled due to its dependency on the dataset and the pre-
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(a) Large noise setting: d = 5000, ∥µ∥2 =
5. Final training accuracy is 1.0 and test
accuracy is 0.87 (Harmful overfitting).

(b) Balanced setting: d = 2000, ∥µ∥2 =
20. Final training accuracy is 1.0 and test
accuracy is 1.0 (Benign overfitting).

(c) Large signal setting: d = 1000, ∥µ∥2 =
100. Final training accuracy is 0.8 and test
accuracy is 1.0 (Not overfitting).

Figure 3: Dynamics of softmax probability. The top represents a clean sample, while the bottom represents a noisy sample.
From left to right, the figures correspond to the cases of harmful overfitting, benign overfitting, and not overfitting.

Table 2: Training loss and test accuracy when only the final
attention weights are trained on a label-noisy sub-dataset
(η = 0.1) for 2000 epochs. The results show the average
over three different runs with the standard deviation.

Dataset Eval Training Size n

20 200 1000

MNIST train 0.00±0.00 0.01±0.00 0.03±0.00

test 88.5±3.2 90.0±0.4 91.4±0.2

CIFAR-10 train 0.00±0.01 0.07±0.03 0.12±0.01

test 95.9±0.4 95.1±0.1 95.1±0.1

Pneumonia
MNIST

train 0.00±0.00 0.00±0.00 0.02±0.00

test 76.2±4.1 78.5±3.2 81.0±1.5

Breast
MNIST

train 0.07±0.00 0.14±0.01 −
test 74.1±2.0 77.1±1.7 −

AG-news train 0.00±0.00 0.00±0.00 0.00±0.00

test 83.6±1.9 82.2±1.1 77.6±1.1

TREC train 0.00±0.00 0.02±0.02 0.05±0.02

test 80.1±1.0 78.3±2.3 78.5±0.2

trained model, we varied the training size n to observe the
scenario transitions shown in Theorem 4.1. Please recall
that under our parameter and data model setup, Theorem 4.1
states that reducing n for fixed SNR causes a transition from
not-overfitting to benign overfitting. In the range of n shown
in Table 2, datasets such as CIFAR-10 and TREC exhibit
such an increased fitting to the training set as n decreases.
MNIST and PneumoniaMNIST maintain very low train-
ing losses across all n, and the increase in noisy samples
with larger n does not negatively impact test accuracy. This
scenario is closer to benign overfitting rather than harmful

overfitting. In contrast, BreastMNIST does not overfit the
training data, and AG-news demonstrates overfitting to the
training set but with test accuracy negatively affected by
noisy samples, suggesting a harmful overfitting case.

6. Conclusion
In this paper, we analyze the training dynamics and the
generalization performance of the token selection of the
attention architecture. Specifically, we showed that benign
overfitting occurs in the token selection mechanism con-
ditioning on SNR, and the model sufficiently learns class-
relevant signals after overfitting. Furthermore, we supported
the analysis with experiments. In general, this study is help-
ful in analyzing the balance of convergence speeds when
the model selects different tokens for different training ex-
amples, including the label noise setting. As a natural next
step, extending the analysis setup to next-token prediction
or a more general data model can be considered.
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A. Comparison with Existing Work
In this section, we highlight the novelty of our analysis and clarify the position of this study through a comparison with
existing studies. Before presenting the existing work, we first describe the analytical challenges inherent in our setting,
which are addressed in this study. This serves to clarify the novelty of our contribution.

A.1. Difficulty of Our Label Noise Setting

The analytical setting that incorporates label noise distinctively characterizes our study, as shown in Table 1. By introducing
variability in token selection across training examples, the presence of label noise enables a more general analysis of the
token selection mechanism. Specifically, label noise introduces significant challenges due to the existence of competing
training directions within the same training run. This results in two key difficulties:

• Signal learning vs memorization in token selection of each example (see Figure 2).
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• Clean samples vs noisy samples in the learning direction of class signals, i.e., µ+1 and µ−1.

These challenges are further complicated by the fact that the weight updates depend nontrivially on the softmax probability,
as will be shown later in Equations (9) and (12). Therefore, the training direction is not statically determined by pre-training
quantities such as SNR or label noise ratio η. This is a fundamental difficulty that does not appear in previous analyses of
benign overfitting, including two-layer NNs. For instance, depending on the convergence speed—how quickly the softmax
probability s(t) converges to 1 or 0—it is possible that, even when label noise is very small and the number of noisy samples
is negligible, noisy samples can still dominate the weight updates at certain time step. Thus, it is crucial to track the whole
training dynamics of each token to analyze the above two relationships, making the analysis inherently difficult. A large
portion of this paper is dedicated to addressing and resolving this issue.

In the following, we present specific related studies and clarify the differences and novelty of our work.

A.2. Comparison with Implicit Bias Studies

We compare with the previous papers on the implicit bias of the attention mechanism (Tarzanagh et al., 2023a;b; Li et al.,
2024b; Vasudeva et al., 2024; Sheen et al., 2024). The two major differences from ours are:

(a) Analysis of a fixed training set S, rather than considering the underlying distribution.
(b) Single optimal token, with all other tokens having identical token scores.

In our setting, (b) corresponds to considering a single relevant token, irrelevant tokens xt ∼ N(0,Σ− µ+1µ
⊤
+1/∥µ∥22 −

µ−1µ
⊤
−1/∥µ∥22), and the linear head ν ∝ µ+1 − µ−1. In this setting, the noise vectors are orthogonal to the class signals

and have an identical token score γt = (µ+1 − µ−1)
⊤xt = 0, which aligns with (b). However, we consider a more general

data model, including an intermediate state termed weakly relevant tokens and non-orthogonality of noise and signals.
Furthermore, for data with label noise, selecting any irrelevant token results in the model with output 0, and the model
cannot fit the training data. Therefore, this data model is too simple to analyze the distinct behavior of the token selection,
which is the focus of our study. While we follow the model setting, our analytical methods differ entirely.

A.3. Comparison with Benign Overfitting Studies

Comparison with Jiang et al. (2024). The major differences from ours are:

(a) Absence of label noise.
(b) Differences in the data model.
(c) Focus on vision transformer (ViT) model.

Their setup assumes no label noise in the target Y , meaning all training data is clean. In contrast, we focus on the benign
overfitting concerning label noise, in addition to the input noises {ϵt}t. As explained in Appendix A.1, the ability to fit
label noise of the attention mechanism has not been analyzed before, and even when possible, the training direction is
not straightforwardly determined due to the intrinsic softmax difficulties. These challenges are specific to the attention
mechanism and are newly addressed in our work. For (b), they assume orthogonality between class and noise vectors
because the noise covariance matrix is given by Σ = I−µ+1µ

⊤
+1/∥µ∥22 −µ−1µ

⊤
−1/∥µ∥22. This assumption overlooks the

interactions between learned parameters and training samples, and it becomes a more unrealistic assumption in a multi-class
setting in Appendix E.1. Additionally, our data model newly considers intermediate states as weakly relevant tokens, which
reflects the real setting more closely. Finally, for (c), they explored the advantage of ViT compared to linear models and
CNNs from the perspective of benign overfitting. Their analysis includes the optimization of self-attention and value
matrix, which involve challenging interactions during training. In contrast, our focus is on the training dynamics and
generalization ability of token selection mechanisms. By focusing on this aspect, we enable analyses in the above general
settings. Additionally, our work demonstrates that benign overfitting can be achieved solely through the token selection
mechanism within the softmax. This is demonstrated for the first time in our analytical setting. Training the linear head ν
would obscure whether noise memorization and benign overfitting originate from the attention mechanism or from the linear
classifier, the latter of which has already been extensively studied in the literature.

Comparison with Magen et al. (2024). This work also studies the benign overfitting of the attention mechanism with the
same type of architecture, under label noise setting, but it largely differs from our work in terms of the following points:
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(a) Differences in the data model.
(b) Two-step gradient descent of p and ν.

For (a), they simplified the data model, such as signal-noise orthogonality and the clean separation of signal and noise
vectors. Our analytical setup fills this gap by introducing noise into the relevant tokens, and by incorporating intermediate
states between signal and noise vectors, which we refer to as weakly relevant tokens. We also do not assume the signal-noise
orthogonality. For (b), we present general gradient descent results for p and key-query matrix W. This allows us to discuss
differences in the convergence of gradient descent conditioning on SNR, as well as the difference in the time scale. Instead,
they provide the characterization of SNR for the max-margin solution.

We also comment on the differences in experimental validation. Their work conducted the empirical validation under the
data model in their theoretical setting, not only for the model architecture analyzed but also for other settings such as
self-attention and multiple layers. In contrast, we validate our theoretical analysis using synthetic data for both the analytical
model architecture and a one-layer transformer encoder. Furthermore, we present results on real-world data, highlighting the
connection to the analytical setting in our paper. We also provide a visualization of the heat map for the synthetic data.

A.4. Comparison with Other Studies

Comparison with Oymak et al. (2023). We emphasize that while we followed the analysis setups from this work, our
results cannot be obtained by simply applying their results to the context of benign overfitting. The key differences from our
study are as follows:

(a) Absence of label noise.

(b) Not focusing on overfitting.

(c) Three optimization steps (ν(1),p(1),ν(2)). In particular, the learning within the softmax is a single-step optimization
of p.

(d) Minor differences in input distribution.

For (a) and (b), we must analyze the competing training directions due to the presence of label noise, as explained in
Appendix A.1. This largely complicates the analysis of softmax probabilities because it is not a simple selection of the
relevant token. For (c), the analysis is in the very early stage of training, so it is difficult to fit noisy data containing label
noise. Therefore, their setting cannot be applied in our study. Additionally, the optimization within the softmax is a single
step. Only at the first step, it suffices to analyze the gradient descent concerning the average of the tokens because of the
weight initialization, and the complex softmax term does not need to be considered in the gradient calculation. Optimizing
token selection beyond a single step introduces the softmax probabilities into the gradient calculation, resulting in a complex
dependency on the current parameters. To address this, we needed to handle the relationships among attention probabilities
across all training steps using an inductive approach.
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Table 3: Notations used in this work.

X Sequence of input tokens, i.e., X = (x1, . . . ,xT )
⊤.

Y Training label.

Y ∗ True label.

n Number of training data.

T Length of input tokens.

d Dimension of token embeddings and model weights.

µ+1,µ−1 Signal vectors for class 1 and −1, respectively.

ϵ
(i)
t Noise component in x

(i)
t for i ∈ [n] and t ∈ [T ].

σ2
ϵ Variance of noise vector, i.e., ϵ ∼ N(0, σ2

ϵ I).

σ2
p, σ

2
w Variances for weight initialization, i.e., p(0)i ∼ N(0, σ2

p), W(0)i,j ∼ N(0, σ2
w)

for i, j ∈ [d].

SNR Signal-to-noise ratio given by SNR := ∥µ∥2/(σϵ
√
d).

s(i)(τ) Probability vector for X(i) at τ -th step, defined as S(X(i)W(τ)⊤p(τ)).

γ
(i)
t Token score, defined as ν⊤x

(i)
t .

R Set of relevant tokens; R = {1} and x1 = µY ∗ + ϵ1.

W Set of weakly relevant tokens; xu = ρµwu
+ ϵu, u ∈ W, wu ∈ {±1}.

W+1,W−1 Set of weakly relevant tokens with specific label; {u ∈ W | wu = +1} and {u ∈
W | wu = −1}. We assume that the confusing token consists of W−Y ∗ = {2}.

I Set of irrelevant tokens; xv = ϵv, v ∈ I.

C Set of clean data; {i ∈ [n] | Y (i) = Y ∗(i)}.

C+, C− Set of clean data with label 1 and −1, respectively.

N Set of noisy data; {i ∈ [n] | Y (i) ̸= Y ∗(i)}.

N+,N− Set of noisy data with training label 1 and −1, respectively.

α Learning rate.

η Label noise ratio.

λ+1(τ), λ−1(τ) Attention scores for class signal in Definition C.1; λ+1 := ⟨W(τ)µ+1,p(τ)⟩ and
λ−1(τ) := ⟨W(τ)µ−1,p(τ)⟩.

ρi,t(τ) Attention scores for noise vectors in Definition C.1; ρi,t(τ) := ⟨W(τ)ϵ
(i)
t ,p(τ)⟩.

Ii,+(τ), Ii,−(τ), Ii,j,u(τ),
IWi,+(τ), I

W
i,−(τ), I

W
i,j,u(τ),

Ipi (τ)

Weighted inner-product terms defined in Definition C.2.

Λi,t(τ),Γi,u(τ) Attention gaps defined in Definition C.3; Λi,t(τ) :=
(
x
(i)
1 − x

(i)
t

)⊤
W(τ)⊤p(τ),

Γi,u(τ) :=
(
x
(i)
2 − x

(i)
u

)⊤
W(τ)⊤p(τ).
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B. Preliminaries
B.1. Notation

We first list the notations used in this work in Table 3.

Furthermore, the basic computations are presented here for convenience. The gradient ∇WL̂(W,p) and ∇pL̂(W,p) used
in the training can be explicitly computed as follows. Since the derivative of the softmax function is given by

∇vS(v) = diag(S(v))− S(v)S(v)⊤,

where diag(v) ∈ RT×T denotes the diagonal matrix whose (i, i)-th entry equals to vi. Using the denominator layout, we
have

∇W⊤L̂(W,p) =
1

n

n∑
i=1

ℓ′i · Y (i) · ∇W⊤f(X(i)) (7)

=
1

n

n∑
i=1

ℓ′i · Y (i) ·X(i)⊤
(
diag(S(X(i)W⊤p))− S(X(i)W⊤p)S(X(i)W⊤p)⊤

)
X(i)νp⊤ (8)

=
1

n

n∑
i=1

ℓ′i · Y (i) ·

(
T∑

t=1

s
(i)
t

(
γ
(i)
t −

T∑
u=1

s(i)u γ(i)u

)
x
(i)
t p⊤

)
, (9)

where ℓ′i is abbreviation for ℓ′(Y (i) · ν⊤X(i)⊤S(X(i)W⊤p)). From a similar calculation, we have

∇pL̂(W,p) =
1

n

n∑
i=1

ℓ′i · Y (i) · ∇pf(X
(i)) (10)

=
1

n

n∑
i=1

ℓ′i · Y (i) ·WX(i)⊤
(
diag(S(X(i)W⊤p))− S(X(i)W⊤p)S(X(i)W⊤p)⊤

)
X(i)ν (11)

=
1

n

n∑
i=1

ℓ′i · Y (i) ·

(
T∑

t=1

s
(i)
t

(
γ
(i)
t −

T∑
u=1

s(i)u γ(i)u

)
Wx

(i)
t

)
. (12)

B.2. Proof Overview

This section provides a roadmap for the proofs in the appendix, aiming to improve readability. For the precise statements
and proofs of individual lemmas and propositions, please refer to the corresponding sections.

We begin in Appendix B.3 by establishing high-probability events. Under parameter assumptions in Section 3.5, we derive
bounds on norms, inner products, and class balance among samples. Lemma B.1 states the collections of these events, and
their proofs are provided via standard concentration inequalities, divided across Lemmas B.3, B.4 and B.6 to B.11. As
preparation for the main proof, Lemma B.12 presents an evaluation of the token score γt. The following Appendix C builds
upon the high-probability events established in this section.

Appendix C presents the proof of the main theorem. In Appendix C.1, we first introduce technical notations (Definitions C.1
to C.3), simple calculations regarding training with gradient descent (Lemmas C.4 to C.6), and several initial properties
at the start of training (Lemmas C.7 and C.8). We also provide a result regarding the balance of loss gradients across
examples in Lemma C.9. Appendices C.2 and C.3 correspond to the not-overfitting and benign overfitting cases, respectively.
In the not-overfitting case, Lemma C.11 is the central result. The proof proceeds inductively, incorporating desirable
properties such as norm and inner product evaluations and balance in softmax probabilities. The most important proposition
C(τ) characterizes the dynamics of the attention gap Λ(τ) introduced in Definition 4.4 (main text) and Definition C.3
(appendix), governed by the function g(x) = 2x+ 2 sinh(x− log T ). This inductive argument, which holds for all time
steps 0 ≤ τ ≤ T1, leads to the proof of the main theorem in Appendix C.2.2, establishing both the not-overfitting and
generalization guarantees. The benign overfitting case follows a similar structure, but as described in Section 4.1, the
analysis is divided into two stages. The inductive argument is split into Lemmas C.12 and C.13, and Appendix C.3.2
concludes with the proof of the main theorem of this case, including both the overfitting and good generalization.
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Figure 4: Illustration of the evolution of the attention gap defined in Definition C.3, based on the function g. The right figure
is similar to Figure 2 in the main text and illustrates that as s1(τ) approaches 0 or 1, the term s1(τ)(1 − s1(τ)), which
determines the magnitude of the one-step update, becomes smaller—corresponding to slower training of the weights. For
the relationship between s(i)1 (τ) and Λi,t(τ), please see Lemma D.1, which shows that s1(τ)(1− s1(τ)) decreases as Λ(τ)
moves away from log T .

To help illustrate the development of the attention gap driven by the function g, we provide a visualization in Figure 4. The
function g(x) behaves approximately linearly near x = log T but grows exponentially as x moves away from this region.
The inductive lemmas in Appendix C show that g(Λ(τ)) and g(Γ(τ)) evolve linearly, which implies that the growth of Λ(τ)
and Γ(τ) themselves gradually slows down.

Although the main theorem is fully proved in Appendix C, Appendix D supplements the proof by presenting several auxiliary
calculations. Appendix D.1 provides results linking the weight parameters to the softmax probabilities. Appendices D.2
and D.3 correspond to the not-overfitting and benign overfitting cases, respectively. These sections give one-step gradient
calculations under the favorable weight conditions, showing how signal learning and noise memorization progress and
supporting the induction arguments in Appendix C.

B.3. High-probability Events

We first show that the following events occur simultaneously with high probability under the assumptions in Section 3.5.

Lemma B.1 (High-probability events). Suppose that the parameter assumptions in Section 3.5 hold. There exists some
constant c1, c2 > 0 such that the following hold simultaneously with probability at least 1− δ over the realization of training
data S and model parameters W(0),p(0):

(i) (Norm concentration) For all i ∈ [n], t ∈ [T ], we have

(1− o(1))σϵ
√
d ≤ ∥ϵ(i)t ∥2 ≤ (1 + o(1))σϵ

√
d, (13)

(1− o(1))σw∥µ∥2
√
d ≤ ∥W(0)µ+1∥2 ≤ (1 + o(1))σw∥µ∥2

√
d, (14)

(1− o(1))σw∥µ∥2
√
d ≤ ∥W(0)µ−1∥2 ≤ (1 + o(1))σw∥µ∥2

√
d, (15)

(1− o(1))σwσϵd ≤ ∥W(0)ϵ
(i)
t ∥2 ≤ (1 + o(1))σwσϵd, (16)

(1− o(1))σp
√
d ≤ ∥p(0)∥2 ≤ (1 + o(1))σp

√
d. (17)
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(ii) (Inner-product concentration) For any i, j ∈ [n], t, u ∈ [T ] such that (i, t) ̸= (j, u), we have

|⟨ϵ(i)t , ϵ(j)u ⟩| < c1σ
2
ϵ

√
d log(Tn/δ), (18)

|⟨W(0)µ+1,W(0)µ−1⟩| < c1σ
2
w∥µ∥22

√
d log(Tn/δ), (19)

|⟨W(0)µ+1,W(0)ϵ
(i)
t ⟩| < c1(1 + o(1))σ2

wσϵ∥µ∥2d log(Tn/δ), (20)

|⟨W(0)µ−1,W(0)ϵ
(i)
t ⟩| < c1(1 + o(1))σ2

wσϵ∥µ∥2d log(Tn/δ), (21)

|⟨W(0)ϵ
(i)
t ,W(0)ϵ(j)u ⟩| < c1(1 + o(1))σ2

wσ
2
ϵd

3/2 log(Tn/δ), (22)

|⟨W(0)µ+1,p(0)⟩| < c1σwσp∥µ∥2
√
d log(Tn/δ), (23)

|⟨W(0)µ−1,p(0)⟩| < c1σwσp∥µ∥2
√
d log(Tn/δ), (24)

|⟨W(0)ϵ
(i)
t ,p(0)⟩| < c1(1 + o(1))σwσpσϵd log(Tn/δ), (25)

|⟨µ+1, ϵ
(i)
t ⟩| < c2σϵ∥µ∥2

√
log(Tn/δ), (26)

|⟨µ−1, ϵ
(i)
t ⟩| < c2σϵ∥µ∥2

√
log(Tn/δ), (27)

|⟨ν, ϵ(i)t ⟩| < c2σϵ∥ν∥2
√

log(Tn/δ). (28)

(iii) Regarding the clean and noisy samples, we have

2− 3η

4
n ≤ |C+|, |C−| ≤

2− η

4
n, (29)

η

4
n ≤ |N+|, |N−| ≤

3η

4
n. (30)

Definition B.2 (Good run). We denote by “good run” the trial that the events from (i) to (iii) occur.

In the proof of the main theorem, we will proceed by conditioning on these events. Lemma B.1 implies that a good run
occurs with the probability at least 1− δ over the realization of training data S and the weights initialization.

In the rest of this section, we will prove each high-probability event in Lemma B.1. Specifically, we can show it by
combining Lemmas B.6, B.8, B.9 and B.11, using union bound argument. In the following proofs, suppose that the
parameter assumptions in Section 3.5 hold. First, we show the norm concentration of the Gaussian noise vectors. The next
lemma gives the lower bound for the expectation of the L2 norm.

Lemma B.3. For a Gaussian vector x ∼ N(0,Σ), we have√
Tr(Σ)− 1 ≤ E [∥x∥2] .

Proof of Lemma B.3. We use the Gaussian Poincaré Inequality ((Boucheron et al., 2003), Theorem 3.20):

Var (f(x)) ≤ E
[
∥∇f(x)∥22

]
, (31)

where f : Rd → R is any continuously differentiable function. By taking f as f(x) = ∥x∥2, since we have E
[
∥∇f(x)∥22

]
=

E
[
∥x/∥x∥2∥22

]
= 1,

1 ≥ Var(f(x)) = E
[
∥x∥2

]
− (E [∥x∥])2 = Tr(Σ)− (E [∥x∥])2. (32)

Rearranging the terms, we get √
Tr(Σ)− 1 ≤ E [∥x∥2] , (33)

which concludes the proof.

The following lemma is about the concentration of Lipschitz functions and is used to prove the norm concentration.
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Lemma B.4 (Rephrased from ((Wainwright, 2019), Theorem 3.16)). For any L-Lipschitz function f : Rd → R, we have

Pr
ϵ∼N(0,Σ)

{|f(ϵ)− E [f(ϵ)]| ≥ w} ≤ 2 exp

(
− w2

4σmax(Σ)L2

)
. (34)

Note that the coefficient 2 could be removed in the case of one-sided inequality.

Remark B.5. Generally, this holds for strongly log-concave distributions, i.e., distributions with a density p(x) =
exp(−ψ(x)), where ψ : Rd → R is a strongly convex function. Here, we used the fact that the Gaussian distribution
N(0,Σ) is a strongly log-concave distribution with parameter σmin(Σ

−1) = 1/σmax(Σ).

We are now ready to prove the norm concentration as follows.

Lemma B.6 (Norm concentration). With probability at least 1− δ/4,

(1− o(1))σϵ
√
d ≤ ∥ϵ(i)t ∥2 ≤ (1 + o(1))σϵ

√
d,

(1− o(1))σw∥µ∥2
√
d ≤ ∥W(0)µ+1∥2 ≤ (1 + o(1))σw∥µ∥2

√
d,

(1− o(1))σw∥µ∥2
√
d ≤ ∥W(0)µ−1∥2 ≤ (1 + o(1))σw∥µ∥2

√
d,

(1− o(1))σw∥ϵ(i)t ∥2
√
d ≤ ∥W(0)ϵ

(i)
t ∥2 ≤ (1 + o(1))σw∥ϵ(i)t ∥2

√
d,

(1− o(1))σp
√
d ≤ ∥p(0)∥2 ≤ (1 + o(1))σp

√
d.

for all i ∈ [n], t ∈ [T ]

Proof of Lemma B.6. From the definition of noise distribution, ϵ(i)t ∼ N(0, σ2
ϵ Id) for all i ∈ [n], t ∈ [T ]. To begin with,

we show the norm concentration of the Gaussian vector. For x,y ∈ Rd, since we have

∥x∥2 − ∥y∥2 =
∥x∥2 − ∥y∥2
∥x− y∥2

∥x− y∥2 ≤ ∥x− y∥2, (35)

f(x) = ∥x∥2 is 1-Lipschitz function. Using Lemma B.4, we get

Pr
{∣∣∣∥ϵ(i)t ∥2 − E [∥ϵ∥2]

∣∣∣ > w
}
≤ 2 exp

(
− w2

4σ2
ϵ

)
, (36)

for some i ∈ [n], t ∈ [T ]. Taking union-bound gives

∀i ∈ [n],∀t ∈ [T ], Pr
{∣∣∣∥ϵ(i)t ∥2 − E [∥ϵ∥2]

∣∣∣ > w
}
≤ 2Tn exp

(
− w2

4σ2
ϵ

)
. (37)

Lemma B.3 and Jensen inequality lead the following bound on the expectation of the Gaussian norm:√
σ2
ϵd− 1 ≤ E [∥ϵ∥2] ≤ σϵ

√
d. (38)

Using this and Equation (37), we have with the probability at least 1− δ/20,

√
σ2
ϵd− 1− 2

√
σ2
ϵ log

(
40Tn

δ

)
≤ ∥ϵ(i)t ∥2 ≤ σϵ

√
d+ 2

√
σ2
ϵ log

(
40Tn

δ

)
, (39)

for all i ∈ [n], t ∈ [T ]. By using d = ω(log(Tn/δ)) in the parameter assumptions, the second term on both sides
becomes o(σϵ

√
d). Combining this with (σϵ

√
d)
(
1− 1/(σ2

ϵd)
)
<
√
σ2
ϵd− 1, we have the desired result. Regarding

other inequalities, by Gaussian initialization of parameters, W(0)µ+1 is normally distributed with mean 0 and covariance
σ2
w∥µ∥22Id, and we repeat the same discussion. For ∥W(0)ϵ

(i)
t ∥2, considering the probability for parameter initialization

under the realization of the training set, we can use the same argument and union bound. The inequality for p(0) is derived
similarly.
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Next, we move on to the concentration inequality for Gaussian random variables.
Lemma B.7 (Gaussian tail bound, ((Vershynin, 2018), Prop 2.1.2)). For a Gaussian variable x ∼ N(0, σ2), the tail bound
is given by (

σ

w
− σ3

w3

)
· 1√

2π
exp

(
− w2

2σ2

)
≤ Pr {x ≥ w} ≤ 1

w
· σ√

2π
exp

(
− w2

2σ2

)
.

Using this, we can show the following result for the inner products of the noise vectors.
Lemma B.8 (Inner-product of two Gaussian). There exists some constant c1 > 0 such that with the probability at least
1− δ/4,

|⟨ϵ(i)t , ϵ(j)u ⟩| < c1σ
2
ϵ

√
d log(Tn/δ),

|⟨W(0)µ+1,W(0)µ−1⟩| < c1σ
2
w∥µ∥22

√
d log(Tn/δ),

|⟨W(0)µ+1,W(0)ϵ
(i)
t ⟩| < c1σ

2
w∥µ∥2∥ϵ

(i)
t ∥2

√
d log(Tn/δ),

|⟨W(0)µ−1,W(0)ϵ
(i)
t ⟩| < c1σ

2
w∥µ∥2∥ϵ

(i)
t ∥2

√
d log(Tn/δ),

|⟨W(0)ϵ
(i)
t ,W(0)ϵ(j)u ⟩| < c1σ

2
w∥ϵ

(i)
t ∥2∥ϵ(j)u ∥2

√
d log(Tn/δ),

|⟨W(0)µ+1,p(0)⟩| < c1σwσp∥µ∥2
√
d log(Tn/δ),

|⟨W(0)µ−1,p(0)⟩| < c1σwσp∥µ∥2
√
d log(Tn/δ),

|⟨W(0)ϵ
(i)
t ,p(0)⟩| < c1σwσp∥ϵ(i)t ∥2

√
d log(Tn/δ),

for all i, j ∈ [n], t, u ∈ [T ] such that (i, t) ̸= (j, u).

Proof of Lemma B.8. Before delving into the main part of the proof, we first show

Pr {∥ϵ∥2 ≥ w} ≤ 2 exp

(
− w2

2σ2
ϵd

)
, (40)

for the Gaussian vector ϵ ∼ N(0, σ2
ϵ Id). Unlike Lemma B.6, it handles the norm itself rather than the deviation around the

mean of the norm, which is more useful to prove this lemma. We have for any λ > 0 that

Pr {∥ϵ∥2 ≥ w} ≤ Pr {∥ϵ∥1 ≥ w} (41)

≤ exp(−λw) ·
d∏

k=1

E exp (λ|ϵk|) (42)

≤ exp(−λw) · 2
d∏

k=1

E exp (λϵ) (43)

= 2 exp

(
λ2

2
σ2
ϵd− wλ

)
, (44)

where the second inequality follows from Markov inequality and the last follows from the moment-generating function of
Gaussian distribution. Minimizing the upper bound over λ gives the desired inequality Equation (40).

Fix i, j ∈ [n] and t, u ∈ [T ] such that (i, t) ̸= (j, u). For any v, w > 0, we have

Pr
{
|⟨ϵ(i)t , ϵ(j)u ⟩| > v

}
≤ Pr

{
|⟨ϵ(i)t , ϵ(j)u ⟩| > v

∣∣∣ σϵ∥ϵ(j)u ∥2 ≤ w
}
+ Pr

{
σϵ∥ϵ(j)u ∥2 > w

}
, (45)

where we used the inequality Pr(A) = Pr(B) Pr(A|B) + Pr(BC) Pr(A|BC) ≤ Pr(B) + Pr(A|BC) for the event A,B,
which gives tighter bound when outlier event A and event B share large common parts. Under the condition ϵ

(j)
u is fixed,

since ⟨ϵ(i)t , ϵ
(j)
u ⟩ follows N(0, σ2

ϵ ∥ϵ
(j)
u ∥22), Lemma B.7 gives

Pr
{
|⟨ϵ(i)t , ϵ(j)u ⟩| > v

}
≤ 2

v
· σϵ∥ϵ

(j)
u ∥2√
2π

exp

(
− v2

2σ2
ϵ ∥ϵ

(j)
u ∥22

)
. (46)
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Thus, the conditional probability is bounded as

Pr
{
|⟨ϵ(i)t , ϵ(j)u ⟩| > v

∣∣∣ σϵ∥ϵ(j)u ∥2 ≤ w
}
≤ 2

v
· w√

2π
exp

(
− v2

2w2

)
. (47)

Combining Equations (40) and (47), then applying union bound on Equation (45), we obtain

Pr
{
∃i, j ∈ [n], t, u ∈ [T ], (i, t) ̸= (j, u), s.t. |⟨ϵ(i)t , ϵ(j)u ⟩| > v

}
≤ Pr

{
∃i, j ∈ [n], t, u ∈ [T ], (i, t) ̸= (j, u), s.t. |⟨ϵ(i)t , ϵ(j)u ⟩| > v

∣∣∣ ∀j ∈ [n], u ∈ [T ], σϵ∥ϵ(j)u ∥2 ≤ w
}

+ Pr
{
∃j ∈ [n], u ∈ [T ], s.t. σϵ∥ϵ(j)u ∥2 > w

}
(48)

≤ 2wT 2n2√
2πv

exp

(
− v2

2w2

)
+ 2Tn exp

(
− w2

2σ4
ϵd

)
. (49)

Let w = c′1 (log(Tn/δ))
−1/2

v for some constant c′1 > 0. By Equation (49), we have

Pr
{
∃i, j ∈ [n], t, u ∈ [T ], (i, t) ̸= (j, u), s.t. |⟨ϵ(i)t , ϵ(j)u ⟩| > v

}
≤ 2T 2n2√

2π
· c′1 (log(Tn/δ))

−1/2

(
δ

Tn

)1/(2c′21 )
+ 2Tn exp

(
− c′21 v

2

2σ4
ϵd log(Tn/δ)

)
. (50)

Further, let v = c1σ
2
ϵ

√
d log(Tn/δ), where c1 > 0 is some constant. We have

Pr
{
∃i, j ∈ [n], t, u ∈ [T ], (i, t) ̸= (j, u), s.t. |⟨ϵ(i)t , ϵ(j)u ⟩| > v

}
≤ 2T 2n2√

2π
· c′1 (log(Tn/δ))

−1/2

(
δ

Tn

)1/(2c′21 )
+ 2Tn

(
δ

Tn

)c′21 c21/2

(51)

≤ δ

64
+

δ

64
=

δ

32
, (52)

where the last inequality is satisfied with the appropriate choice of c1, c′1 > 0. This completes the proof for the first inequality.
The other inequalities are also the inner product of two Gaussian vectors and can be proved with the same argument.

Lemma B.9 (Inner-product of signal and noise). There exists some constant c2 > 0 such that with probability at least
1− δ/4,

|⟨µ+1, ϵ
(i)
t ⟩| < c2σϵ∥µ∥2

√
log(Tn/δ),

|⟨µ−1, ϵ
(i)
t ⟩| < c2σϵ∥µ∥2

√
log(Tn/δ),

|⟨ν, ϵ(i)t ⟩| < c2σϵ∥ν∥2
√

log(Tn/δ).

for all i ∈ [n], t ∈ [T ].

Proof of Lemma B.9. We will show that the inequality for µ+1 holds with probability at least 1−δ/12. The same discussion
applies to µ−1 and ν. For the fixed i ∈ [n], t ∈ [T ], since ⟨µ+1, ϵ

(i)
t ⟩ follows the Gaussian distribution N(0, σ2

ϵ ∥µ∥22),
Lemma B.7 gives

Pr
{
|⟨µ+1, ϵ

(i)
t ⟩| > w

}
≤ 2σϵ∥µ∥2√

2πw
exp

(
− w2

2σ2
ϵ ∥µ∥22

)
. (53)

Let w = c2σϵ∥µ∥2
√

log(Tn/δ) for some constant c2 > 0, then applying union bound on Equation (53) gives

Pr
{
∃i ∈ [n], t ∈ [T ], s.t. |⟨µ+1, ϵ

(i)
t ⟩| > w

}
≤ 2Tnσϵ∥µ∥2√

2πw
exp

(
− w2

2σ2
ϵ ∥µ∥22

)
(54)

≤ 2Tn√
2πc2

√
log(Tn/δ)

(
δ

Tn

)c22/2

<
δ

12
, (55)

where the last inequality is satisfied with the appropriate choice of c2 > 0.
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Lemma B.10 (Hoeffding Inequality). Let X1, . . . , Xn be i.i.d. random variables such that 0 ≤ X ≤ 1 almost surely. Then
for all w > 0, we have

Pr

{∣∣∣∣∣ 1n
n∑

i=1

Xi − E [X]

∣∣∣∣∣ > w

}
≤ 2 exp

(
−2nw2

)
.

Lemma B.11 (Number of Samples). For all c′ > 0, the following hold with probability at least 1− δ/4:(
1− η

2
− c′

)
n ≤ |C+| ≤

(
1− η

2
+ c′

)
n,(

1− η

2
− c′

)
n ≤ |C−| ≤

(
1− η

2
+ c′

)
n,(η

2
− c′

)
n ≤ |N+| ≤

(η
2
+ c′

)
n,(η

2
− c′

)
n ≤ |N−| ≤

(η
2
+ c′

)
n.

Proof of Lemma B.11. We show the first equation holds with probability at least 1− δ/16. The proof of remaining cases
follows similarly, and the desired result is achieved by using union bound.

The training data i ∈ [n] belongs to C+ when its true label Y (i) = 1 and label flip does not occur. This event occurs
independently, and its probability is calculated as (1− η)/2. Since |C+| =

∑n
i=1 1Y (i)=Y ∗(i)=1, applying Lemma B.10 to

Xi := 1Y (i)=Y ∗(i)=1 leads

Pr {||C+| − (1− η)n/2| > c′n} ≤ 2 exp
(
−2nc′2

)
<

δ

16
, (56)

where the last inequality follows from n > C log(1/δ) in parameter assumptions in Section 3.5.

At the end of this section, we prepare an evaluation of the token scores for the training data on a good run.
Lemma B.12 (Token score). Suppose that the linear head ν satisfies Equation (2). Then, on a good run, there exist
constants {ck}k∈{±1} such that ∀k ∈ {±1}, ck > 0 and we have for the clean data i ∈ C that

cY (i) (1− o(1)) ∥ν∥2∥µ∥2 ≤ Y (i) · γ(i)1 ≤ cY (i) (1 + o(1)) ∥ν∥2∥µ∥2,

Y (i) · γ(i)t = Θ(ρ∥ν∥2∥µ∥2) > 0,

Y (i) · γ(i)u = −Θ(ρ∥ν∥2∥µ∥2) < 0,

|γ(i)v | = O
(
σϵ∥ν∥2

√
log(Tn/δ)

)
,

where t ∈ W(i)

Y (i) , u ∈ W(i)

−Y (i) , v ∈ I(i). Similarly, for the noisy data j ∈ N , we have

−c−Y (j) (1− o(1)) ∥ν∥2∥µ∥2 ≤ Y (j) · γ(j)1 ≤ −c−Y (j) (1 + o(1)) ∥ν∥2∥µ∥2,

Y (j) · γ(j)t = −Θ(ρ∥ν∥2∥µ∥2) < 0,

Y (j) · γ(j)u = Θ(ρ∥ν∥2∥µ∥2) > 0,

|γ(j)v | = O
(
σϵ∥ν∥2

√
log(Tn/δ)

)
,

where t ∈ W(j)

Y (j) , u ∈ W(j)

−Y (j) , v ∈ I(j).

Proof of Lemma B.12. Using Lemma B.1 and Equation (2), we have for i ∈ C+ that

Y (i) · γ(i)1 = (µ+1 + ϵ
(i)
1 )⊤ν (57)

= ∥ν∥2∥µ∥2 cos θ+1 +O(σϵ∥ν∥
√
log(Tn/δ)) (58)

∈ (1± o(1)) c+1∥ν∥2∥µ∥2, (59)

where recall that cos θ+1 is defined as the angle between ν and µ+1. In the last line, we used σϵ
√
log(Tn/δ) = o(∥µ∥2)

in the parameter assumption and replaced cos θ+1 with a constant c+1. The other equations are derived as well.
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C. Proof of Theorem 4.1
In this section, we present lemmas concerning the gradient descent dynamics of token selection, and provide the proof of
Theorem 4.1. For clarity, the essential lemmas are included in this section, while minor and more technical lemmas are
deferred to Appendix D. Appendices C.2 and C.3 provide the main lemmas and the direct proof for the not-overfitting and
benign overfitting cases in Theorem 4.1, respectively.

C.1. Preliminary Lemmas

In order to analyze the complicated dynamics of the token mechanism, we introduce the following notations.

Definition C.1 (Attention to signal and noise). Let W(τ) and p(τ) denote the parameters at the τ -th gradient descent step.
Then, we define the attention to the signal and the noise as follows:

λ+1(τ) := ⟨W(τ)µ+1,p(τ)⟩, λ−1(τ) := ⟨W(τ)µ−1,p(τ)⟩, ρi,t(τ) := ⟨W(τ)ϵ
(i)
t ,p(τ)⟩.

Definition C.2 (Weighted interaction terms). We define the following interaction terms weighted by softmax probabilities
and token scores.

Ii,+(τ) :=

T∑
t=1

s
(i)
t (τ)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ)γ(i)u

)
⟨x(i)

t ,µ+1⟩,

Ii,−(τ) :=

T∑
t=1

s
(i)
t (τ)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ)γ(i)u

)
⟨x(i)

t ,µ−1⟩,

Ii,j,u(τ) :=

T∑
t=1

s
(i)
t (τ)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ)γ(i)u

)
⟨x(i)

t , ϵ(j)u ⟩,

IWi,+(τ) :=

T∑
t=1

s
(i)
t (τ)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ)γ(i)u

)
⟨W(τ)x

(i)
t ,W(τ)µ+1⟩,

IWi,−(τ) :=

T∑
t=1

s
(i)
t (τ)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ)γ(i)u

)
⟨W(τ)x

(i)
t ,W(τ)µ−1⟩,

IWi,j,u(τ) :=

T∑
t=1

s
(i)
t (τ)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ)γ(i)u

)
⟨W(τ)x

(i)
t ,W(τ)ϵ(j)u ⟩,

Ipi (τ) :=

T∑
t=1

s
(i)
t (τ)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ)γ(i)u

)
⟨W(τ)x

(i)
t ,p(τ)⟩.

The next definition is the restatement of Definition 4.4 in the main text.

Definition C.3 (Attention gap between significant token and other tokens). We define the following values representing the
attention gap between a relevant token and other tokens:

Λi,t(τ) :=
(
x
(i)
1 − x

(i)
t

)⊤
W(τ)⊤p(τ),

for i ∈ [n], t ∈ [T ] \ {1}. Additionally, we define the attention gap between a confusing weakly relevant token and other
tokens:

Γi,u(τ) :=
(
x
(i)
2 − x(i)

u

)⊤
W(τ)⊤p(τ),

for i ∈ [n], u ∈ [T ] \ {2}.

For clarity, we provide below the results of applying the data setup in Definition 3.1 to these values. For i ∈ C+ ∪N− =
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{i ∈ [n] | Y ∗(i) = +1}, j ∈ C− ∪N+ = {i ∈ [n] | Y ∗(i) = −1}, we have

Λi,t(τ) =


(1− ρ)λ+1(τ) + ρi,1(τ)− ρi,t(τ) for t ∈ W(i)

+1,

λ+1(τ)− ρλ−1(τ) + ρi,1(τ)− ρi,t(τ) for t ∈ W(i)
−1 = {2},

λ+1(τ) + ρi,1(τ)− ρi,t(τ) for t ∈ I(i),

Λj,t(τ) =


λ−1(τ)− ρλ+1(τ) + ρj,1(τ)− ρj,t(τ) for t ∈ W(j)

+1 = {2},
(1− ρ)λ−1(τ) + ρj,1(τ)− ρj,t(τ) for t ∈ W(j)

−1 ,

λ−1(τ) + ρj,1(τ)− ρj,t(τ) for t ∈ I(j),

for t ∈ [T ] \ {1}, and we have

Γi,u(τ) =


ρλ−1(τ)− λ+1(τ) + ρi,2(τ)− ρi,u(τ) for u ∈ R = {1},
ρλ−1(τ)− ρλ+1(τ) + ρi,2(τ)− ρi,u(τ) for u ∈ W(i)

+1,

ρλ−1(τ) + ρi,2(τ)− ρi,u(τ) for u ∈ I(i),

Γj,u(τ) =


ρλ+1(τ)− λ−1(τ) + ρj,2(τ)− ρj,u(τ) for u ∈ R = {1},
ρλ+1(τ)− ρλ−1(τ) + ρj,2(τ)− ρj,u(τ) for u ∈ W(j)

−1 ,

ρλ+1(τ) + ρj,2(τ)− ρj,u(τ) for u ∈ I(j),

for u ∈ [T ] \ {2}.

In the following, we calculate the one-step updates for various quantities that will be frequently used in subsequent proofs.

Lemma C.4 (Updates of signal and noise attention). The updates of λ+1(τ), λ−1(τ), and ρj,u(τ) for j ∈ [n], u ∈ [T ],
which are defined in Definition C.1, are given by

λ+1(τ + 1)− λ+1(τ) =
α

n

n∑
i=1

(−ℓ′i(τ)) · Y (i) ·
(
IWi,+(τ) + ∥p(τ)∥22Ii,+(τ)

)
+ α2µ⊤

+1∇W⊤L̂(τ)∇pL̂(τ),

λ−1(τ + 1)− λ−1(τ) =
α

n

n∑
i=1

(−ℓ′i(τ)) · Y (i) ·
(
IWi,−(τ) + ∥p(τ)∥22Ii,−(τ)

)
+ α2µ⊤

−1∇W⊤L̂(τ)∇pL̂(τ),

ρj,u(τ + 1)− ρj,u(τ) =
α

n

n∑
i=1

(−ℓ′i(τ)) · Y (i) ·
(
IWi,j,u(τ) + ∥p(τ)∥22Ii,j,u(τ)

)
+ α2ϵ(j)⊤u ∇W⊤L̂(τ)∇pL̂(τ).

Proof of Lemma C.4. From Equations (9) and (12), we have

W(τ + 1)⊤p(τ + 1)−W(τ)⊤p(τ) (60)

= W(τ)⊤
(
−α∇pL̂(τ)

)
+
(
−α∇WL̂(τ)

)⊤
p(τ) + α2

(
∇WL̂(τ)

)⊤ (
∇pL̂(τ)

)
(61)

=
α

n

n∑
i=1

(−ℓ′i(τ)) · Y (i) ·

(
T∑

t=1

s
(i)
t (τ)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ)γ(i)u

)(
W(τ)⊤W(τ) + ∥p(τ)∥22

)
x
(i)
t

)
+ α2∇W⊤L̂(τ)∇pL̂(τ). (62)

Following the definitions of λ and ρ, taking inner products with µ+1, µ−1, and ϵ
(j)
u yields the desired update equations.

The notations defined in Definition C.2 are applied here.

Lemma C.5 (Updates of p). The update of ∥p(τ)∥2 is given by

∥p(τ + 1)∥22 − ∥p(τ)∥22 =
2α

n

n∑
i=1

(−ℓ′i(τ)) · Y (i) · Ipi (τ) + α2∥∇pL̂(τ)∥22.
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Proof of Lemma C.5. From Equation (12), we have

∥p(τ + 1)∥22 − ∥p(τ)∥22 = 2⟨p(τ),−α∇pL̂(τ)⟩+ ∥α∇pL̂(τ)∥22 (63)

=
2α

n

n∑
i=1

(−ℓ′i(τ)) · Y (i) · Ipi (τ) + α2∥∇pL̂(τ)∥22, (64)

where in the last line, we used the notation defined in Definition C.2.

Lemma C.6 (Updates of W). The updates of the terms related to W(τ) are given by

∥W(τ + 1)µ+1∥22 − ∥W(τ)µ+1∥22 =
2α

n

n∑
i=1

(−ℓ′i(τ)) · Y (i) · Ii,+(τ)λ+1(τ) + α2∥∇WL̂(τ)µ+1∥22,

∥W(τ + 1)µ−1∥22 − ∥W(τ)µ−1∥22 =
2α

n

n∑
i=1

(−ℓ′i(τ)) · Y (i) · Ii,−(τ)λ−1(τ) + α2∥∇WL̂(τ)µ−1∥22,

∥W(τ + 1)ϵ(j)u ∥22 − ∥W(τ)ϵ(j)u ∥22 =
2α

n

n∑
i=1

(−ℓ′i(τ)) · Y (i) · Ii,j,u(τ)ρj,u(τ) + α2∥∇WL̂(τ)ϵ(j)u ∥22,

for any j ∈ [n], u ∈ [T ]. Additionally, we have

⟨W(τ + 1)µ+1,W(τ + 1)µ−1⟩ − ⟨W(τ)µ+1,W(τ)µ−1⟩

=
α

n

n∑
i=1

(−ℓ′i(τ)) · Y (i) · (Ii,−(τ)λ+1(τ) + Ii,+(τ)λ−1(τ)) + α2⟨∇WL̂(τ)µ+1,∇WL̂(τ)µ−1⟩,

⟨W(τ + 1)µ+1,W(τ + 1)ϵ(j)u ⟩ − ⟨W(τ)µ+1,W(τ)ϵ(j)u ⟩

=
α

n

n∑
i=1

(−ℓ′i(τ)) · Y (i) · (Ii,j,u(τ)λ+1(τ) + Ii,+(τ)ρj,u(τ)) + α2⟨∇WL̂(τ)µ+1,∇WL̂(τ)ϵ(j)u ⟩,

⟨W(τ + 1)µ−1,W(τ + 1)ϵ(j)u ⟩ − ⟨W(τ)µ−1,W(τ)ϵ(j)u ⟩

=
α

n

n∑
i=1

(−ℓ′i(τ)) · Y (i) · (Ii,j,u(τ)λ−1(τ) + Ii,−(τ)ρj,u(τ)) + α2⟨∇WL̂(τ)µ−1,∇WL̂(τ)ϵ(j)u ⟩,

⟨W(τ + 1)ϵ(j)u ,W(τ + 1)ϵ(k)v ⟩ − ⟨W(τ)ϵ(j)u ,W(τ)ϵ(k)v ⟩

=
α

n

n∑
i=1

(−ℓ′i(τ)) · Y (i) · (Ii,k,v(τ)ρj,u(τ) + Ii,j,u(τ)ρk,v(τ)) + α2⟨∇WL̂(τ)ϵ(j)u ,∇WL̂(τ)ϵ(k)v ⟩,

for any j, k ∈ [n], u, v ∈ [T ], (j, u) ̸= (k, v).

Proof of Lemma C.6. From Equation (9), we have

∥W(τ + 1)µ+1∥22 − ∥W(τ)µ+1∥22
= 2α⟨W(τ)µ+1,−α∇WL̂(τ)µ+1⟩+ ∥α∇WL̂(τ)µ+1∥22 (65)

=
2α

n

n∑
i=1

(−ℓ′i(τ)) · Y (i) ·

(
T∑

t=1

s
(i)
t

(
γ
(i)
t −

T∑
u=1

s(i)u γ(i)u

)
·
(
µ⊤

+1x
(i)
t

)
· p(τ)⊤W(τ)µ+1

)
+ α2∥∇WL̂(τ)µ+1∥22

(66)

=
2α

n

n∑
i=1

(−ℓ′i(τ)) · Y (i) · Ii,+(τ)λ+1(τ) + α2∥∇WL̂(τ)µ+1∥22, (67)

where in the last line, we used the notations introduced in Definitions C.1 and C.2. The other two equations are shown in a
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similar manner. In the same way, we have

⟨W(τ + 1)µ+1,W(τ + 1)µ−1⟩ − ⟨W(τ)µ+1,W(τ)µ−1⟩

= ⟨W(τ)µ+1,−α∇WL̂(τ)µ−1⟩+ ⟨W(τ)µ−1,−α∇WL̂(τ)µ+1⟩+ ⟨α∇WL̂(τ)µ+1, α∇WL̂(τ)µ−1⟩ (68)

=
α

n

n∑
i=1

(−ℓ′i(τ)) · Y (i) ·

(
T∑

t=1

s
(i)
t

(
γ
(i)
t −

T∑
u=1

s(i)u γ(i)u

)
·
(
µ⊤

−1x
(i)
t

)
· p(τ)⊤W(τ)µ+1

)

+
α

n

n∑
i=1

(−ℓ′i(τ)) · Y (i) ·

(
T∑

t=1

s
(i)
t

(
γ
(i)
t −

T∑
u=1

s(i)u γ(i)u

)
·
(
µ⊤

+1x
(i)
t

)
· p(τ)⊤W(τ)µ−1

)
+ α2⟨∇WL̂(τ)µ+1,∇WL̂(τ)µ−1⟩ (69)

=
α

n

n∑
i=1

(−ℓ′i(τ)) · Y (i) · (Ii,−(τ)λ+1(τ) + Ii,+(τ)λ−1(τ)) + α2⟨∇WL̂(τ)µ+1,∇WL̂(τ)µ−1⟩. (70)

The other equations are derived as well.

In the following, we prepare the lemmas concerning the weight initialization.

Lemma C.7 (Softmax probabilities at initialization). Under the parameter assumptions in Section 3.5 and on a good run,
we have that for any constant c > 1,

1− c−1

T
≤ s

(i)
t (0) ≤ 1 + c−1

T
,

for all i ∈ [n] and t ∈ [T ].

Proof of Lemma C.7. By definition, we have

s
(i)
t (0) =

exp
(
x
(i)⊤
t W(0)⊤p(0)

)
∑T

u=1 exp
(
x
(i)⊤
u W(0)⊤p(0)

) ≤ 1

T
max
u∈[T ]

{
exp

((
x
(i)
t − x(i)

u

)⊤
W(0)⊤p(0)

)}
. (71)

From Equations (23) to (25), we have

max
u∈[T ]

{(
x
(i)
t − x(i)

u

)⊤
W(0)⊤p(0)

}
≤ 3c1σwσp max

{
∥µ∥2

√
d, (1 + o(1))σϵd

}
log(Tn/δ) (72)

≤ log
(
1 + c−1

)
, (73)

where the last inequality follows from Assumption A8. The same argument is applied to the lower bound, which completes
the proof.

Using a similar argument to that in Lemma C.7, we confirm that the following lemma holds.

Lemma C.8 (Attention gap at initialization). Under the parameter assumptions in Section 3.5 and on a good run, the
attention gaps introduced in Definition C.3 at time step τ = 0 are bounded as follows:

|Λi,t(0)| = o(1), |Γi,u(0)| = o(1),

for all i ∈ [n], t ∈ [T ] \ {1}, and u ∈ [T ] \ {2}.

Proof of Lemma C.8. We show the case of t ∈ I(i). Since ρ < 1/C from the parameter assumptions, we have the same
result for t ∈ W(i)

+1 and t ∈ W(i)
−1. By Definition C.3, we have

|Λi,t(0)| ≤ 3max

{
|λ+1(0)|, |λ−1(0)|, max

i∈[n],t∈[T ]
{|ρi,t(0)|}

}
. (74)
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From Equations (23) to (25), we have

max

{
|λ+1(0)|, |λ−1(0)|, max

i∈[n],t∈[T ]
{|ρi,t(0)|}

}
≤ c1σwσp max

{
∥µ∥2

√
d, (1 + 1/C ′)σϵd

}
log(Tn/δ) = o(1), (75)

where the last inequality follows from Assumption A8. The exact same argument is applied to Γi,u(0). This concludes the
proof.

Next, we show that the ratio of the loss derivative can be bounded by a constant. As a byproduct, we obtain that the loss
derivative itself is bounded by a constant from both sides.

Lemma C.9 (Ratio of loss derivative). Suppose that the assumptions in Theorem 4.1 are satisfied. There exists an absolute
constant cℓ > 0 such that on a good run, we have that for all time step τ ≥ 0,

max
i,j∈[n]

ℓ′i(τ)

ℓ′j(τ)
< cℓ.

More strongly, −ℓ′i(τ) is bounded both above and below by positive constants, uniformly over all i ∈ [n] and τ ≥ 0.

Proof of Lemma C.9. Recall that the derivative of the loss function is given by

−ℓ′i(τ) =
1

1 + exp
(
−Y (i) ·

∑T
t=1 s

(i)
t (τ)γ

(i)
t

) , (76)

for i ∈ [n], τ ≥ 0. On a good run, Combining Lemma B.12 and ∥ν∥2 = O(1/∥µ∥2) gives the following token scores:

|γ(i)1 | = O(1), |γ(i)t | = O(ρ), |γ(i)u | = o(1), (77)

for all i ∈ [n], t ∈ W(i), and u ∈ I(i). Thus, there exists some constant c > 0 such that |γ(i)t | < c for any i ∈ [n] and
t ∈ [T ]. Since 1/(1 + exp(−x)) is monotonically decreasing, we have

1

1 + exp(c)
< −ℓ′i(τ) <

1

1 + exp(−c)
. (78)

This leads to the conclusion with the constant cℓ = 1 + exp(c)/ (1 + exp(−c)).

Remark C.10 (Ratio of loss derivative). This lemma, which shows that the gradients of loss function for clean data and
noisy data remain within a constant factor of each other at every time step, is a critical component of the proof in the existing
analyses of linear classifiers and two-layer neural networks (Chatterji & Long, 2021; Frei et al., 2022; Xu & Gu, 2023).
However, in the learning of token selection, the output is always an affine combination of the token scores, and the output
scale is not changed. Therefore, the training dynamics need not be considered as long as the balance of the loss derivatives
in the token scores is maintained. To ensure that the derivative of the loss function for each token remains within a constant
factor, a small linear head scale, as described in Lemma C.9, is required. If the scale of the linear head is too large, little
gradient will be generated for clean data even at the initial weights, and learning the signal vectors will not progress.

C.2. Analysis of Not Overfitting Case (SNR2 = ω(n−1))

In this section, we provide the proof for the not-overfitting case in the main theorem. We first present the main lemma using
mathematical induction and then proceed to prove the main claim.

C.2.1. MAIN LEMMA

Lemma C.11. Suppose that the signal-to-noise ratio satisfies SNR2 = ω(n−1). For any time step T1 =

Θ
(

1
α∥ν∥2∥µ∥3

2dmax{σ2
w,σ2

p}

)
, on a good run, the following propositions hold for all time step τ ∈ [0, T1]:

A(τ): There exists a constant C1 > 1 such that

(1− 1/C1) · σp
√
d ≤ ∥p(τ)∥2 ≤ (1 + 1/C1) · σp

√
d.
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B(τ): There exists a constant C2 > 1 such that

(1− 1/C2) · σw∥µ∥2
√
d ≤ ∥W(τ)µ+1∥2 ≤ (1 + 1/C2) · σw∥µ∥2

√
d,

(1− 1/C2) · σw∥µ∥2
√
d ≤ ∥W(τ)µ−1∥2 ≤ (1 + 1/C2) · σw∥µ∥2

√
d,

(1− 1/C2) · σwσϵd ≤ ∥W(τ)ϵ
(i)
t ∥2 ≤ (1 + 1/C2) · σwσϵd,

for all i ∈ [n] and t ∈ [T ].

|⟨W(τ)µ+1,W(τ)µ−1⟩| < O(σ2
w∥µ∥22

√
d log(Tn/δ)),

|⟨W(τ)µ+1,W(τ)ϵ
(i)
t ⟩| < O(σ2

wσϵ∥µ∥2d log(Tn/δ)),

|⟨W(τ)µ−1,W(τ)ϵ
(i)
t ⟩| < O(σ2

wσϵ∥µ∥2d log(Tn/δ)),

|⟨W(τ)ϵ
(i)
t ,W(τ)ϵ(j)u ⟩| < O(σ2

wσ
2
ϵd

3/2 log(Tn/δ)),

for all i, j ∈ [n] and t, u ∈ [T ] such that (i, t) ̸= (j, u).

C(τ): Let g be a monotonically increasing function g(x) = 2x + 2 sinh (x− log T ). Then, there exist constants
c3, c4 > 0 with c3 < c4 such that

g (Λi,t(τ)) ≥ g (Λi,t(0)) + τ · c3α∥ν∥2∥µ∥32dmax{σ2
w, σ

2
p},

g (Λi,t(τ)) ≤ g (Λi,t(0)) + τ · c4α∥ν∥2∥µ∥32dmax{σ2
w, σ

2
p},

for any i ∈ [n] and t ∈ [T ] \ {1}.

D(τ):

s
(i)
1 (τ) ≥ Θ(1),

for all i ∈ [n].

E(τ): There exists a constant c5 > 1 such that

exp (Λi,t(τ)− Λj,u(τ)) < c5,

for all i, j ∈ [n] and t, u ∈ [T ] \ {1}.

F (τ): There exist constants c6, c7 > 0 such that

max
i,j∈[n]

s
(i)
1 (τ)(1− s

(i)
1 (τ))

s
(j)
1 (τ)(1− s

(j)
1 (τ))

< c6,

and

max
t,u∈[T ]\{1}

s
(i)
t (τ)

s
(i)
u (τ)

< c6,
s
(i)
t (τ)(1− s

(i)
t (τ))

s
(i)
1 (τ)(1− s

(i)
1 (τ))

< c7,

for any i ∈ [n] and t ∈ [T ] \ {1}.

G(τ):

|λ+1(τ)| = O(1), |λ−1(τ)| = O(1), |ρi,t(τ)| = o(1),

for any i ∈ [n] and t ∈ [T ].

We will prove the above propositions by induction argument for τ ∈ [0, T1].
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Base case. It is obvious that C(0) holds. From Lemmas B.1, C.7 and C.8, the all other base cases A(0), B(0), D(0),
E(0), F (0) and G(0) hold.

Proof of ∧τ ′≤τ (A(τ
′) ∧B(τ ′) ∧ C(τ ′) ∧D(τ ′) ∧ E(τ ′) ∧ F (τ ′)) ⇒ C(τ + 1). We only show the case of Y (i) = 1,

i.e., i ∈ C+ ∪N−. The same argument can be applied to the case of i ∈ C− ∪N+. The conditions of Lemmas D.6 and D.7
are satisfied from A(τ) ∧B(τ) ∧D(τ) ∧ F (τ). From these lemmas, we have that for any i ∈ C+ ∪N−,

λ+1(τ + 1)− λ+1(τ) ≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′1α∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p}, (79)

and for any clean data i ∈ C+ and t ∈ [T ] \ {1}, we have

ρi,1(τ + 1)− ρi,1(τ) ≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′2αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}, (80)

ρi,t(τ + 1)− ρi,t(τ) ≤ −s(i)1 (τ)s
(i)
t (τ) · c′2αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}, (81)

and for any noisy data j ∈ N− and t ∈ [T ] \ {1}, we have

ρj,1(τ + 1)− ρj,1(τ) ≥ −s(j)1 (τ)(1− s
(j)
1 (τ)) · c′3αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}, (82)

ρj,t(τ + 1)− ρj,t(τ) ≤ s
(j)
1 (τ)s

(j)
t (τ) · c′3αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}. (83)

From the definition of Λi,t in Definition C.3, we have for i ∈ C+ and t ∈ I(i) that

Λi,t(τ + 1)− Λi,t(τ) = (λ+1(τ + 1)− λ+1(τ)) + (ρi,1(τ + 1)− ρi,1(τ))− (ρi,t(τ + 1)− ρi,t(τ)) (84)

≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · α∥ν∥2∥µ∥2d

(
c′1∥µ∥22 + c′2n

−1σ2
ϵd
)
max{σ2

w, σ
2
p}

+ s
(i)
1 (τ)s

(i)
t (τ) · c′2αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p} (85)

≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′1α∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p}. (86)

Here, we bound with the signal update because it is dominant from the condition SNR2 = ω(n−1), i.e., ∥µ∥22 = ω(n−1σ2
ϵd).

For noisy data j ∈ N , the signal update becomes dominant under the current SNR setting as follows:

Λj,t(τ + 1)− Λj,t(τ) ≥ s
(j)
1 (τ)(1− s

(j)
1 (τ)) · α∥ν∥2∥µ∥2d

(
c′1∥µ∥22 − c′3n

−1σ2
ϵd
)
max{σ2

w, σ
2
p}

− s
(j)
1 (τ)s

(j)
t (τ) · c′3αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p} (87)

≥ s
(j)
1 (τ)(1− s

(j)
1 (τ)) · c′4α∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p}, (88)

for some constant c′4 > 0. Since the same lower bound is obtained for clean and noisy data, we proceed with the discussion
for i ∈ C+ ∪N−. We note that we have the same result for weakly relevant tokens t ∈ W(i)

+1 ∪W(i)
−1. When t ∈ W(i)

+1, the
update of λ+1 is multiplied by a factor of (1− ρ). Since ρ < 1/C, the problem is reduced to the case of I(i) by substituting
constants. For t ∈ W(i)

−1, we also have to consider the update of λ−1. However, by similarly applying Lemmas D.6 and D.7,
along with the result of the softmax probability ratio in F (τ), the case for t ∈ W(i)

−1 reduces to that of t ∈ W(i)
+1. Therefore,

the above inequalities hold for any t ∈ [T ] \ {1}. Similarly, from Lemmas D.6 and D.7, we obtain the following upper
bound:

Λi,t(τ + 1)− Λi,t(τ) ≤ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′5α∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p}, (89)

for i ∈ C+ ∪N− and t ∈ [T ] \ {1}.

We will evaluate the softmax probabilities in the coefficients of the above inequality using Lemma D.1. As we will see later,
the increase or decrease of the bounds changes at Λi,t(τ) = log T , so we divide the analysis into cases before and after
this point. At the beginning of training τ = 0, we have |Λi,t(0)| = o(1) from Lemma C.8. Since Λi,t(τ) is monotonically
increasing from ∧τ ′≤τC(τ

′), there exists a time step changing to Λi,t(τ) > log T . We proceed with the analysis by
considering cases before and after this transition.
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Case 1 (Λi,t(τ) ≤ log T ): From Lemma D.1, we have

s
(i)
1 (τ)(1− s

(i)
1 (τ)) ≥ c−1

2 + 2 cosh (Λi,t(τ)− log T )
. (90)

Substituting this to Equations (86) and (88) provides us

(2 + 2 cosh (Λi,t(τ)− log T )) (Λi,t(τ + 1)− Λi,t(τ)) ≥ c′6α∥ν∥2∥µ∥32dmax{σ2
w, σ

2
p}, (91)

for some constant c′6 > 0. To apply a quadrature method to Equation (91), we will replace the coefficient with Λi,t(τ + 1).
Using Λi,t(τ) < Λi,t(τ + 1) and the convexity of cosh, we have

cosh (Λi,t(τ + 1)− log T ) ≥ cosh (Λi,t(τ)− log T ) + sinh (Λi,t(τ)− log T ) (Λi,t(τ + 1)− Λi,t(τ)) (92)
≥ cosh (Λi,t(τ)− log T ) (1− (Λi,t(τ + 1)− Λi,t(τ))) , (93)

where the second inequality follows from sinh(x) ≥ − cosh(x) for all x ∈ R. Using |Λi,t(τ + 1)− Λi,t(τ)| = o(1) from
Lemma D.4, we have

(1 + o(1)) cosh (Λi,t(τ + 1)− log T ) ≥ cosh (Λi,t(τ)− log T ) . (94)

By substituting this to Equation (91), we have

(2 + 2 cosh (Λi,t(τ + 1)− log T )) (Λi,t(τ + 1)− Λi,t(τ)) ≥ c′7α∥ν∥2∥µ∥32dmax{σ2
w, σ

2
p}, (95)

where c′7 = (1 − o(1))c′6. Since this inequality holds for any 0 ≤ τ ′ ≤ τ from the induction hypothesis, summing both
sides from 0 to τ gives

τ∑
τ ′=0

(2 + 2 cosh (Λi,t(τ
′ + 1)− log T )) (Λi,t(τ

′ + 1)− Λi,t(τ
′)) ≥ (τ + 1) · c′7α∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p}. (96)

Recall that g(x) = 2x+ 2 sinh(x− log T ). Since Λi,t(τ
′) is monotonously increasing in τ ′ ∈ [0, τ + 1], and the function

2 + 2 cosh(x − log T ) is monotonously decreasing in this case, we have the following lower bound by the quadrature
method:

g (Λi,t(τ + 1))− g (Λi,t(0)) =

∫ Λi,t(τ+1)

Λi,t(0)

(2 + 2 cosh (x− log T )) dx (97)

≥
τ∑

τ ′=0

(2 + 2 cosh (Λi,t(τ
′ + 1)− log T )) (Λi,t(τ

′ + 1)− Λi,t(τ
′)) (98)

≥ (τ + 1) · c′7α∥ν∥2∥µ∥32dmax{σ2
w, σ

2
p}, (99)

which gives the desired result. Therefore, we have

g (Λi,t(τ + 1)) ≥ g (Λi,t(0)) + (τ + 1) · c′7α∥ν∥2∥µ∥32dmax{σ2
w, σ

2
p}. (100)

We also provide the upper bound. By applying Lemma D.1 to Equation (89), there exists a constant c′8 > 0 such that

(2 + 2 cosh (Λi,t(τ)− log T )) (Λi,t(τ + 1)− Λi,t(τ)) ≤ c′8α∥ν∥2∥µ∥32dmax{σ2
w, σ

2
p}. (101)

Since this inequality holds for any 0 ≤ τ ′ ≤ τ , summing both sides from 0 to τ and using the quadrature method, we have

g (Λi,t(τ + 1))− g (Λi,t(0)) =

∫ Λi,t(τ+1)

Λi,t(0)

2 + 2 cosh (x− log T ) dx (102)

≤
τ∑

τ ′=0

(2 + 2 cosh (Λi,t(τ
′)− log T )) (Λi,t(τ

′ + 1)− Λi,t(τ
′)) (103)

≤ (τ + 1) · c′8α∥ν∥2∥µ∥32dmax{σ2
w, σ

2
p}. (104)

Therefore, we have

g (Λi,t(τ + 1)) ≤ g (Λi,t(0)) + (τ + 1) · c′8α∥ν∥2∥µ∥32dmax{σ2
w, σ

2
p}. (105)
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Case 2 (log T < Λi,t(τ)): Let T0 be a first-time step falling into Case 2. Since 2 + 2 cosh(x− log T ) is monotonically
increasing in this case, by summing both sides of Equation (91) from T0 to τ and using the quadrature method, we have

g (Λi,t(τ + 1))− g (Λi,t(T0)) =

∫ Λi,t(τ+1)

Λi,t(T0)

2 + 2 cosh (x− log T ) dx (106)

≥
τ∑

τ ′=T0

(2 + 2 cosh (Λi,t(τ
′)− log T )) (Λi,t(τ

′ + 1)− Λi,t(τ
′)) (107)

≥ (τ − T0 + 1) · c′6α∥ν∥2∥µ∥32dmax{σ2
w, σ

2
p}. (108)

Combining this with Equation (100), we have

g (Λi,t(τ + 1)) ≥ g (Λi,t(0)) + (τ + 1) · c′7α∥ν∥2∥µ∥32dmax{σ2
w, σ

2
p}, (109)

which follows from c′7 = (1− o(1))c′6 < c′6.

Next, we provide the upper bound. In Case 2, to obtain an upper bound using the quadrature method, it is necessary to
replace the coefficient in Equation (101) using Λi,t(τ + 1). Since cosh(x− log T ) is convex and monotonically increasing
in this case, we have

cosh (Λi,t(τ + 1)− log T ) ≤ cosh (Λi,t(τ)− log T ) + sinh (Λi,t(τ + 1)− log T ) (Λi,t(τ + 1)− Λi,t(τ)) . (110)

Using |Λi,t(τ + 1)− Λi,t(τ)| = o(1) from Lemma D.4 and − cosh(x) < − sinh(x) for all x ∈ R, we have

cosh (Λi,t(τ + 1)− log T ) (1− o(1)) = cosh (Λi,t(τ + 1)− log T ) (1− (Λi,t(τ + 1)− Λi,t(τ))) (111)
≤ cosh (Λi,t(τ)− log T ) . (112)

By applying this to Equation (101), we have

(2 + 2 cosh (Λi,t(τ + 1)− log T )) (Λi,t(τ + 1)− Λi,t(τ)) ≤ c′9α∥ν∥2∥µ∥32dmax{σ2
w, σ

2
p}, (113)

where c′9 = (1 + o(1))c′8. Again, using the quadrature method, we have

g (Λi,t(τ + 1))− g (Λi,t(T0)) =

∫ Λi,t(τ+1)

Λi,t(T0)

2 + 2 cosh (x− log T ) dx (114)

≤
τ∑

τ ′=T0

(2 + 2 cosh (Λi,t(τ
′ + 1)− log T )) (Λi,t(τ

′ + 1)− Λi,t(τ
′)) (115)

≤ (τ − T0 + 1) · c′9α∥ν∥2∥µ∥32dmax{σ2
w, σ

2
p}. (116)

Combining this with Equation (105), we have

g (Λi,t(τ + 1)) ≤ g (Λi,t(0)) + (τ + 1) · c′9α∥ν∥2∥µ∥32dmax{σ2
w, σ

2
p}, (117)

which follows from c′9 = (1 + o(1))c′8 > c′8. This concludes the proof.

Proof of C(τ) ⇒ D(τ). For any i ∈ [n], we have

s
(i)
1 (τ) =

1

1 +
∑T

t=2 exp (−Λi,t(τ))
≥ 1

1 +
∑T

t=2 exp (−Λi,t(0))
= s

(i)
1 (0) ≥ Θ(1), (118)

where the inequality follows from C(τ), which states that Λi,t(τ) is greater than Λi,t(0). The last line is derived from D(0).

Proof of C(τ) ⇒ E(τ). We proceed with the proof by contradiction. Suppose that E(τ) does not hold, i.e., for any
constant c > 1, there exist i, j ∈ [n] and t, u ∈ [T ] \ {1} such that

exp (Λi,t(τ)− Λj,u(τ)) ≥ c. (119)

We continue the analysis, dividing it into two cases.
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Case 1 (Λj,u(τ) < 2 log T ): In this case, from C(τ) and the monotonic increase of g, we have

g (Λj,u(0)) + τ · c3α∥ν∥2∥µ∥32dmax{σ2
w, σ

2
p} ≤ g (Λj,u(τ)) ≤ g (2 log T ) < 4 log T + T − 1

T
. (120)

Since g (Λj,u(0)) = −(1 + o(1))T from the definition of g and |Λj,u(0)| = o(1) in Lemma C.8, we have

τ <
3T

c3α∥ν∥2∥µ∥32dmax{σ2
w, σ

2
p}
. (121)

Again from C(τ), we have

g (Λi,t(τ))− g (Λj,u(τ)) ≤ (g (Λi,t(0))− g (Λj,u(0))) + τ · (c4 − c3)α∥ν∥2∥µ∥32dmax{σ2
w, σ

2
p} (122)

< o(1) +
3(c4 − c3)

c3
T <

3c4
c3
T. (123)

On the other hand, under Equation (119), we have

g (Λi,t(τ))− g (Λj,u(τ)) ≥ 2 log c+ 2 (sinh (Λj,u(τ) + log c− log T )− sinh (Λj,u(τ)− log T )) (124)

> 2 log c+
c− 1

T
exp (Λj,u(τ)) + T

(
1− 1

c

)
exp (−Λj,u(τ)) (125)

> 2 log c+ 2

(√
c− 1√

c

)
>

3c4
c3
T. (126)

The last line is the result of AM-GM inequality, the parameter assumption T = Θ(1), and an appropriate choice of c. This
leads to a contradiction with Equation (123).

Case 2 (2 log T ≤ Λj,u(τ)): From C(τ), we have

g (Λi,t(τ))− g (Λi,t(0))

g (Λj,u(τ))− g (Λj,u(0))
≤ c4
c3
, (127)

for τ ≥ 1. Additionally, from the definition of g and Lemma C.8, we have that

g (Λi,t(0))

g (Λj,u(0))
=

2Λi,t(0) +
1
T exp (Λi,t(0))− T exp (−Λi,t(0))

2Λj,u(0) +
1
T exp (Λj,u(0))− T exp (−Λj,u(0))

≤ 1 + o(1) < 2, (128)

where the inequality comes from the fact that the third term is dominant and |Λi,t(0)− Λj,u(0)| = o(1).

Before delving into the part of contradiction, we first show that the following inequality holds. By a simple calculation, we
obtain the following for x ≥ 2 log T :

2 sinh (x+ log c− log T ) =
c

T
exp(x)− T

c
exp(−x) (129)

=
c

3
· 2 sinh (x− log T ) +

2c

3T
exp(x) +

(
c

3
− 1

c

)
T exp(−x) (130)

>
c

3
· 2 sinh (x− log T ) +

c

3
x+

c

3
T, (131)

where the last line holds for a constant satisfying c/3 > 1/c, and we used exp(x) ≥ T 2/(2 log T )x > Tx for x ≥ 2 log T .
By using Equations (119), (128) and (131), we have

g (Λi,t(τ))− g (Λi,t(0))

= 2Λi,t(τ) + 2 sinh (Λi,t(τ)− log T )− g (Λi,t(0)) (132)

≥ 2 (Λj,u(τ) + log c) + 2 sinh (Λj,u(τ) + log c− log T )− 1

2
g (Λj,u(0)) (133)

≥ (2 + c/3)Λj,u(τ) + c/3 · 2 sinh (Λj,u(τ)− log T ) + ((1− o(1))c/3 + 1/2) (−g (Λj,u(0))) (134)
> c4/c3 · (g (Λj,u(τ))− g (Λj,u(0))) , (135)

where in the second inequality, we also used −g (Λj,u(0)) = (1± o(1))T . The last line holds sufficiently large c > 0
satisfying 1 + c/6 > c4/c3, c/3 > c4/c3 and (1− o(1)) · c/3 + 1/2 > c4/c3. Therefore, this contradicts Equation (127).
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Thus, since a contradiction arises in both Case 1 and Case 2, it follows from Equation (119) that there exists a constant
c > 1 such that

exp (Λi,t(τ)− Λj,u(τ)) < c, (136)

for any i, j ∈ [n] and t, u ∈ [T ] \ {1}.

Proof of E(τ) ⇒ F (τ). We have

s
(i)
1 (τ)(1− s

(i)
1 (τ)) =

1

1 +
∑T

t=2 exp (−Λi,t(τ))
·
∑T

t=2 exp (−Λi,t(τ))

1 +
∑T

t=2 exp (−Λi,t(τ))
. (137)

Then, we have

s
(i)
1 (τ)(1− s

(i)
1 (τ))

s
(j)
1 (τ)(1− s

(j)
1 (τ))

=

∑T
t=2 exp (−Λi,t(τ))∑T
t=2 exp (−Λj,t(τ))

·

(
1 +

∑T
t=2 exp (−Λj,t(τ))

1 +
∑T

t=2 exp (−Λi,t(τ))

)2

(138)

≤
∑T

t=2 exp (−Λi,t(τ))∑T
t=2 exp (−Λj,t(τ))

·max

{
1,

∑T
t=2 exp (−Λj,t(τ))∑T
t=2 exp (−Λi,t(τ))

}2

(139)

= max

{∑T
t=2 exp (−Λi,t(τ))∑T
t=2 exp (−Λj,t(τ))

,

∑T
t=2 exp (−Λj,t(τ))∑T
t=2 exp (−Λi,t(τ))

}
(140)

≤ max

{
max
2≤t≤T

{
exp (−Λi,t(τ))

exp (−Λj,t(τ))

}
, max
2≤t≤T

{
exp (−Λj,t(τ))

exp (−Λi,t(τ))

}}
, (141)

where the inequalities are the result of mediant inequality, i.e., (
∑

i ai)/(
∑

i bi) < maxi{ai/bi} for ai, bi > 0,∀i.
Therefore, using E(τ), we have

max
i,j∈[n]

s
(i)
1 (τ)(1− s

(i)
1 (τ))

s
(j)
1 (τ)(1− s

(j)
1 (τ))

≤ c5. (142)

Additionally, we have

max
t,u∈[T ]\{1}

s
(i)
t (τ)

s
(i)
u (τ)

= max
t,u∈[T ]\{1}

exp
(
x
(i)⊤
t W(τ)⊤p(τ)

)
exp

(
x
(i)⊤
u W(τ)⊤p(τ)

) = max
t,u∈[T ]\{1}

exp (−Λi,t(τ))

exp (−Λi,u(τ))
≤ c5, (143)

for any i ∈ [n]. Finally, since Λi,t(τ) is monotonically increasing for any t ∈ [T ] \ {1}, Lemma D.3 concludes that
s
(i)
t (τ)(1− s

(i)
t (τ)) is dominated by s(i)1 (τ)(1− s

(i)
1 (τ)) ignoring constants.

Proof of ∧τ ′≤τ (A(τ
′) ∧B(τ ′) ∧ C(τ ′) ∧D(τ ′) ∧ F (τ ′)) ⇒ G(τ +1). The conditions of Lemma D.6 are satisfied from

A(τ) ∧B(τ) ∧D(τ) ∧ F (τ). From Lemma D.6, we have

λ+1(τ + 1)− λ+1(0) ≤
τ∑

τ ′=0

s
(i)
1 (τ ′)(1− s

(i)
1 (τ ′)) · c′α∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p}. (144)

We use Lemma D.5 to derive the upper bound of the summation of softmax probability terms. Since Lemma D.5 follows
from ∧τ ′≤τ (C(τ

′) ∧ E(τ ′)) and the definition of T1, we have

τ∑
τ ′=0

s
(i)
1 (τ ′)(1− s

(i)
1 (τ ′)) ≲

1

α∥ν∥2∥µ∥32dmax{σ2
w, σ

2
p}
. (145)

Substituting this to Equation (144), we have

λ+1(τ + 1)− λ+1(0) = O(1). (146)
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Since |λ+1(0)| = o(1) from Lemma C.8, Equation (146) leads to λ+1(τ + 1) ≤ O(1). In the same way, we have
λ−1(τ + 1) ≤ O(1). For noise memorization terms, from Lemma D.7, we have that for any i ∈ [n],

|ρi,1(τ + 1)− ρi,1(0)| ≤
τ∑

τ ′=0

s
(i)
1 (τ ′)(1− s

(i)
1 (τ ′)) · c′αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}. (147)

We proceed with the same argument as in the signal update case discussed earlier. From the current SNR condition
SNR2 = ω(n−1) and ρi,t(0) = o(1), we have ρi,1(τ) ≤ o(1). The bound of ρi,t(τ) is obtained as well.

Proof of ∧τ ′≤τ (B(τ ′) ∧ C(τ ′) ∧ F (τ ′) ∧G(τ ′)) ⇒ A(τ + 1). It follows from Lemma C.5 that

∥p(τ + 1)∥22 − ∥p(0)∥22 =

τ∑
τ ′=0

(
∥p(τ ′ + 1)∥22 − ∥p(τ ′)∥22

)
(148)

=
2α

n

τ∑
τ ′=0

n∑
i=1

(−ℓ′i(τ ′)) · Y (i) · Ipi (τ
′) + α2

τ∑
τ ′=0

∥∇pL̂(τ ′)∥22. (149)

By definition, we have

Ipi (τ
′) =

T∑
t=1

s
(i)
t (τ ′)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ ′)γ(i)u

)
⟨W(τ ′)x

(i)
t ,p(τ ′)⟩ (150)

≤
T∑

t=1

s
(i)
t (τ ′)(1− s

(i)
t (τ ′)) · max

u∈[T ]

{
|γ(i)t − γ(i)u |

}
· ⟨W(τ ′)x

(i)
t ,p(τ ′)⟩ (151)

≲ s
(i)
1 (τ ′)(1− s

(i)
1 (τ ′)) ·max

t∈[T ]

{
|γ(i)t |

}
·max {|λ+1(τ

′)|, |λ−1(τ
′)|, |ρi,t(τ ′)|} , (152)

where in the last line, we used the results in F (τ ′) and T = Θ(1) in the parameter assumptions. By substituting this into the
first term of Equation (149), we obtain

2α

n

τ∑
τ ′=0

n∑
i=1

(−ℓ′i(τ ′)) · Y (i) · Ipi (τ
′) ≲ α∥ν∥2∥µ∥2 ·

τ∑
τ ′=0

s
(i)
1 (τ ′)(1− s

(i)
1 (τ ′)) ·max {|λ+1(τ

′)|, |λ−1(τ
′)|, |ρi,t(τ ′)|}

(153)

≲ α∥ν∥2∥µ∥2 ·
1

α∥ν∥2∥µ∥32dmax{σ2
w, σ

2
p}

(154)

≲
1

∥µ∥22dmax{σ2
w, σ

2
p}
, (155)

where the inequalities follow from Lemmas B.12 and C.9, the results in G(τ ′), and Lemma D.5. We confirm that
Equation (155) becomes o(σ2

pd). From the parameter assumptions in Section 3.5, we have

σ2
p max{σ2

w, σ
2
p} · ∥µ∥22d2 ≳ min

{
d,

∥µ∥22
σ2
ϵ

}
· 1

log4(Tn/δ)
(156)

≥ min

{
C2n∥µ∥1/32 d3/8,

C2d3/4

log2(Tn/δ)

}
(157)

= ω(1), (158)

where the first inequality follows from Assumption A8, while the next one relies on Assumptions A1 and A2. Thus,
Equation (155) becomes o(σ2

pd).

Finally, we confirm that the second term in Equation (149) can be ignored. From Equation (12) and the results in B(τ), we
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have

α2
τ∑

τ ′=0

∥∇pL̂(τ ′)∥22 = α2
τ∑

τ ′=0

∥∥∥∥∥ 1n
n∑

i=1

(−ℓ′i(τ ′)) · Y (i) ·

(
T∑

t=1

s
(i)
t (τ ′)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ ′)γ(i)u

)
W(τ ′)x

(i)
t

)∥∥∥∥∥
2

2

(159)

≲ α2
τ∑

τ ′=0

(
max

i∈[n],t∈[T ]
{s(i)t (τ)(1− s

(i)
t (τ))} · max

i∈[n],t∈[T ]
{|γ(i)t |} · max

i∈[n],t∈[T ]
{∥W(τ)x

(i)
t ∥2}

)2

(160)

≲

(
α∥ν∥2∥µ∥2

τ∑
τ ′=0

s
(i)
1 (τ)(1− s

(i)
1 (τ))

)
·
(
α∥ν∥2∥µ∥2σ2

w max{∥µ∥22d, σ2
ϵd

2}
)
, (161)

where the last inequality follows from the dominance of s(i)1 (τ)(1 − s
(i)
1 (τ)) as established by F (τ ′). Using ∥ν∥2 =

O(1/∥µ∥2) and the parameter assumptions on α, σ2
w, the latter part of the last line becomes o(1). Consequently, this

quadratic term is absorbed into Equation (153). Combining these results with Equation (149), we have ∥p(τ + 1)∥22 ∈
(1± 1/C1)σ

2
pd, for some constant C1 > 1, which concludes the proof.

Proof of ∧τ ′≤τ (A(τ
′) ∧ C(τ ′) ∧G(τ ′)) ⇒ B(τ + 1). From Lemma C.6, we have

∥W(τ + 1)µ+1∥22 − ∥W(0)µ+1∥22 =

τ∑
τ ′=0

(
∥W(τ ′ + 1)µ+1∥22 − ∥W(τ ′)µ+1∥22

)
(162)

=
2α

n

τ∑
τ ′=0

n∑
i=1

(−ℓ′i(τ ′)) · Y (i) · Ii,+(τ ′)λ+1(τ
′) +

τ∑
τ ′=0

α2∥∇WL̂(τ ′)µ+1∥22.

(163)

We analyze the two terms separately. Recall the definition of Ii,+ in Definition C.2, and using the same discussion as
Equation (152) in the previous proof for A(τ + 1), we have

Ii,+(τ
′) ≲ s

(i)
1 (τ ′)(1− s

(i)
1 (τ ′)) · max

i∈[n],t∈[T ]
{|γ(i)t |} · max

i∈[n],t∈[T ]
{|⟨x(i)

t ,µ+1⟩|} (164)

≲ s
(i)
1 (τ ′)(1− s

(i)
1 (τ ′)) · ∥ν∥2∥µ∥32, (165)

which follows from Lemmas B.1 and B.12. Therefore, for the first term, we have

2α

n

τ∑
τ ′=0

n∑
i=1

(−ℓ′i(τ ′)) · Y (i) · Ii,+(τ ′)λ+1(τ
′) ≲

τ∑
τ ′=0

s
(i)
1 (τ ′)(1− s

(i)
1 (τ ′)) · α∥ν∥2∥µ∥32 (166)

≲
1

dmax{σ2
w, σ

2
p}

= o(σ2
w∥µ∥22d), (167)

where the inequality follows from G(τ ′), Lemma D.5, and the same evaluation in Equation (158).

The analysis of the second term in Equation (163) follows from a similar argument to that of Equation (161), so we omit the
proof. Therefore, Equation (163) leads to

∥W(τ + 1)µ+1∥22 = ∥W(0)µ+1∥22 + o(σ2
w∥µ∥22d) = Θ(σ2

w∥µ∥22d). (168)

The same result holds for ∥W(τ + 1)µ−1∥22 = Θ(σ2
w∥µ∥22d). Similarly, we have

∥W(τ + 1)ϵ
(i)
t ∥22 = ∥W(0)ϵ−1∥22 + o(σ2

wσ
2
ϵd

2) = Θ(σ2
wσ

2
ϵd

2). (169)

Additionally, we will show the case of the inner products as well. From Lemma C.6, we have

⟨W(τ + 1)µ+1,W(τ + 1)µ−1⟩ − ⟨W(0)µ+1,W(0)µ−1⟩

=
α

n

τ∑
τ ′=0

n∑
i=1

(−ℓ′i(τ ′)) · Y (i) · (Ii,−(τ ′)λ+1(τ
′) + Ii,+(τ

′)λ−1(τ
′)) + α2

τ∑
τ ′=0

⟨∇WL̂(τ ′)µ+1,∇WL̂(τ ′)µ−1⟩. (170)
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For the first term, from a similar argument to Equation (167), we have

α

n

τ∑
τ ′=0

n∑
i=1

(−ℓ′i(τ ′)) · Y (i) · (Ii,−(τ ′)λ+1(τ
′) + Ii,+(τ

′)λ−1(τ
′)) ≲

1

dmax{σ2
w, σ

2
p}

= O(σ2
w∥µ∥22

√
d log(Tn/δ)),

(171)

where the last line is derived from the parameter assumptions; specifically, we have

σ2
w max{σ2

w, σ
2
p} · ∥µ∥22d3/2 log(Tn/δ) ≳ min

{
d1/2,

∥µ∥22
σ2
ϵd

1/2

}
· 1

log3(Tn/δ)
(172)

≥ min

{
d1/2

log3(Tn/δ)
,
C2d1/4

log(Tn/δ)

}
(173)

= Ω(1). (174)

The second term can be ignored in a similar manner, and we have

⟨W(τ + 1)µ+1,W(τ + 1)µ−1⟩ = O
(
σ2
w∥µ∥22

√
d log(Tn/δ)

)
. (175)

We will show that the other equations are shown in the same way. Since the quadratic term can be ignored by the above
discussion, we denote this by O(α2) in the following. Similarly, it follows from Lemmas B.1 and C.6, and SNR2 = ω(n−1)
that

⟨W(τ + 1)µ+1,W(τ + 1)ϵ(j)u ⟩ − ⟨W(0)µ+1,W(0)ϵ(j)u ⟩

=
α

n

τ∑
τ ′=0

n∑
i=1

(−ℓ′i(τ ′)) · Y (i) · (Ii,j,u(τ ′)λ+1(τ
′) + Ii,+(τ

′)ρj,u(τ
′)) +O(α2) (176)

≲ max

{
n−1σ2

ϵd

∥µ∥22dmax{σ2
w, σ

2
p}
,

∥µ∥22
∥µ∥22dmax{σ2

w, σ
2
p}

}
+O(α2) (177)

≲
1

dmax{σ2
w, σ

2
p}

+O(α2) = O(σ2
w∥µ∥2d log(Tn/δ)), (178)

which follows from the parameter assumptions; specifically, we have

σ2
w max{σ2

w, σ
2
p} · ∥µ∥2d2 log(Tn/δ) ≳ min

{
d

∥µ∥2
,
∥µ∥2
σ2
ϵ

}
· 1

log3(Tn/δ)
(179)

≥ min

{
Cσ̂ϵn∥µ∥1/32 ,

∥µ∥2
σ2
ϵ log

3(Tn/δ)

}
(180)

= Ω(1). (181)

The last line can be derived by combining Assumptions A1 and A2. The same result holds for ⟨W(τ+1)µ−1,W(τ+1)ϵ
(j)
u ⟩.

Finally, we have

⟨W(τ + 1)ϵ(j)u ,W(τ + 1)ϵ(k)v ⟩ − ⟨W(0)ϵ(j)u ,W(0)ϵ(k)v ⟩

=
α

n

τ∑
τ ′=0

n∑
i=1

(−ℓ′i(τ ′)) · Y (i) · (Ii,k,v(τ ′)ρj,u(τ ′) + Ii,j,u(τ
′)ρk,v(τ

′)) +O(α2) (182)

≲
n−1σ2

ϵd

∥µ∥22dmax{σ2
w, σ

2
p}

+O(α2) = O(σ2
wσ

2
ϵd

3/2 log(Tn/δ)), (183)

which follows from the same discussion as in Equation (172). This completes the proof.

Proof of Lemma C.11. At time step τ = 0, all propositions hold from the proof for the base case. For the next time step,
A(τ + 1), B(τ + 1), C(τ + 1) and G(τ + 1) are proved based on the propositions up to time step τ . As for D(τ + 1),
E(τ + 1), and F (τ + 1), they are derived from C(τ + 1). Thus, the proof is completed by induction.
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C.2.2. PROOF OF NOT OVERFITTING CASE IN THEOREM 4.1

In this section, we provide the proof of the not-overfitting case in the main theorem. We divide the proof into two parts:
behavior on the training data and generalization performance.

Training data. The condition of Lemma C.11 is satisfied with the current SNR condition SNR2 = ω(n−1). The
proposition C(τ) in Lemma C.11 states that there exists a time step T1 = Θ

(
1

α∥ν∥2∥µ∥3
2dmax{σ2

w,σ2
p}

)
such that

g(Λi,t(T1)) ≥ g(Λi,t(0)) + Θ(1) > c′1, (184)

for arbitrary constant c′1 > 0, for any i ∈ [n] and t ∈ [T ] \ {1}. Here, we used g(Λi,t(0)) = −(1± o(1))T = −Θ(1) from
Lemma C.8. Recall that g(x) = 2x + 2 sinh(x − log T ), and there exists a constant c′2 > 1 such that c′2 exp(x) > g(x).
Therefore, for all i ∈ [n], we have

s
(i)
1 (T1) =

1

1 +
∑T

t=2 exp (−Λi,t(T1))
> 1−

T∑
t=2

exp (−Λi,t(T1)) > 1− (T − 1)
c′2
c′1
> 1− ϵ, (185)

for sufficiently small constant ϵ > 0. By using Equation (185) and Lemma B.12, we have that for any clean data i ∈ C,

Y (i) · fT1
(X(i)) = Y (i) · ν⊤X(i)⊤S

(
X(i)W(T1)

⊤p(T1)
)

(186)

= Y (i) · γ(i)1 s
(i)
1 (T1) +

T∑
t=2

Y (i) · γ(i)t s
(i)
t (T1) (187)

≥ Θ(∥ν∥2∥µ∥2) (1− ϵ)−O (ρ∥ν∥2∥µ∥2) · ϵ (188)
> 0. (189)

Similarly, for any noise data j ∈ N , we have

Y (j) · fT1
(X(j)) ≤ −Θ(∥ν∥2∥µ∥2) (1− ϵ) +O (ρ∥ν∥2∥µ∥2) · ϵ < 0. (190)

Equations (189) and (190) hold deterministically on a good run. Therefore, at time step τ = T1, we have that with probability
at least 1− δ,

∀i ∈ C, fτ (X(i)) = Y (i), ∀j ∈ N , fτ (X
(j)) ̸= Y (j). (191)

Generalization. Let (X, Y ∗) ∼ P ∗ be the unseen data on which we investigate generalization performance. We first
evaluate the attention values of signal vectors at time step T1. From Lemmas D.5 and D.6, we have

λ+1(T1)− λ+1(0) ≥
T1−1∑
τ=0

s
(i)
1 (τ)(1− s

(i)
1 (τ)) · cα∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p} (192)

≳ T1 · α∥ν∥2∥µ∥32dmax{σ2
w, σ

2
p} (193)

≳ 1, (194)

which follows from the definition of T1. From Lemma C.8, we have |λ+1(0)| = o(1), which implies λ+1(T1) ≳ 1.
Similarly, we have λ−1(T1) ≳ 1.

Next, we show that the attention scores of the noise vectors {ϵt}t∈[T ] in the unseen data, i.e., ϵ⊤t W(T1)
⊤p(T1), become

sufficiently small on a good run. While it is natural to evaluate ∥W(T1)
⊤p(T1)∥2 and use a concentration inequality, it is

challenging to track the evolution of ∥W(τ)⊤p(τ)∥2. Therefore, following induction proof in Lemma C.11, we apply a
concentration inequality at time step 0 and show that the result does not change at time step T1. Let us define E as the event
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that the following inequalities are satisfied:

∀t ∈ [T ], (1− o(1))σϵ
√
d ≤ ∥ϵt∥2 ≤ (1 + o(1))σϵ

√
d, (195)

∀t ∈ [T ],∀k ∈ {±1}, |⟨ϵt,µk⟩| < c2σϵ∥µ∥2
√
log(Tn/δ), (196)

∀i ∈ [n],∀t, u ∈ [T ], |⟨ϵt, ϵ(i)u ⟩| < c1σ
2
ϵ

√
d log(Tn/δ), (197)

∀t ∈ [T ],∀k ∈ {±1}, |⟨W(0)ϵt,W(0)µk⟩| < c1σ
2
w∥µ∥2∥ϵt∥2

√
d log(Tn/δ), (198)

∀i ∈ [n],∀t, u ∈ [T ], |⟨W(0)ϵt,W(0)ϵ(i)u ⟩| < c1σ
2
w∥ϵt∥2∥ϵ(j)u ∥2

√
d log(Tn/δ), (199)

∀t ∈ [T ], |⟨W(0)ϵt,p(0)⟩| < c1σwσp∥ϵt∥2
√
d log(Tn/δ), (200)

∀t ∈ [T ], |⟨ν, ϵt⟩| < c2σϵ∥ν∥2
√

log(Tn/δ), (201)

where the constants c1, c2 are the same ones appeared in Lemma B.1. Applying a union bound on the modified versions of
Lemmas B.6, B.8 and B.9, the probability of the occurrence of E can be evaluated. Since there is no need to apply the union
bound over the additional n training data points, the outlier probability can be reduced by 1/n compared to the original
lemma. Therefore, we have

Pr [E ] > 1− δ/n > 1− δ. (202)

In the following, using the results of Lemma C.11, we will prove that the next proposition holds for all τ ∈ [0, T1] under the
condition E :

H(τ):

|⟨W(τ)ϵt,p(τ)⟩| < O (σwσpσϵd log(Tn/δ)) ,

|⟨W(τ)ϵt,W(τ)µ+1⟩| < O
(
σ2
wσϵ∥µ∥2d log(Tn/δ)

)
,

|⟨W(τ)ϵt,W(τ)µ−1⟩| < O
(
σ2
wσϵ∥µ∥2d log(Tn/δ)

)
,

|⟨W(τ)ϵt,W(τ)ϵ(i)u ⟩| < O
(
σ2
wσ

2
ϵd

3/2 log(Tn/δ)
)
,

for all i ∈ [n] and t, u ∈ [T ].

Proof of H(τ). We proceed with the proof by induction. The base case holds from the condition E . In the following, we
suppose that H(τ ′) holds for any τ ′ ∈ [0, τ ]. By a calculation similar to that in the proof of Lemma C.4, we have

⟨W(τ + 1)ϵt,p(τ + 1)⟩ − ⟨W(0)ϵt,p(0)⟩

=

τ∑
τ ′=0

(⟨W(τ ′ + 1)ϵt,p(τ
′ + 1)⟩ − ⟨W(τ ′)ϵt,p(τ

′)⟩) (203)

=
α

n

τ∑
τ ′=0

n∑
i=1

(−ℓ′i(τ ′)) · Y (i) ·
T∑

t=1

s
(i)
t (τ ′)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ ′)γ(i)u

)(
⟨W(τ ′)ϵt,W(τ ′)x

(i)
t ⟩+ ∥p(τ ′)∥22⟨ϵt,x

(i)
t ⟩
)

+

τ∑
τ ′=0

α2ϵ⊤t ∇W⊤L̂(τ ′)∇pL̂(τ ′). (204)
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Using the induction hypothesis, the condition E , and A(τ ′) in Lemma C.11, the first term is bounded as follows:

α

n

τ∑
τ ′=0

n∑
i=1

(−ℓ′i(τ ′)) · Y (i) ·
T∑

t=1

s
(i)
t (τ ′)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ ′)γ(i)u

)(
⟨W(τ ′)ϵt,W(τ ′)x

(i)
t ⟩+ ∥p(τ ′)∥22⟨ϵt,x

(i)
t ⟩
)

≲ α

τ∑
τ ′=0

s
(i)
1 (τ ′)(1− s

(i)
1 (τ ′)) · max

i∈[n],u∈[T ]
{γ(i)u } · σ2

wσϵdmax
{
∥µ∥2, σϵ

√
d
}
log(Tn/δ)

+ α

τ∑
τ ′=0

s
(i)
1 (τ ′)(1− s

(i)
1 (τ ′)) · max

i∈[n],u∈[T ]
{γ(i)u } · σ2

pd · σϵ max
{
∥µ∥2

√
log(Tn/δ), σϵ

√
d log(Tn/δ)

}
(205)

≲ α · 1

α∥ν∥2∥µ∥32dmax{σ2
w, σ

2
p}

· ∥ν∥2∥µ∥2 ·max{σ2
w, σ

2
p}σϵd ·max{∥µ∥2, σϵ

√
d} log(Tn/δ) (206)

≲ max{∥µ∥−1
2 , σϵ

√
d∥µ∥−2

2 } · σϵ log(Tn/δ) (207)
= O (σwσpσϵd log(Tn/δ)) , (208)

where the first line follows from F (τ ′), in the same manner as Equation (152), and the second line follows from Lemma D.5.
The last line is derived from the parameter assumptions in Section 3.5; specifically, we have

σwσp∥µ∥2d ≳ min

{√
d,

∥µ∥2
σϵ

}
· 1

log2(Tn/δ)
= Ω(1), (209)

σwσpσ
−1
ϵ ∥µ∥22

√
d ≳ min

{
∥µ∥2
σϵ

,
∥µ∥22
σ2
ϵ

√
d

}
· 1

log2(Tn/δ)
≳ min

{
∥µ∥2

σϵ log
2(Tn/δ)

, C2d1/4
}

= Ω(1). (210)

For the quadratic term in Equation (204), we have
τ∑

τ ′=0

α2ϵ⊤t ∇W⊤L̂(τ ′)∇pL̂(τ ′)

≤
τ∑

τ ′=0

α2∥∇WL̂(τ)ϵt∥2∥∇pL̂(τ)∥2 (211)

≲ α2
τ∑

τ ′=0

(
s
(i)
1 (τ ′)(1− s

(i)
1 (τ ′)) · max

i∈[n],t∈[T ]
{|γ(i)t |}

)2

· max
i∈[n],t∈[n]

{ϵ⊤t x
(i)
t }∥p(τ)∥2 · max

i∈[n],t∈[T ]
{∥W(τ)x

(i)
t ∥2} (212)

≲ α2 1

α∥ν∥2∥µ∥32dmax{σ2
w, σ

2
p}

· (∥ν∥2∥µ∥2)2 (213)

· σϵ max{∥µ∥2
√
log(Tn/δ), σϵ

√
d log(Tn/δ)} · σp

√
d · σw max{∥µ∥2

√
d, σϵd} (214)

≲
(
max{∥µ∥2, σϵ

√
d} · σϵ log(Tn/δ)

)
·
(
αmax{∥µ∥2, σϵ

√
d}
)

(215)

= o(σwσpσϵd log(Tn/δ)), (216)

where the first line is the result of the Cauchy-Schwarz inequality, and the second one follows from the gradient updates
provided in Equations (9) and (12). The third inequality follows from the same discussion as in Equation (206), the condition
E , and A(τ ′) and B(τ ′) in Lemma C.11. The last inequality follows from ∥ν∥2 = O(1/∥µ∥2). Using the parameter
assumption on α, Equation (215) is absorbed in Equation (207), and the discussion is reduced to the first term analysis.
Therefore, substituting Equations (208) and (216) to Equation (204) leads to

⟨W(τ + 1)ϵt,p(τ + 1)⟩ = ⟨W(0)ϵt,p(0)⟩+O (σwσpσϵd log(Tn/δ)) = O (σwσpσϵd log(Tn/δ)) . (217)

The proof for the three inequalities below in the proposition H(τ) is omitted because they can be shown in the same manner
as B(τ + 1) in Lemma C.11, under the induction hypothesis and the results of Lemma C.11. Since H(τ + 1) holds under
the condition H(τ) is valid, from induction argument, the proposition H(τ) holds for τ ∈ [0, T1].

From H(T1) and Assumption A8, we have

|⟨W(τ)ϵt,p(τ)⟩| ≲ σwσpσϵd log(Tn/δ) ≤
c′3

log(Tn/δ)
, (218)
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for some constant c′3 > 1. Using Equation (194) and taking sufficiently large T1, we have λ+1(T1) > 2c′3 and λ−1(T1) >
2c′3. From Equation (218), we have that for t ∈ [T ] \ {1},

(xt − x1)
⊤
W(T1)

⊤p(T1) ≤ −(1− ρ)max{λ+1(T1), λ−1(T1)}+ (ϵt − ϵ1)
⊤
W(T1)

⊤p(T1) (219)

≤ −(1− 1/C) · 2c′3 +
2c′3

log(Tn/δ)
(220)

< −c′3, (221)

where the second inequality holds by ρ < 1/C. Then, the softmax probability of the relevant token is lower-bounded as:

s1(T1) =
1

1 +
∑T

t=2 exp
(
(xt − x1)

⊤
W(T1)⊤p(T1)

) > 1− T − 1

exp(c′3)
= 1− ϵ, (222)

for sufficiently small ϵ > 0. Consequently, we have

Y ∗ · fT1
(X) = Y ∗ · γ1s1(T1) +

T∑
t=2

Y ∗ · γtst(T1) (223)

≥ Θ(∥ν∥2∥µ∥2) · (1− ϵ)−O (ρ∥ν∥2∥µ∥2) · ϵ > 0. (224)

Under the conditioning on E , the output fT1
(X) deterministically takes the same sign as the true label Y ∗. Thus, the

generalization error is bounded as:

Pr
(X,Y ∗)∼P∗

[sign(fT1
(X)) ̸= Y ∗] = Pr

(X,Y ∗)∼P∗
[sign(fT1

(X)) ̸= Y ∗ | E ] + Pr
(X,Y ∗)∼P∗

[Ec] < δ, (225)

where we used Pr(A) ≤ Pr(A|BC) + Pr(B) and the result of Equation (202). This concludes the proof.

C.3. Analysis of Benign Overfitting Case (SNR2 = o(n−1))

Next, we proceed to the analysis of benign overfitting. Although the proof by induction follows a similar structure to
Lemma C.11, the proof is a two-stage analysis divided into [0, T1] and [T1, T2] to address the behavior of noisy data. In
Stage 1 (τ ∈ [0, T1]), we demonstrate that the probability of selecting the relevant token x

(j)
1 for noisy data j ∈ N becomes

sufficiently small. In Stage 2 (τ ∈ [T1, T2]), we show that the model selects confusing weakly relevant tokens that can fit the
noisy labels. While the coefficients differ from Lemma C.11, many arguments are shared between the not-overfitting case
and benign overfitting case. To avoid redundancy and unnecessary page length, the proof repetitions are referred to and
omitted.

C.3.1. MAIN LEMMA

Lemma C.12 (Benign Overfitting, Stage 1). Suppose that the signal-to-noise ratio satisfies SNR2 = o(n−1). For some time

step T1 = Θ
(

ρ−1

αn−1σ2
ϵ∥ν∥2∥µ∥2d2 max{σ2

w,σ2
p}

)
, on a good run, the following propositions hold for all time step τ ∈ [0, T1]:

A(τ): There exists a constant C1 > 1 such that

(1− 1/C1) · σp
√
d ≤ ∥p(τ)∥2 ≤ (1 + 1/C1) · σp

√
d.

B(τ): There exists a constant C2 > 1 such that

(1− 1/C2) · σw∥µ∥2
√
d ≤ ∥W(τ)µ+1∥2 ≤ (1 + 1/C2) · σw∥µ∥2

√
d,

(1− 1/C2) · σw∥µ∥2
√
d ≤ ∥W(τ)µ−1∥2 ≤ (1 + 1/C2) · σw∥µ∥2

√
d,

(1− 1/C2) · σwσϵd ≤ ∥W(τ)ϵ
(i)
t ∥2 ≤ (1 + 1/C2) · σwσϵd,
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for all i ∈ [n] and t ∈ [T ].

|⟨W(τ)µ+1,W(τ)µ−1⟩| < O(σ2
w∥µ∥22

√
d log(Tn/δ)),

|⟨W(τ)µ+1,W(τ)ϵ
(i)
t ⟩| < O(σ2

wσϵ∥µ∥2d log(Tn/δ)),

|⟨W(τ)µ−1,W(τ)ϵ
(i)
t ⟩| < O(σ2

wσϵ∥µ∥2d log(Tn/δ)),

|⟨W(τ)ϵ
(i)
t ,W(τ)ϵ(j)u ⟩| < O(σ2

wσ
2
ϵd

3/2 log(Tn/δ)),

for all i, j ∈ [n] and t, u ∈ [T ] such that (i, t) ̸= (j, u).

C(τ): Let g be a monotonically increasing function g(x) = 2x + 2 sinh (x− log T ). Then, there exist constants
c3, c4 > 0 with c3 < c4 such that

g (Λi,t(τ)) ≥ g (Λi,t(0)) + τ · c3αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p},

g (Λi,t(τ)) ≤ g (Λi,t(0)) + τ · c4αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p},

for any clean data i ∈ C and t ∈ [T ] \ {1}. Additionally, we have that for some constants c5 < c6,

g (Λj,t(τ)) ≤ g (Λj,t(0))− τ · c5αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p},

g (Λj,t(τ)) ≥ g (Λj,t(0))− τ · c6αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p},

for any noisy data j ∈ N and t ∈ [T ] \ {1}.

D(τ):

s
(i)
1 (τ) ≥ Θ(1), s

(j)
1 (τ) ≥ Θ(ρ),

for all clean data i ∈ C and noisy data j ∈ N .

E(τ): There exists a constant c7 > 1 such that

exp (Λi,t(τ)− Λj,u(τ)) < c7, exp (Λk,t(τ)− Λl,u(τ)) < c7,

for all i, j ∈ C, k, l ∈ N and t, u ∈ [T ] \ {1}. Additionally, we have

exp (Λi,t(τ) + Λk,u(τ)) < c7, exp (−Λi,t(τ)− Λk,u(τ)) < c7,

for all i ∈ C, k ∈ N and t, u ∈ [T ] \ {1}.

F (τ): There exists a constant c8 > 1 such that

max
i,j∈[n]

s
(i)
1 (τ)(1− s

(i)
1 (τ))

s
(j)
1 (τ)(1− s

(j)
1 (τ))

< c8.

Additionally, there exist constants c9, c10 > 1 such that

max
t,u∈[T ]\{1}

s
(i)
t (τ)

s
(i)
u (τ)

< c9,
s
(i′)
t (τ)(1− s

(i′)
t (τ))

s
(i′)
1 (τ)(1− s

(i′)
1 (τ))

< c10,

for any i ∈ [n], i′ ∈ C, and t ∈ [T ] \ {1}.

G(τ):

|λ+1(τ)| = o(log ρ−1), |λ−1(τ)| = o(log ρ−1), |ρi,t(τ)| = O(log ρ−1),

for any i ∈ [n] and t ∈ [T ].

We will prove the above propositions by induction argument for τ ∈ [0, T1].
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Base case. It is obvious that C(0) holds. By Lemmas B.1, C.7 and C.8, the all other base cases A(0), B(0), D(0), E(0),
F (0) and G(0) hold.

Proof of ∧τ ′≤τ (A(τ
′) ∧B(τ ′) ∧ C(τ ′) ∧D(τ ′) ∧ E(τ ′) ∧ F (τ ′)) ⇒ C(τ + 1). We only show the case of Y (i) = 1,

i.e., i ∈ C+ ∪N . The same argument can be applied to the case of i ∈ C− ∪N+. In the following, we bound the attention
gap introduced in Definition C.3 from both above and below, as in the proof of Lemma C.11 for the not-overfitting case. The
conditions of Lemmas D.8 and D.9 are satisfied from A(τ) ∧B(τ) ∧D(τ) ∧ F (τ). From these lemmas and the definition
of Λi,t, we have that for any i ∈ C+ and t ∈ I(i),

Λi,t(τ + 1)− Λi,t(τ) = (λ+1(τ + 1)− λ+1(τ)) + (ρi,1(τ + 1)− ρi,1(τ))− (ρi,t(τ + 1)− ρi,t(τ)) (226)

≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · α∥ν∥2∥µ∥2d

(
c′1∥µ∥22 + c′2n

−1σ2
ϵd
)
max{σ2

w, σ
2
p}

+ s
(i)
1 (τ)s

(i)
t (τ) · c′2αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p} (227)

≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′2αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}. (228)

Here, we bound with the noise memorization term because it is dominant from the condition SNR2 = o(n−1), i.e.,
∥µ∥22 = o(n−1σ2

ϵd). For noisy data j ∈ N−, using s(i)1 (τ)(1 − s
(i)
1 (τ)) ≲ s

(j)
1 (τ)(1 − s

(j)
1 (τ)) for any clean data i ∈ C

from F (τ), we have

Λj,t(τ + 1)− Λj,t(τ) ≤ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′3α∥ν∥2∥µ∥32d

− s
(j)
1 (τ)(1− s

(j)
1 (τ)) · c′4αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}

+ s
(j)
1 (τ)s

(j)
t (τ) · c′4αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p} (229)

≤ s
(j)
1 (τ)(1− s

(j)
1 (τ)) · α∥ν∥2∥µ∥2d

(
c′5∥µ∥22 − c′4n

−1σ2
ϵd
)
max{σ2

w, σ
2
p}

+ s
(j)
1 (τ)s

(j)
t (τ) · c′4αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p} (230)

≤ −s(j)1 (τ)(1− s
(j)
1 (τ)) · c′6αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}. (231)

We note that we have the same result for weakly relevant tokens t ∈ W(i)
+1 ∪W(i)

−1. When t ∈ W(i)
+1, the update of λ+1 is

multiplied by a factor of (1− ρ). Since the noise update is dominant in this case, it does not affect the above bounds. For
t ∈ W(i)

−1, we also have to consider the update of λ−1. However, by similarly applying Lemmas D.8 and D.9, along with
the result for the softmax probability ratio F (τ), the case for t ∈ W(i)

−1 reduces to that of t ∈ W(i)
+1. Therefore, the above

inequalities hold for any t ∈ [T ] \ {1}. Similarly, from Lemmas D.8 and D.9, we obtain the following upper bound:

Λi,t(τ + 1)− Λi,t(τ) ≤ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′7αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}, (232)

Λj,t(τ + 1)− Λj,t(τ) ≥ −s(j)1 (τ)(1− s
(j)
1 (τ)) · c′8αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}, (233)

for i ∈ C+, j ∈ N− and t ∈ [T ] \ {1}.

The evaluation of the evolution of Λ is identical to the proof of the not overfitting case in Lemma C.11, differing only in
coefficients; therefore, we omit the discussion. For noisy data, since Λj,t(τ) is monotonically decreasing, the evaluation in
Case 1 (Λj,t(τ) ≤ log T ) suffices to complete the argument.

Proof of C(τ) ⇒ D(τ). The lower bound of clean data is derived from C(τ) and D(0). To derive the lower bound for
noisy data j ∈ N , we use a similar technique to Equation (419) in the proof of Lemma D.5. From C(τ) and Lemma C.8,
we have Λj,t(τ) < o(1) holds for any t ∈ [T ] \ {1}. Since we can confirm that the inequality 2 + 2 cosh(x − log T ) <
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−2x− 2 sinh(x− log T ) + 2 = −g(x) + 2 holds for x < o(1) by rearranging terms, Lemma D.1 and C(τ) give us

s
(j)
1 (τ) > s

(j)
1 (τ)(1− s

(j)
1 (τ)) >

c−1

2 + 2 cosh (Λj,t(τ ′)− log T )
(234)

>
c−1

−g (Λj,t(τ ′)) + 2
(235)

>
c−1

−g (Λj,t(0)) + τ · c6αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}+ 2

(236)

= Θ(ρ), (237)

where the last line follows from the definition of T1 and −g(Λj,t(0)) = (1 + o(1))T . This completes the proof.

Proof of C(τ) ⇒ E(τ). The proof for the clean data is the same as the not-benign overfitting case in Lemma C.11;
therefore, we omit the discussion. We first provide the analysis of the noisy data with proof by contradiction. Suppose that
E(τ) does not hold, i.e., for any constant c > 0, there exist k, l ∈ N and t, u ∈ [T ] \ {1} such that

exp (Λk,t(τ)− Λl,u(τ)) ≥ c. (238)

From C(τ), we have for any k, l ∈ N and t, u ∈ [T ] \ {1} that

g (Λl,u(τ))− g (Λl,u(0))

g (Λk,t(τ))− g (Λk,t(0))
≤ c6
c5
, (239)

for τ ≥ 1. Additionally, we have g (Λl,u(0)) /g (Λk,t(0)) < 2 by the same argument as in Equation (128). Also,
Λk,t(τ) < o(1) and Λl,t(τ) < o(1) are implied by Lemma C.8 and the fact that Λ(τ) is monotonically decreasing as a result
of C(τ). By a simple calculation, we obtain the following for x < o(1)− log c:

2 sinh (x+ log c− log T ) =
c

T
exp(x)− T

c
exp(−x) (240)

=
3

c
· 2 sinh (x− log T ) +

2T

c
exp(−x) +

(
c− 3

c

)
exp(x)

T
(241)

>
3

c
· 2 sinh (x− log T )− 2Tx, (242)

for c satisfying c > 3/c. In the last line, we used exp(−x) > −cx for x < o(1)− log c. By using Equations (238) and (242),
we have

g (Λk,t(τ))− g (Λk,t(0)) = 2Λk,t(τ) + 2 sinh (Λk,t(τ)− log T )− g (Λk,t(0)) (243)

≥ 2 (Λl,u(τ) + log c) + 2 sinh (Λl,u(τ) + log c− log T )− 1

2
g (Λl,u(0)) (244)

> (2− 2T ) Λl,u(τ) +
3

c
· 2 sinh (Λl,u(τ)− log T ) +

1

2
(−g (Λl,u(0))) (245)

> min{c5/c6, 1/2} · (g (Λl,u(τ))− g (Λl,u(0))) . (246)

In the second inequality, please note that Λl,u(τ) < Λk,t(τ) − log c = o(1) − log c < 0, sinh(Λl,u(τ) − log T ) < 0,
and −g(Λl,u(0)) = (1 ± o(1))T > 0. Thus, the last line follows from a sufficiently large c > 0 satisfying 3/c <
min{c5/c6, 1/2}. Since the left-hand side of Equation (246) is negative by C(τ), Equation (246) leads to

g (Λl,u(τ))− g (Λl,u(0))

g (Λk,t(τ))− g (Λk,t(0))
> max

{
c6
c5
, 2

}
≥ c6
c5
, (247)

which contradicts Equation (239).

The remaining is to show exp(Λi,t(τ)+Λk,u(τ)) < c7 and exp(−Λi,t(τ)−Λk,u(τ)) < c7. This can be shown in the same
manner as the proof of Lemma C.11 for the not-overfitting case. Specifically, we divide the analysis into the initial learning
phase (Case 1) and the subsequent phase (Case 2). In Case 1, the difference between g(Λi,t(τ) and g(Λk,u(τ)) is shown to
be of constant order in a similar way. In Case 2, since they have the same order of time evolution with opposite signs by
C(τ), a similar discussion can be applied. This completes the proof.
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Proof of E(τ) ⇒ F (τ). The ratios of s1(τ)(1− s1(τ)) within the clean data and within the noisy data are respectively
bounded by a constant, by the same argument as in Equation (141) for the not-overfitting case. We discuss the ratio between
clean data and noisy data. From the definition of Λi,t, we have

1

s
(i)
1 (τ)(1− s

(i)
1 (τ))

=

(
1 +

T∑
t=2

exp (−Λi,t(τ))

)
·
1 +

∑T
t=2 exp (−Λi,t(τ))∑T

t=2 exp (−Λi,t(τ))
(248)

= 2 +

T∑
t=2

exp (−Λi,t(τ)) +
1∑T

t=2 exp (−Λi,t(τ))
. (249)

Thus, for any i ∈ C and j ∈ N , there exists a constant c′1 such that

s
(j)
1 (τ)(1− s

(j)
1 (τ))

s
(i)
1 (τ)(1− s

(i)
1 (τ))

<
s
(j)
1 (τ)

s
(i)
1 (τ)(1− s

(i)
1 (τ))

(250)

=
2 +

∑T
t=2 exp (−Λi,t(τ))

1 +
∑T

t=2 exp (−Λj,t(τ))
+

1(
1 +

∑T
t=2 exp (−Λj,t(τ))

)
·
∑T

t=2 exp (−Λi,t(τ))
(251)

≤ 2 + (T − 1)o(1)

1 + (T − 1)o(1)
+ exp (Λi,u(τ) + Λj,v(τ)) < c′1, (252)

for any u, v ∈ [T ] \ {1}. In the last line, we used that Λi,t(τ) > −o(1), Λj,t(τ) < o(1) and the result of E(τ). Similarly,
we have

s
(i)
1 (τ)(1− s

(i)
1 (τ))

s
(j)
1 (τ)(1− s

(j)
1 (τ))

<
1− s

(i)
1 (τ)

s
(j)
1 (τ)(1− s

(j)
1 (τ))

(253)

=

∑T
t=2 exp (−Λi,t(τ))

1 +
∑T

t=2 exp (−Λi,t(τ))
·

(
2 +

T∑
t=2

exp (−Λj,t(τ)) +
1∑T

t=2 exp (−Λj,t(τ))

)
(254)

< 2 + T 2 max
u,v∈[T ]\{1}

exp (−Λi,u(τ)− Λj,v(τ)) +
(T − 1)o(1)

(T − 1)o(1)
< c′2, (255)

which follows from Λi,t(τ) > −o(1), Λj,t(τ) < o(1) and the parameter assumption T = Θ(1).

Finally, E(τ) implies

max
t,u∈[T ]\{1}

s
(i)
t (τ)

s
(i)
u (τ)

= max
t,u∈[T ]\{1}

exp
(
x
(i)⊤
t W(τ)⊤p(τ)

)
exp

(
x
(i)⊤
u W(τ)⊤p(τ)

) = max
t,u∈[T ]\{1}

exp (−Λi,t(τ))

exp (−Λi,u(τ))
< c7, (256)

for any i ∈ [n]. The dominance of s(i)1 (τ)(1− s
(i)
1 (τ)) for i ∈ C, relative to all tokens t ∈ [T ] \ {1}, is shown by the same

argument as in Lemma C.11.

Proof of ∧τ ′≤τ (A(τ
′) ∧B(τ ′) ∧ C(τ ′) ∧D(τ ′) ∧ F (τ ′)) ⇒ G(τ +1). The conditions of Lemma D.8 are satisfied from

A(τ) ∧B(τ) ∧D(τ) ∧ F (τ). From Lemma D.8, we have

λ+1(τ + 1)− λ+1(0) ≤
τ∑

τ ′=0

s
(i)
1 (τ ′)(1− s

(i)
1 (τ ′)) · c′α∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p}, (257)
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for any clean data i ∈ C. To derive the upper bound of the summation of softmax probability terms, we use Lemma D.5.
Since Lemma D.5 follows from ∧τ ′≤τC(τ

′) and the definition of T1, we have

τ∑
τ ′=0

s
(i)
1 (τ ′)(1− s

(i)
1 (τ ′))

≲ max

{
1

αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}
,
log
(
τ · αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}
)

αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}

}
(258)

≤ max

{
1

αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}
,
log
(
T1 · αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}
)

αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}

}
(259)

=
log ρ−1

αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}
. (260)

Substituting this to Equation (257) and using the current SNR condition SNR2 = o(n−1), we have

λ+1(τ + 1)− λ+1(0) = o(log ρ−1). (261)

Since |λ+1(0)| = o(1) from Lemma C.8, Equation (261) lead to λ+1(τ + 1) ≤ o(log ρ−1).

In the same way, we have λ−1(τ + 1) ≤ o(log ρ−1). For noise memorization terms, from Lemma D.9, we have for any
i ∈ [n] that

|ρi,1(τ + 1)− ρi,1(0)| ≤
τ∑

τ ′=0

s
(i)
1 (τ ′)(1− s

(i)
1 (τ ′)) · c′αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}. (262)

We proceed with the same argument as the previously discussed signal update case and obtain the upper bound |ρi,1(τ+1)| ≤
O(log ρ−1). The bound of ρi,t is obtained as well.

Proof of ∧τ ′≤τ (B(τ ′) ∧ C(τ ′) ∧ F (τ ′) ∧G(τ ′)) ⇒ A(τ + 1). The proof is basically the same as the not-overfitting
case, but we newly have to care about the behavior of noisy samples. It follows from Lemma C.5 that

∥p(τ + 1)∥22 − ∥p(0)∥22 =
2α

n

τ∑
τ ′=0

n∑
i=1

(−ℓ′i(τ ′)) · Y (i) · Ipi (τ
′) + α2

τ∑
τ ′=0

∥∇pL̂(τ ′)∥22. (263)

By definition, we have

Ipi (τ
′) =

T∑
t=1

s
(i)
t (τ ′)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ ′)γ(i)u

)
⟨W(τ ′)x

(i)
t ,p(τ ′)⟩ (264)

≤
T∑

t=1

∣∣∣∣∣s(i)t (τ ′)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ ′)γ(i)u

)∣∣∣∣∣ ·max {|λ+1(τ
′)|, |λ−1(τ

′)|, |ρi,t(τ ′)|} . (265)

For clean data i ∈ C, we use the argument similar to Equation (152), which follows from F (τ ′), and combine it with G(τ ′),
Lemmas B.12 and D.5. Then, we have

τ∑
τ ′=0

Ipi (τ
′) ≲

τ∑
τ ′=0

s
(i)
1 (τ ′)(1− s

(i)
1 (τ ′)) ·max

t∈[T ]

{
|γ(i)t |

}
·max {|λ+1(τ

′)|, |λ−1(τ
′)|, |ρi,t(τ ′)|} (266)

≲
log2 ρ−1

αn−1σ2
ϵd

2 max{σ2
w, σ

2
p}
. (267)
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For noisy data j ∈ N , the softmax probability s(j)1 (τ ′)(1− s
(j)
1 (τ ′)) is not dominant over the other tokens. Instead, we have

τ∑
τ ′=0

T∑
t=1

∣∣∣∣∣s(j)t (τ ′)

(
γ
(j)
t −

T∑
u=1

s(j)u (τ ′)γ(j)u

)∣∣∣∣∣
≤

τ∑
τ ′=0

(∣∣∣∣∣s(j)1 (τ ′)

(
γ
(j)
1 −

T∑
u=1

s(j)u (τ ′)γ(j)u

)∣∣∣∣∣+
T∑

t=2

∣∣∣s(j)t (τ ′)s
(j)
1 (τ ′)γ

(j)
1

∣∣∣+ T∑
t=2

∣∣∣∣∣s(j)t (τ ′)

(
γ
(j)
t −

T∑
u=2

s(j)u (τ ′)γ(j)u

)∣∣∣∣∣
)

(268)

≲
τ∑

τ ′=0

(
s
(j)
1 (τ ′)(1− s

(j)
1 (τ ′)) · |γ(j)1 |+ max

t∈[T ]\{1}
{|γ(j)t |}

)
(269)

≲
log ρ−1

αn−1σ2
ϵd

2 max{σ2
w, σ

2
p}

+
ρ

αn−1σ2
ϵd

2 max{σ2
w, σ

2
p}

≲
log ρ−1

αn−1σ2
ϵd

2 max{σ2
w, σ

2
p}
, (270)

where the last line follows from Lemma D.5, maxt∈[T ]\{1}{|γ
(j)
t |} = O(ρ∥ν∥2∥µ∥2), and the definition of T1. Therefore,

we have
τ∑

τ ′=0

Ipj (τ
′) ≲

log2 ρ−1

αn−1σ2
ϵd

2 max{σ2
w, σ

2
p}
. (271)

Now we have Equations (267) and (271), and the remainder of the proof follows from the same discussion as in the
not-overfitting case.

Proof of ∧τ ′≤τ (A(τ
′) ∧ C(τ ′) ∧G(τ ′)) ⇒ B(τ + 1). As with the proof of A(τ + 1), the contribution of the noisy data

can be evaluated in the same order as the clean data, similarly to Equation (271). The proof is essentially the same as the
not-overfitting case, so we omit the proof.

Proof of Lemma C.12. At time step τ = 0, all propositions hold from the proof for the base case. For the next time step,
A(τ + 1), B(τ + 1), C(τ + 1) and G(τ + 1) are proved based on the propositions up to time step τ . As for D(τ + 1),
E(τ + 1), and F (τ + 1), they are derived from C(τ + 1). Thus, the proof is completed by induction.

Lemma C.13 (Benign Overfitting, Stage 2). Let T1 be the time step in Lemma C.12. For any time step T2 =

Θ
(

exp(n−1SNR−2)
αn−1σ2

ϵ∥ν∥2∥µ∥2d2 max{σ2
w,σ2

p}

)
, on a good run, the following propositions hold for all time step τ ∈ [T1, T2]:

A(τ): There exists a constant C1 > 1 such that

(1− 1/C1) · σp
√
d ≤ ∥p(τ)∥2 ≤ (1 + 1/C1) · σp

√
d.

B(τ): There exists a constant C2 > 1 such that

(1− 1/C2) · σw∥µ∥2
√
d ≤ ∥W(τ)µ+1∥2 ≤ (1 + 1/C2) · σw∥µ∥2

√
d,

(1− 1/C2) · σw∥µ∥2
√
d ≤ ∥W(τ)µ−1∥2 ≤ (1 + 1/C2) · σw∥µ∥2

√
d,

(1− 1/C2) · σwσϵd ≤ ∥W(τ)ϵ
(i)
t ∥2 ≤ (1 + 1/C2) · σwσϵd,

for all i ∈ [n] and t ∈ [T ].

|⟨W(τ)µ+1,W(τ)µ−1⟩| < O(σ2
w∥µ∥22

√
d log(Tn/δ)),

|⟨W(τ)µ+1,W(τ)ϵ
(i)
t ⟩| < O(σ2

wσϵ∥µ∥2d log(Tn/δ)),

|⟨W(τ)µ−1,W(τ)ϵ
(i)
t ⟩| < O(σ2

wσϵ∥µ∥2d log(Tn/δ)),

|⟨W(τ)ϵ
(i)
t ,W(τ)ϵ(j)u ⟩| < O(σ2

wσ
2
ϵd

3/2 log(Tn/δ)),

for all i, j ∈ [n] and t, u ∈ [T ] such that (i, t) ̸= (j, u).
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C(τ): Let g be a monotonically increasing function g(x) = 2x + 2 sinh (x− log T ). Then, there exist constants
c3, c4 > 0 with c3 < c4 such that

g (Λi,t(τ)) ≥ g (Λi,t(0)) + τ · c3αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p},

g (Λi,t(τ)) ≤ g (Λi,t(0)) + τ · c4αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p},

for any clean data i ∈ C and t ∈ [T ] \ {1}. Additionally, we have that for some constants c5 < c6,

g
(
Γj,1(τ)− log ρ−1

)
≥ g

(
Γj,1(0)− log ρ−1

)
+ τ · ρ · c5αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p},

g
(
Γj,1(τ)− log ρ−1

)
≤ g

(
Γj,1(0)− log ρ−1

)
+ τ · ρ · c6αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p},

for any noisy data j ∈ N , and

g (Γj,t(τ)) ≥ g (Γj,t(0)) + τ · ρ · c5αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p},

g (Γj,t(τ)) ≤ g (Γj,t(0)) + τ · ρ · c6αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p},

for any noisy data j ∈ N and t ∈ [T ] \ {1, 2}.

D(τ):

s
(i)
1 (τ) ≥ Θ(1), s

(j)
2 (τ) ≥ Θ(1),

for all clean data i ∈ C and noisy data j ∈ N .

E(τ): There exists a constant c7 > 1 such that

exp (Λi,t(τ)− Λj,u(τ)) < c7, exp (Γk,v(τ)− Γl,w(τ)) < c7,

exp (Γk,1(τ)− Γl,w(τ)) < ρ−1c7, exp (Γk,v(τ)− Γl,1(τ)) < ρc7,

exp (Λi,t(τ)− Γk,v(τ)) < ρ−1c7, exp (Γk,v(τ)− Λi,t(τ)) < ρc7,

exp (Λi,t(τ)− Γk,1(τ)) < c7, exp (Γk,1(τ)− Λi,t(τ)) < c7,

for all i, j ∈ C, k, l ∈ N , t, u ∈ [T ] \ {1} and v, w ∈ [T ] \ {1, 2}.

F (τ): There exists a constant c8 > 1 such that

max
i,j∈[n]

s
(i)
1 (τ)(1− s

(i)
1 (τ))

s
(j)
1 (τ)(1− s

(j)
1 (τ))

< c8, max
k,l∈N

s
(k)
2 (τ)(1− s

(k)
2 (τ))

s
(l)
2 (τ)(1− s

(l)
2 (τ))

< c8,

max
i∈C,k∈N

s
(i)
1 (τ)(1− s

(i)
1 (τ))

s
(k)
2 (τ)(1− s

(k)
2 (τ))

< ρc8, max
i∈C,k∈N

s
(k)
2 (τ)(1− s

(k)
2 (τ))

s
(i)
1 (τ)(1− s

(i)
1 (τ))

< ρ−1c8.

Additionally, there exist constants c9, c10 > 1 such that

max
t,u∈[T ]\{1}

s
(i)
t (τ)

s
(i)
u (τ)

< c9, max
v,w∈[T ]\{1,2}

s
(j)
v (τ)

s
(j)
w (τ)

< c9, max
v∈[T ]\{2}

s
(j)
1 (τ)

s
(j)
v (τ)

< ρc9, max
v∈[T ]\{2}

s
(j)
v (τ)

s
(j)
1 (τ)

< ρ−1c9,

s
(i)
t (τ)(1− s

(i)
t (τ))

s
(i)
1 (τ)(1− s

(i)
1 (τ))

< c10,
s
(j)
v (τ)(1− s

(j)
v (τ))

s
(j)
2 (τ)(1− s

(j)
2 (τ))

< c10,

for any clean data i ∈ C, noisy data j ∈ N , t ∈ [T ] \ {1}, and v ∈ [T ] \ {2}.

G(τ):

|λ+1(τ)| = O(1), |λ−1(τ)| = O(1), |ρi,t(τ)| = O(n−1SNR−2),

for any i ∈ [n] and t ∈ [T ].

We will prove the above propositions by induction argument for τ ∈ [T1, T2].
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Base case. The propositions A(T1) and B(T1) hold from the results in Lemma C.12.

We show that C(T1) holds. It is obvious from Lemma C.12 that the inequalities for clean data i ∈ C hold. For noisy
data, since T1 is given by Θ

(
ρ−1

αn−1σ2
ϵ∥ν∥2∥µ∥2d2 max{σ2

w,σ2
p}

)
, it is sufficient to show g(Γj,1(T1) − log ρ−1) = Θ(1) and

g(Γj,t(T1)) = Θ(1) for t ∈ [T ] \ {1, 2}. From the results in Lemma C.12, we have g (Λj,2(T1)) = −Θ(ρ−1). Thus, we
have Γj,1(T1) = −Λj,2(T1) ∈ (1± o(1)) log ρ−1, leading to g(Γj,1(T1)− log ρ−1) = Θ(1). Additionally, from E(τ) in
Lemma C.12, we have

Γj,t(T1) =
(
x
(j)
2 − x

(j)
t

)⊤
W(T1)

⊤p(T1) = Λj,t(T1)− Λj,2(T1) < log c7, (272)

where c7 is a constant in Lemma C.12. Thus, we have g(Λj,t(T1)) = Θ(1), which is the desired result.

Regarding G(T1), the result in Lemma C.12 and the current SNR condition n−1SNR−2 = ω(1) conclude the base case.

Proof of ∧τ ′≤τ (A(τ
′) ∧B(τ ′) ∧ C(τ ′) ∧D(τ ′) ∧ E(τ ′) ∧ F (τ ′)) ⇒ C(τ + 1). We only show the case of Y (i) = 1,

i.e., i ∈ C+ ∪N−. The same argument can be applied to the case of i ∈ C− ∪N+. The conditions of Lemmas D.10 and D.11
are satisfied from A(τ) ∧B(τ) ∧D(τ) ∧ F (τ). For any clean data i ∈ C, since we have the same bounds for signal and
noise updates as in Lemma C.12, the same argument leads to

Λi,t(τ + 1)− Λi,t(τ) ≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′1αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}, (273)

Λi,t(τ + 1)− Λi,t(τ) ≤ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′2αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}, (274)

for any t ∈ [T ] \ {1}. Applying the same integral analysis, we obtain the desired inequalities for g(Λi,t(τ)).

For noisy data j ∈ N−, from these lemmas and the definition of Γj,t, we have that for any t ∈ I(j) and i ∈ C+,

Γj,t(τ + 1)− Γj,t(τ) = ρ (λ+1(τ + 1)− λ+1(τ)) + (ρj,2(τ)− ρj,2(τ))− (ρj,t(τ + 1)− ρj,t(τ)) (275)

≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′3α∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p} (276)

+ s
(j)
2 (τ)(1− s

(j)
2 (τ)) · c′4ραn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}

+ s
(j)
2 (τ)s

(j)
t (τ) · c′4ραn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p} (277)

≥ s
(j)
2 (τ)(1− s

(j)
2 (τ)) · c′4ραn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}. (278)

In the last line, s(i)1 (τ)(1− s
(i)
1 (τ)) ≲ ρs

(j)
2 (τ)(1− s

(j)
2 (τ)), which is derived from F (τ), and the current SNR condition

SNR2 = o(n−1) allow us to ignore this signal update. The same result holds for the relevant token t ∈ R = {1} and
weakly relevant tokens t ∈ W(j), as the signal update can be neglected by the same argument. In the same manner, the
upper bound of Γj,t(τ + 1)− Γj,t(τ) is derived. Using the evaluations on s(j)2 (τ)(1− s

(j)
2 (τ)) in Lemma D.2 and applying

the same integral analysis as Λi,t, which appeared in the proof of Lemma C.11, we conclude the desired results of Γj,t.

Proof of C(τ) ⇒ D(τ). For any clean data i ∈ C, we have

s
(i)
1 (τ) =

1

1 +
∑T

t=2 exp (−Λi,t(τ))
>

1

1 +
∑T

t=2 exp (−Λi,t(T1))
= s

(i)
1 (0) ≥ Θ(1), (279)

where the inequality follows from C(τ), which states that Λi,t(τ) is monotonically increasing. Similarly, since Γj,t(τ) for
j ∈ N is monotonically increasing, we have s(j)2 (τ) > s

(j)
2 (T1) ≥ Θ(1).

Proof of C(τ) ⇒ E(τ). By the same argument as in Lemma C.11, and using the inequalities of C(τ), we can show that
exp (Λi,t(τ)− Λj,u(τ)) is bounded by a constant for any i, j ∈ C and t, u ∈ [T ] \ {1}. Similarly to clean data, it can be
shown that exp (Γk,v(τ)− Γl,w(τ)) is bounded by a constant for any k, l ∈ N and v, w ∈ [T ] \ {1, 2} as well. At this
time, since we have the result for Γj,1(τ)− log ρ−1 instead of Γj,1(τ), the second line in the statement follows by factoring
log ρ−1 out. Moreover, from C(τ), the growth order of g(Λ) and g(Γ) differs by ρ, and this ratio also appears in exp
following the same proof as Lemma C.11. The last line in the statement follows similarly by factoring log ρ out for Γj,1.
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Proof of E(τ) ⇒ F (τ). We first consider the ratio of s(i)1 (τ)(1 − s
(i)
1 (τ)) across all pairs i, j ∈ [n]. Using the same

argument as Lemma C.11, we can show that this ratio is bounded by a constant among clean data and noisy data, respectively.
For the ratio between clean data and noisy data, from E(τ), we have

exp (Λi,t(τ) + Λk,2(τ)) = exp (Λi,t(τ)− Γk,1(τ)) < c7, (280)
exp (−Λk,2(τ)− Λi,t(τ)) = exp (Γk,1(τ)− Λi,t(τ)) < c7, (281)

for any i ∈ C, t ∈ [T ] \ {1}, and k ∈ N . Additionally, from E(τ), we have that for any v ∈ [T ] \ {1, 2},

Λk,v(τ) = Γk,v(τ)− Γk,1(τ) < log(ρc7) < 0, (282)
Λk,2(τ) < Γk,v(τ) + Λk,2(τ) = Λk,v(τ) < 0, (283)

where the first line follows from the parameter assumption ρ < 1/C for a sufficiently large constant C, and the second line
is by Γk,v(τ) > 0. Thus, we have Γk,t < 0 for any t ∈ [T ] \ {1}. Combining this with Equations (280) and (281), and
proceeding similarly to Equation (252), we obtain that there exists a constant c′1 such that

s
(k)
1 (τ)(1− s

(k)
1 (τ))

s
(i)
1 (τ)(1− s

(i)
1 (τ))

<
2 +

∑T
t=2 exp (−Λi,t(τ))

1 +
∑T

t=2 exp (−Λk,t(τ))
+

1(
1 +

∑T
t=2 exp (−Λk,t(τ))

)
·
∑T

t=2 exp (−Λi,t(τ))
(284)

<
2 + (T − 1)o(1)

1 + (T − 1)o(1)
+ exp (Λi,u(τ) + Λk,2(τ)) < c′1, (285)

for any u ∈ [T ] \ {1}. Similarly, by the same argument as in Equation (255), we have that there exists a constant c′2 such that

s
(i)
1 (τ)(1− s

(i)
1 (τ))

s
(k)
1 (τ)(1− s

(k)
1 (τ))

<

∑T
t=2 exp (−Λi,t(τ))

1 +
∑T

t=2 exp (−Λi,t(τ))
·

(
2 +

T∑
t=2

exp (−Λk,t(τ)) +
1∑T

t=2 exp (−Λk,t(τ))

)
(286)

< 2 + T ·
T∑

t=2

exp (−Λi,t(τ)− Λk,2(τ)) +
(T − 1)o(1)

(T − 1)o(1)
< c′2, (287)

where the last line follows from Equation (283) and the parameter assumption T = Θ(1). Equations (285) and (287)
completes the proof. Similarly, the ratio of s(k)2 (τ)(1− s

(k)
2 (τ)) across k ∈ N is shown to be bounded by a constant.

We now consider the ratio between s(i)1 (τ)(1− s
(i)
1 (τ)) and s(k)2 (τ)(1− s

(k)
2 (τ)) for i ∈ C and k ∈ N . For any i ∈ C and

k ∈ N , we have

s
(i)
1 (τ)(1− s

(i)
1 (τ)) =

∑T
t=2 exp (−Λi,t(τ))(

1 +
∑T

t=2 exp (−Λi,t(τ))
)2 , s(k)2 (τ)(1− s

(k)
2 (τ)) =

∑
t∈[T ]\{2} exp (−Γk,t(τ))(

1 +
∑

t∈[T ]\{2} exp (−Γk,t(τ))
)2 .
(288)

Thus, there exists a constant c′3 > 0 such that

s
(i)
1 (τ)(1− s

(i)
1 (τ))

s
(k)
2 (τ)(1− s

(k)
2 (τ))

=

∑T
t=2 exp (−Λi,t(τ))

exp (−Γk,1(τ)) +
∑T

t=3 exp (−Γk,t(τ))
·

(
1 + exp (−Γk,1(τ)) +

∑T
t=3 exp (−Γk,t(τ))

1 +
∑T

t=2 exp (−Λi,t(τ))

)2

(289)

< max
t∈[T ]\{1},u∈[T ]\{1,2}

{exp (−Λi,t(τ) + Γk,u(τ))} · (1 + (T − 1)o(1))
2
< ρc′3, (290)

where in the first inequality, we use the mediant inequality excluding Λk,1(τ), along with the bounds
Λi,t(τ),Γk,1(τ),Γk,t(τ) > −o(1). The last inequality follows from E(τ) and the parameter assumption T = Θ(1).
Similarly, the desired result for the reciprocal is obtained by E(τ).

Finally, from E(τ), we have

max
t,u∈[T ]\{1}

s
(i)
t (τ)

s
(i)
u (τ)

= max
t,u∈[T ]\{1}

exp
(
x
(i)⊤
t W(τ)⊤p(τ)

)
exp

(
x
(i)⊤
u W(τ)⊤p(τ)

) = max
t,u∈[T ]\{1}

exp (−Λi,t(τ))

exp (−Λi,u(τ))
≤ c7, (291)
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for i ∈ C. Similarly, for noisy data j ∈ N , the ratio of s(j)v (τ) across v ∈ [T ] \ {2} can be evaluated using the result of
E(τ). The last two inequalities are derived by combining the fact that Λi,t and Γj,t are monotonically increasing from C(τ),
and Lemma D.3.

Proof of ∧τ ′≤τ (A(τ
′) ∧B(τ ′) ∧ C(τ ′) ∧D(τ ′) ∧ F (τ ′)) ⇒ G(τ + 1). The conditions of Lemma D.10 are satisfied

from A(τ) ∧B(τ) ∧D(τ) ∧ F (τ). Combining Lemmas D.8 and D.10, we have

λ+1(τ + 1)− λ+1(0) ≤
τ∑

τ ′=0

s
(i)
1 (τ ′)(1− s

(i)
1 (τ ′)) · c′α∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p}, (292)

for any clean data i ∈ C. By using Lemma D.5, which is derived from ∧τ ′≤τC(τ
′), and the definition of T2, we have

τ∑
τ ′=0

s
(i)
1 (τ ′)(1− s

(i)
1 (τ ′)) (293)

≲ max

{
1

αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}
,
log
(
τ · αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}
)

αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}

}
(294)

≤ max

{
1

αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}
,
log
(
T2 · αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}
)

αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}

}
(295)

≲
n−1SNR−2

αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}
. (296)

Substituting this to Equation (292), we have

λ+1(τ + 1)− λ+1(0) ≲ n−1SNR−2 · nSNR2 = O(1). (297)

Since |λ+1(0)| = o(1) from Lemma C.8, Equation (297) leads to λ+1(τ + 1) ≤ O(1). In the same way, we have
λ−1(τ + 1) ≤ O(1).

Next, we move on to the analysis of noise memorization terms. For clean data i ∈ C, from Lemmas D.9 and D.11, similarly
we have

|ρi,1(τ + 1)− ρi,1(0)| ≤
τ∑

τ ′=0

s
(i)
1 (τ ′)(1− s

(i)
1 (τ ′)) · c′αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p} = O(n−1SNR−2). (298)

The same upper bound is obtained for ρi,t with t ∈ [T ] \ {1}. For noisy data j ∈ N , the upper bound for ρj,1 is derived in
the same manner, based on Lemmas D.9 and D.11. For other tokens, we have

|ρj,2(τ + 1)− ρj,2(0)| ≤ |ρj,2(T1)− ρj,2(0)|+ |ρj,2(τ + 1)− ρj,2(T1)| (299)

≤ O(log ρ−1) +

τ∑
τ ′=T1

s
(j)
2 (τ ′)(1− s

(j)
2 (τ ′)) · c′ραn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p} (300)

≲ O(log ρ−1) + log
(
T2 · ραn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}
)

(301)

≲ O(log ρ−1) + log ρ+ n−1SNR−2 (302)

≲ n−1SNR−2, (303)

which leads to the same upper bound as in clean data. The upper bounds for t ∈ [T ] \ {1, 2} are derived in the same manner.

Proof of ∧τ ′≤τ (B(τ ′) ∧ C(τ ′) ∧ F (τ ′) ∧G(τ ′)) ⇒ A(τ + 1). It follows from Lemma C.5 that

∥p(τ + 1)∥22 − ∥p(T1)∥22 =
2α

n

τ∑
τ ′=T1

n∑
i=1

(−ℓ′i(τ ′)) · Y (i) · Ipi (τ
′) + α2

τ∑
τ ′=T1

∥∇pL̂(τ ′)∥22. (304)
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By definition, we have

Ipi (τ
′) =

T∑
t=1

s
(i)
t (τ ′)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ ′)γ(i)u

)
⟨W(τ ′)x

(i)
t ,p(τ ′)⟩ (305)

≤
T∑

t=1

∣∣∣∣∣s(i)t (τ ′)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ ′)γ(i)u

)∣∣∣∣∣ ·max {|λ+1(τ
′)|, |λ−1(τ

′)|, |ρi,t(τ ′)|} . (306)

For the clean data i ∈ C, we have the following upper bound through the same argument as in Equation (267):

τ∑
τ ′=T1

T∑
t=1

∣∣∣∣∣s(i)t (τ ′)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ ′)γ(i)u

)∣∣∣∣∣ ≲ s
(i)
1 (τ ′)(1− s

(i)
1 (τ ′)) · max

i∈[n],t∈[T ]
{γ(i)t } (307)

≲
log
(
T2 · αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}
)

αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}

· ∥ν∥2∥µ∥2 (308)

≲
n−1SNR−2

αn−1σ2
ϵd

2 max{σ2
w, σ

2
p}
. (309)

For the noisy data j ∈ N , we evaluate separately for the token score of the relevant token γ(i)1 . We have

T∑
t=1

∣∣∣∣∣s(j)t (τ ′)

(
γ
(j)
t −

T∑
u=1

s(j)u (τ ′)γ(j)u

)∣∣∣∣∣
≤

∣∣∣∣∣s(j)1 (τ ′)

(
γ
(j)
1 −

T∑
u=1

s(j)u (τ ′)γ(j)u

)∣∣∣∣∣+
T∑

t=2

∣∣∣s(j)t (τ ′)s
(j)
1 (τ ′)γ

(j)
1

∣∣∣+ T∑
t=2

∣∣∣∣∣s(j)t (τ ′)

(
γ
(j)
t −

T∑
u=2

s(j)u (τ ′)γ(j)u

)∣∣∣∣∣ (310)

≲ 3s
(j)
1 (τ ′)|γ(j)1 |+ (T − 1) · s(j)2 (τ ′)(1− s

(j)
2 (τ ′)) · max

i∈[n],t∈[T ]\{1}
{|γ(i)t |} (311)

≲ s
(j)
2 (τ ′)(1− s

(j)
2 (τ ′)) ·

(
ρ|γ(j)1 |+ max

i∈[n],t∈[T ]\{1}
{|γ(i)t |}

)
, (312)

where the last two inequalities follow from the ratio of softmax terms in F (τ ′), together with the same manipulation as in
Equation (152). By summing up both sides and applying Lemmas B.12 and D.5, we have

τ∑
τ ′=T1

T∑
t=1

∣∣∣∣∣s(i)t (τ ′)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ ′)γ(i)u

)∣∣∣∣∣ ≲ log
(
T2 · ρ · αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}
)

ρ · αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}

· ρ∥ν∥2∥µ∥2 (313)

≲
n−1SNR−2

αn−1σ2
ϵd

2 max{σ2
w, σ

2
p}
, (314)

where the first line follows from maxi∈[n],t∈[T ]\{1}{γ
(i)
t } = O(ρ∥ν∥2∥µ∥2) from Lemma B.12. In the last line, we ignore

the small order term log ρ in the numerator.

By substituting Equations (306), (309) and (314) into the first term of Equation (304), we obtain

2α

n

τ∑
τ ′=T1

n∑
i=1

(−ℓ′i(τ ′)) · Y (i) · Ipi (τ
′) ≲ α · n−1SNR−2

αn−1σ2
ϵd

2 max{σ2
w, σ

2
p}

·max {|λ+1(τ
′)|, |λ−1(τ

′)|, |ρi,t(τ ′)|} (315)

≲
SNR−4

nσ2
ϵd

2 max{σ2
w, σ

2
p}

(316)

=
σ2
ϵ

n∥µ∥42 max{σ2
w, σ

2
p}
, (317)
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which follows from Lemma C.9 and G(τ ′). We confirm that Equation (317) becomes o(σ2
pd). From the parameter

assumptions in Section 3.5, we have

σ2
p max{σ2

w, σ
2
p} · σ−2

ϵ n∥µ∥42d ≳ min

{
∥µ∥22,

∥µ∥42
σ2
ϵd

}
· n

σ2
ϵ log

4(Tn/δ)
(318)

≳ min

{
C2nd3/4

log2(Tn/δ)
, C4n

√
d

}
(319)

= ω(1), (320)

where the first inequality is by Assumption A8, and the second line follows from Assumption A2. Thus, Equation (317)
becomes o(σ2

pd).

Finally, we confirm that the second term in Equation (304) can be ignored. From the parameter assumption on the step
size α, it can be shown in the same way as Equation (161) in the proof of the not-overfitting case. Therefore, combining
Equation (304) and the results in Lemma C.12, we have ∥p(τ + 1)∥22 ∈ (1± 1/C1)σ

2
pd, for some constant C1 > 1, which

concludes the proof.

Proof of ∧τ ′≤τ (A(τ
′) ∧ C(τ ′) ∧ F (τ ′) ∧G(τ ′)) ⇒ B(τ + 1). In the proof of the not-overfitting case, we have already

shown that the second-order term with respect to the step size in Lemma C.6 can be ignored under the small step size
assumption. Therefore, we write it as O(α2) in the remainder of the proof. From Lemma C.6, we have

∥W(τ + 1)µ+1∥22 − ∥W(T1)µ+1∥22 =

τ∑
τ ′=T1

(
∥W(τ ′ + 1)µ+1∥22 − ∥W(τ ′)µ+1∥22

)
(321)

=
2α

n

τ∑
τ ′=T1

n∑
i=1

(−ℓ′i(τ ′)) · Y (i) · Ii,+(τ ′)λ+1(τ
′) +O(α2). (322)

Recalling the definition of Ii,+ in Definition C.2, and applying the same technique used in Equations (309) and (314) in the
proof of A(τ + 1), we have

τ∑
τ ′=T1

Ii,+(τ
′) =

τ∑
τ ′=T1

T∑
t=1

s
(i)
t (τ ′)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ ′)γ(i)u

)
⟨x(i)

t ,µ+1⟩ (323)

≲
n−1SNR−2

αn−1σ2
ϵd

2 max{σ2
w, σ

2
p}

· max
i∈[n],t∈[T ]

{|⟨x(i)
t ,µ+1⟩|} ≲

SNR−2∥µ∥22
ασ2

ϵd
2 max{σ2

w, σ
2
p}
. (324)

Since we have λ+1(τ
′) = O(1) from G(τ ′), we have

2α

n

τ∑
τ ′=T1

n∑
i=1

(−ℓ′i(τ ′)) · Y (i) · Ii,+(τ ′)λ+1(τ
′) ≲

SNR−2∥µ∥22
σ2
ϵd

2 max{σ2
w, σ

2
p}

(325)

=
1

dmax{σ2
w, σ

2
p}

= o(σ2
w∥µ∥22d), (326)

where the last inequality follows from the parameter assumptions. Combining this result with the base case τ = 0, we have
∥W(τ + 1)µ+1∥22 ∈ (1± 1/C2)σ

2
w∥µ∥22d for some constant C2 > 1, which completes the proof. The same result holds

for ∥W(τ + 1)µ−1∥2. Similarly, it follows from Lemma C.6 and G(τ ′) that

∥W(τ + 1)ϵ(j)u ∥22 − ∥W(T1)ϵ
(j)
u ∥22 =

2α

n

τ∑
τ ′=T1

n∑
i=1

(−ℓ′i(τ ′)) · Y (i) · Ii,j,u(τ ′)ρj,u(τ ′) +O(α2) (327)

≲ α · n−1SNR−2 · n−1σ2
ϵd

αn−1σ2
ϵd

2 max{σ2
w, σ

2
p}

· n−1SNR−2 +O(α2) (328)

≲
σ4
ϵd

n2∥µ∥42 max{σ2
w, σ

2
p}

+O(α2) = o(σ2
wσ

2
ϵd

2), (329)
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which follows from exactly the same analysis as in Equation (317).

Additionally, we will show the case of the inner products as well. From Lemma C.6 and the above discussion, we have

⟨W(τ + 1)µ+1,W(τ + 1)µ−1⟩ − ⟨W(T1)µ+1,W(T1)µ−1⟩

=
α

n

τ∑
τ ′=T1

n∑
i=1

(−ℓ′i(τ ′)) · Y (i) · (Ii,−(τ ′)λ+1(τ
′) + Ii,+(τ

′)λ−1(τ
′)) +O(α2) (330)

≲ α · n−1SNR−2 · ∥µ∥22
αn−1σ2

ϵd
2 max{σ2

w, σ
2
p}

·O(1) +O(α2) (331)

≲
1

dmax{σ2
w, σ

2
p}

+O(α2) = O(σ2
w∥µ∥22

√
d log(Tn/δ)), (332)

where the last line follows from the parameter assumptions; specifically, we have

σ2
w max{σ2

w, σ
2
p} · ∥µ∥22d3/2 log(Tn/δ) ≳ min

{√
d,

∥µ∥22
σ2
ϵ

√
d

}
· 1

log3(Tn/δ)
(333)

≳ min

{ √
d

log3(Tn/δ)
,
C2d1/4

log(Tn/δ)

}
(334)

= Ω(1). (335)

Similarly, we have

⟨W(τ + 1)µ+1,W(τ + 1)ϵ(j)u ⟩ − ⟨W(T1)µ+1,W(T1)ϵ
(j)
u ⟩

=
α

n

τ∑
τ ′=T1

n∑
i=1

(−ℓ′i(τ ′)) · Y (i) · (Ii,j,u(τ ′)λ+1(τ
′) + Ii,+(τ

′)ρj,u(τ
′)) +O(α2) (336)

≲ α ·
(

n−1SNR−2 · n−1σ2
ϵd

αn−1σ2
ϵd

2 max{σ2
w, σ

2
p}

·O(1) +
n−1SNR−2 · ∥µ∥22

αn−1σ2
ϵd

2 max{σ2
w, σ

2
p}

· n−1SNR−2

)
+O(α2) (337)

≲
σ2
ϵ

n∥µ∥22 max{σ2
w, σ

2
p}

+
σ2
ϵ

n∥µ∥22 max{σ2
w, σ

2
p}

+O(α2) = O(σ2
wσϵ∥µ∥2d log(Tn/δ)), (338)

which follows from the parameter assumptions; specifically, we have

σ2
w max{σ2

w, σ
2
p} · σ−1

ϵ n∥µ∥32d log(Tn/δ) ≳ min

{
∥µ∥2
σϵ

,
∥µ∥32
σ3
ϵd

}
· n

log3(Tn/δ)
(339)

≳ min

{
n∥µ∥2

σϵ log
3(Tn/δ)

, C3nd1/8
}

(340)

= Ω(1). (341)

The same result holds for ⟨W(τ + 1)µ−1,W(τ + 1)ϵ
(j)
u ⟩. Finally, we have

⟨W(τ + 1)ϵ(j)u ,W(τ + 1)ϵ(k)v ⟩ − ⟨W(T1)ϵ
(j)
u ,W(T1)ϵ

(k)
v ⟩

=
α

n

τ∑
τ ′=T1

n∑
i=1

(−ℓ′i(τ ′)) · Y (i) · (Ii,k,v(τ ′)ρj,u(τ ′) + Ii,j,u(τ
′)ρk,v(τ

′)) +O(α2) (342)

≲ α · n−1SNR−2 · n−1σ2
ϵd

αn−1σ2
ϵd

2 max{σ2
w, σ

2
p}

· n−1SNR−2 +O(α2) (343)

≲
σ4
ϵd

n2∥µ∥42 max{σ2
w, σ

2
p}

+O(α2) = O(σ2
wσ

2
ϵd

3/2 log(Tn/δ)), (344)
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which follows from the parameter assumptions; specifically, we have

σ2
w max{σ2

w, σ
2
p} · σ−2

ϵ n2∥µ∥42
√
d log(Tn/δ) ≳ min

{
∥µ∥22
σ2
ϵ

√
d
,
∥µ∥42
σ4
ϵd

3/2

}
· n2

log3(Tn/δ)
(345)

≳ min

{
C2n2d1/4

log(Tn/δ)
, C4n2 log(Tn/δ)

}
(346)

= Ω(1), (347)

which completes the proof.

Proof of Lemma C.13. At time step τ = T1, A(T1), B(T1), C(T1), and G(T1) hold from the proof for the base case. As
for D(τ), E(τ), and F (τ), they are derived from C(τ). For the next time step, A(τ +1), B(τ +1), C(τ +1), and G(τ +1)
are proved based on the propositions up to time step τ . Thus, the proof is completed by induction.

C.3.2. PROOF OF BENIGN OVERFITTING CASE IN THEOREM 4.1

In this section, we provide proof of the benign overfitting case in the main theorem. We divide the proof into two parts:
behavior on the training data and generalization performance.

Training data. The conditions of Lemmas C.12 and C.13 are satisfied with the current SNR condition SNR2 = o(n−1).
The proposition C(τ) in Lemma C.13 states that T2 = Θ

(
exp(n−1SNR−2)

αn−1σ2
ϵ∥ν∥2∥µ∥2d2 max{σ2

w,σ2
p}

)
satisfies

g(Λi,t(T2)) ≥ g(Λi,t(0)) + Θ
(
exp

(
n−1SNR−2

))
= ω(1), (348)

for any clean data i ∈ C and t ∈ [T ] \ {1}. Here, we used g(Λi,t(0)) = −(1± o(1))T = −Θ(1) from Lemma C.8. Recall
that g(x) = 2x+2 sinh(x− log T ), and there exists a constant c′1 > 1 such that c′1 exp(x) > g(x). Therefore, for all i ∈ C,
we have

s
(i)
1 (T2) =

1

1 +
∑T

t=2 exp (−Λi,t(T2))
> 1−

T∑
t=2

exp (−Λi,t(T2)) > 1− (T − 1)c′1 · o(1) > 1− ϵ, (349)

for sufficiently small constant ϵ > 0. By using Equation (349) and Lemma B.12, we have for any clean data i ∈ C that

Y (i) · fT2(X
(i)) = Y (i) · ν⊤X(i)⊤S

(
X(i)W(T2)

⊤p(T2)
)

(350)

= Y (i) · γ(i)1 s
(i)
1 (T2) +

T∑
t=2

Y (i) · γ(i)t s
(i)
t (T2) (351)

≥ Θ(∥ν∥2∥µ∥2) (1− ϵ)−O (ρ∥ν∥2∥µ∥2) · ϵ (352)
> 0. (353)

For noisy data, again from C(τ) in Lemma C.13, we have

g(Γj,1(τ)) > g(Γj,1(τ)− log ρ−1) ≥ g(Γj,1(0)− log ρ−1) + Θ
(
ρ exp

(
n−1SNR−2

))
= ω(ρ−1), (354)

g(Γj,t(τ)) ≥ g(Γj,t(0)) + Θ
(
ρ exp

(
n−1SNR−2

))
= ω(ρ−1), (355)

for t ∈ [T ] \ {1, 2}, which follows from n−1SNR−2 = ω(1) and Remark 4.8. Similarly, we have

s
(j)
2 (T2) =

1

1 +
∑

t=[T ]\{2} exp (−Γj,t(T2))
> 1−

∑
t=[T ]\{2}

exp (−Γj,t(T2)) > 1− (T − 1)c′1 · o(ρ) > 1− ρϵ. (356)
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Thus, we have

Y (j) · fT2
(X(j)) = Y (j) · ν⊤X(j)⊤S

(
X(j)W(T2)

⊤p(T2)
)

(357)

= Y (j) · γ(j)2 s
(j)
2 (T2) +

∑
t∈[T ]\{2}

Y (j) · γ(j)t s
(j)
t (T2) (358)

≥ Θ(ρ∥ν∥2∥µ∥2) (1− ρϵ)−O (∥ν∥2∥µ∥2) · ρϵ (359)
> 0. (360)

Equations (353) and (360) hold deterministically on a good run. Therefore, at time step τ = T2, we have that with probability
at least 1− δ,

∀i ∈ C, fτ (X(i)) = Y (i), ∀j ∈ N , fτ (X
(j)) = Y (j). (361)

Generalization. Let (X, Y ∗) ∼ P ∗ be the unseen data on which we investigate generalization performance. We first
evaluate the attention values of signal vectors at time step T2. From Lemmas D.5, D.8 and D.10, we have

λ+1(T2)− λ+1(0) ≥
T2−1∑
τ=0

s
(i)
1 (τ)(1− s

(i)
1 (τ)) · cα∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p} (362)

≳ log
(
(T2 − 1) · αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}
)
· nSNR2 (363)

≳ 1, (364)

which follows from the definition of T2. From Lemma C.8, we have |λ+1(0)| = o(1), which implies λ+1(T2) ≳ 1. The
same result holds for λ−1(T2).

Next, we show that the attention scores of the noise vectors {ϵt}t∈[T ] in the unseen data, i.e., ϵ⊤t W(T2)
⊤p(T2), become

sufficiently small on a good run. While it is natural to evaluate ∥W(T2)
⊤p(T2)∥2 and use a concentration inequality, it is

challenging to track the evolution of ∥W(τ)⊤p(τ)∥2. Therefore, following induction proof in Lemmas C.12 and C.13, we
apply a concentration inequality at time step 0 and show that the result does not change at time step T2. Let us define E as
the event that the following inequalities are satisfied:

∀t ∈ [T ], (1− o(1))σϵ
√
d ≤ ∥ϵt∥2 ≤ (1 + o(1))σϵ

√
d, (365)

∀t ∈ [T ],∀k ∈ {±1}, |⟨ϵt,µk⟩| < c2σϵ∥µ∥2
√
log(Tn/δ), (366)

∀i ∈ [n],∀t, u ∈ [T ], |⟨ϵt, ϵ(i)u ⟩| < c1σ
2
ϵ

√
d log(Tn/δ), (367)

∀t ∈ [T ],∀k ∈ {±1}, |⟨W(0)ϵt,W(0)µk⟩| < c1σ
2
w∥µ∥2∥ϵt∥2

√
d log(Tn/δ), (368)

∀i ∈ [n],∀t, u ∈ [T ], |⟨W(0)ϵt,W(0)ϵ(i)u ⟩| < c1σ
2
w∥ϵt∥2∥ϵ(j)u ∥2

√
d log(Tn/δ), (369)

∀t ∈ [T ], |⟨W(0)ϵt,p(0)⟩| < c1σwσp∥ϵt∥2
√
d log(Tn/δ), (370)

∀t ∈ [T ], |⟨ν, ϵt⟩| < c2σϵ∥ν∥2
√

log(Tn/δ), (371)

where the constants c1, c2 are the same ones appeared in Lemma B.1. Applying union bound on the modified versions of
Lemmas B.6, B.8 and B.9, the probability of the occurrence of E can be evaluated. Since there is no need to apply the union
bound over the additional n training data points, the outlier probability can be reduced by 1/n compared to the original
lemma. Therefore, we have

Pr [E ] > 1− δ/n > 1− δ. (372)

In the following, using the results of Lemmas C.12 and C.13, we will prove that the next proposition holds for all τ ∈ [0, T2]
under the condition E :
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H(τ):

|⟨W(τ)ϵt,p(τ)⟩| < O (σwσpσϵd log(Tn/δ)) ,

|⟨W(τ)ϵt,W(τ)µ+1⟩| < O
(
σ2
wσϵ∥µ∥2d log(Tn/δ)

)
,

|⟨W(τ)ϵt,W(τ)µ−1⟩| < O
(
σ2
wσϵ∥µ∥2d log(Tn/δ)

)
,

|⟨W(τ)ϵt,W(τ)ϵ(i)u ⟩| < O
(
σ2
wσ

2
ϵd

3/2 log(Tn/δ)
)
,

for all i ∈ [n] and t, u ∈ [T ].

Proof of H(τ). We proceed with the proof by induction. The base case holds from the condition E . In the following,
suppose that H(τ ′) holds for any τ ′ ∈ [0, τ ]. By a calculation similar to that in the proof of Lemma C.4, we have

⟨W(τ + 1)ϵt,p(τ + 1)⟩ − ⟨W(0)ϵt,p(0)⟩

=

τ∑
τ ′=0

(⟨W(τ ′ + 1)ϵt,p(τ
′ + 1)⟩ − ⟨W(τ ′)ϵt,p(τ

′)⟩) (373)

=
α

n

τ∑
τ ′=0

n∑
i=1

(−ℓ′i(τ ′)) · Y (i) ·
T∑

t=1

s
(i)
t (τ ′)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ ′)γ(i)u

)(
⟨W(τ ′)ϵt,W(τ ′)x

(i)
t ⟩+ ∥p(τ ′)∥22⟨ϵt,x

(i)
t ⟩
)

+

τ∑
τ ′=0

α2ϵ⊤t ∇W⊤L̂(τ ′)∇pL̂(τ ′). (374)

We bound the first term using the induction hypothesis, the condition E , and A(τ ′) in Lemmas C.12 and C.13. We first
evaluate the softmax probability part. For τ ≤ T1, using a similar argument to Equations (267) and (270), we have that for
any i ∈ [n],

τ∑
τ ′=0

T∑
t=1

s
(i)
t (τ ′)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ ′)γ(i)u

)
≲

log ρ−1

αn−1σ2
ϵd

2 max{σ2
w, σ

2
p}
. (375)

For τ ≥ T1, it follows from Lemma C.13 and the same technique used in Equations (309) and (314) that

τ∑
τ ′=T1

T∑
t=1

s
(i)
t (τ ′)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ ′)γ(i)u

)
≲

n−1SNR−2

αn−1σ2
ϵd

2 max{σ2
w, σ

2
p}
, (376)

for any i ∈ [n]. Substituting Equations (375) and (376) to Equation (374), we have

α

n

τ∑
τ ′=0

n∑
i=1

(−ℓ′i(τ ′)) · Y (i) ·
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(i)
t (τ ′)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ ′)γ(i)u

)(
⟨W(τ ′)ϵt,W(τ ′)x

(i)
t ⟩+ ∥p(τ ′)∥22⟨ϵt,x

(i)
t ⟩
))

≲
n−1SNR−2

n−1σ2
ϵd

2 max{σ2
w, σ

2
p}

· σ2
wσϵdmax

{
∥µ∥2, σϵ

√
d
}
log(Tn/δ)

+
n−1SNR−2

n−1σ2
ϵd

2 max{σ2
w, σ

2
p}

· σ2
pd · σϵ max

{
∥µ∥2

√
log(Tn/δ), σϵ

√
d log(Tn/δ)

}
(377)

≲
n−1SNR−2

n−1σ2
ϵd

2 max{σ2
w, σ

2
p}

·max{σ2
w, σ

2
p}σϵd ·max{∥µ∥2, σϵ

√
d} log(Tn/δ) (378)

≲ max{∥µ∥−1
2 , σϵ

√
d∥µ∥−2

2 } · σϵ log(Tn/δ) = O (σwσpσϵd log(Tn/δ)) , (379)

where the last line follows from the parameter assumptions, using the same argument as in Equation (208) for the not-
overfitting case. For the quadratic term in Equation (374), we can show that this term is small enough to ignore, similarly to
Equation (216). Therefore, substituting Equation (379) to Equation (374) leads to

⟨W(τ + 1)ϵt,p(τ + 1)⟩ = ⟨W(0)ϵt,p(0)⟩+O (σwσpσϵd log(Tn/δ)) = O (σwσpσϵd log(Tn/δ)) . (380)
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The proof for the three inequalities below in the proposition H(τ) is omitted because they can be shown in the same manner
as B(τ + 1) in Lemmas C.12 and C.13, under the induction hypothesis and the results of Lemmas C.12 and C.13. Since
H(τ +1) holds under the condition H(τ) is valid, from induction argument, the proposition H(τ) holds for τ ∈ [0, T2].

From H(T2) and Assumption A8, we have

|⟨W(τ)ϵt,p(τ)⟩| ≲ σwσpσϵd log(Tn/δ) ≤
c′2

log(Tn/δ)
, (381)

for some constant c′2 > 0. Using Equation (364) and taking sufficiently large T2, we have λ+1(T2) > 2c′2 and λ−1(T2) >
2c′2. Thus, we have that for t ∈ [T ] \ {1},

(xt − x1)
⊤
W(T2)

⊤p(T2) ≤ −(1− ρ)max{λ+1(T2), λ−1(T2)}+ (ϵt − ϵ1)
⊤
W(T2)

⊤p(T2) (382)

≤ −(1− 1/C) · 2c′2 +
2c′2

log(Tn/δ)
(383)

< −c′2, (384)

where the second inequality holds by ρ < 1/C. Then, the softmax probability of the relevant token is lower-bounded as:

s1(T2) =
1

1 +
∑T

t=2 exp
(
(xt − x1)

⊤
W(T2)⊤p(T2)

) > 1− ϵ, (385)

for sufficiently small ϵ > 0. Consequently, we have

Y ∗ · fT2(X) = Y ∗ · γ1s1(T2) +
T∑

t=2

Y ∗ · γtst(T2) (386)

≥ Θ(∥ν∥2∥µ∥2) · (1− ϵ)−O (ρ∥ν∥2∥µ∥2) · ϵ > 0. (387)

Under the conditioning on E , the output fT2
(X) deterministically takes the same sign as the true label Y ∗. Thus, the

generalization error is bounded as:

Pr
(X,Y ∗)∼P∗

[sign(fT2
(X)) ̸= Y ∗] = Pr

(X,Y ∗)∼P∗
[sign(fT2

(X)) ̸= Y ∗ | E ] + Pr
(X,Y ∗)∼P∗

[Ec] < δ, (388)

where we used Pr(A) ≤ Pr(A|BC) + Pr(B) and the result of Equation (372). This concludes the proof.

D. Technical Calculations
In this section, we provide the small lemmas that are necessary for the proof of the main theorem. The lemmas concerning
the softmax probabilities are given in Appendix D.1. In Appendices D.2 and D.3, we provide lemmas for the attention
updates in the not-overfitting case and the benign overfitting case, respectively.

D.1. Softmax Probability

In the analysis of attention dynamics, the values of s1(τ)(1− s1(τ)) and s2(τ)(1− s2(τ)) play a significant role. We have
the following lemma on the evaluation of this value.

Lemma D.1 (Bounds for relevant token probability). Fix arbitrary i ∈ [n], and suppose that there exists a constant c′ > 1
such that for all t, u ∈ [T ] \ {1}, we have exp (Λi,t − Λi,u) < c′. Then, there exists a constant c > 1 such that for any
t ∈ [T ] \ {1},

c−1

2 + 2 cosh (Λi,t(τ)− log T )
< s

(i)
1 (τ)(1− s

(i)
1 (τ)) <

c

2 + 2 cosh (Λi,t(τ)− log T )
.
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Proof of Lemma D.1. Using notations introduced in Definition C.3, we have

s
(i)
1 (τ)(1− s

(i)
1 (τ)) =

exp
(
x
(i)⊤
1 W(τ)⊤p(τ)

)
∑T

t=1 exp
(
x
(i)⊤
t W(τ)⊤p(τ)

) ·

∑T
t=2 exp

(
x
(i)⊤
t W(τ)⊤p(τ)

)
∑T

t=1 exp
(
x
(i)⊤
t W(τ)⊤p(τ)

) (389)

=
1

1 +
∑T

t=2 exp(−Λi,t(τ))
·
∑T

t=2 exp(−Λi,t(τ))

1 +
∑T

t=2 exp(−Λi,t(τ))
. (390)

Using the condition of the lemma, we have

s
(i)
1 (τ)(1− s

(i)
1 (τ)) ≤ 1

1 + c′−1(T − 1) exp(−Λi,t(τ))
· c′(T − 1) exp(−Λi,t(τ))

1 + c′−1(T − 1) exp(−Λi,t(τ))

=
c′3T

T − 1
· 1

(c′T )/(T − 1) + T exp(−Λi,t(τ))
· T exp(−Λi,t(τ))

(c′T )/(T − 1) + T exp(−Λi,t(τ))
(391)

< c · T exp (−Λi,t(τ))

(1 + T exp (−Λi,t(τ)))
2 (392)

= c · 1

2 + 2 cosh (Λi,t(τ)− log T )
, (393)

where the constant c′3T/(T − 1) is replaced with c > 0. This gives the desired result. The lower bound is shown in a similar
way.

Next, we show a similar lemma that is used in the proof of the benign overfitting case.

Lemma D.2 (Bounds for confusing token probability). Fix arbitrary j ∈ N , and suppose that there exists a constant c′ > 1
such that for all t, u ∈ [T ] \ {1, 2}, we have

exp (Γj,t(τ)− Γj,u(τ)) < c′, exp (Γj,1(τ)− Γj,t(τ)) < ρ−1c′, exp (Γj,t(τ)− Γj,1(τ)) < ρc′.

Then, there exists a constant c > 1 such that for any t ∈ [T ] \ {1, 2},

c−1

2 + 2 cosh (Γj,t(τ)− log T )
< s

(j)
2 (τ)(1− s

(j)
2 (τ)) <

c

2 + 2 cosh (Γj,t(τ)− log T )
,

c−1

2 + 2 cosh (Γj,1(τ)− log ρ−1 − log T )
< s

(j)
2 (τ)(1− s

(j)
2 (τ)) <

c

2 + 2 cosh (Γj,1(τ)− log ρ−1 − log T )
.

Proof of Lemma D.2. From the definition of Γj,t in Definition C.3, we have

s
(j)
2 (τ)(1− s

(j)
2 (τ)) =

1

1 +
∑

t∈[T ]\{2} exp(−Γj,t(τ))
·
∑

t∈[T ]\{2} exp(−Γj,t(τ))

1 +
∑

t∈[T ]\{2} exp(−Γj,t(τ))
. (394)

For t ∈ [T ] \ {1, 2}, since c′−1ρ exp(−Γj,t(τ)) ≤ exp(−Γj,1(τ)) ≤ c′ρ exp(−Γj,t(τ)) and c′−1 exp(−Γj,t(τ)) ≤
exp(−Γj,u(τ)) ≤ c′ exp(−Γj,t(τ)) for any u ∈ [T ] \ {1, 2}, using the same discussion as in Lemma D.1 and the parameter
assumption ρ < 1/C, we have the desired result. For the relevant token, since c′−1ρ−1 exp(−Γj,1(τ)) ≤ exp(−Γj,t(τ)) ≤
c′ρ−1 exp(−Γj,1(τ)) for any t ∈ [T ] \ {1, 2}, similarly to Equation (393), we have

s
(j)
2 (τ)(1− s

(j)
2 (τ)) < c · 1

2 + 2 cosh (Γj,1(τ)− log ρ−1 − log T )
. (395)

The lower bound is derived in the same way, which completes the proof.

In the next lemma, we confirm that the significant term in tracking the gradient descent dynamics, s(1− s), is dominated by
the token with the highest assigned probability.
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Lemma D.3 (Inequality for s(1− s)). Let s ∈ RT be a probability vector, and let t ∈ [T ] be such that st = maxt′∈[T ] st′ .
Then, we have

su (1− su) ≤ st (1− st) , ∀u ∈ [T ] \ {t}.

Proof of Lemma D.3. The function f(x) = x − x2 defined on x ∈ [0, 1] is monotonically increasing in [0, 1/2], and
f(x) = f(1 − x) holds by the symmetry at x = 1/2. When 0 ≤ st ≤ 1/2, the claim holds from the monotonicity over
[0, 1/2]. For the remaining case 1/2 ≤ st ≤ 1, since f(st) = f(1− st) and

su ≤
∑

v∈[T ]\{t}

sv = 1− st (396)

hold, the claim follows from the monotonicity over [0, 1/2] again.

In the next lemma, we will see that with the assumption of a sufficiently small step size, the attention values do not change
significantly in a single step of gradient descent.

Lemma D.4 (One-step update of attention). Suppose that the assumptions in Theorem 4.1 are satisfied. Then, under the
condition A(τ) and B(τ), which appear in Lemmas C.11 to C.13, we have

|λ+1(τ + 1)− λ+1(τ)| = o(1), |λ−1(τ + 1)− λ−1(τ)| = o(1), |ρi,t(τ + 1)− ρi,t(τ)| = o(1),

for any i ∈ [n] and t ∈ [T ].

Proof of Lemma D.4. From Lemmas C.4 and C.9, we have

|λ+1(τ + 1)− λ+1(τ)| ≲ αmax{IWi,+(τ), ∥p(τ)∥22Ii,+(τ)}+ α2µ⊤
+1∇W⊤L̂(τ)∇pL̂(τ). (397)

For the first term, from Definition C.2, we have

αmax{IWi,+(τ), ∥p(τ)∥22Ii,+(τ)}

≲ α · max
i∈[n],t∈[T ]

{|γ(i)t |} ·
(

max
i∈[n],t∈[T ]

{
⟨W(τ)x

(i)
t ,W(τ)µ+1⟩

}
+ ∥p(τ)∥22 max

i∈[n],t∈[T ]

{
⟨x(i)

t ,µ+1⟩
})

(398)

≲ α∥ν∥2∥µ∥2 ·max{σ2
w, σ

2
p}∥µ∥22d (399)

= o(1), (400)

where the third inequality follows from the propositions A(τ) and B(τ) in the conditions. The last line is by ∥ν∥2 =
O(∥µ∥2) and the parameter assumptions in Section 3.5; specifically, α ≤ max{∥µ∥2

√
d, σϵd}−1/C and max{σ2

w, σ
2
p} =

Θ
(
max{∥µ∥2

√
d, σϵd}−1 log−2(Tn/δ)

)
.

For the quadratic term, we have from Equations (9) and (12) that

α2µ⊤
+1∇W⊤L̂(τ)∇pL̂(τ)

≲ α2 ·
(

max
i∈[n],t∈[T ]

{|γ(i)t |}
)2

· max
i∈[n],t∈[T ]

{
⟨x(i)

t ,µ+1⟩
}
· ∥p(τ)∥2 · max

i∈[n],t∈[T ]

{
∥W(τ)x

(i)
t ∥2

}
(401)

≲ α2∥ν∥22∥µ∥22 · ∥µ∥22 · σp
√
d · σw max{∥µ∥2

√
d, σϵd} (402)

= o(1), (403)

which similarly follows from parameter assumptions. Substituting Equations (400) and (403) to Equation (397) leads to the
desired result. The other inequalities for λ−1 and ρi,t are shown in a similar discussion.

Finally, we provide the lemma regarding the bounds for the summation of probability terms s(τ)(1− s(τ)). This result is
necessary to evaluate the attention updates.

Lemma D.5 (Bounds for summation of probability terms).
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• (Not Overfitting Case) Let T1 be the time step defined in Lemma C.11, and consider τ ≤ T1. Suppose that the propositions
C(τ ′) and E(τ ′) in Lemma C.11 hold for any τ ′ ∈ [0, τ ]. Then, we have that for any i ∈ [n],

τ∑
τ ′=0

s
(i)
1 (τ ′)(1− s

(i)
1 (τ ′)) = Θ(τ).

• (Benign Overfitting Case) Let T2 be the time step defined in Lemma C.13, and consider τ ≤ T2. Suppose that the
propositions C(τ ′) and E(τ ′) in Lemmas C.12 and C.13 hold for any τ ′ ∈ [0, τ ]. Then, we have that for any clean data
i ∈ C,

τ∑
τ ′=0

s
(i)
1 (τ ′)(1− s

(i)
1 (τ ′)) =


Θ(τ) if τ = O

(
1

αn−1σ2
ϵ∥ν∥2∥µ∥2d2 max{σ2

w,σ2
p}

)
,

Θ

(
log(τ ·αn−1σ2

ϵ∥ν∥2∥µ∥2d
2 max{σ2

w,σ2
p})

αn−1σ2
ϵ∥ν∥2∥µ∥2d2 max{σ2

w,σ2
p}

)
if τ = Ω

(
1

αn−1σ2
ϵ∥ν∥2∥µ∥2d2 max{σ2

w,σ2
p}

)
.

For any noisy data j ∈ N , we have

τ∑
τ ′=0

s
(j)
1 (τ ′)(1− s

(j)
1 (τ ′)) = Θ

(
log
(
τ · αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}
)

αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}

)
if τ ≤ T1,

and

τ∑
τ ′=T1

s
(j)
2 (τ ′)(1− s

(j)
2 (τ ′)) = Θ

(
log
(
τ · ρ · αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}
)

ρ · αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}

)
if τ ≥ T1,

where T1 is the time step defined in Lemma C.12.

Proof of Lemma D.5. We proceed with the proof separately for the not-overfitting and benign overfitting cases.

Not overfitting case: Fix a single t from [T ] \ {1}. Since Λi,t(τ) is monotonically increasing and |Λi,t(0)| = o(1) by
C(τ ′) and Lemma C.8, it follows from Lemma D.1 and T = Θ(1) that s(i)1 (τ ′)(1− s

(i)
1 (τ ′)) = Θ(1) for any τ ′ ∈ [0, τ ].

This immediately leads to the conclusion.

Benign overfitting case: We first discuss the case of clean data i ∈ C. Fix t ∈ [T ] \ {1}, and let T0 be a
first-time step where Λi,t(τ) exceeds log T . From C(τ) and the parameter assumption T = Θ(1), we have T0 =

Θ
(

1
αn−1σ2

ϵ∥ν∥2∥µ∥2d2 max{σ2
w,σ2

p}

)
. We first consider the case of τ < T0. In this case, the conclusion follows from the same

argument as in the not-overfitting case. This leads to the first line in the statement.

Next, we consider the case of T0 ≤ τ and first derive the lower bound. From Lemma D.1, we have

τ∑
τ ′=0

s
(i)
1 (τ ′)(1− s

(i)
1 (τ ′)) >

τ∑
τ ′=0

c−1

2 + 2 cosh (Λi,t(τ ′)− log T )
>

τ∑
τ ′=T0

c−1

2 + 2 cosh (Λi,t(τ ′)− log T )
(404)

for any i ∈ [n]. Combining the inequality 2 + 2 cosh (x− log T ) < 2x + 2 sinh (x− log T ) for x > log T and the
proposition C(τ) in Lemmas C.12 and C.13, we have

1

2 + 2 cosh (Λi,t(τ ′)− log T )
>

1

2Λi,t(τ ′) + 2 sinh (Λi,t(τ ′)− log T )
(405)

=
1

g (Λi,t(τ ′))
(406)

≥ 1

g (Λi,t(0)) + τ ′ · c4αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}
. (407)
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Since the function 1/(b+ ax) for a > 0 is convex and monotonically decreasing for b+ ax > 0, we have

τ∑
τ ′=T0

1

2 + 2 cosh (Λi,t(τ ′)− log T )

>

∫ τ+1

T0

dτ ′

g (Λi,t(0)) + τ ′ · c4αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}

(408)

=
1

c4αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}

log

(
g (Λi,t(0)) + (τ + 1) · c4αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}

g (Λi,t(0)) + T0 · c4αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}

)
(409)

≳
log
(
τ · αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}
)

αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}

, (410)

where the last line follows from the fact that the denominator inside the log is Θ(1). This is ensured by the definition of
T0, which guarantees that the denominator exceeds g(log T ) = 2 log T = Θ(1), and by the fact that the one-step update of
attention score is o(1), as shown in Lemma D.4. Consequently, by substituting this result into Equation (404), we obtain the
desired lower bound.

Similarly, we provide an upper bound using the function g and the result of C(τ). From Lemma D.1, we have

τ∑
τ ′=0

s
(i)
1 (τ ′)(1− s

(i)
1 (τ ′)) <

T0∑
τ ′=0

s
(i)
1 (τ ′)(1− s

(i)
1 (τ ′)) +

τ∑
τ ′=T0+1

c

2 + 2 cosh (Λi,t(τ ′)− log T )
(411)

≤ T0
4

+

τ∑
τ ′=T0+1

c(2 log T + 1)

g (Λi,t(τ ′))
(412)

≤ T0
4

+

τ∑
τ ′=T0+1

c′

g (Λi,t(0)) + τ ′ · c3αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}
, (413)

where the second inequality comes from s(1−s) ≤ 1/4, sinh(x) < cosh(x), and the inequality 2 log T cosh(x−log T ) > x
for all x, which can be verified through a straightforward evaluation of the minimum. In the last line, we used the result of
C(τ), and the coefficient is replaced with c′ > 0 from the parameter assumption T = Θ(1). Similarly to the lower bound,
we have

τ∑
τ ′=T0+1

1

g (Λi,t(0)) + τ ′ · c3αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}

<

∫ τ

T0

dτ ′

g (Λi,t(0)) + τ ′ · c3αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}

(414)

=
1

c3αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}

log

(
g (Λi,t(0)) + τ · c3αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}

g (Λi,t(0)) + T0 · c3αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}

)
(415)

≲
log
(
τ · αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}
)

αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}

. (416)

Combining this result with T0 = Θ(1/αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}) from C(τ), Equation (413) completes the

proof.

For noisy data j ∈ N , we first derive the lower bound for τ ≤ T1. From Lemma C.8 and the proposition C(τ) in
Lemma C.12, we have Λj,t(τ) < o(1) for any t ∈ [T ]\{1}. Since we can confirm that the inequality 2+2 cosh(x−log T ) <
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−2x− 2 sinh(x− log T )+ 2 = −g(x)+ 2 holds for x < o(1) by rearranging terms, Lemma D.1 and Lemma C.12 gives us
τ∑

τ ′=0

s
(j)
1 (τ ′)(1− s

(j)
1 (τ ′)) >

τ∑
τ ′=0

c−1

2 + 2 cosh (Λj,t(τ ′)− log T )
(417)

>

τ∑
τ ′=0

c−1

−g (Λj,t(τ ′)) + 2
(418)

>

τ∑
τ ′=0

c−1

−g (Λj,t(0)) + τ · c6αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}+ 2

. (419)

Applying the same discussion as in Equation (410), we have
τ∑

τ ′=0

s
(j)
1 (τ ′)(1− s

(j)
1 (τ ′)) ≳

log
(
τ · αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}
)

αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}

. (420)

As for the upper bound, since we obtain the inequality 2 + 2 cosh(x − log T ) > −x − sinh(x − log T ) = −g(x)/2 for
x < o(1) by rearranging terms, similarly we have

τ∑
τ ′=0

s
(j)
1 (τ ′)(1− s

(j)
1 (τ ′)) <

τ∑
τ ′=0

2c

−g (Λj,t(0)) + τ · c5αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}
. (421)

Using a similar evaluation with integral, we have
τ∑

τ ′=0

s
(j)
1 (τ ′)(1− s

(j)
1 (τ ′)) ≲

log
(
τ · αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}
)

αn−1σ2
ϵ ∥ν∥2∥µ∥2d2 max{σ2

w, σ
2
p}

, (422)

which completes the proof for τ ≤ T1.

Finally, for the case of τ ≥ T1, the desired result follows by repeating the same arguments as in the clean data case, using
C(τ) in Lemma C.13 and Lemma D.2.

D.2. Attention Updates for Not Overfitting Case (SNR2 = ω(n−1))

Lemma D.6 (Signal updates in Lemma C.11). Let T1 be the time step defined in Lemma C.11, and let τ ∈ [0, T1]. Suppose
that the conditions in Theorem 4.1 and A(τ), B(τ), D(τ), and F (τ) in Lemma C.11 are satisfied. Then, on a good run,
there exists some constant c > 0 such that

λ+1(τ + 1)− λ+1(τ) ≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · cα∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p},

λ−1(τ + 1)− λ−1(τ) ≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · cα∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p},

for any i ∈ [n]. Additionally, for some constant c′ > c, we have

λ+1(τ + 1)− λ+1(τ) ≤ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′α∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p},

λ−1(τ + 1)− λ−1(τ) ≤ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′α∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p},

for any i ∈ [n].

Proof of Lemma D.6. From Lemma C.4, the update of λ+1 is given by

λ+1(τ + 1)− λ+1(τ) =
α

n

n∑
i=1

(−ℓ′i(τ)) · Y (i) ·
(
IWi,+(τ) + ∥p(τ)∥22Ii,+(τ)

)
+ α2µ⊤

+1∇W⊤L̂(τ)∇pL̂(τ). (423)

Using B(τ), together with the parameter assumption ∥µ∥2 = ω(σϵ log(Tn/δ)), we have that for i ∈ C+ ∪N− = {i ∈ [n] |
Y ∗(i) = 1},

(1− o(1)) · σ2
w∥µ∥22d ≤ ⟨W(τ)x

(i)
1 ,W(τ)µ+1⟩ ≤ (1 + o(1)) · σ2

w∥µ∥22d, (424)
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and other terms are bounded as follows:

|⟨W(τ)x
(i)
t ,W(τ)µ+1⟩| = O

(
ρσ2

w∥µ∥22d
)
, (425)

|⟨W(τ)x(i)
u ,W(τ)µ+1⟩| = O

(
max

{
ρ∥µ∥22

√
d, σϵ∥µ∥2d

}
· σ2

w log(Tn/δ)
)
= O

(
ρσ2

w∥µ∥22d
)
, (426)

|⟨W(τ)x(i)
v ,W(τ)µ+1⟩| = O

(
σ2
wσϵ∥µ∥2d log(Tn/δ)

)
= O

(
ρσ2

w∥µ∥22d
)
, (427)

for t ∈ W(i)
+1, u ∈ W(i)

−1, and v ∈ I(i), which follows from the lower bound of the weak signal strength ρ. Additionally, for
any i ∈ C+ ∪N−, we see that s(i)1 (τ) ≥ Θ(1) holds from D(τ). Then, we have

IWi,+(τ) =

T∑
t=1

s
(i)
t (τ)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ)γ(i)u

)
⟨W(τ)x

(i)
t ,W(τ)µ+1⟩ (428)

=

T∑
t=1

s
(i)
t (τ)

∑
u∈[T ]\{t}

s(i)u (τ)
(
γ
(i)
t − γ(i)u

)
⟨W(τ)x

(i)
t ,W(τ)µ+1⟩ (429)

= s
(i)
1 (τ)(1− s

(i)
1 (τ)) · γ(i)1 · ⟨W(τ)x

(i)
1 ,W(τ)µ+1⟩

−
T∑

t=2

s
(i)
1 (τ)s

(i)
t (τ) · γ(i)t · ⟨W(τ)x

(i)
1 ,W(τ)µ+1⟩

+

T∑
t=2

s
(i)
t (τ)s

(i)
1 (τ) · (γ(i)t − γ

(i)
1 ) · ⟨W(τ)x

(i)
t ,W(τ)µ+1⟩

+

T∑
t=2

s
(i)
t (τ)

∑
u∈[T ]\{1,t}

s(i)u (τ) · (γ(i)t − γ(i)u ) · ⟨W(τ)x
(i)
t ,W(τ)µ+1⟩ (430)

≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · γ(i)1 ·Θ

(
σ2
w∥µ∥22d

)
− s

(i)
1 (τ)(1− s

(i)
1 (τ)) ·O(ργ

(i)
1 ) ·Θ

(
σ2
w∥µ∥22d

)
− s

(i)
1 (τ)(1− s

(i)
1 (τ)) · (1 +O(ρ)) γ

(i)
1 ·O

(
ρσ2

w∥µ∥22d
)

−Θ(1) · s(i)1 (τ)(1− s
(i)
1 (τ)) ·O(ργ

(i)
1 ) ·O

(
ρσ2

w∥µ∥22d
)

(431)

≥ 1

2
· s(i)1 (τ)(1− s

(i)
1 (τ)) · γ(i)1 ·Θ

(
σ2
w∥µ∥22d

)
(432)

= s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′1σ2

w∥ν∥2∥µ∥32d, (433)

for a constant c′1 > 0. At the last term in the first inequality, we used Θ(1) · s(i)1 (τ) ≥ 1 ≥ 1 − s
(i)
1 (τ) − s

(i)
t (τ) from

the condition D(τ). The second inequality follows from Lemma B.12 and ρ < 1/C for sufficiently large C. Applying
Lemma B.12 provides the last equation. Using the same reasoning, we also have the following upper bound for i ∈ C+∪N−:

IWi,t (τ) ≤ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′2σ2

w∥ν∥2∥µ∥32d, (434)

for a constant c′2 > 0 such that c′2 > c′1. In a similar way, we will provide the evaluation for j ∈ C− ∪ N+ = {i ∈ [n] |
Y ∗(i) = −1}. The condition B(τ) gives us that

|⟨W(τ)x
(j)
1 ,W(τ)µ+1⟩| = O

(
max

{
∥µ∥22

√
d, σϵ∥µ∥2d

}
· σ2

w log(Tn/δ)
)
= O

(
max

{
ρ,

log(Tn/δ)√
d

}
σ2
w∥µ∥22d

)
,

(435)

|⟨W(τ)x
(j)
t ,W(τ)µ+1⟩| = O

(
ρσ2

w∥µ∥22d
)
, (436)

|⟨W(τ)x(j)
u ,W(τ)µ+1⟩| = O

(
max

{
ρ∥µ∥22

√
d, σϵ∥µ∥2d

}
· σ2

w log(Tn/δ)
)
= O

(
ρσ2

w∥µ∥22d
)
, (437)

|⟨W(τ)x(j)
v ,W(τ)µ+1⟩| = O

(
σ2
wσϵ∥µ∥2d log(Tn/δ)

)
= O

(
ρσ2

w∥µ∥22d
)
, (438)
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for t ∈ W(j)
+1 , u ∈ W(j)

−1 , and v ∈ I(j). Then, we have

|IWj,+(τ)| =

∣∣∣∣∣
T∑

t=1

s
(j)
t (τ)

(
γ
(j)
t −

T∑
u=1

s(j)u (τ)γ(j)u

)
⟨W(τ)x

(j)
t ,W(τ)µ+1⟩

∣∣∣∣∣ (439)

≤
T∑

t=1

∣∣∣∣∣s(j)t (τ)(1− s
(j)
t (τ)) · max

u∈[T ]
{γ(j)t − γ(j)u } · ⟨W(τ)x

(j)
t ,W(τ)µ+1⟩

∣∣∣∣∣ (440)

≤ T max
t∈[T ]

{s(j)t (τ)(1− s
(j)
t (τ))} ·O

(
max

{
ρ,

log(Tn/δ)√
d

}
σ2
w∥ν∥2∥µ∥32d

)
(441)

≤ s
(j)
1 (τ)(1− s

(j)
1 (τ)) ·O

(
max {ρ, o(1)}σ2

w∥ν∥2∥µ∥32d
)
, (442)

where the first inequality is the result of the triangle inequality, and the second line follows from Lemma B.12 and the
evaluations just before. In the last line, we used the dominance of s(j)1 (τ)(1− s

(j)
1 (τ)), which follows from F (τ), and the

parameter assumptions T = Θ(1) and
√
d = ω(log(Tn/δ)).

Using these evaluations, Lemma C.9, Equations (29) and (30), we have

α

n

n∑
i=1

(−ℓ′i(τ)) · Y (i) · IWi,+(τ)

=
α

n

∑
i∈C+∪N−∪(C−∪N+)

(−ℓ′i(τ)) · Y (i) · IWi,+(τ) (443)

≥ α · (2− 3η)/4 · min
i∈C+

{(−ℓ′i(τ))} · min
i∈C+

{
s
(i)
1 (τ)(1− s

(i)
1 (τ))

}
· c′1σ2

w∥ν∥2∥µ∥32d

− α · (3η)/4 · cℓ min
i∈C+

{(−ℓ′i(τ))} · max
j∈N−

{
s
(j)
1 (τ)(1− s

(j)
1 (τ))

}
· c′2σ2

w∥ν∥2∥µ∥32d

− α · (1 + η)/2 · cℓ min
i∈C+

{(−ℓ′i(τ))} · max
j∈C−∪N+

{
s
(j)
1 (τ)(1− s

(j)
1 (τ))

}
·O
(
max {ρ, o(1)}σ2

w∥ν∥2∥µ∥32d
)

(444)

≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′3ασ2

w∥ν∥2∥µ∥32d, (445)

for any i ∈ [n] and some constant c′3 > 0. The last inequality follows from the balance of the softmax probabilities over
i ∈ [n], as stated in F (τ). We also used η < 1/C and ρ < 1/C in the parameter assumptions. Similarly, we have

α

n

n∑
i=1

(−ℓ′i(τ)) · Y (i) · IWi,+(τ) ≤ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′4ασ2

w∥ν∥2∥µ∥32d, (446)

for any i ∈ [n] and some constant c′4 > 0 such that c′4 > c′3.

We now turn to the analysis of Ii,+(τ). Lemma B.1 states that, for i ∈ C+ ∪N− = {i ∈ [n] | Y ∗(i) = 1}, we have

(1− o(1)) ∥µ∥22 ≤ ⟨x(i)
1 ,µ+1⟩ ≤ (1 + o(1)) ∥µ∥22, (447)

and

|⟨x(i)
t ,µ+1⟩| < ρ∥µ∥22 + c2σϵ∥µ∥2

√
log(Tn/δ) = O

(
ρ∥µ∥22

)
, (448)

|⟨x(i)
u ,µ+1⟩| < c2σϵ∥µ∥2

√
log(Tn/δ) = O

(
ρ∥µ∥22

)
, (449)

|⟨x(i)
v ,µ+1⟩| < c2σϵ∥µ∥2

√
log(Tn/δ) = O

(
ρ∥µ∥22

)
, (450)

for t ∈ W(i)
+1, u ∈ W(i)

−1, and v ∈ I(i). Here, we used ⟨µ+1,µ−1⟩ = 0 in our data setup.

Then, for any i ∈ C+ ∪N−, using a calculation similar to that for IWi,+, there exists a constant c′5 > 0 such that

Ii,+(τ) =

T∑
t=1

s
(i)
t (τ)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ)γ(i)u

)
⟨x(i)

t ,µ+1⟩ ≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′5∥ν∥2∥µ∥32. (451)
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Similarly, we have the following upper bound:

Ii,+(τ) ≤ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′6∥ν∥2∥µ∥32, (452)

for some constant c′6 > 0 such that c′6 > c′5.

Additionally, using a similar argument as in Equation (442), we give an upper bound for data with different label, i.e., for
j ∈ C− ∪N+ = {i ∈ [n] | Y ∗(i) = −1}, as follows:

|Ij,+(τ)| ≤ s
(j)
1 (τ)(1− s

(j)
1 (τ)) ·O

(
ρ∥ν∥2∥µ∥32

)
. (453)

Note that the term log(Tn/δ)/
√
d does not appear in this case, due to the orthogonality of µ+1 and µ−1.

Thus, combining these bounds and (1− 1/C1)σp
√
d ≤ ∥p(τ)∥2 ≤ (1 + 1/C1)σp

√
d in A(τ), we have

α

n

n∑
i=1

(−ℓ′i(τ)) · Y (i) · ∥p(τ)∥22Ii,+(τ)

=
α

n
∥p(τ)∥22

∑
i∈C+∪N−∪(C−∪N+)

(−ℓ′i(τ)) · Y (i) · Ii,+(τ) (454)

≥ α∥p(τ)∥22 · (2− 3η)/4 · min
i∈C+

{(−ℓ′i(τ))} · min
i∈C+

{
s
(i)
1 (τ)(1− s

(i)
1 (τ))

}
· c′5∥ν∥2∥µ∥32

− α∥p(τ)∥22 · (3η)/4 · cℓ min
i∈C+

{(−ℓ′i(τ))} · max
j∈N−

{
s
(j)
1 (τ)(1− s

(j)
1 (τ))

}
· c′6∥ν∥2∥µ∥32

− α∥p(τ)∥22 · (1 + η)/2 · cℓ min
i∈C+

{(−ℓ′i(τ)} · max
j∈C−∪N+

{
s
(j)
1 (τ)(1− s

(j)
1 (τ))

}
·O
(
ρ∥ν∥2∥µ∥32

)
(455)

≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′7ασ2

p∥ν∥2∥µ∥32d, (456)

for any i ∈ [n] and some constant c′7 > 0. We again used the results of F (τ) and η, ρ < 1/C in the parameter assumptions.
Similarly, we have the following upper bound:

α

n

n∑
i=1

(−ℓ′i(τ)) · Yi · ∥p(τ)∥22Ii,+(τ) ≤ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′8ασ2

p∥ν∥2∥µ∥32d, (457)

for any i ∈ [n] and some constant c′8 > 0 such that c′8 > c′7. By substituting Equations (445) and (456) to Equation (423),
we have that for any i ∈ [n],

λ+1(τ + 1)− λ+1(τ)

≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) ·min{c′3, c′7}α∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p}+ α2µ⊤

+1∇W⊤L̂(τ)∇pL̂(τ). (458)

Finally, we show that the second term can be ignored. We have

α2µ⊤
+1∇W⊤L̂(τ)∇pL̂(τ)

≤ α2∥∇WL̂(τ)µ+1∥2∥∇pL̂(τ)∥2 (459)

≲ α2

(
max

i∈[n],t∈[T ]
{s(i)t (τ)(1− s

(i)
t (τ))} max

i∈[n],t∈[T ]
{|γ(i)t |}

)2

· max
i∈[n],t∈[n]

{µ⊤
+1x

(i)
t }∥p(τ)∥2 · max

i∈[n],t∈[T ]
{∥W(τ)x

(i)
t ∥2}

(460)

≲ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · α2∥ν∥22∥µ∥22 · ∥µ∥22 · σp

√
d · σw max{∥µ∥2

√
d, σϵd} (461)

= s
(i)
1 (τ)(1− s

(i)
1 (τ)) · α∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p} ·

(
α∥ν∥2∥µ∥2 max{∥µ∥2, σϵ

√
d}
)

(462)

= s
(i)
1 (τ)(1− s

(i)
1 (τ)) · o

(
α∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p}
)
, (463)

where the first inequality is the result of the Cauchy-Schwarz inequality, and the second one follows from Equations (9)
and (12). Here, the probability term appears in the bound from a similar argument to Equation (442). In the third line, we
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used Lemma B.12, the concentration inequalities in A(τ), B(τ), and the balance of softmax probabilities in F (τ). Using
∥ν∥2 = O(1/∥µ∥2) and the learning rate assumption α = O(max{∥µ∥2

√
d, σϵd}−1), the latter part of Equation (462)

becomes o(1). Therefore, the quadratic term in Equation (458) can be absorbed in the first term.

Thus, there exists a constant c > 0 such that

λ+1(τ + 1)− λ+1(τ) ≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · cα∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p}, (464)

for any i ∈ [n]. In the same way, from Equations (446) and (457), there exists a constant c′ > c such that

λ+1(τ + 1)− λ+1(τ) ≤ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′α∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p}, (465)

for any i ∈ [n]. By applying the same argument to λ−1, we obtain the desired result.

Next, we analyze noise memorization in the attention update. Many equations in the proof are similar to those in Lemma D.6,
so we provide the proof avoiding the redundant repetition.

Lemma D.7 (Noise updates in Lemma C.11). Let T1 be the time step defined in Lemma C.11, and let τ ∈ [0, T1]. Suppose
that the conditions in Theorem 4.1 and A(τ), B(τ), D(τ), and F (τ) in Lemma C.11 are satisfied. Then, on a good run,
there exists some constant c > 0 such that

ρi,1(τ + 1)− ρi,1(τ) ≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · cαn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p},

ρi,t(τ + 1)− ρi,t(τ) ≤ −s(i)1 (τ)s
(i)
t (τ) · cαn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p},

for any clean data i ∈ C and t ∈ [T ] \ {1}, and

ρj,1(τ + 1)− ρj,1(τ) ≤ −s(j)1 (τ)(1− s
(j)
1 (τ)) · cαn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p},

ρj,t(τ + 1)− ρj,t(τ) ≥ s
(j)
1 (τ)s

(j)
t (τ) · cαn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p},

for any noisy data j ∈ N , and t ∈ [T ] \ {1}. Additionally, for some constant c′ > c, we have

ρi,1(τ + 1)− ρi,1(τ) ≤ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p},

ρi,t(τ + 1)− ρi,t(τ) ≥ −s(i)1 (τ)s
(i)
t (τ) · c′αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p},

for any clean data i ∈ C and t ∈ [T ] \ {1}, and

ρj,1(τ + 1)− ρj,1(τ) ≥ −s(j)1 (τ)(1− s
(j)
1 (τ)) · c′αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p},

ρj,t(τ + 1)− ρj,t(τ) ≤ s
(j)
1 (τ)s

(j)
t (τ) · c′αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p},

for any noisy data j ∈ N , and t ∈ [T ] \ {1}.

Proof of Lemma D.7. We first analyze the noise learning in the relevant token of clean data i ∈ C. From Lemma C.4, we
have

ρi,1(τ + 1)− ρi,1(τ) =
α

n

n∑
k=1

(−ℓ′k(τ)) · Y (k) ·
(
IWk,i,1(τ) + ∥p(τ)∥22Ik,i,1(τ)

)
+ α2ϵ

(i)⊤
1 ∇W⊤L̂(τ)∇pL̂(τ). (466)

Combining Assumptions A1 and A2, we have d ≥ Cσ̂ϵn
(
Cσϵd

3/8 log(Tn/δ)
)4/3

log3(Tn/δ), from which it follows that

d ≥ (Cσϵ)
14/3n2 log26/3(Tn/δ) = ω(n2 log2(Tn/δ)). (467)

Additionally, from Assumption A1, we have

d = ω
(
σ−1
ϵ n∥µ∥2 log(Tn/δ)

)
. (468)
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Therefore, applying Equations (467) and (468) to the results in B(τ), we have

∥W(τ)ϵ
(i)
t ∥22 = Θ(σ2

wσ
2
ϵd

2), (469)

|⟨W(τ)µ+1,W(τ)ϵ
(i)
t ⟩| = O(σ2

wσϵ∥µ∥2d log(Tn/δ)) = o(n−1σ2
wσ

2
ϵd

2), (470)

|⟨W(τ)µ−1,W(τ)ϵ
(i)
t ⟩| = O(σ2

wσϵ∥µ∥2d log(Tn/δ)) = o(n−1σ2
wσ

2
ϵd

2), (471)

|⟨W(τ)ϵ
(i)
t ,W(τ)ϵ(j)u ⟩| = O(σ2

wσ
2
ϵd

3/2 log(Tn/δ)) = o(n−1σ2
wσ

2
ϵd

2), (472)

for any i, j ∈ [n] and t, u ∈ [T ] such that (i, t) ̸= (j, u). In the case of k = i, using a similar argument to Equation (433),
we have

IWk,i,1(τ) = IWi,i,1(τ) =

T∑
t=1

s
(i)
t (τ)

(
γ
(i)
t −

T∑
u=1

s(i)u (τ)γ(i)u

)
⟨W(τ)x

(i)
t ,W(τ)ϵ

(i)
1 ⟩ (473)

≥ 1

2
· s(i)1 (τ)(1− s

(i)
1 (τ)) · γ(i)1 ·Θ

(
σ2
wσ

2
ϵd

2
)

(474)

= s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′1σ2

wσ
2
ϵ ∥ν∥2∥µ∥2d2, (475)

for a constant c′1 > 0. This follows from Lemma B.12 and the dominance of Equation (469). Using the same argument, we
also have the following upper bound for some constant c′2 > 0:

IWk,i,1(τ) = IWi,i,1(τ) ≤ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′2σ2

wσ
2
ϵ ∥ν∥2∥µ∥2d2. (476)

In contrast, we have that for k ̸= i,

|IWk,i,1(τ)| =

∣∣∣∣∣
T∑

t=1

s
(k)
t (τ)

(
γ
(k)
t −

T∑
u=1

s(k)u (τ)γ(k)u

)
⟨W(τ)x

(k)
t ,W(τ)ϵ

(i)
1 ⟩

∣∣∣∣∣, (477)

≤
T∑

t=1

∣∣∣∣∣s(k)t (τ)(1− s
(k)
t (τ)) · max

u∈[T ]

{
γ
(k)
t − γ(k)u

}
· ⟨W(τ)x

(k)
t ,W(τ)ϵ

(i)
1 ⟩

∣∣∣∣∣, (478)

≤ T max
t∈[T ]

{s(k)t (τ)(1− s
(k)
t (τ))} · o

(
n−1σ2

wσ
2
ϵ ∥ν∥2∥µ∥2d2

)
, (479)

< s
(k)
1 (τ)(1− s

(k)
1 (τ)) · o(n−1σ2

wσ
2
ϵ ∥ν∥2∥µ∥2d2), (480)

where the first inequality is the result of the triangle inequality, and the second one follows from Lemma B.12 and
Equations (470) to (472). In the last line, we used the dominance of s(k)1 (τ)(1 − s

(k)
1 (τ)) from F (τ) and the parameter

assumption T = Θ(1). Thus, we have

α

n

n∑
k=1

(−ℓ′k(τ)) · Y (k) · IWk,i,1(τ) >
α

n
(−ℓ′i(τ)) · s

(i)
1 (τ)(1− s

(i)
1 (τ)) · c′1σ2

wσ
2
ϵ ∥ν∥2∥µ∥2d2

− α

n

∑
k ̸=i

(−ℓ′k(τ)) · s
(i)
k (τ)(1− s

(i)
k (τ)) · o

(
n−1σ2

wσ
2
ϵ ∥ν∥2∥µ∥2d2

)
(481)

> s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′3αn−1σ2

wσ
2
ϵ ∥ν∥2∥µ∥2d2, (482)

for some constant c′3 > 0, which follows from the balance of loss derivative and softmax probabilities over training samples,
as established in Lemma C.9 and F (τ). We also have the upper bound for c′4 > 0 as follows:

α

n

n∑
k=1

(−ℓ′k(τ)) · Y (k) · IWk,i,1(τ) < s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′4αn−1σ2

wσ
2
ϵ ∥ν∥2∥µ∥2d2. (483)
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Similarly, we evaluate the terms related to Ik,i,1(τ). Lemma B.1 and Equations (467) and (468) lead to

∥ϵ(i)t ∥22 = Θ(σ2
ϵd), (484)

|⟨µ+1, ϵ
(i)
t ⟩| = O(σϵ∥µ∥2

√
log(Tn/δ)) = o(n−1σ2

ϵd), (485)

|⟨µ−1, ϵ
(i)
t ⟩| = O(σϵ∥µ∥2

√
log(Tn/δ)) = o(n−1σ2

ϵd), (486)

|⟨ϵ(i)t , ϵ(j)u ⟩| = O(σ2
ϵ

√
d log(Tn/δ)) = o(n−1σ2

ϵd), (487)

for any i, j ∈ [n] and t, u ∈ [T ] such that (i, t) ̸= (j, u). Similarly to Equations (475) and (476), we have that for k = i,

Ik,i,1(τ) = Ii,i,1(τ) ≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′5σ2

ϵ ∥ν∥2∥µ∥2d, (488)

Ik,i,1(τ) = Ii,i,1(τ) ≤ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′6σ2

ϵ ∥ν∥2∥µ∥2d, (489)

for some constants c′5, c
′
6 > 0. In contrast, by the same argument as in Equation (480), we have that for k ̸= i,

|Ik,i,1(τ)| < s
(k)
1 (τ)(1− s

(k)
1 (τ)) · o(n−1σ2

ϵ ∥ν∥2∥µ∥2d), (490)

and similarly to Equations (482) and (483), we have

α

n

n∑
k=1

(−ℓ′k(τ)) · Y (k) · Ik,i,1(τ) ≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′7αn−1σ2

ϵ ∥ν∥2∥µ∥2d, (491)

α

n

n∑
k=1

(−ℓ′k(τ)) · Y (k) · Ik,i,1(τ) ≤ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′8αn−1σ2

ϵ ∥ν∥2∥µ∥2d, (492)

for some constants c′7, c
′
8 > 0. Therefore, using Equations (482) and (491), and ∥p(τ)∥2 = Θ(σp

√
d) in A(τ), we have

ρi,1(τ + 1)− ρi,1(τ)

≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) ·min{c′3, c′7}αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}+ α2ϵ

(i)⊤
1 ∇W⊤L̂(τ)∇pL̂(τ). (493)

For the quadratic term in Equation (493), a similar argument to that in Equation (463) shows that it can be neglected under
the small learning rate assumption. Thus, by appropriately redefining the constants, we obtain the desired lower bound for
ρi,1. The upper bound is derived in the same way.

We now turn to the noise memorization term for t ∈ [T ] \ {1} of clean data i ∈ C. Since the proof is essentially the same as
for ρi,1(τ), we show only the different parts to avoid repetition. From Lemma C.4, we have

ρi,t(τ + 1)− ρi,t(τ) =
α

n

n∑
k=1

(−ℓ′k(τ)) · Y (k) ·
(
IWk,i,t(τ) + ∥p(τ)∥22Ik,i,t(τ)

)
+ α2ϵ

(i)⊤
t ∇W⊤L̂(τ)∇pL̂(τ). (494)
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When k = i, we have

IWk,i,t(τ) = IWi,i,t(τ) =

T∑
v=1

s(i)v (τ)

(
γ(i)v −

T∑
u=1

s(i)u (τ)γ(i)u

)
⟨W(τ)x(i)

v ,W(τ)ϵ
(i)
t ⟩ (495)

= s
(i)
1 (τ)(1− s

(i)
1 (τ)) · γ(i)1 · ⟨W(τ)x

(i)
1 ,W(τ)ϵ

(i)
t ⟩

−
T∑

u=2

s
(i)
1 (τ)s(i)u (τ) · γ(i)u · ⟨W(τ)x

(i)
1 ,W(τ)ϵ

(i)
t ⟩

+

T∑
v=2

s(i)v (τ)s
(i)
1 (τ) · (γ(i)v − γ

(i)
1 ) · ⟨W(τ)x(i)

v ,W(τ)ϵ
(i)
t ⟩

+

T∑
v=2

s(i)v (τ)
∑

u∈[T ]\{1,v}

s(i)u (τ) · (γ(i)v − γ(i)u ) · ⟨W(τ)x(i)
v ,W(τ)ϵ

(i)
t ⟩ (496)

≤ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · γ(i)1 · o(n−1σ2

wσ
2
ϵd

2)

+ s
(i)
1 (τ)(1− s

(i)
1 (τ)) ·O(ργ

(i)
1 ) · o(n−1σ2

wσ
2
ϵd

2)

+

(
− s

(i)
1 (τ)s

(i)
t (τ) · (1−O(ρ)) γ

(i)
1 ·Θ(σ2

wσ
2
ϵd

2)

+ s
(i)
1 (τ)(1− s

(i)
1 (τ)− s

(i)
t (τ)) · (1 +O(ρ)) γ

(i)
1 · o(n−1σ2

wσ
2
ϵd

2)

)

+

(
s
(i)
t (τ)(1− s

(i)
1 (τ)− s

(i)
t (τ)) ·O(ργ

(i)
1 ) ·Θ(σ2

wσ
2
ϵd

2)

+ Θ(1) · s(i)1 (τ)(1− s
(i)
1 (τ)) ·O(ργ

(i)
1 ) · o(n−1σ2

wσ
2
ϵd

2)

)
(497)

≤ −s(i)1 (τ)s
(i)
t (τ) · c′9σ2

wσ
2
ϵ ∥ν∥2∥µ∥2d2, (498)

for a constant c′9 > 0. The first inequality follows from Equations (469) to (472). In the second last line, we used
Θ(1) · s(i)1 (τ) ≥ 1 ≥ 1− s

(i)
t (τ) from the condition D(τ). The last line follows from the comparison between s(i)t (τ) and

1− s
(i)
1 (τ), as shown in F (τ), Lemma B.12, and the parameter assumption ρ < 1/C for sufficiently large C.

Using the same argument, we also have the following lower bound for some constant c′10 > 0:

IWk,i,t ≥ −s(i)1 (τ)s
(i)
t (τ) · c′10σ2

wσ
2
ϵ ∥ν∥2∥µ∥2d2. (499)

From a similar argument, we have that for k = i,

Ik,i,t(τ) = Ii,i,t(τ) ≤ −s(i)1 (τ)s
(i)
t (τ) · c′11σ2

ϵ ∥ν∥2∥µ∥2d, (500)

Ik,i,t(τ) = Ii,i,t(τ) ≥ −s(i)1 (τ)s
(i)
t (τ) · c′12σ2

ϵ ∥ν∥2∥µ∥2d, (501)

for constants c′11, c
′
12 > 0.

For k ̸= i, |IWk,i,t(τ)| and |Ik,i,t(τ)| are bounded as discussed in Equations (480) and (490). Thus, using ∥p(τ)∥2 =

Θ(σp
√
d) in A(τ), we have

ρi,t(τ + 1)− ρi,t(τ)

≤ −s(i)1 (τ)s
(i)
t (τ) ·min{c′9, c′11}αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}+ α2ϵ

(i)⊤
t ∇W⊤L̂(τ)∇pL̂(τ). (502)

We can show that the quadratic term can be ignored as in the case of ρi,1(τ). Consequently, there exists constants c, c′ > 0
such that

ρi,t(τ + 1)− ρi,t(τ) ≤ −s(i)1 (τ)s
(i)
t (τ) · cαn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}, (503)

ρi,t(τ + 1)− ρi,t(τ) ≥ −s(i)1 (τ)s
(i)
t (τ) · c′αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}. (504)
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So far, we have discussed the updates for clean data. For noisy data j ∈ N , the update equations differ only in the sign due
to the flipping of Y . Thus, we conclude the proof.

D.3. Attention Updates for Benign Overfitting Case (SNR2 = o(n−1))

D.3.1. ANALYSIS FOR STAGE 1

We first present a lemma on the signal update under the current SNR setting. Since most of the discussion overlaps with
Lemma D.6 for the not-overfitting case, particularly in basic concentration inequalities and equality evaluations, we only
present the different parts. The main difference from Lemma D.6 lies in the behavior of noisy data, which shows a monotonic
decrease in s1(τ) rather than a monotonic increase as in the clean data.

Lemma D.8 (Signal updates in Lemma C.12). Let T1 be the time step defined in Lemma C.12, and let τ ∈ [0, T1]. Suppose
that the conditions in Theorem 4.1 and A(τ), B(τ), D(τ), and F (τ) in Lemma C.12 are satisfied. Then, on a good run,
there exists some constant c > 0 such that

λ+1(τ + 1)− λ+1(τ) ≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · cα∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p},

λ−1(τ + 1)− λ−1(τ) ≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · cα∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p},

for any i ∈ C. Additionally, for some constant c′ > c, we have

λ+1(τ + 1)− λ+1(τ) ≤ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′α∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p},

λ−1(τ + 1)− λ−1(τ) ≤ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′α∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p},

for any i ∈ C.

Proof of Lemma D.8. The full proof is omitted because it follows from the reasoning similar to that in Lemma D.6. In the
analysis of Equation (423), for clean data, the conditions A(τ), B(τ), and D(τ) yield the same results as in Equations (433)
and (451). For noisy data, extra care is required because s(j)1 (τ) > Θ(1) does not hold; however, noting that s(j)1 (τ) > Θ(ρ)
holds from D(τ), the same evaluation as in Equation (433) is obtained as follows. Let j ∈ N−, and we have

IWj,+(τ) =

T∑
t=1

s
(j)
t (τ)

(
γ
(j)
t −

T∑
u=1

s(j)u (τ)γ(j)u

)
⟨W(τ)x

(j)
t ,W(τ)µ+1⟩ (505)

= s
(j)
1 (τ)(1− s

(j)
1 (τ)) · γ(j)1 · ⟨W(τ)x

(j)
1 ,W(τ)µ+1⟩

−
T∑

t=2

s
(j)
1 (τ)s

(j)
t (τ) · γ(j)t · ⟨W(τ)x

(j)
1 ,W(τ)µ+1⟩

+

T∑
t=2

s
(j)
t (τ)s

(j)
1 (τ) · (γ(j)t − γ

(j)
1 ) · ⟨W(τ)x

(j)
t ,W(τ)µ+1⟩

+

T∑
t=2

s
(j)
t (τ)

∑
u∈[T ]\{1,t}

s(j)u (τ) · (γ(j)t − γ(j)u ) · ⟨W(τ)x
(j)
t ,W(τ)µ+1⟩ (506)

≥ s
(j)
1 (τ)(1− s

(j)
1 (τ)) · γ(j)1 ·Θ

(
σ2
w∥µ∥22d

)
− s

(j)
1 (τ)(1− s

(j)
1 (τ)) ·O(ργ

(j)
1 ) ·Θ

(
σ2
w∥µ∥22d

)
− s

(j)
1 (τ)(1− s

(j)
1 (τ)) · (1 +O(ρ)) γ

(j)
1 ·O

(
ρσ2

w∥µ∥22d
)

−Θ(ρ−1) · s(j)1 (τ)(1− s
(j)
1 (τ)) ·O(ργ

(j)
1 ) ·O

(
ρσ2

w∥µ∥22d
)

(507)

≥ s
(j)
1 (τ)(1− s

(j)
1 (τ)) · c′1σ2

w∥ν∥2∥µ∥32d, (508)

where the fourth term of Equation (507) is applied the result of D(τ), and since both the token score and the inner-product
term have a small order, this term is negligible compared to the first term. Therefore, the same evaluation is obtained as in
the clean data case. The same argument is applied to Ij,+(τ). Regarding data from the different class, i.e., j ∈ [n] such that
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Y ∗(j) = −1, the influence can be bounded similarly to Equations (442) and (452). Here, the influence of noisy data j ∈ N+

can be shown to be in the same order as that of clean data, using a similar argument to Equation (269). For example, the part
corresponding Equation (442) becomes the following:

|IWj,+(τ)| =

∣∣∣∣∣
T∑

t=1

s
(j)
t (τ)

(
γ
(j)
t −

T∑
u=1

s(j)u (τ)γ(j)u

)
⟨W(τ)x

(j)
t ,W(τ)µ+1⟩

∣∣∣∣∣ (509)

≲

(
s
(j)
1 (τ)(1− s

(j)
1 (τ)) · |γ(j)1 |+ max

t∈[T ]\{1}
{|γ(j)t |}

)
·O
(
max {ρ, o(1)}σ2

w∥µ∥22d
)

(510)

≲ s
(i)
1 (τ)(1− s

(i)
1 (τ)) ·O

(
max {ρ, o(1)}σ2

w∥ν∥2∥µ∥32d
)
, (511)

for any i ∈ C. Here, we used Lemma B.12, the fact that ρ−1 · s(i)1 (τ)(1− s
(i)
1 (τ)) > Θ(1) from D(τ), and that the balance

of s(k)1 (τ)(1− s
(k)
1 (τ)) holds over all examples k ∈ [n] as provided in F (τ). Consequently, the desired result follows from

the balance between the number of clean and noisy data.

The following lemma on noise memorization is basically the same as in the not-overfitting case, but the behavior of the
noisy samples j ∈ N differs. In particular, ρj,t(τ) for t ∈ [T ] \ {1, 2} initially evolves in the same manner as ρj,2(τ) but
gradually decreases, changing sign around T1. As a result, we obtain the following evaluation that spans both positive and
negative values.
Lemma D.9 (Noise updates in Lemma C.12). Let T1 be the time step defined in Lemma C.12, and let τ ∈ [0, T1]. Suppose
that the conditions in Theorem 4.1 and A(τ), B(τ), D(τ), and F (τ) in Lemma C.12 are satisfied. Then, on a good run,
there exists some constant c, c′ > 0 such that c′ > c, and

ρi,1(τ + 1)− ρi,1(τ) ≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · cαn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p},
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ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
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2
p},
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2
p},

for any clean data i ∈ C and t ∈ [T ] \ {1}. For any noisy data j ∈ N , we have

ρj,1(τ + 1)− ρj,1(τ) ≤ −s(j)1 (τ)(1− s
(j)
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2
p},
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2
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and
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2
p},
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and
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2
p},

for any t ∈ [T ] \ {1, 2}.

Proof of Lemma D.9. For clean data i ∈ C, the same reasoning as in Lemma D.7 is applied using the conditions of the
lemma. Here, the influence of noisy samples in the summation can be treated in the same way as in the not-overfitting case,
by applying the same argument as in Equation (511) in the proof of Lemma C.12.

For ρj,1(τ), j ∈ N , we can reduce the analysis to the case of clean data, as in Equation (508), using s(j)1 (τ) > Θ(ρ). In the
rest of the proof, we analyze the update of ρj,t(τ) for t ∈ [T ] \ {1}. From Lemma C.4, we have

ρj,t(τ + 1)− ρj,t(τ) =
α

n

n∑
k=1

(−ℓ′k(τ)) · Y (k) ·
(
IWk,j,t(τ) + ∥p(τ)∥22Ik,j,t(τ)

)
+ α2ϵ

(j)⊤
t ∇W⊤L̂(τ)∇pL̂(τ). (512)
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Without loss of generality, we consider j ∈ N+ = {i ∈ [n] | Y ∗(i) = −1, Y (i) = 1}. Then, from the data model defined in
Definition 3.1 and Lemma B.12, we have

γ
(j)
1 = −Θ(∥ν∥2∥µ∥2), γ(j)2 = Θ(ρ∥ν∥2∥µ∥2), (513)

γ
(j)
t = −Θ(ρ∥ν∥2∥µ∥2), |γ(j)u | = O

(
σϵ∥ν∥2

√
log(Tn/δ)

)
, (514)

for t ∈ W(j)
−1 and u ∈ I(j). When k = j, using Equations (469) to (472), we have
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s(j)v (τ)
∑

u∈[T ]\{1,v}

s(j)u (τ) · (γ(j)v − γ(j)u ) · ⟨W(τ)x(j)
v ,W(τ)ϵ

(j)
t ⟩ (516)

≥ −s(j)1 (τ)(1− s
(j)
1 (τ)) · o

(
∥ν∥2∥µ∥2 · n−1σ2

wσ
2
ϵd

2
)

− s
(j)
1 (τ)(1− s

(j)
1 (τ)) · o

(
ρ∥ν∥2∥µ∥2 · n−1σ2

wσ
2
ϵd

2
)

+ s
(j)
1 (τ) · s(j)t (τ) ·Θ(∥ν∥2∥µ∥2 · σ2

wσ
2
ϵd

2) (517)

− s
(j)
1 (τ)(1− s

(j)
1 (τ)− s

(j)
t (τ)) · o

(
ρ∥ν∥2∥µ∥2 · n−1σ2

wσ
2
ϵd

2
)

+ s
(j)
t (τ)

∑
u∈[T ]\{1,t}

s(j)u (τ)(γ
(j)
t − γ(j)u ) ·Θ(σ2

wσ
2
ϵd

2) (518)

− (1− s
(j)
1 (τ)− s

(j)
t (τ))2 · o

(
ρ∥ν∥2∥µ∥2 · n−1σ2

wσ
2
ϵd

2
)
. (519)

For t = 2, Equation (518) becomes positive from the evaluation of token scores, and combining this with Equation (517)
and s(j)1 (τ) ≥ Θ(ρ) leads to

IWj,j,t(τ) = IWj,j,2(τ) ≥ s
(j)
1 (τ)s

(j)
t (τ) · c′1σ2

wσ
2
ϵ ∥ν∥2∥µ∥2d. (520)

The upper bound and the evaluation for Ij,j,2(τ) follow similarly. For t ∈ [T ] \ {1, 2}, Equation (518) is bounded from
below by −s(j)t (τ)(1− s

(j)
1 (τ)− s

(j)
t (τ)) ·O(ρ∥µ∥∥µ∥2 · σ2

wσ
2
ϵd

2). Since s(j)1 (τ) ≥ Θ(ρ) from D(τ), we choose T1 such
that Equation (518) does not exceed Equation (517) too much. Specifically, we choose it so that we have

IWj,j,t(τ) ≥ −s(j)1 (τ)s
(j)
t (τ) · c′1σ2

wσ
2
ϵ ∥ν∥2∥µ∥2d. (521)

The upper bound is derived trivially. The discussion for IWk,j,t(τ) and Ik,j,t(τ) for k ̸= j is proceeded in a similar way to
Equation (511), and we conclude the proof by repeating the argument in Lemma D.7.

D.3.2. ANALYSIS FOR STAGE 2

Next, we provide the results for Stage 2, i.e., τ ∈ [T1, T2] in the proof of Lemma C.13. In Stage 2, the signal updates are
dominated by the s(i)1 (τ)(1− s(i)(τ)) for i ∈ C, as well as Stage 1 (Lemma D.10). The different part from Stage 1 is the
behavior of noise memorization of noisy data, and the learning progresses in such a way that the confusing weakly relevant
token, i.e., x(j)

2 , would be selected (Lemma D.11).
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Lemma D.10 (Signal updates in Lemma C.13). Let T1 and T2 be the time steps in Lemma C.13, and let τ ∈ [T1, T2].
Suppose that the conditions in Theorem 4.1 and A(τ), B(τ), D(τ), and F (τ) in Lemma C.13 are satisfied. Then, on a good
run, there exists some constant c > 0 such that

λ+1(τ + 1)− λ+1(τ) ≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · cα∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p},

λ−1(τ + 1)− λ−1(τ) ≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · cα∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p},

for any i ∈ C. Additionally, for some constant c′ > c, we have

λ+1(τ + 1)− λ+1(τ) ≤ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′α∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p},

λ−1(τ + 1)− λ−1(τ) ≤ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · c′α∥ν∥2∥µ∥32dmax{σ2

w, σ
2
p},

for any i ∈ C.

Proof of Lemma D.10. We only provide the different part from Lemma D.6. Without loss of generality, we consider the
case of λ+1(τ). In the summation over i ∈ [n] in Equation (423), we divide the terms into three groups: clean data i ∈ C+,
noisy data j ∈ N−, and examples from a different class.

For clean data i ∈ C+, the conditions A(τ), B(τ), and D(τ) give the same results as Equations (433) and (451). For noisy
data j ∈ N−, the ratios of softmax probabilities in F (τ) are significant. To derive the lower bound of signal updates, we
use the results in F (τ); specifically, for any clean data i ∈ C, t ∈ [T ] \ {1}, and u ∈ [T ] \ {2}, s(j)t (τ)(1 − s

(j)
t (τ)) ≲

ρ−1s
(i)
1 (τ)(1 − s

(i)
1 (τ)), s(j)u (τ)(1 − s

(j)
u (τ)) ≲ s

(j)
2 (τ)(1 − s

(j)
2 (τ)), and the balance between s(j)1 (τ)(1 − s

(j)
1 (τ)) and

s
(i)
1 (τ)(1− s

(i)
1 (τ)). Under the conditions A(τ) and B(τ), we have the same lower bound of j ∈ N− as in Equation (433)

as follows:

IWj,+(τ) =

T∑
t=1

s
(j)
t (τ)

(
γ
(j)
t −

T∑
u=1

s(j)u (τ)γ(j)u

)
⟨W(τ)x

(j)
t ,W(τ)µ+1⟩ (522)

= s
(j)
1 (τ)(1− s

(j)
1 (τ)) · γ(j)1 · ⟨W(τ)x

(j)
1 ,W(τ)µ+1⟩

−
T∑

t=2

s
(j)
1 (τ)s

(j)
t (τ) · γ(j)t · ⟨W(τ)x

(j)
1 ,W(τ)µ+1⟩

+

T∑
t=2

s
(j)
t (τ)s

(j)
1 (τ) · (γ(j)t − γ

(j)
1 ) · ⟨W(τ)x

(j)
t ,W(τ)µ+1⟩

+

T∑
t=2

s
(j)
t (τ)

∑
u∈[T ]\{1,t}

s(j)u (τ) · (γ(j)t − γ(j)u ) · ⟨W(τ)x
(j)
t ,W(τ)µ+1⟩ (523)

≥ s
(j)
1 (τ)(1− s

(j)
1 (τ)) · γ(j)1 ·Θ

(
σ2
w∥µ∥22d

)
− s

(j)
1 (τ)(1− s

(j)
1 (τ)) ·O(ργ

(j)
1 ) ·Θ

(
σ2
w∥µ∥22d

)
− s

(j)
1 (τ)(1− s

(j)
1 (τ)) · (1 +O(ρ)) γ

(j)
1 ·O

(
ρσ2

w∥µ∥22d
)

− (T − 1) · s(j)2 (τ)(1− s
(j)
2 (τ)) ·O(ργ

(j)
1 ) ·O

(
ρσ2

w∥µ∥22d
)

(524)

≳ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · σ2

w∥ν∥2∥µ∥32d, (525)

where the second last line follows from F (τ) and ρ < 1/C in the parameter assumptions. The effects of data with different
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labels k ∈ C− ∪N+ are bounded similarly to Equation (442). From B(τ), we have

|⟨W(τ)x
(k)
1 ,W(τ)µ+1⟩| = O

(
max

{
∥µ∥22

√
d, σϵ∥µ∥2d

}
· σ2

w log(Tn/δ)
)
= O

(
max

{
ρ,

log(Tn/δ)√
d

}
σ2
w∥µ∥22d

)
,

(526)

|⟨W(τ)x
(k)
t ,W(τ)µ+1⟩| = O

(
ρσ2

w∥µ∥22d
)
, (527)

|⟨W(τ)x(k)
u ,W(τ)µ+1⟩| = O

(
max

{
ρ∥µ∥22

√
d, σϵ∥µ∥2d

}
· σ2

w log(Tn/δ)
)
= O

(
ρσ2

w∥µ∥22d
)
, (528)

|⟨W(τ)x(k)
v ,W(τ)µ+1⟩| = O

(
σ2
wσϵ∥µ∥2d log(Tn/δ)

)
= O

(
ρσ2

w∥µ∥22d
)
, (529)

for t ∈ W(k)
+1 , u ∈ W(k)

−1 , and v ∈ I(k). Similarly to Equation (522), we have

|IWk,+(τ)| ≤ s
(k)
1 (τ)(1− s

(k)
1 (τ)) · |γ(k)1 | ·O

(
max {ρ, o(1)}σ2

w∥µ∥22d
)

+ s
(k)
1 (τ)(1− s

(k)
1 (τ)) ·O(ρ|γ(k)1 |) ·O

(
max {ρ, o(1)}σ2

w∥µ∥22d
)

+ s
(k)
1 (τ)(1− s

(k)
1 (τ)) · (1 +O(ρ)) |γ(k)1 | ·O

(
ρσ2

w∥µ∥22d
)

+ (T − 1) · max
t∈[T ]\{1}

{
s
(k)
t (τ)(1− s

(k)
t (τ))

}
·O(ρ|γ(k)1 |) ·O

(
ρσ2

w∥µ∥22d
)

(530)

≲ s
(i)
1 (τ)(1− s

(i)
1 (τ)) ·max {ρ, o(1)}σ2

w∥ν∥2∥µ∥32d, (531)

for any clean data i ∈ C, which follows from F (τ). The same discussion is applied to |Ik,+(τ)|, and the desired result is
obtained from the balance between the numbers of clean and noisy data.

Lemma D.11 (Noise updates of clean data in Lemma C.13). Let T1 and T2 be the time steps in Lemma C.13, and let
τ ∈ [T1, T2]. Suppose that the conditions in Theorem 4.1 and A(τ), B(τ), D(τ), and F (τ) in Lemma C.13 are satisfied.
Then, on a good run, there exists some constant c, c′ > 0 such that c′ > c, and

ρi,1(τ + 1)− ρi,1(τ) ≥ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · cαn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p},

ρi,t(τ + 1)− ρi,t(τ) ≤ −s(i)1 (τ)s
(i)
t (τ) · cαn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
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2
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(i)
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(i)
1 (τ)) · c′αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p},
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(i)
t (τ) · c′αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p}.

for any clean data i ∈ C and t ∈ [T ] \ {1}. For any noisy data j ∈ N , we have

ρj,1(τ + 1)− ρj,1(τ) ≤ −s(j)1 (τ)(1− s
(j)
1 (τ)) · cαn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p},

ρj,1(τ + 1)− ρj,1(τ) ≥ −s(j)1 (τ)(1− s
(j)
1 (τ)) · c′αn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p},

and

ρj,2(τ + 1)− ρj,2(τ) ≥ s
(j)
2 (τ)(1− s

(j)
2 (τ)) · cραn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p},

ρj,2(τ + 1)− ρj,2(τ) ≤ s
(j)
2 (τ)(1− s

(j)
2 (τ)) · c′ραn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p},

and

ρj,t(τ + 1)− ρj,t(τ) ≤ −s(j)2 (τ)s
(j)
t (τ) · cραn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p},

ρj,t(τ + 1)− ρj,t(τ) ≥ −s(j)2 (τ)s
(j)
t (τ) · c′ραn−1σ2

ϵ ∥ν∥2∥µ∥2d2 max{σ2
w, σ

2
p},

for any t ∈ [T ] \ {1, 2}.

Proof of Lemma D.11. The proof for clean data i ∈ C is essentially the same as the preceding proofs in Lemmas D.7
and D.9. The lower and upper bound of IWi,i,1(τ) and Ii,i,1(τ) is derived in the same way as Equations (475) and (488).
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As for IWk,i,1(τ) and Ik,i,1(τ) for k ̸= i, the difficulty arises because s(i)1 (τ)(1− s
(i)
1 (τ)) does not dominate for noisy data

k ∈ N like Equation (480). However, it is resolved using the closer analysis as in Equation (312). Specifically, using the
s
(k)
2 (τ)(1 − s

(k)
2 (τ)) ≲ ρ−1s

(i)
1 (τ)(1 − s

(i)
1 (τ)) and the balance between s(k)1 (τ)(1 − s

(k)
1 (τ)) and s(i)1 (τ)(1 − s

(i)
1 (τ)),

which are derived from F (τ), we have that for k ̸= i,

|IWk,i,1(τ)| ≲ s
(i)
1 (τ)(1− s

(i)
1 (τ)) · o(n−1σ2

wσ
2
ϵ ∥ν∥2∥µ∥2d2), (532)

for any i ∈ C. Therefore, we obtain the desired inequalities for ρi,1(τ) following the same discussion as in Lemma D.7. The
updates of ρi,t(τ) are also derived in a similar way to Lemmas D.7 and D.9.

For noisy data j ∈ N , the inequalities for IWj,j,1(τ) and Ij,j,1(τ) are derived using a similar argument to Equation (525).
Therefore, the analysis is reduced to that of clean data, and the desired results for ρj,1(τ) are obtained by flipping the sign of
updates. We proceed with the analysis of ρj,t(τ), for t ∈ [T ] \ {1}. From Lemma C.4, we have

ρj,t(τ + 1)− ρj,t(τ) =
α

n

n∑
k=1

(−ℓ′k(τ)) · Y (k) ·
(
IWk,j,t(τ) + ∥p(τ)∥22Ik,j,t(τ)

)
+ α2ϵ

(j)⊤
t ∇W⊤L̂(τ)∇pL̂(τ). (533)

Without loss of generality, we consider j ∈ N+ = {i ∈ [n] | Y ∗(i) = −1, Y (i) = 1}. From the data model defined in
Definition 3.1 and Lemma B.12, note that we have

γ
(j)
1 = −Θ(∥ν∥2∥µ∥2), γ(j)2 = Θ(ρ∥ν∥2∥µ∥2), (534)

γ
(j)
t = −Θ(ρ∥ν∥2∥µ∥2), |γ(j)u | = O(σϵ∥ν∥2

√
log(Tn/δ)), (535)

for t ∈ W(j)
−1 and u ∈ I(j). Additionally, using B(τ), the current SNR condition SNR2 = o(n−1) and the parameter

assumptions, we have

∥W(τ)ϵ
(j)
t ∥22 = Θ(σ2

wσ
2
ϵd

2), (536)

|⟨W(τ)µ+1,W(τ)ϵ
(j)
t ⟩| = O(σ2

wσϵ∥µ∥2d log(Tn/δ)) = o(n−1ρσ2
wσ

2
ϵd

2), (537)
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2), (539)

for any k ∈ [n] and u ∈ [T ] such that (k, u) ̸= (j, t). Therefore, when k = j, we have
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for some constant c′1 > 0. In the first inequality, we used s(j)1 (τ) ≲ ρ(1 − s
(j)
2 (τ)), which is the result in F (τ), and

s
(j)
2 (τ) ≥ Θ(1) from D(τ). From the parameter assumptions, the first line and the first term of the second line in

Equation (541) become dominant, leading to the result. Since s(j)2 (τ)(1− s
(j)
2 (τ)) dominates ρ−1s

(j)
1 (τ)(1− s

(j)
1 (τ)) and

s
(i)
t (τ)(1− s

(i)
t (τ)) for any t ∈ [T ] \ {1, 2}, which follows from F (τ), similarly to Equation (511), we have that for k ̸= j,
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(j)
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(j)
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wσ
2
ϵ ∥ν∥2∥µ∥2d2). (544)

The arguments for |Ik,j,2(τ)| and the upper bounds follow similarly, and substituting them into Equation (533) yields the
desired result for ρj,2(τ).

Finally, we analyze the update of ρj,t(τ) for j ∈ N− and t ∈ [T ] \ {1, 2}. Similarly, using Equations (536) to (539), there
exists a constant c′2 such that
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+ s
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+ (1− s
(j)
2 (τ)− s
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t (τ))2 · o
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≤ −s(j)2 (τ)s
(j)
t (τ) · c′2ρσ2

wσ
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In the first inequality, Equations (547) to (549) become dominant. By the choice of T1 in Equation (521), s(j)1 (τ) ≲ ρs
(j)
2 (τ)

and Equation (548) is bounded by other two terms. This leads to the last line. The same argument is applied to the upper
bound and inequalities for Ij,j,t(τ), we obtain the desired result.

E. Further Discussion
E.1. Multi-class Setting

In this section, we will see that the analysis in the multi-class setting is a straightforward extension of the binary setting
studied in the main paper.

Let K be the number of classes and WV = (ν1, . . . ,νK) ∈ Rd×K be the weight matrix. The model output is given by

f(X) = W⊤
V X

⊤S
(
XW⊤p

)
∈ RK . (551)

Let {µk}k∈[K] be signal vectors corresponding to each class, and we consider the data distribution P , which is modified for
the multi-class setting from Definition 3.1. Here, we assume the orthogonality and norm equality among signal vectors.
Furthermore, we assume the pretrained linear head satisfies cos θk > Θ(1), which is modified version of Equation (2), for
νk and the class signal µk, for all k ∈ [K].
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The concentration inequalities in Lemma B.1 are derived by taking a union bound for class numbers and appropriately
updating the parameter assumptions to depend on K. The proof of Theorem 4.1 is based on the analysis of the empirical
loss function on the training data S sampled i.i.d. from P . The empirical loss function when using cross-entropy loss with
softmax output is:

L̂(W,p) = − 1

n

n∑
i=1

log

 exp
(
f(X(i))Y (i)

)
∑

k∈[K] exp
(
f(X(i))k

)
 (552)

=
1

n

n∑
i=1

log

(
K∑

k=1

exp
(
(νk − νY (i))

⊤
X(i)⊤S

(
X(i)W⊤p

)))
. (553)

The derivatives of the empirical loss function are given by

∇W⊤L̂(W,p)

=
1

n

n∑
i=1

∑K
k=1 exp

(
(νk − νY (i))

⊤
X(i)⊤S

(
X(i)W⊤p

))
∇W⊤ (νk − νY (i))

⊤
X(i)⊤S

(
X(i)W⊤p

)
∑K

l=1 exp
(
(νl − νY (i))

⊤
X(i)⊤S

(
X(i)W⊤p

)) (554)

=
1

n

n∑
i=1

K∑
k=1

X(i)⊤
(
diag(S(X(i)W⊤p))− S(X(i)W⊤p)S(X(i)W⊤p)⊤

)
X(i) (νk − νY (i))p⊤∑K

l=1 exp
(
(νl − νk)

⊤
X(i)⊤S

(
X(i)W⊤p

)) , (555)

and

∇pL̂(W,p)

=
1

n

n∑
i=1

∑K
k=1 exp

(
(νk − νY (i))

⊤
X(i)⊤S

(
X(i)W⊤p

))
∇p (νk − νY (i))

⊤
X(i)⊤S

(
X(i)W⊤p

)
∑K

l=1 exp
(
(νl − νY (i))

⊤
X(i)⊤S

(
X(i)W⊤p

)) (556)

=
1

n

n∑
i=1

K∑
k=1

WX(i)⊤
(
diag(S(X(i)W⊤p))− S(X(i)W⊤p)S(X(i)W⊤p)⊤

)
X(i) (νk − νY (i))∑K

l=1 exp
(
(νl − νk)

⊤
X(i)⊤S

(
X(i)W⊤p

)) . (557)

Since we have

−1∑K
l=1 exp

(
(νl − νk)

⊤
X(i)⊤S

(
X(i)W⊤p

)) =
−1

1 +
∑

l∈[K]\{k} exp
(
(νl − νk)

⊤
X(i)⊤S

(
X(i)W⊤p

)) , (558)

this term corresponds to ℓ′i in Equations (9) and (12). Under the scale condition of the linear head, this term becomes

constant order as discussed in Lemma C.9. Additionally, using
∑K

k=1 (νY (i) − νk) = K
(
νY (i) − 1

K

∑
k∈[K] νk

)
, we can

confirm that Equations (555) and (557) correspond to Equations (9) and (12). The remaining proof is based on the equations
of gradient updates and the results of concentration inequalities; therefore, the statement essentially does not change in the
multi-class case.

E.2. Head Optimization

In this section, we provide further discussion on Equation (2) in our problem setting. For the sake of generality, we consider
the K-class classification setting following Appendix E.1.

The problem setting in Equation (2) specifies the alignment between the classification head ν and the class signals. It is
necessary to appropriately assign token scores, which represent the desirability of each token for solving the task, and
to formulate the token selection problem. Since the analysis in this paper can generally be interpreted as an analysis of
token selection dynamics under fixed token scores, our result may provide broader insights into attention mechanism across
different problem settings, data and model architecture settings. However, it is an interesting question to what extent the
problem setting in Equation (2) is justified from the perspective of practical scenarios.
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In the following proposition, we show that the gradient direction of the expected risk at zero initialization of the weights
forms an equiangular tight frame (ETF) with class vectors (Papyan et al., 2020). This corresponds to the most extreme
case of the alignment condition between the linear head and the class vectors described in Equation (2). Note that the
signal vectors have equal lengths and orthogonality from the definition of our data model. In Definition 3.1, we assumed
that among the weakly relevant tokens, there was only one token for each class different from the true class, namely the
confusing tokens. Here, we assume a more general setting that each weakly relevant token xu aligns with a class k uniformly
sampled from [K], that is, xu = ρµk + ϵu for u ∈ W .

Proposition E.1. Suppose that the weights p, W, and WV are initialized to zero. We also consider a generalized version
of the data model in Definition 3.1, where each weakly relevant token aligns with a class k uniformly sampled from [K].
Then, the gradient descent direction of the expected risk for WV forms an ETF geometry consisting of the signal vectors,
i.e., we have

− (∇WV
L(WV = 0))

⊤ ∝
(
IK − 1

K
1K1⊤

K

)
(µ1, . . . ,µK)

⊤
, (559)

where L(WV ) := E(X,Y )∼P

[
L̂(WV )

]
.

Proof. Taking the gradient of Equation (553), the gradient of expected loss at WV = 0 is given by:

−∇νk
L (WV = 0) = −E(X,Y )∼P

 ∑
k′∈[K]

∇νk
(f(X)k′ − f(X)Y )∑

c∈[K] exp
(
(νc − νk′)

⊤
X⊤S

(
XW⊤p

))∣∣∣∣∣
WV =0

 (560)

= − 1

K
E(X,Y )∼P

[
1

T
X⊤1 · (1−K1k=Y )

]
(561)

= − 1

KT

(
1

K
(1−K) · E

[∑
t

xt | Y = k

]
+
K − 1

K
E

[∑
t

xt | Y ̸= k

])
(562)

=
K − 1

K2T

(
E

[∑
t

xt | Y = k

]
− E

[∑
t

xt | Y ̸= k

])
, (563)

where we changed the order of gradient and integral in the first line, and in the second equality, we denote by 1A the
indicator function which returns 1 if the event A is satisfied and otherwise returns 0. The third line follows that Y ∗ is
sampled from a uniform distribution over [K], and label noise is added to different labels uniformly.

Let µ̄ be the mean of class signals
∑

k∈[K] µk/K. We have

E

[∑
t

xt | Y = k

]
= (1− η)E

[∑
t

xt | Y ∗ = k

]
+

η

K − 1

∑
k′∈[K]\{k}

E

[∑
t

xt | Y ∗ = k′

]
(564)

= (1− η)

(
µk +

|W|
T
ρµ̄

)
+

η

K − 1

∑
k′∈[K]\{k}

(
µk′ +

|W|
T
ρµ̄

)
(565)

= (1− η)µk +
η

K − 1
(Kµ̄− µk) + |W|ρµ̄ (566)

=

(
1− K

K − 1
η

)
µk +

(
K

K − 1
η + |W|ρ

)
µ̄, (567)
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Figure 5: Heat-map of train loss and test loss under different signal norm ∥µ∥2 and the dimension d, after 1000 iterations.
The yellow color indicates a higher loss value. The model and data follow the setup in our analysis.

where we used the definition of our data model. Therefore, Equation (563) leads to

−∇νk
L (WV = 0) =

K − 1

K2T

{(
1− K

K − 1
η

)
µk +

(
K

K − 1
η + |W|ρ

)
µ̄

− 1

K − 1

∑
k′∈[K]\{k}

((
1− K

K − 1
η

)
µk′ +

(
K

K − 1
η + |W|ρ

)
µ̄

)}
(568)

=
K − 1

K2T
·
(
1− K

K − 1
η

)(
µk − 1

K − 1
(Kµ̄− µk)

)
(569)

=
K − 1

K2T

(
1− K

K − 1
η

)
K

K − 1
(µk − µ̄) . (570)

Consequently, we have −∇νk
L (WV = 0) ∝ µk − µ̄, which concludes the proof.

This proposition is the result for the case of zero initialization. However, by taking the variance of the initialization
sufficiently small, as in Assumption A8, similar alignment with the class signal can be achieved under random initialization.

While we have considered the gradient of the idealized expected loss, it is natural to ask about the gradient of the empirical
loss. When using the same training set S as in the main theorem, ν contains the noise ϵ

(i)
t from the training examples, and

thus the arguments in Lemma B.12 cannot be applied, meaning that the same result does not hold. This is because noise
memorization occurs even in the head, which is outside the focus of our study on token selection. On the other hand, if we
use a different training set S′, it is possible to appropriately modify the argument and obtain results in the main theorem.
Regarding the class signal, we can show that ν⊤µk ≳ ∥µ∥22 as in this proposition. However, when the input noise is large,
specifically when σϵ

√
d ≳ ∥µ∥2, the condition k · cos θk > Θ(1) in Equation (2) may no longer hold. Nevertheless, in the

discussion of token scores Lemma B.12, it suffices to show that ν⊤µk dominates ν⊤ϵ
(i)
t , which indeed holds under the

parameter assumptions in Section 3.5.

F. Additional Experimental Results
F.1. Additional Synthetic Experiments

Heat-map experiments. We conducted another synthetic experiment when varying d and ∥µ∥2. Figure 5 shows the train
and test loss when varying the dimension d and the signal norm ∥µ∥2 under the same setting as in Section 5 in the main text.
This figure shows that the balance between the dimension and the signal norm is significant for achieving low train and test
loss. Additionally, while our theoretical results in Theorem 4.1 propose the boundary between not-overfitting and benign
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(a) Large noise setting: d = 5000, ∥µ∥2 =
5. Final training accuracy is 1.0 and test
accuracy is 0.49 (Harmful overfitting).

(b) Balanced setting: d = 2000, ∥µ∥2 =
20. Final training accuracy is 1.0 and test
accuracy is 0.99 (Benign overfitting).

(c) Large signal setting: d = 1000, ∥µ∥2 =
100. Final training accuracy is 1.0 and test
accuracy is 1.0 (Benign overfitting).

Figure 6: Dynamics of softmax probability for one-layer transformer encoder. The top represents a clean sample, while the
bottom represents a noisy sample. From left to right, the configurations of d and ∥µ∥2 follow those used in Figure 3. While
the right setting in Figure 3 corresponds to the not-overfitting case, it now shows benign overfitting.

overfitting as SNR2 = Θ(n−1), the training loss boundary in the left figure approximately forms a quadratic curve. This
corresponds to that the ratio between d and ∥µ∥22 remains constant at the boundary, with a fixed training size n.

One-layer transformer encoder. We also conducted experiments under a more practical model setting using the same
synthetic data. Specifically, we used a one-layer transformer encoder with a single-head attention. Compared to the model in
the analysis, this model additionally incorporates non-linear feedforward layers, normalization, and skip-connections. The
additional experiments here aim to provide further insights into the behavioral differences arising from joint optimization,
rather than to support our analytical results. We first examined the token selection dynamics in the same way as in Figure 3,
and the results are presented in Figure 6. The main findings are as follows:

• Similar benign overfitting was observed depending on the relationship between d and ∥µ∥2. In a low-SNR setting,
harmful overfitting was also observed in Figure 6a. However, Figure 6c shows that the model exhibited benign
overfitting instead of not overfitting. This aligns with the intuition that increasing model capacity facilitates fitting to
the training data.

• In the benign overfitting case, token selection for noisy samples progresses more rapidly. The bottom in Figure 6b
shows that the softmax probability assigned to token x2, which most aligns to label noise, increases more rapidly than
that of Figure 3b. The ability to learn token scores dynamically enables a cooperative interaction between the token
selection mechanism and the feedforward layers, which could lead to faster token selection, as shown in the figure.
Note also that, unlike the setting analyzed in the main text, fitting the label noise does not necessarily require selecting
x2, and a different token is selected depending on the initialization.

Furthermore, Figure 7 shows the results of a heatmap-based experiment analogous to Figure 5. For the training loss, we
observed very small values within the plotted range of ∥µ∥2 and d, which aligns with the observation of benign overfitting
instead of not-overfitting in Figure 6c. As for the test loss, we obtained a similar boundary structure, but with clearer
separation between the well-generalizing and poorly-generalizing regions. We suppose that this difference is due to the two
main factors: i) the ability to learn output scaling and ii) the ability to distribute the effect of noise memorization not only
within the attention mechanism but also to the feedforward layer.
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Figure 7: Heat-map of train loss and test loss under different signal norm ∥µ∥2 and the dimension d, after 1000 iterations.
The yellow color indicates a higher loss value. The data follows the analytical setup in this paper, but the model used is a
one-layer transformer encoder. For comparison with Figure 5, the range of the heat map is aligned with that of Figure 5.

Table 4: Details of image datasets.

Dataset Number of Class Input Size Training Size for Classifier Head

MNIST 10 28× 28× 1 10000
CIFAR-10 10 32× 32× 3 10000

PneumoniaMNIST 2 28× 28× 1 3000
BreastMNIST 2 28× 28× 1 200

Table 5: Details of natural language datasets.

Dataset Number of Class Average Word Count Training Size for Classifier Head

AG-news 4 10 10000
TREC 6 10 3000

F.2. Additional Information for Real-World Experiments

In this section, we provide the additional information for the experimental setup. We prepared the pre-trained ViT
(Dosovitskiy et al., 2021) and BERT (Devlin et al., 2018) models using huggingface transformer library (Wolf et al., 2020).
These models use the default configuration; specifically, they consist of 12 attention layers, the embedding dimension is set
to 768, and the hidden dimension of the feed-forward layers is set to 3072. Dropout was not performed in any layers during
the following training. Since the classifier head is initialized, we first train only the classifier head on a subset of the training
data without label noise to align with Equation (2). The sizes of these sub-datasets vary due to the original dataset size, as
summarized in Tables 4 and 5. The experiments in Section 5 and Appendix F.3 use training data that is a different split
from the one used in the classifier head pertaining, and training is performed by initializing and updating only the attention
weights in the final layer. As explained in Section 5, this setup is designed to align with our analytical setting as closely as
possible, treating the pretrained model up to the final layer as a feature extractor, and training single-layer attention weights
on top of these features. It should be noted, however, that the data model of course does not follow our analytical setups,
and differences such as normalization, skip connections, and multi-head attention remain. During the experiments, the
AdamW optimizer (Loshchilov & Hutter, 2019) without weight decay was used with a learning rate of 5e−5, along with
linear warmup and learning rate decay. The used datasets are described as follows.

Image Dataset We conducted experiments on image classification on the following four datasets. The MNIST (LeCun
et al., 2010) dataset consists of gray-scale 28× 28 images with 10 classes. Each image is copied to form a 3-channel input
and fed to the common image processor for the pre-trained ViT model. The CIFAR-10 (Krizhevsky et al., 2009) is the
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Table 6: Training loss and test accuracy when only the final attention query-key weights are trained on a sub-dataset for
2000 epochs, sufficiently long time. The results show the average over three different runs with the standard deviation.

(a) Label noise η = 0.0.

Dataset Eval
Training Size n

20 200 1000

MNIST
train 0.00±0.00 0.00±0.00 0.00±0.00

test 90.8±1.5 91.8±0.1 93.9±0.1

CIFAR-10
train 0.00±0.00 0.00±0.00 0.00±0.00

test 96.0±0.1 95.9±0.1 96.3±0.1

Pneumonia
MNIST

train 0.00±0.00 0.00±0.00 0.00±0.00

test 80.4±3.1 79.0±2.0 81.5±0.9

Breast
MNIST

train 0.08±0.02 0.12±0.01 −
test 74.4±1.4 78.4±1.1 −

AG-news
train 0.00±0.00 0.00±0.00 0.00±0.00

test 84.0±0.3 85.9±0.5 85.5±0.3

TREC
train 0.00±0.00 0.00±0.00 0.00±0.00

test 81.4±0.3 78.7±0.5 82.8±0.4

(b) Label noise η = 0.2.

Dataset Eval
Training Size n

20 200 1000

MNIST
train 0.00±0.00 0.04±0.01 0.14±0.02

test 84.0±7.2 87.3±1.2 88.4±0.1

CIFAR-10
train 0.18±0.07 0.18±0.01 0.33±0.02

test 95.5±0.4 94.3±0.3 93.2±0.1

Pneumonia
MNIST

train 0.03±0.04 0.02±0.00 0.07±0.00

test 79.2±7.0 81.2±2.2 82.5±0.7

Breast
MNIST

train 0.12±0.03 0.17±0.02 −
test 74.8±2.0 76.3±2.3 −

AG-news
train 0.00±0.00 0.00±0.00 0.00±0.00

test 82.5±0.7 77.8±0.6 69.6±1.1

TREC
train 0.24±0.33 0.11±0.01 0.12±0.05

test 79.2±2.4 73.3±0.8 69.1±1.7

dataset composed of 32× 32 color images in 10 classes. These classes are mainly made up of vehicles and animals. Finally,
we focused on the MedMNIST (Yang et al., 2023) dataset, specifically using PneumoniaMNIST and BreastMNIST, which
are tasks for disease detection. Both datasets consist of 28× 28 gray-scale images similar to MNIST, and they are binary
classification settings based on the presence or absence of disease. Table 4 summarizes the details of these datasets.

Furthermore, we provide comments on how our data model, based on relevant, weakly relevant, and irrelevant tokens
defined in Definition 3.1, corresponds to the input images. For example, consider the case of cancer detection using medical
images such as MedMNIST. In this case, the patches directly indicating cancer, such as tumors or lesions, can considered
relevant tokens. The patches showing enlarged lymph nodes or inflammatory signs, which often co-occur with cancer but
are not definite, can be categorized as weakly relevant tokens. Meanwhile, the patches showing normal tissue or background
anatomy, which are irrelevant to the task, correspond to irrelevant tokens.

Natural Language Dataset We conducted experiments on sentence classification in natural language in addition to image
data. The AG-news (Zhang et al., 2015) is the dataset for the topic classification of news articles. It has four largest classes:
“world”, “sports”, “business”, and “science/technology”. The TREC (Li & Roth, 2002) dataset is the dataset for question
classification in 6 classes. Each question is labeled based on the content and the question type. The details of these datasets
are summarized in Table 5. Note that the text data can also correspond to the data model in the paper based on the relevance
of each word to the class, similar to the case of images.

F.3. Additional Real-World Experiments

In this section, we provide additional results under the real-world experiment setting described in Appendix F.2.

Table 6 presents results corresponding to the experiment in Table 2 of the main text, where the label noise level η = 0.1
is varied to η = 0.0 and η = 0.2. In the absence of label noise, the model fits the data across all settings except for
BreastMNIST. Notably, in the case of AG-news, where increasing the sample size n under η = 0.1 led to worse test accuracy,
no such accuracy degradation is observed when η = 0.0. The case of η = 0.2 shows similar trends to those observed with
η = 0.1 in the main text.

Next, Figure 8 presents the results as the label noise ratio is varied continuously from η = 0.0 to 0.2. In datasets such as
CIFAR10 and TREC, the training loss increases as the label noise increases, whereas in MNIST, PneumoniaMNIST, and
AG-news, the model maintains relatively good fitting across all noise levels. Regarding test loss, we observe that language
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Figure 8: Heat-map of train loss and test loss when the label noise ratio η is varied from 0.0 to 0.2. The training size n is
200, and the training setup follows that in Appendix F.2. The yellow color indicates a higher loss value.

Figure 9: Dynamics of the maximum softmax probability at the position of the CLS token in the final attention layer. The
experimental setup follows the real-world experiment described in Appendix F.2, with a label noise level η = 0.1.

datasets such as AG-news and TREC are relatively more difficult to predict, and the increase in test loss is more severe as
the noise ratio increases.

Finally, Figure 9 illustrates the evolution of the maximum softmax probability at the position of the CLS token in the
real-world experimental setting. For all datasets, the softmax probability increases as training progresses. In MNIST and
PneumoniaMNIST, the model tends to focus on a single token, whereas in other datasets, attention does not necessarily
concentrate on a single token. This behavior may be attributed to differences in the data distribution and architecture, such
as skip connections and non-linear feed-forward layers, which are not captured by our analytical setting.
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