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ABSTRACT

Pre-trained models are stepping stones for modern machine learning systems, but
how to efficiently extract, reuse, and steer their knowledge for new tasks is an area of
research with still several open questions. State-of-the-art Task Arithmetic solutions
are strongly tied to model linearization which leads to computational bottlenecks
during training and inference, and potentially neglect essential task dependencies.
In this work, we focus on the fine-tuning stage that defines task vectors and propose
TaLoS, a new approach based on sparse fine-tuning that strategically updates
only parameters expected to provide functional task localization. This efficiently
yields weight-disentangled models without the need for explicit linearization. We
present a thorough experimental analysis showing how our approach significantly
improves in training and inference efficiency while outperforming state-of-the-art
approaches in task addition and task negation. Our work offers a principled solution
to pre-trained model editing and paves the way to more cost-effective and scalable
machine learning systems for real-world applications.

1 INTRODUCTION

Pretrained models (Radford et al., 2021; Raffel et al., 2020; Brown et al., 2020) have become the
cornerstone of modern machine learning, demonstrating impressive capabilities in solving general
tasks and offering a wealth of reusable knowledge for downstream applications (Kirillov et al., 2023;
Touvron et al., 2023). However, while these models excel in general domains, they often require
fine-tuning to achieve optimal performance on specialized tasks or to align with user preferences.
While the high computational cost limits the development of large pre-training models only to a few
privileged research groups, fine-tuning is becoming increasingly democratized, thanks to efficient
techniques enabling model customization on more affordable consumer GPUs. Consequently, a new
paradigm has emerged where large companies and institutions publicly release pretrained models,
empowering users to leverage, parameter-efficient fine-tuning (PEFT) (Hu et al., 2022; Liu et al.,
2022; 2024), sparsity (Ansell et al., 2022; 2024), and quantization (Dettmers et al., 2024) to efficiently
adapt these models to their own data. This recent trend has fueled the growth of a rich ecosystem
of task-specific models, readily available on open platforms (Pfeiffer et al., 2020; Poth et al., 2023),
fostering collaborative knowledge building by enabling users to share, reuse, and combine specialized
modules for personal use (Raffel, 2023).
In this context, Task Arithmetic (Ilharco et al., 2023) has emerged as a promising framework for
scalable and cost-effective model editing. By directly manipulating the model’s parameters, or task
vectors, task arithmetic can induce functional changes such as combining functionalities, enhancing
performance on specific tasks, or even suppressing undesired behaviors. However, performing task
arithmetic in a decentralized and collaborative setting, where independently fine-tuned modules
are combined, presents significant challenges. One major challenge is the potential for unintended
interference between tasks (Yadav et al., 2023; Wang et al., 2024), where the addition or deletion of a
functionality disrupts performance on previously learned tasks. This interference can arise when the
fine-tuning process modifies parameters that are crucial for other tasks, leading to unexpected and
undesirable changes in the model’s behavior.
To address this, Ortiz-Jimenez et al. (2023) formalized the notion of task arithmetic and demonstrated
that weight disentanglement, where the model behaves as a composition of independently activated
localized components, is crucial for preventing interference. They further argued that explicit
linearization of the model during fine-tuning can preserve and enhance weight disentanglement, albeit
at the cost of increased computational overhead.
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In this work, we propose a novel approach that avoids the computational burden of explicit lineariza-
tion while still achieving robust task arithmetic. Our key insight is that sparse fine-tuning, that
selectively updates a small subset of the model’s parameters, can inherently induce linearized behavior
and promote weight disentanglement. We derive conditions for identifying the parameters that can be
safely updated while maintaining the model’s insensitivity to their changes on other tasks. Through
extensive empirical analyses and theoretical justification, we demonstrate that our approach effectively
promotes function localization, preventing interference between tasks and ensuring compatibility
between task vectors. This enables efficient and robust model editing through the simple addition and
subtraction of sparse task vectors, facilitating a more modular and collaborative approach.
We can summarize our main contributions as follows.
• We advance the field of task arithmetic by deriving a novel set of function localization constraints

that provide exact guarantees of weight disentanglement on linearized networks.
• We empirically observed that least sensitive parameters in transformer-based architectures pre-

trained on large-scale datasets can be consistently identified regardless of the task. We exploit this
regularity to satisfy the localization constraints under strict individual training assumptions.

• We introduce Task-Localized Sparse Fine-Tuning (TaLoS) that enables task arithmetic by jointly
implementing the localization constraints and inducing a linear regime during fine-tuning, without
incurring in the overheads of explicit network linearization.

Overall, our work addresses a critical gap in task arithmetic, providing a more complete and practical
framework for parameter-space model editing, targeting real-world applications.

2 RELATED WORKS

Sparsity & Parameter-Efficient Fine-Tuning. Model pruning and quantization are compression
strategies generally applied after training for efficient storage and inference of large models (Liang
et al., 2021). Research on pruning at initialization has also highlighted that model sparsification
can be performed before training by searching for subnetworks (lottery tickets, Frankle & Carbin
(2019)) that once trained can match the test accuracy of the original dense networks with a largely
reduced learning cost. More recently the attention has moved towards parameter-efficient fine-tuning
(PEFT) methods that reduce the number of trainable parameters that should be updated for adaptation.
Adapter layers (Houlsby et al., 2019) and prefix tuning (Li & Liang, 2021) are among the most
used techniques together with low-rank adaptation (LoRA, Hu et al. (2022)). The latter optimizes
rank decomposition matrices of the dense layers’ change during adaptation: it approximates model
updates while keeping the pre-trained weights frozen, thus fine-tuning the dense layers in a neural
network indirectly. Sparse masking approaches (Wortsman et al., 2020; Mallya et al., 2018; Mallya
& Lazebnik, 2018; Havasi et al., 2020) employ subnetworks for continual and multi-task learning
by leveraging sparsity. Other works, (Guo et al., 2021; Xu et al., 2021), explore sparse fine-tuning
strategies to improve training efficiency, often using the Fisher information matrix (Fisher, 1922;
Amari, 1996) for selecting important weights, as further explored by Sung et al. (2021); Ben Zaken
et al. (2022). In contrast, Liao et al. (2023); Ansell et al. (2024) focus on fine-tuning only the least
important parameters, aiming for minimal disruption of the original model. In the realm of sparse
weight addition, Ansell et al. (2022); Panda et al. (2024) investigate adding sparse weights, providing
a flexible and complementary approach to model composition.
Model Merging. The goal of model merging is to combine multiple task-specific models into a single
multitask model without performing additional training. This can be obtained by merging techniques
that avoid negative interferences among the separately learned parameters. Even when dealing
with fine-tuned models initialized from the same pre-trained model, simple parameter averaging is
not enough: existing approaches search for tailored re-weighting schemes that however tend to be
computationally demanding. RegMean (Jin et al., 2023) solves a local linear regression problem for
each individual linear layer in the model that requires transmitting extra data statistics of the same
size as the model and additional inference steps. Fisher Merging (Matena & Raffel, 2022) exploits
the Fisher information matrix that requires computing gradients with high memory costs. A recent
approach exploits extra unlabeled data to learn the model merging weights (Yang et al., 2024).
Task Arithmetic. Task arithmetic (Ilharco et al., 2023) has been recently introduced as a new
paradigm for editing models based on arithmetic operations over task-specific vectors obtained by
fine-tuning a fixed pre-trained model and then subtracting the pre-trained weights from the fine-tuned
ones. Such a definition of task vectors has been used also in the model merging literature with
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approaches that rely on various post-hoc heuristics to resolve overlap among redundant parameter
values and sign disagreements when merging (TIES, Yadav et al. (2023)), or after merging by
deactivating irrelevant model parts with binary masks (TALL-mask, Wang et al. (2024)). Other
approaches proposed to sparsify task vectors with either a random drop and re-scaling (Yu et al.,
2024) or with masks that eliminate weight outliers (Davari & Belilovsky, 2024). However, task
arithmetic goes beyond model merging as it aims at adding to or deleting knowledge and capabilities
from a model in a modular and efficient manner. The goal is retaining and possibly improving
separate task performance while also performing unlearning when needed. Theoretical foundations
about the inner functioning of task arithmetic were offered by Ortiz-Jimenez et al. (2023), revealing
how the weight disentanglement that arises during pre-training is the crucial factor that makes it
effective. The authors of that work focused on the fine-tuning stage. Specifically, they proposed to
preserve the disentanglement property by linearizing the models and fine-tuning in the tangent space.
However, this solution is computationally expensive and may cause single-task performance drops
(Ortiz-Jiménez et al., 2021). To reduce the costs of linearization, Tang et al. (2024) proposed to use
linearized low-rank adapters during fine-tuning.
Our work fits in the context of task arithmetic and targets the fine-tuning stage that determines task
vectors by leveraging strategies from the pruning and sparse fine-tuning literature with the design of
a tailored parameter update selection criterion that promotes weight disentanglement.

3 BACKGROUND

Consider a neural network f with parameters θ ∈ Rm, pre-trained on a mixture of tasks P to obtain
parameters θ0. We are interested in fine-tuning the pre-trained model f(·,θ0) on a set of T distinct
tasks, with associated non-intersecting task supports D = {⋃T

t=1Dt} ⊆ DP (i.e. ∀t, t′ if t ̸= t′ then
Dt ∩ Dt′ = ∅).
In this setting, the core idea behind task arithmetic introduced in Ilharco et al. (2023), is to represent
the knowledge acquired for each task t as a task vector τt = θ∗

t − θ0, obtained by subtracting
the initial parameters from the fine-tuned parameters. Intuitively, this vector captures the direction
and magnitude of change in the model’s weight space induced by learning task t. By manipulating
tasks via task arithmetic operations we can effectively add, combine, or remove knowledge in the
pre-trained model producing actual functional behaviors directly in the parameters space.
As formalized by Ortiz-Jimenez et al. (2023), a network f is said to satisfy the task arithmetic
property around θ0 if it holds

f

(
x,θ0 +

T∑
t=1

αtτt

)
=

{
f(x,θ0 + αtτt) x ∈ Dt

f(x,θ0) x /∈ ⋃T
t=1Dt

(1)

with scaling factors (α1, ..., αT ) ∈ A ⊆ RT . This equation essentially states that adding a linear
combination of task vectors to the initial parameters θ0 is equivalent to selectively applying each
task-specific modification to the model. In other words, the performance of the pre-trained model on
different tasks can be modified independently if the task vector τt does not modify the output of the
model outside Dt.
To satisfy the task arithmetic property, Ortiz-Jimenez et al. (2023) states that the model f must
exhibit a form of weight disentanglement with respect to the set of fine-tuning tasks, i.e., f should
behave as a composition of spatially localized components corresponding to functions that vanish
outside the task’s data support. Equation 1 can be re-written as

f

(
x,θ0 +

T∑
t=1

αtτt

)
= f(x,θ0)1

(
x /∈

T⋃
t=1

Dt

)
+

T∑
t=1

f(x,θ0 + αtτt)1(x ∈ Dt) (2)

= g0(x) +

T∑
t=1

gt(x;αtτt) . (3)

where gt(x, αtτt) = 0 for x /∈ Dt and t = 1, ..., T , and g0(x) = 0 for x ∈ ⋃T
t=1Dt, capturing the

base behavior of the pre-trained model on inputs outside any of the task support.
Previous works (Tang et al., 2024; Ortiz-Jimenez et al., 2023) have sought to achieve task arithmetic
by focusing on linearized neural networks (Ortiz-Jiménez et al., 2021), as they explicitly constrain
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Figure 1: Pruning parameters with low sensitivity. The heatmaps illustrate the effect of pruning the
parameters with the lowest sensitivity (measured by Ex∈Dt

[|∇θf(x,θ0)|]) on different tasks across
various pre-trained models. Each grid compares the accuracy ratios for models after pruning, with
the rows representing the task Dt used to identify the parameters with the lowest sensitivity and the
columns showing the model’s performance on each task after pruning those parameters. The accuracy
ratios are normalized by the model’s performance before pruning. The sparsity ratio (10%) was found
as the maximal sparsity that minimally influenced the model’s output on the mask calibration dataset.

f to be represented as a linear combination of functions. Specifically, the linearization of f can be
achieved by its first-order Taylor expansion centered around θ0:

f(x,θ0 + αtτt) ≈ flin(x,θ0 + αtτt) = f(x,θ0) + αtτ
⊤
t ∇θf(x,θ0) . (4)

The model flin(x,θ0 + τt) represents a linearized neural network. For this type of networks, when
combining together multiple task vectors, it holds

flin

(
x,θ0 +

T∑
t=1

αtτt

)
= f(x,θ0) +

T∑
t=1

αtτ
⊤
t ∇θf(x,θ0) . (5)

While Equation 5 appears to closely resemble the weight disentanglement condition presented in
Equation 3, this similarity is superficial unless each term αtτ

⊤
t ∇θf(x,θ0) corresponds to a function

that vanishes outside its task data support (i.e. it is localized within Dt). In the following, we will
demonstrate how to efficiently impose a condition of function localization.

4 TASK-LOCALIZED SPARSE FINE-TUNING

To formalize the condition of function localization for task arithmetic, we begin by revisiting the
linear approximation of f used in linearized fine-tuning. For Equation 5 to satisfy the weight
disentanglement conditions in Equation 3, we must ensure that τ⊤

t ∇θf(x,θ0) is active (non-zero)
only for inputs within the corresponding task support, i.e., x ∈ Dt. This requirement can be expressed
as a set of constraints:

∀x ∈ Dt′ ̸=t, τ⊤
t ∇θf(x,θ0) = 0 . (6)

They ensure that when updating the model’s weights to learn task t, this does not affect how the
model processes data from other tasks. To understand this intuitively, remember that ∇θf(x,θ0)
measures how much each parameter influences the model’s output for a given input x. Parameters
that have a strong impact on the model’s output should remain close to their initial values, so to
prevent them from affecting other tasks when combined linearly.
A direct implementation of Equation 6 poses a significant practical challenge. Enforcing the constraint
∀x ∈ Dt′ requires access to data from all other tasks (t′ ̸= t) during the fine-tuning process for task t.
However, this data is typically unavailable in realistic scenarios.
To solve this issue, we exploit the fact that the pre-trained model has already been exposed to a
diverse set of tasks, including those similar to the T tasks we are considering. This is consistent with
our initial assumption that D = {⋃T

t=1Dt} ⊆ DP . Under this assumption, we hypothesize that it is
possible to efficiently constrain the fine-tuning of the parameters on task t and prepare the model for
task arithmetic by using Dt alone.
Function localization under individual training constraints. We hypothesize that pre-trained
models obtained on a large corpus of data exhibit shared structure across seemingly distinct tasks and
this is reflected in the sensitivity of certain parameters to multiple tasks. We empirically confirm this
observation by analyzing the pre-trained model’s gradients on each task t and found that parameters
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that have low impact on the network’s output, where ∀x ∈ Dt, ∇θj
f(x,θ0) ≈ 0 for j ∈ 1, . . . ,m,

are consistently shared across tasks.
To demonstrate this phenomenon, we conduct a pruning experiment, illustrated in Figure 1. We first
identify the parameters with the lowest ∇θj

f(x,θ0) using data only from task t. We then prune
these parameters from the network and evaluate its performance on all tasks, including t and other
tasks t′ ̸= t. The results show that the pruned model retains its zero-shot performance across all tasks,
indicating that seemingly unimportant parameters for task t are also not crucial for other tasks and
they can be effectively identified independently on the specific task (further validation and discussion
of these findings in Appendix A.7).
This observation has important implications for achieving function localization as it allows us to
estimate the parameters satisfying constraints for task arithmetic in Equation 6 by simply using data
from the available task t. Hence, to prevent interference between tasks and enable task arithmetic,
we propose a selective Task-Localized Sparse Fine-Tuning, (TaLoS) a procedure through which we
constrain the parameters with the largest ∇θjf(x,θ0) to remain constant and update the only the
ones where∇θjf(x,θ0) ≈ 0. This effectively prevents significant changes to the parameters that are
highly sensitive to multiple tasks. By fine-tuning only the remaining parameters, we can adapt the
model to the new task while minimizing the risk of interference when performing task arithmetic.
To implement our sparse fine-tuning process, we introduce a binary mask c ∈ {0, 1}m that controls
which parameters are updated during fine-tuning. This mask allows us to modify the update rule of
any gradient-based optimization algorithm (e.g. SGD) to selectively update only certain parameters.
Specifically, at each i-th iteration, the update rule becomes:

θ(i) = θ(i−1) − γ[c⊙∇θL(f(x,θ(i−1)), y)] , (7)
where γ is the learning rate, L is the loss function, and ⊙ represents the element-wise product.
To achieve function localization, we want to selectively update the elements of τt corresponding to
parameters that have minimal impact on the model’s output for other tasks. As discussed earlier, these
are the parameters with gradient components close to zero in ∇θf(x,θ0). Therefore, we calibrate
the mask c using the score s = Ex∈Dt

[|∇θf(x,θ0)|] ∈ Rm, which reflects the average sensitivity
of each parameter to the input data. Using the indices of the k least sensitive parameters according
to s, we set the corresponding elements in c to 1, allowing these parameters to be updated during
fine-tuning. The remaining elements in c are set to 0, effectively freezing those parameters. Note
that the estimation of c may be susceptible to gradient noise (Tanaka et al., 2020). Thus, we follow
standard Pruning-at-Initialization practices (Tanaka et al., 2020) and iteratively refine c in multiple
rounds (we provide full details of TaLoS, alongside its pseudocode in Appendix A.2). This strategy
ensures that we fine-tune the parameters that are least likely to cause interference between tasks,
promoting function localization and enabling task arithmetic.
This construction ensures that the contribution of the fine-tuned parameters to the change in the
model’s output is bounded. Specifically, we have

max
x∈Dt

|c⊙ (τ⊤
t ∇θf(x,θ0)| ≤ ∥c⊙ τt∥ · max

x∈Dt

∥c⊙∇θf(x,θ0)∥ ≤ k2 · µ · η . (8)

Here, η = maxx|∇θk
f(x,θ0)| represents the magnitude of the k-th largest gradient component,

effectively capturing the maximum sensitivity of the fine-tuned parameters to input data, and µ =
maxj |cj ⊙ τtj | represents the maximum change in any of the updated parameters during fine-tuning.
The inequality 8 provides an upper bound on the quantity that Equation 6 aims to cancel to avoid task
interference, thus indirectly controlling the degree of function localization. By selecting a smaller
value of k, we reduce the number of parameters being updated and consequently lower this bound.
As detailed in Appendix A.1, we tuned k at the task level, resulting in optimal sparsity ratios between
90% and 99%. Further ablations on the effect of k are reported in Appendix A.5.
Sparsity promotes linear behavior. As shown in Section 3, the constraints in Equation 6 are
derived under the assumption of linearized behavior, which is often achieved through explicit network
linearization Ortiz-Jimenez et al. (2023) and can be computationally expensive. We highlight that our
sparse fine-tuning formulation inherently promotes linearized behavior without requiring explicitly
linearizing the network. This is observed when the change in network output post-training can be
accurately approximated by its first-order Taylor expansion (Malladi et al., 2023b; Ortiz-Jimenez et al.,
2023). Thus, explicit network linearization becomes unnecessary, reducing computational overhead
while maintaining the benefits of linearized fine-tuning. Mathematically, as ∥θt−θ0∥2 = ∥τt∥2 → 0

f(x,θ0 + τt) = f(x,θ0) + τ⊤
t ∇θf(x,θ0) +O(∥τt∥2), (9)
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Provided that the gradient updates of the unmasked parameters are similar in magnitude to the ones of
full fine-tuning, sparse fine-tuning naturally leads to a smaller ∥τt∥2 as it involves updating a limited
number of parameters relative to the overall size of the model (Yu et al., 2024; Yadav et al., 2023;
Ortiz-Jimenez et al., 2023). This inherent property of sparse fine-tuning increases the likelihood that
the linearization condition will hold, potentially rendering explicit network linearization unnecessary.
Indeed, we follow Ortiz-Jimenez et al. (2023) to experimentally confirm this claim, as discussed in
Appendix A.4 (see also Figure 6). As a result, the set of constraints in Equation 6 are applicable to
our method, without incurring the computational overhead of explicit linearization. Note that the
quality of the linear approximation can also be theoretically analyzed, as was demonstrated by several
studies in the neural tangent kernel literature Jacot et al. (2018); Lee et al. (2019); Arora et al. (2019);
Mei et al. (2019).

5 EXPERIMENTS

Our experimental evaluation focuses on the established Task Arithmetic framework outlined by
Ilharco et al. (2022; 2023), specifically targeting Task Addition and Task Negation, encompassing both
language and vision domains. In the following we describe the baselines we compared our TaLoS
against. Further details regarding the experimental setups, the relevant metrics, the implementation of
the experiments, as well as the data and architectures used, are deferred to Appendix A.1.
Baselines. We consider three families of methods as references. (i) Full fine-tuning methods aim to
produce task vectors τt by fine-tuning all the parameters of the network. Specifically, Non-linear
fine-tuning (FT) (Ilharco et al., 2022; 2023) minimizes a standard cross-entropy loss, while Linearized
FT fine-tunes the linearized counterpart of the network, as in Ortiz-Jimenez et al. (2023). (ii) Post-hoc
methods refine τt after it has been obtained via fine-tuning (as prescribed by the respective methods,
we apply these post-hoc approaches on non-linear FT checkpoints). TIES-Merging (Yadav et al.,
2023) reduces redundancy in τt by magnitude pruning, keeping only the top-k highest magnitude
parameters, and addressing sign conflicts when merging task vectors. TALL Mask / Consensus
(Wang et al., 2024) identifies task-specific parameters in τt by comparing them to the sum of task
vectors. It then merges multiple task vectors by using an element-wise OR operation between masks
to further identify and remove conflicting parameters. DARE (Yu et al., 2024) randomly sparsifies
τt to eliminate redundancy and upweights the remaining parameters based on the percentage that
was removed. Breadcrumbs (Davari & Belilovsky, 2024) reduces redundancy using magnitude
pruning and eliminates weight outliers within the retained top-k parameters. Although these methods
have been presented for task addition, we also test their ability of handling task negation. (iii)
Parameter-efficient fine-tuning (PEFT) methods aim to obtain task vectors by efficiently fine-
tuning the network, using far fewer resources compared to full fine-tuning. We compare against
L-LoRA (Tang et al., 2024), which applies linearized low-rank adapters to the Q and V matrices in
self-attention layers. This approach was specifically designed for Task Arithmetic and offers superior
performance over standard LoRA without adding extra computational costs. For sparse fine-tuning,
we use LoTA (Panda et al., 2024), a method that leverages the Lottery Ticket hypothesis (Frankle
& Carbin, 2019) to select the top-k parameters when sparsely fine-tuning the network, making it
suitable for model merging.

5.1 TASK ARITHMETIC RESULTS

We thoroughly evaluate TaLoS on its ability to derive task vectors that enable model editing through
simple arithmetic operations on model parameters.
Task Addition. In this benchmark, the sum of the task vectors

∑
t αtτt is added to a pre-trained

checkpoint to produce a multi-task model f(·,θ0 +
∑

t αtτt). The success is measured in terms of
the maximum average accuracy over the different tasks. As done by Ortiz-Jimenez et al. (2023); Tang
et al. (2024), we also report the average normalized accuracy over the tasks. The normalization is
performed with respect to the single-task accuracies achieved by the model fine-tuned on each task
(see Appendix A.1). The results in Table 1 demonstrate the effectiveness of our proposed method
across various model scales and modalities. TaLoS consistently outperforms existing approaches,
with evident improvements in normalized accuracy of 1.88% to 4.65% over the second best method
across all model variants. Such a metric provides insights into the outstanding ability of TaLoS to
maximize the benefits of model combination while mitigating interference.
For vision models, TaLoS exhibits strong performance across all scales, with absolute accuracy
gains of up to 2.61% over the closest competitor. In NLP, TaLoS maintains its leading position,
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Method ViT-B/32 ViT-B/16 ViT-L/14 T5-Small T5-Base T5-Large
Abs. (↑) Norm. (↑) Abs. (↑) Norm. (↑) Abs. (↑) Norm. (↑) Abs. (↑) Norm. (↑) Abs. (↑) Norm. (↑) Abs. (↑) Norm. (↑)

Pre-trained (Zero-shot) 47.72 - 55.83 - 65.47 - 55.70 - 53.51 - 51.71 -
Full Fine-tuning Methods

Non-linear FT (Ilharco et al., 2023) 71.25 76.94 72.85 77.17 86.09 90.14 65.04 87.98 74.20 90.63 75.37 85.25
Linearized FT (Ortiz-Jimenez et al., 2023) 76.70 85.86 80.01 87.29 88.29 93.01 64.13 86.62 74.69 92.12 69.38 78.95

Post-hoc Methods
TIES-Merging (Yadav et al., 2023) 74.79 82.84 77.09 82.13 88.16 92.56 62.53 94.83 70.74 92.37 74.30 86.36
TALL Mask / Consensus (Wang et al., 2024) 74.55 80.27 74.92 79.12 86.89 90.81 63.61 95.34 73.31 91.60 77.31 87.84
DARE (Yu et al., 2024) 70.88 76.59 73.08 77.51 85.95 90.04 63.89 89.09 74.26 91.49 76.20 86.51
Breadcrumbs (Davari & Belilovsky, 2024) 69.39 79.51 71.93 78.94 84.78 92.97 61.19 92.23 73.89 92.70 73.41 87.07
Parameter-efficient Fine-tuning Methods
L-LoRA (Tang et al., 2024) 78.00 86.08 80.61 85.83 87.77 91.87 60.29 94.46 68.76 91.98 72.10 87.78
LoTA (Panda et al., 2024) 64.94 74.37 79.11 83.97 87.66 91.69 64.21 87.92 74.31 92.25 75.84 88.14
TaLoS (Ours) 79.67 [+1.67] 90.73 [+4.65] 82.60 [+1.99] 91.41 [+4.12] 88.37 [+0.08] 95.20 [+2.19] 65.04 [ 0.00] 97.22 [+1.88] 75.93 [+1.24] 95.87 [+3.17] 79.07 [+1.76] 90.61 [+2.47]

Table 1: Task Addition results. Average absolute accuracies (%) and normalized accuracies (%)
of different CLIP ViTs and T5 pre-trained models edited by adding task vectors on each of the
downstream tasks. We normalize performance of each method by their single-task accuracy. Bold
indicates the best results. Underline the second best.

Method ViT-B/32 ViT-B/16 ViT-L/14 T5-Small T5-Base T5-Large
Targ. (↓) Cont. (↑) Targ. (↓) Cont. (↑) Targ. (↓) Cont. (↑) Targ. (↓) Cont. (↑) Targ. (↓) Cont. (↑) Targ. (↓) Cont. (↑)

Pre-trained (Zero-shot) 47.72 63.26 55.83 68.37 65.47 75.53 55.70 45.70 53.51 45.30 51.71 45.70
Full Fine-tuning Methods

Non-linear FT (Ilharco et al., 2023) 24.04 60.36 20.36 64.79 20.61 72.72 43.06 45.47 40.06 45.16 41.54 45.49
Linearized FT (Ortiz-Jimenez et al., 2023) 11.20 60.74 10.97 65.55 10.86 72.43 44.47 44.94 40.16 45.27 41.37 45.70

Post-hoc Methods
TIES-Merging (Yadav et al., 2023) 21.94 61.49 19.72 65.69 24.50 73.41 55.01 45.30 40.30 45.13 46.19 45.56
TALL Mask / Consensus (Wang et al., 2024) 23.31 60.54 20.71 65.17 22.33 73.30 43.43 45.41 40.14 45.20 41.26 45.59
DARE (Yu et al., 2024) 25.04 60.60 22.22 64.98 20.94 72.66 42.53 45.36 40.24 45.16 41.29 45.70
Breadcrumbs (Davari & Belilovsky, 2024) 24.27 60.58 21.60 65.22 20.69 72.95 53.03 45.19 40.46 45.14 41.49 45.51
Parameter-efficient Fine-tuning Methods
L-LoRA (Tang et al., 2024) 17.29 60.75 19.33 65.69 19.39 73.14 55.30 45.24 51.33 45.10 48.37 45.51
LoTA (Panda et al., 2024) 21.09 61.01 17.76 65.60 22.11 73.21 54.70 45.13 40.50 45.24 44.33 45.47
TaLoS (Ours) 11.03 [+0.17] 60.69 [-0.80] 10.58 [+0.39] 66.11 [+0.42] 10.68 [+0.18] 73.63 [+0.22] 39.64 [+2.89] 45.67 [+0.20] 38.49 [+1.57] 45.28 [+0.01] 37.20 [+4.06] 45.70 [ 0.00]

Table 2: Task Negation results. Average minimal accuracy (%) of different CLIP ViTs and T5
pre-trained models edited by subtracting a task vector from a target task while retaining at least
95% of their performance on the control task. We average the minimal accuracy over each of the
downstream tasks. Bold indicates the best results. Underline the second best.

although the gains are less striking than in vision experiments. Nevertheless, the improvements
are particularly pronounced in larger models, suggesting that TaLoS scales well with model size.
Notably, TaLoS’s performance surpasses both full fine-tuning and post-hoc methods across the board.
This suggests that our parameter-efficient approach can achieve superior results while potentially
reducing computational costs, a crucial factor when working with large-scale models.
Task Negation. In this benchmark a task vector τt is subtracted from the pre-trained checkpoint to
reduce the performance on task t, producing the model f(·,θ0 − αtτt). By following Ortiz-Jimenez
et al. (2023), the success is measured in terms of the maximum drop in accuracy on the forgetting
task that retains at least 95% of the accuracy on the control task. Results are averaged over tasks and
presented in Table 2. For vision models, TaLoS achieves the lowest target task accuracies while
maintaining high control task performance, indicating superior ability to selectively remove targeted
task information. For T5 models, all methods, including TaLoS, face significant challenges in Task
Negation. The results show a much tighter clustering of performance across different approaches.
This suggests that negating specific language tasks without substantially impacting the control task
accuracy is inherently more difficult than in vision models. Despite this challenge, TaLoS still
manages to achieve the best balance between target and control task performance.

5.2 WEIGHT DISENTANGLEMENT AND LOCALIZATION

The improved localization provided by TaLoS seems to play a crucial role in driving effective task
arithmetic. Here we delve deeper into this aspect with tailored analyses. First, we assess how well
the weight disentanglement property holds. Then, for each training recipe, we evaluate the degree of
task component localization on each task.
Weight disentanglement error visualization. Ortiz-Jimenez et al. (2023); Tang et al. (2024)
proposed to evaluate the disentanglement error defined as

ξ(α1, α2) =

2∑
t=1

Ex∈Dt [dist(f(x,θ0 + α1τ1), f(x,θ0 + α1τ1 + α2τ2))] (10)

where the prediction error dist(y1, y2) = 1(y1 ̸= y2) is taken as the distance metric. Generally,
given a pair (α1, α2), the smaller the value of ξ(α1, α2) the more weight disentangled a model is.
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Figure 2: Visualizing weight disentanglement error. The heatmaps illustrate the disentanglement
error ξ(α1, α2) of each fine-tuning strategy on both a CLIP ViT-B/32 model (top) and a T5-Small
model (bottom) across two task pairs. Lighter areas highlight regions of the weight space where
disentanglement is more pronounced. The red box indicates the search space within which the optimal
α values were searched (refer to Appendix A.1). We chose the task pairs to visualize by following
Ortiz-Jimenez et al. (2023) for vision and a criterion akin to the one used in Tang et al. (2024) for
language.

Maintaining a low disentanglement error as α1 and α2 increase provides an even stronger evidence
of the weight disentanglement property.
In Figure 2, we report ξ(α1, α2) across different fine-tuning strategies for both the CLIP ViT-B/32
and T5-Small models on two task pairs. Overall there is a clear difference in disentanglement
patterns between vision and language models. For the latter, the patterns are more consistent across
strategies, which may explain why the differences in task arithmetic performance are notable in vision
experiments and less pronunced in language experiments (ref. to Tables 1, 2).
By focusing on vision models we observe that Linearized FT, L-LoRA, and our approach demonstrate
improved disentanglement (indicated by lighter regions) than non-linear fine-tuning, with our method
performing the best overall. We remind that L-LoRA approximate the behavior of Linearized FT via
adapters but still lacks to optimize the task localization property. Interestingly, LoTA shows a much
lower degree of disentanglement. We remark that this approach selects and updates task-specific
parameters while TaLoS focuses on task-generic ones and this difference accounts for the observed
behavior.
For language, Linearized FT and L-LoRA yield mixed results depending on the pairs of considered
tasks. LoTA seems able to improve over non-linearized FT but with different extents across tasks and
it is consistently outperformed by TaLoS.
Function localization. We experimentally assess the function localization property of TaLoS by
comparing it with other fine-tuning methods. From the definition in Equation 6, we know that when
this property holds, each task activates only for its specific data support. Thus, we should observe
an advantage in the prediction output when testing on that task, and the same performance of the
pre-trained model for all the others tasks. Figure 3 confirms the expected behavior for TaLoS in
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Figure 3: Function localization. The heatmaps present the accuracy ratios for fine-tuned models
across tasks for CLIP ViT-B/32 (top) and T5-Small (bottom) models. Each row indicates a model
fine-tuned on a specific task, with columns representing its performance on different test datasets.
Accuracy ratios are normalized by the pre-trained model’s performance. Lighter colors indicate better
performance, suggesting minimal interference between the fine-tuned model and other tasks’ input
spaces. The red diagonal highlights each model’s test performance on its specific fine-tuning task.
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Figure 4: Visualization of mask calibration. Percentage of parameters selected for sparse fine-
tuning in a transformer block of a ViT-B/32 (left) and a T5-Small (right) models, after our method’s
mask calibration vs. LoTA’s mask calibration, at 90% sparsity. On ViT-B/32, we calibrate the masks
on the Cars dataset (Krause et al., 2013), while on T5-Small we use QASC (Khot et al., 2020). Full
visualizations of all masked layers are reported in Appendix A.3.

vision, while the competitors display more interference between tasks, as indicated by darker hues off
the diagonal. Interestingly, for NLP tasks all methods exhibit natural function localization, as reflected
by the lighter regions in the figure. This provides us the opportunity to remark the importance of
extensive model analysis as conclusions drawn from a single domain where linearization is sufficient
might be misleading.

5.3 WEIGHT SPARSITY STRUCTURE AND EFFICIENCY

Visualizing task vector masks. To understand the nature of our sparse fine-tuning approach, we
analyze the structure of the masks c calibrated using TaLoS and compare it with the ones produced by
LoTA. Figure 4 provides a visualization of the layer-wise percentage of parameters selected for sparse
fine-tuning in a transformer block of a ViT-B/32 and a T5-Small models. The results reveal distinct
patterns in parameter selection between TaLoS and LoTA across both models. TaLoS exhibits a
highly structured selection, predominantly preserving parameters in the multihead self-attention layer,
particularly in the Q and K components. In contrast, LoTA’s selection appears more distributed
across different layers of the transformer block. Interestingly, our analysis reveals some notable
contrasts with L-LoRA (Tang et al., 2024), a method specifically designed for task arithmetic. While
L-LoRA arbitrarily fine-tunes the Q and V components, our findings suggest that, generally, Q
and K play a more significant role in task arithmetic than V in the multihead self-attention layers.
Additionally, for CLIP ViT-B/32 biases also seemingly play a crucial role for function localization.
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Method Effective Cost of Fine-tuning Task Addition Task Negation
Forward-Backward Pass Time (s) Optim. Step Time (s) Tot. Iteration Time (s) Peak Memory Usage (GiB) Abs. (↑) Norm. (↑) Targ. (↓) Cont. (↑)

ViT-B/32
Non-linear FT (Ilharco et al., 2023) 0.3608 ± 0.0036 0.0114 ± 0.0010 0.3722 ± 0.0037 6.5 71.25 76.94 24.04 60.36
Linearized FT (Ortiz-Jimenez et al., 2023) 0.6858 ± 0.0042 0.0103 ± 0.0020 0.6961 ± 0.0047 10.2 76.70 85.86 11.20 60.74

L-LoRA (Tang et al., 2024) 0.3270 ± 0.0076 0.0036 ± 0.0032 0.3306 ± 0.0082 5.3 78.00 86.08 17.29 60.75
LoTA (Panda et al., 2024) 0.3289 ± 0.0041 0.1269 ± 0.0050 0.4558 ± 0.0065 6.8 64.94 74.37 21.09 61.01
TaLoS (Ours) 0.1256 ± 0.0045 0.0388 ± 0.0040 0.1644 ± 0.0060 4.7 79.67 90.73 11.03 60.69

ViT-L/14
Non-linear FT (Ilharco et al., 2023) 1.2174 ± 0.0097 0.0156 ± 0.0055 1.2330 ± 0.0112 18.6 86.09 90.14 20.61 72.72
Linearized FT (Ortiz-Jimenez et al., 2023) 1.6200 ± 0.0067 0.0262 ± 0.0082 1.6462 ± 0.0106 21.3 88.29 93.01 10.86 72.43

L-LoRA (Tang et al., 2024) 0.5153 ± 0.0077 0.0082 ± 0.0015 0.5235 ± 0.0078 9.7 87.77 91.87 19.39 73.14
LoTA (Panda et al., 2024) 0.8438 ± 0.0052 0.4449 ± 0.0074 1.2887 ± 0.0090 15.4 87.66 91.69 22.11 73.21
TaLoS (Ours) 0.1891 ± 0.0039 0.1372 ± 0.0036 0.3263 ± 0.0053 7.8 88.37 95.20 10.68 73.63

T5-Large
Non-linear FT (Ilharco et al., 2023) 0.9047 ± 0.0068 0.0894 ± 0.0034 0.9941 ± 0.0076 30.0 75.37 85.25 41.54 45.49
Linearized FT (Ortiz-Jimenez et al., 2023) 1.7683 ± 0.0084 0.1170 ± 0.0060 1.8853 ± 0.0103 35.1 69.38 78.95 41.37 45.70

L-LoRA (Tang et al., 2024) 0.7452 ± 0.0084 0.0136 ± 0.0029 0.7588 ± 0.0089 18.2 72.10 87.78 48.37 45.51
LoTA (Panda et al., 2024) 0.8526 ± 0.0043 0.3842 ± 0.0019 1.2368 ± 0.0047 32.1 75.84 88.14 44.33 45.47
TaLoS (Ours) 0.4358 ± 0.0075 0.0509 ± 0.0046 0.4867 ± 0.0088 12.1 79.07 90.61 37.20 45.70

Table 3: Computational cost and memory footprint of fine-tuning. Average iteration time (in
seconds) and peak memory usage (in Gibibytes) of different fine-tuning approaches on CLIP ViT-
B/32, ViT-L/14 and T5-Large models, alongside their performance on the task arithmetic benchmark.
To improve granularity, we report also the average forward-backward time of a single iteration and
the average step time of the optimizer. We separate full fine-tuning methods from parameter-efficient
fine-tuning methods. Further details on the resource monitoring process can be found in Appendix
A.1. Bold indicates the best results. Underline the second best.

This structured sparsity not only provides insights into our method’s mask calibration mechanism but
also hints at potential efficiency gains, which we explore further in the following.
Computational cost and memory footprint. The observed structured sparsity pattern of TaLoS
suggests that it also provides a highly efficient task arithmetic fine-tuning strategy. To verify it we
performed a comparative analysis of the computational cost and memory footprint of TaLoS against
several fine-tuning methods.
In Table 3 we present the collected time and memory costs with detailed average time (in seconds)
for a single training iteration’s forward and backward pass. This is separated because approaches
like Linearized FT and L-LoRA involve specialized forward passes that require Jacobian-vector
products with respect to LoTA and TaLoS, which operate similarly to non-linear FT. We also report
the time (in seconds) spent by the optimizer updating parameters, as LoTA and TaLoS require
an additional mask-based element-wise multiplication to prevent updates to certain parameters by
masking gradients. Additionally, we provide the total time (sum of these two values) and the peak
memory usage (in Gibibytes) recorded during fine-tuning. Overall, the ability to freeze a large number
of parameters, thanks to well-structured mask sparsity of our approach improves the total iteration
time. Although our method has a slower optimizer step compared to other approaches, the faster
forward-backward pass compensates, making TaLoS the leading method. In terms of memory usage,
the benefits are especially notable for large models, where only a small subset of parameters requires
fine-tuning, thus, yielding pronounced savings.

6 CONCLUSION

In this work we have proposed TaLoS, an efficient and effective strategy to edit pre-trained models
in the framework of task arithmetic. We started from the observation that the parameters showing
the least variation in the fine-tuning process of a single task are also those minimally relevant for
other tasks. Thus, we have leveraged them through a sparse learning process that promotes task
localization and avoids task interference. A thorough experimental analysis across vision and language
domains confirmed that TaLoS yields state-of-the-art results in task addition and negation, showing
a significant efficiency advantage over competitors. Moreover, with a tailored set of evaluations we
assessed model linearization and function localization properties, providing insights on the inner
functionig of our approach.
Overall, we have discussed how preserving the regularities provided by a large scale pre-trained model
are sufficient to maintain weight disentaglement and observe beneficial effects in task arithmentic.
Future work may investigate whether explicitly enforcing localization constraints during fine-tuning
could enhance performance and further advance model editing capabilities.
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REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our results. Full implementation
details are provided in Appendix A.1. Pseudocode for our algorithm is included in Appendix A.2 to
clarify key steps, as well as practical design choices to address potential challenges in implementing
our experiments. Additionally, we provide the complete codebase as a supplementary material of our
submission, which includes scripts to reproduce all the results. Upon acceptance, we will publicly
release the code to further facilitate reproducibility.
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Ivan Vulić, Sebastian Ruder, Iryna Gurevych, and Jonas Pfeiffer. Adapters: A unified li-
brary for parameter-efficient and modular transfer learning. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing: System Demonstrations,
pp. 149–160, Singapore, December 2023. Association for Computational Linguistics. URL
https://aclanthology.org/2023.emnlp-demo.13.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning
(ICML), 2021. URL https://arxiv.org/abs/2103.00020.

Colin Raffel. Building machine learning models like open source software. Communications of the
ACM, 66(2):38–40, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.
URL https://dl.acm.org/doi/pdf/10.1145/3474381.

Rishi Sharma, James Allen, Omid Bakhshandeh, and Nasrin Mostafazadeh. Tackling the story ending
biases in the story cloze test. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (ACL), 2018. URL https://aclanthology.org/P18-2119.
pdf.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign
recognition benchmark: a multi-class classification competition. In International Joint Conference
on Neural Networks (IJCNN), 2011. URL https://ieeexplore.ieee.org/document/
6033395.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems, 34:24193–24205, 2021.

Yi-Lin Sung, Jaehong Yoon, and Mohit Bansal. Ecoflap: Efficient coarse-to-fine layer-wise pruning
for vision-language models. In International Conference on Learning Representations (ICLR),
2024. URL https://arxiv.org/pdf/2310.02998.

Oyvind Tafjord, Matt Gardner, Kevin Lin, and Peter Clark. Quartz: An open-domain dataset of
qualitative relationship questions. In Proceedings of the 2019 conference on empirical methods
in natural language processing (EMNLP), 2019. URL https://arxiv.org/abs/1909.
03553.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. In Advances in Neural Information
Processing Systems (NeurIPS), 2020. URL https://arxiv.org/abs/2006.05467.

15

https://arxiv.org/abs/2406.16797
https://arxiv.org/abs/1301.3584
https://www.aclweb.org/anthology/2020.emnlp-demos.7
https://aclanthology.org/2023.emnlp-demo.13
https://arxiv.org/abs/2103.00020
http://jmlr.org/papers/v21/20-074.html
https://dl.acm.org/doi/pdf/10.1145/3474381
https://aclanthology.org/P18-2119.pdf
https://aclanthology.org/P18-2119.pdf
https://ieeexplore.ieee.org/document/6033395
https://ieeexplore.ieee.org/document/6033395
https://arxiv.org/pdf/2310.02998
https://arxiv.org/abs/1909.03553
https://arxiv.org/abs/1909.03553
https://arxiv.org/abs/2006.05467


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Anke Tang, Li Shen, Yong Luo, Yibing Zhan, Han Hu, Bo Du, Yixin Chen, and Dacheng Tao.
Parameter efficient multi-task model fusion with partial linearization. In International Conference
on Learning Representations (ICLR), 2024. URL https://arxiv.org/abs/2310.04742.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ke Wang, Nikolaos Dimitriadis, Guillermo Ortiz-Jimenez, François Fleuret, and Pascal Frossard.
Localizing task information for improved model merging and compression. In ICML, 2024.

Yite Wang, Dawei Li, and Ruoyu Sun. Ntk-sap: Improving neural network pruning by aligning
training dynamics. In International Conference on Learning Representations (ICLR), 2023. URL
https://arxiv.org/abs/2304.02840.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari,
Jason Yosinski, and Ali Farhadi. Supermasks in superposition. Advances in Neural Information
Processing Systems, 33:15173–15184, 2020.

Jianxiong Xiao, Krista A Ehinger, James Hays, Antonio Torralba, and Aude Oliva. Sun
database: Exploring a large collection of scene categories. International Journal of Computer
Vision, 119:3–22, 2016. URL https://link.springer.com/article/10.1007/
s11263-014-0748-y.

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan, Baobao Chang, Songfang Huang, and Fei
Huang. Raise a child in large language model: Towards effective and generalizable fine-tuning. In
Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 9514–9528,
Online and Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.emnlp-main.749. URL https://aclanthology.org/
2021.emnlp-main.749.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models. In NeurIPS, 2023.

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng Tao.
Adamerging: Adaptive model merging for multi-task learning. In ICLR, 2024.

Yi Yang, Wen-tau Yih, and Christopher Meek. Wikiqa: A challenge dataset for open-domain question
answering. In Proceedings of the 2015 conference on empirical methods in natural language
processing (EMNLP), 2015. URL https://aclanthology.org/D15-1237.pdf.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch. In International Conference on
Machine Learning (ICML), 2024. URL https://arxiv.org/abs/2311.03099.

Yuan Zhang, Jason Baldridge, and Luheng He. Paws: Paraphrase adversaries from word scrambling.
In 2024 Annual Conference of the North American Chapter of the Association for Computational
Linguistics (NAACL), 2019. URL https://arxiv.org/abs/1904.01130.

16

https://arxiv.org/abs/2310.04742
https://arxiv.org/abs/2304.02840
https://link.springer.com/article/10.1007/s11263-014-0748-y
https://link.springer.com/article/10.1007/s11263-014-0748-y
https://aclanthology.org/2021.emnlp-main.749
https://aclanthology.org/2021.emnlp-main.749
https://aclanthology.org/D15-1237.pdf
https://arxiv.org/abs/2311.03099
https://arxiv.org/abs/1904.01130


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 IMPLEMENTATION DETAILS

Computational resources. We execute all the vision experiments using ViT-B/32, ViT-B/16, and
ViT-L/14 on a machine equipped with two NVIDIA GeForce RTX 2080 Ti (11 GB VRAM), an
Intel Core i7-9800X CPU @ 3.80GHz and 64 GB of RAM. For all the language experiments using
T5-Small, T5-Base, and T5-Large we employ a machine equipped with a a single NVIDIA A100
SXM (64 GB VRAM), an Intel Xeon Platinum 8358 CPU @ 2.60GHz and 64 GB of RAM.
Starter code. We developed our codebase starting from the repositories provided by Ortiz-Jimenez
et al. (2023)1 (based on the code by Ilharco et al. (2022; 2023)2) and Yadav et al. (2023)3, which allow
to reproduce the full fine-tuning results (Non-linear FT and Linearized FT). TIES-Merging (Yadav
et al., 2023)3, TALL Mask / Consensus (Wang et al., 2024)4, DARE (Yu et al., 2024)5, Breadcrumbs
(Davari & Belilovsky, 2024)6 and LoTA (Panda et al., 2024)7 provide official implementations
of their methods from which we carefully adapted their code to work within the Task Arithmetic
framework. L-LoRA (Tang et al., 2024) unfortunately doesn’t provide any official implementation,
but the guidelines in the paper are sufficient to reproduce their results. To this end, we used the peft
library (Mangrulkar et al., 2022)8 for implementing the LoRA modules.
Hyperparameter selection. As highlighted by Ortiz-Jimenez et al. (2023), task vectors that per-
form well in Task Negation tend to exhibit higher degrees of weight disentanglement in Task
Addition. This relationship informed our hyperparameter selection strategy. For each method,
we cross-validate its hyperparameters on each individual task by leveraging Task Negation per-
formance on a small held-out portion of the training set, as implemented by Ilharco et al. (2023);
Ortiz-Jimenez et al. (2023). It’s important to note that hyperparameter selection shall not be per-
formed separately for addition and negation, as each choice of hyperparameters yields a unique
task vector. Hyperparameter search of each method is carried out according to the guidelines
presented in each paper. Specifically, for post-hoc methods, the sparsity ratio is searched in the
set {0.1, 0.2, ..., 0.9, 0.95, 0.99}. Furthermore, for TALL Mask / Consensus (Wang et al., 2024)
we also tune the consensus threshold in the set {0, ..., T}, where T is the number of tasks. For
Breadcrumbs (Davari & Belilovsky, 2024) we also tune the percentage of top-k parameters con-
sidered outliers, using values from the set {0.8, 0.9, 0.95, 0.99, 0.992, 0.994, ..., 0.999}. Regarding
parameter-efficient fine-tuning methods, when using L-LoRA (Tang et al., 2024) we progressively
reduce its rank r ∈ {512, 256, 128, 64, 32, 16, 8}. While, for LoTA (Panda et al., 2024) and our
method we tune sparsity at the task level using values in the set {0.1, 0.2, ..., 0.9, 0.95, 0.99}. Re-
garding the amount of data used to perform mask calibration on each task, we align with Panda et al.
(2024) by using the validation split as it accounts for the 10% of the total training data. For LoTA, we
set the number of iterations for mask calibration so to match the number of mask calibration rounds
used by our method (further details at Section A.2). This ensures that the drop in performance is
negligible with respect to using the full training split while significantly reducing the computational
overhead.
Datasets & Tasks. In line with what introduced in Ilharco et al. (2022; 2023); Ortiz-Jimenez et al.
(2023), our vision experiments consider image classification across various domains. We adhere to
the proposed experimental setup by utilizing eight datasets: Cars (Krause et al., 2013), DTD (Cimpoi
et al., 2014), EuroSAT (Helber et al., 2019), GTSRB (Stallkamp et al., 2011), MNIST (LeCun, 1998),
RESISC45 (Cheng et al., 2017), SUN397 (Xiao et al., 2016) and SVHN (Netzer et al., 2011).
For the natural language processing (NLP) experiments, we follow the methodology outlined in
Yadav et al. (2023), incorporating seven prescribed datasets: three regarding question answering
(QASC (Khot et al., 2020), WikiQA (Yang et al., 2015) and QuaRTz (Tafjord et al., 2019)), one for
paraphrase identification (PAWS (Zhang et al., 2019)), one focusing on sentence completion (Story
Cloze (Sharma et al., 2018)) and two for coreference resolution (Winogrande (Sakaguchi et al., 2021)

1https://github.com/gortizji/tangent_task_arithmetic
2https://github.com/mlfoundations/task_vectors
3https://github.com/prateeky2806/ties-merging
4https://github.com/nik-dim/tall_masks
5https://github.com/yule-BUAA/MergeLM
6https://github.com/rezazzr/breadcrumbs
7https://github.com/kiddyboots216/lottery-ticket-adaptation
8https://github.com/huggingface/peft
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and WSC (Levesque et al., 2012)). Concerning Task Negation, we align with Ortiz-Jimenez et al.
(2023) and consider ImageNet (Deng et al., 2009) as the control dataset for vision experiments, while
for NLP, we utilize RTE (Dagan et al., 2005), as it provides a distinct task (i.e. natural language
inference) with respect to the others considered for the NLP experiments.
Architectures & Pre-trained models. By following Ilharco et al. (2023); Ortiz-Jimenez et al.
(2023); Yadav et al. (2023), on vision experiments, we use three variants of CLIP (Radford et al.,
2021) with ViT-B/32, ViT-B/16, and ViT-L/14 models (Dosovitskiy et al., 2021). Regarding the NLP
experiments, we employ T5-Small, T5-Base, and T5-Large models (Raffel et al., 2020).
Fine-tuning details. All fine-tuning experiments on vision adhere to the training protocol outlined
by Ilharco et al. (2022; 2023); Ortiz-Jimenez et al. (2023), with minor modifications made to the
training code to accommodate the additional baselines and our method. Specifically, we fine-tune all
datasets starting from the same CLIP pre-trained checkpoint, which is obtained from the open clip
repository (Gadre et al., 2024). Each model is fine-tuned for 2,000 iterations with a batch size of 128,
a learning rate of 10−5, and a cosine annealing learning rate schedule with 200 warm-up steps. We
use the AdamW optimizer (Loshchilov & Hutter, 2019). Following Ilharco et al. (2022), the weights
of the classification layer, which are derived from encoding a standard set of zero-shot template
prompts for each dataset, are frozen during fine-tuning. Freezing this layer ensures no additional
learnable parameters are introduced and does not negatively affect accuracy (Ilharco et al., 2022).
Regarding the language experiments, we aligned with Yadav et al. (2023); Ilharco et al. (2023) and
utilized three variants of the T5 model (Raffel et al., 2020), namely T5-Small, T5-Base, and T5-Large,
with training conducted for a maximum of 75,000 steps. We employed an effective training batch
size of 1024, with a learning rate of 10−4. To prevent overfitting, we implemented an early stopping
mechanism with a patience threshold of 5. During training, we used bfloat16 to reduce GPU
memory consumption, and the maximum sequence length was set to 128. Evaluation is carried out by
performing rank classification, where the model’s log probabilities for all possible label strings are
ranked. The prediction is considered correct if the highest-ranked label corresponds to the correct
answer. This evaluation method is applicable for both classification and multiple-choice tasks.
Disentanglement error heatmaps. As prescribed by Ortiz-Jimenez et al. (2023), we produce the
weight disentanglement visualizations of Figure 2 by computing the value of the disentanglement
error ξ(α1, α2) on a 20× 20 grid of equispaced values in [−3, 3]× [−3, 3]. Estimations are carried
out on a random subset of 2,048 test points for each dataset.
Tuning of α in Task Arithmetic experiments. As outlined in Ilharco et al. (2023); Ortiz-Jimenez
et al. (2023), we employ a single coefficient, denoted as α, to adjust the size of the task vectors
used to modify the pre-trained models (i.e. α1 = α2 = ...αt). For both the task addition and task
negation benchmarks, following fine-tuning, we evaluate different scaling coefficients from the set
α ∈ {0.0, 0.05, 0.1, ..., 1.0} and select the value that achieves the highest target metric on a small
held-out portion of the training set, as specified in Ilharco et al. (2023); Ortiz-Jimenez et al. (2023).
Specifically, we aim to maximize the normalized average accuracy for Task Addition and ensure the
minimum target accuracy for Task Negation while maintaining at least 95% of the original accuracy
of the pre-trained model on the control task. The tuning of α is performed independently for each
method.
Measuring computational costs and memory footprint. The timings in Table 3 are obtained using
the perf counter clock from Python’s time module. We monitored memory footprint using
the NVIDIA nvml library 9. All measurements are obtained during fine-tuning, with the very same
setup explained in the fine-tuning details. Then, for each method, the mean and standard deviation of
the timings are computed over all iterations of all tasks. Peak memory usage, instead, is taken as the
maximum over all tasks. Memory usage is recorded at regular intervals of 1 second, starting from the
first forward pass and ending when the training loop breaks.
Normalized accuracy calculation in Task Addition. Normalized accuracy is computed by taking
the average of the normalized individual accuracies over the T tasks. Given a task t, the normalized
individual accuracy for t is computed by taking the accuracy of the multi-task fused model on t and
dividing it by the single-task accuracy that the fine-tuned checkpoint obtained on t before being fused.
Formally,

Normalized Accuracy =
1

T

T∑
t=1

Accuracy[f(Dt,θ0 +
∑T

t′ αt′τt′)]

Accuracy[f(Dt,θ0 + αtτt)]
(11)

9https://docs.nvidia.com/deploy/nvml-api/
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Algorithm 1: TaLoS to obtain task vectors
Input :Pre-trained model θ0 ∈ Rm, task dataset Dt, final sparsity k, number of rounds R,

number of epochs E, learning rate γ, loss function L
Output :Task vector τt ∈ Rm for performing task arithmetic

1 // Calibrate sparse fine-tuning mask
2 c← 1 ▷ Initialize weight mask to all 1s
3 for r = 1, 2, ..., R do
4 p← k(r/R) ▷ Compute the current sparsity at round r
5 s← 0 ▷ Initialize parameter-wise scores to all 0s
6 for x ∈ Dt do
7 s← s+ |∇θf(x, c⊙ θ0)| ▷ Compute and update scores on current example
8 end
9 // Update c to retain only the bottom-k parameters

10 ŝ← sort descending(s) ▷ Sorted scores in descending order
11 p← ⌊p ·m⌋ ▷ compute bottom-p threshold index
12 for j = 1, 2, ...,m do
13 if sj − ŝp > 0 then
14 cj ← 0 ▷ Set the mask of the j-th parameter to zero
15 end
16 end
17 end
18 // Sparse fine-tuning, starting from θ0 and obtaining θt
19 for epoch = 1, 2, ..., E do
20 for (x, y) ∈ Dt do
21 θ ← θ − γ [c⊙∇θL(f(x,θ), y)] ▷ Update rule, mask gradients with c
22 end
23 end
24 τt ← θt − θ0 ▷ Compute final task vector for task t
25 return τt

Method Avgerage Execution Time (s) Peak Memory Usage (GiB) Task Addition Task Negation
Mask Train Total Mask Train Overall Abs. (↑) Norm. (↑) Targ. (↓) Cont. (↑)

Non-linear FT (Ilharco et al., 2023) - 2479.99 2479.99 - 18.6 18.6 86.09 90.14 20.61 72.72
Linearized FT (Ortiz-Jimenez et al., 2023) - 3311.77 3311.77 - 21.3 21.3 88.29 93.01 10.86 72.43
L-LoRA (Tang et al., 2024) - 1053.07 1053.07 - 9.7 9.7 87.77 91.87 19.39 73.14
LoTA (Panda et al., 2024) 51.84 2592.40 2644.24 12.9 15.4 15.4 87.60 91.89 22.02 73.22
TaLoS (Ours) 63.04 656.23 719.27 7.8 7.8 7.8 88.40 95.19 10.63 73.55

Table 4: Computational cost and memory footprint of mask calibration and fine-tuning. Av-
erage time (in seconds) and peak memory usage (in Gibibytes) of mask calibration and fine-tuning
approaches on CLIP ViT-L/14, alongside their performance on the task arithmetic benchmark. For
both LoTA and TaLoS, we used batch size 128 for 40 iterations (in detail, 10 iterations per round for
TaLoS, with 4 rounds total). We employ gradient checkpointing during mask calibration. Further
details on the resource monitoring process can be found in Appendix A.1. Bold indicates the best
results. Underline the second best.

A.2 DETAILS ON MASK CALIBRATION & COMPUTATIONAL OVERHEAD

Sparse fine-tuning prescribes to mask gradients when updating the model parameters. Thus, is is
foundational that the mask is correctly calibrated before training. We mask only Linear, Attention,
LayerNorm, and Convolutional layers (Kwon et al., 2022). Embedding layers and final projection
layers are kept frozen. Furthermore, following standard procedures in Pruning-at-Initialization (PaI)
(Tanaka et al., 2020; Wang et al., 2023), we iteratively refine the mask in multiple rounds to obtain
better estimates from the mask calibration procedures. In detail, at each round, we select the bottom-p
parameters (according to our score, detailed in Section 4) and we exponentially increase the current
sparsity p. We repeat this process until we reach the target sparsity k. For the sake of major clarity,
we report in Algorithm 1 the pseudocode for our procedure, encompassing both mask calibration
and sparse fine-tuning. We remark that the choice of the bottom-k values may lead to layer collapse
(Tanaka et al., 2020), namely, removing all parameters in a layer, disrupting the information flow in

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
tR

em
ai

ni
ng

R
at

io

LoTA - ViT-B/32 (Cars)

co
nv

1.
w

ei
gh

t
ln

pr
e.

w
ei

gh
t

ln
pr

e.
bi

as
0.

ln
1.

w
ei

gh
t

0.
ln

1.
bi

as
0.

at
tn

.in
pr

oj
w

ei
gh

t
q

0.
at

tn
.in

pr
oj

w
ei

gh
t

k
0.

at
tn

.in
pr

oj
w

ei
gh

t
v

0.
at

tn
.in

pr
oj

bi
as

q
0.

at
tn

.in
pr

oj
bi

as
k

0.
at

tn
.in

pr
oj

bi
as

v
0.

at
tn

.o
ut

pr
oj

.w
ei

gh
t

0.
at

tn
.o

ut
pr

oj
.b

ia
s

0.
ln

2.
w

ei
gh

t
0.

ln
2.

bi
as

0.
m

lp
.c

fc
.w

ei
gh

t
0.

m
lp

.c
fc

.b
ia

s
0.

m
lp

.c
pr

oj
.w

ei
gh

t
0.

m
lp

.c
pr

oj
.b

ia
s

1.
ln

1.
w

ei
gh

t
1.

ln
1.

bi
as

1.
at

tn
.in

pr
oj

w
ei

gh
t

q
1.

at
tn

.in
pr

oj
w

ei
gh

t
k

1.
at

tn
.in

pr
oj

w
ei

gh
t

v
1.

at
tn

.in
pr

oj
bi

as
q

1.
at

tn
.in

pr
oj

bi
as

k
1.

at
tn

.in
pr

oj
bi

as
v

1.
at

tn
.o

ut
pr

oj
.w

ei
gh

t
1.

at
tn

.o
ut

pr
oj

.b
ia

s
1.

ln
2.

w
ei

gh
t

1.
ln

2.
bi

as
1.

m
lp

.c
fc

.w
ei

gh
t

1.
m

lp
.c

fc
.b

ia
s

1.
m

lp
.c

pr
oj

.w
ei

gh
t

1.
m

lp
.c

pr
oj

.b
ia

s
2.

ln
1.

w
ei

gh
t

2.
ln

1.
bi

as
2.

at
tn

.in
pr

oj
w

ei
gh

t
q

2.
at

tn
.in

pr
oj

w
ei

gh
t

k
2.

at
tn

.in
pr

oj
w

ei
gh

t
v

2.
at

tn
.in

pr
oj

bi
as

q
2.

at
tn

.in
pr

oj
bi

as
k

2.
at

tn
.in

pr
oj

bi
as

v
2.

at
tn

.o
ut

pr
oj

.w
ei

gh
t

2.
at

tn
.o

ut
pr

oj
.b

ia
s

2.
ln

2.
w

ei
gh

t
2.

ln
2.

bi
as

2.
m

lp
.c

fc
.w

ei
gh

t
2.

m
lp

.c
fc

.b
ia

s
2.

m
lp

.c
pr

oj
.w

ei
gh

t
2.

m
lp

.c
pr

oj
.b

ia
s

3.
ln

1.
w

ei
gh

t
3.

ln
1.

bi
as

3.
at

tn
.in

pr
oj

w
ei

gh
t

q
3.

at
tn

.in
pr

oj
w

ei
gh

t
k

3.
at

tn
.in

pr
oj

w
ei

gh
t

v
3.

at
tn

.in
pr

oj
bi

as
q

3.
at

tn
.in

pr
oj

bi
as

k
3.

at
tn

.in
pr

oj
bi

as
v

3.
at

tn
.o

ut
pr

oj
.w

ei
gh

t
3.

at
tn

.o
ut

pr
oj

.b
ia

s
3.

ln
2.

w
ei

gh
t

3.
ln

2.
bi

as
3.

m
lp

.c
fc

.w
ei

gh
t

3.
m

lp
.c

fc
.b

ia
s

3.
m

lp
.c

pr
oj

.w
ei

gh
t

3.
m

lp
.c

pr
oj

.b
ia

s
4.

ln
1.

w
ei

gh
t

4.
ln

1.
bi

as
4.

at
tn

.in
pr

oj
w

ei
gh

t
q

4.
at

tn
.in

pr
oj

w
ei

gh
t

k
4.

at
tn

.in
pr

oj
w

ei
gh

t
v

4.
at

tn
.in

pr
oj

bi
as

q
4.

at
tn

.in
pr

oj
bi

as
k

4.
at

tn
.in

pr
oj

bi
as

v
4.

at
tn

.o
ut

pr
oj

.w
ei

gh
t

4.
at

tn
.o

ut
pr

oj
.b

ia
s

4.
ln

2.
w

ei
gh

t
4.

ln
2.

bi
as

4.
m

lp
.c

fc
.w

ei
gh

t
4.

m
lp

.c
fc

.b
ia

s
4.

m
lp

.c
pr

oj
.w

ei
gh

t
4.

m
lp

.c
pr

oj
.b

ia
s

5.
ln

1.
w

ei
gh

t
5.

ln
1.

bi
as

5.
at

tn
.in

pr
oj

w
ei

gh
t

q
5.

at
tn

.in
pr

oj
w

ei
gh

t
k

5.
at

tn
.in

pr
oj

w
ei

gh
t

v
5.

at
tn

.in
pr

oj
bi

as
q

5.
at

tn
.in

pr
oj

bi
as

k
5.

at
tn

.in
pr

oj
bi

as
v

5.
at

tn
.o

ut
pr

oj
.w

ei
gh

t
5.

at
tn

.o
ut

pr
oj

.b
ia

s
5.

ln
2.

w
ei

gh
t

5.
ln

2.
bi

as
5.

m
lp

.c
fc

.w
ei

gh
t

5.
m

lp
.c

fc
.b

ia
s

5.
m

lp
.c

pr
oj

.w
ei

gh
t

5.
m

lp
.c

pr
oj

.b
ia

s
6.

ln
1.

w
ei

gh
t

6.
ln

1.
bi

as
6.

at
tn

.in
pr

oj
w

ei
gh

t
q

6.
at

tn
.in

pr
oj

w
ei

gh
t

k
6.

at
tn

.in
pr

oj
w

ei
gh

t
v

6.
at

tn
.in

pr
oj

bi
as

q
6.

at
tn

.in
pr

oj
bi

as
k

6.
at

tn
.in

pr
oj

bi
as

v
6.

at
tn

.o
ut

pr
oj

.w
ei

gh
t

6.
at

tn
.o

ut
pr

oj
.b

ia
s

6.
ln

2.
w

ei
gh

t
6.

ln
2.

bi
as

6.
m

lp
.c

fc
.w

ei
gh

t
6.

m
lp

.c
fc

.b
ia

s
6.

m
lp

.c
pr

oj
.w

ei
gh

t
6.

m
lp

.c
pr

oj
.b

ia
s

7.
ln

1.
w

ei
gh

t
7.

ln
1.

bi
as

7.
at

tn
.in

pr
oj

w
ei

gh
t

q
7.

at
tn

.in
pr

oj
w

ei
gh

t
k

7.
at

tn
.in

pr
oj

w
ei

gh
t

v
7.

at
tn

.in
pr

oj
bi

as
q

7.
at

tn
.in

pr
oj

bi
as

k
7.

at
tn

.in
pr

oj
bi

as
v

7.
at

tn
.o

ut
pr

oj
.w

ei
gh

t
7.

at
tn

.o
ut

pr
oj

.b
ia

s
7.

ln
2.

w
ei

gh
t

7.
ln

2.
bi

as
7.

m
lp

.c
fc

.w
ei

gh
t

7.
m

lp
.c

fc
.b

ia
s

7.
m

lp
.c

pr
oj

.w
ei

gh
t

7.
m

lp
.c

pr
oj

.b
ia

s
8.

ln
1.

w
ei

gh
t

8.
ln

1.
bi

as
8.

at
tn

.in
pr

oj
w

ei
gh

t
q

8.
at

tn
.in

pr
oj

w
ei

gh
t

k
8.

at
tn

.in
pr

oj
w

ei
gh

t
v

8.
at

tn
.in

pr
oj

bi
as

q
8.

at
tn

.in
pr

oj
bi

as
k

8.
at

tn
.in

pr
oj

bi
as

v
8.

at
tn

.o
ut

pr
oj

.w
ei

gh
t

8.
at

tn
.o

ut
pr

oj
.b

ia
s

8.
ln

2.
w

ei
gh

t
8.

ln
2.

bi
as

8.
m

lp
.c

fc
.w

ei
gh

t
8.

m
lp

.c
fc

.b
ia

s
8.

m
lp

.c
pr

oj
.w

ei
gh

t
8.

m
lp

.c
pr

oj
.b

ia
s

9.
ln

1.
w

ei
gh

t
9.

ln
1.

bi
as

9.
at

tn
.in

pr
oj

w
ei

gh
t

q
9.

at
tn

.in
pr

oj
w

ei
gh

t
k

9.
at

tn
.in

pr
oj

w
ei

gh
t

v
9.

at
tn

.in
pr

oj
bi

as
q

9.
at

tn
.in

pr
oj

bi
as

k
9.

at
tn

.in
pr

oj
bi

as
v

9.
at

tn
.o

ut
pr

oj
.w

ei
gh

t
9.

at
tn

.o
ut

pr
oj

.b
ia

s
9.

ln
2.

w
ei

gh
t

9.
ln

2.
bi

as
9.

m
lp

.c
fc

.w
ei

gh
t

9.
m

lp
.c

fc
.b

ia
s

9.
m

lp
.c

pr
oj

.w
ei

gh
t

9.
m

lp
.c

pr
oj

.b
ia

s
10

.ln
1.

w
ei

gh
t

10
.ln

1.
bi

as
10

.a
ttn

.in
pr

oj
w

ei
gh

t
q

10
.a

ttn
.in

pr
oj

w
ei

gh
t

k
10

.a
ttn

.in
pr

oj
w

ei
gh

t
v

10
.a

ttn
.in

pr
oj

bi
as

q
10

.a
ttn

.in
pr

oj
bi

as
k

10
.a

ttn
.in

pr
oj

bi
as

v
10

.a
ttn

.o
ut

pr
oj

.w
ei

gh
t

10
.a

ttn
.o

ut
pr

oj
.b

ia
s

10
.ln

2.
w

ei
gh

t
10

.ln
2.

bi
as

10
.m

lp
.c

fc
.w

ei
gh

t
10

.m
lp

.c
fc

.b
ia

s
10

.m
lp

.c
pr

oj
.w

ei
gh

t
10

.m
lp

.c
pr

oj
.b

ia
s

11
.ln

1.
w

ei
gh

t
11

.ln
1.

bi
as

11
.a

ttn
.in

pr
oj

w
ei

gh
t

q
11

.a
ttn

.in
pr

oj
w

ei
gh

t
k

11
.a

ttn
.in

pr
oj

w
ei

gh
t

v
11

.a
ttn

.in
pr

oj
bi

as
q

11
.a

ttn
.in

pr
oj

bi
as

k
11

.a
ttn

.in
pr

oj
bi

as
v

11
.a

ttn
.o

ut
pr

oj
.w

ei
gh

t
11

.a
ttn

.o
ut

pr
oj

.b
ia

s
11

.ln
2.

w
ei

gh
t

11
.ln

2.
bi

as
11

.m
lp

.c
fc

.w
ei

gh
t

11
.m

lp
.c

fc
.b

ia
s

11
.m

lp
.c

pr
oj

.w
ei

gh
t

11
.m

lp
.c

pr
oj

.b
ia

s
ln

po
st

.w
ei

gh
t

ln
po

st
.b

ia
s

ln
fin

al
.w

ei
gh

t
ln

fin
al

.b
ia

s0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
tR

em
ai

ni
ng

R
at

io

TaLoS (Ours) - ViT-B/32 (Cars)

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
tR

em
ai

ni
ng

R
at

io

LoTA - T5-Small (QASC)

sh
ar

ed
.w

ei
gh

t

en
co

de
r.0

.0
.S

el
fA

tte
nt

io
n.

q.
w

ei
gh

t

en
co

de
r.0

.0
.S

el
fA

tte
nt

io
n.

k.
w

ei
gh

t

en
co

de
r.0

.0
.S

el
fA

tte
nt

io
n.

v.
w

ei
gh

t

en
co

de
r.0

.0
.S

el
fA

tte
nt

io
n.

o.
w

ei
gh

t

en
co

de
r.0

.0
no

rm
.w

ei
gh

t

en
co

de
r.0

.1
.D

en
se

R
el

uD
en

se
.w

i.w
ei

gh
t

en
co

de
r.0

.1
.D

en
se

R
el

uD
en

se
.w

o.
w

ei
gh

t

en
co

de
r.0

.1
no

rm
.w

ei
gh

t

en
co

de
r.1

.0
.S

el
fA

tte
nt

io
n.

q.
w

ei
gh

t

en
co

de
r.1

.0
.S

el
fA

tte
nt

io
n.

k.
w

ei
gh

t

en
co

de
r.1

.0
.S

el
fA

tte
nt

io
n.

v.
w

ei
gh

t

en
co

de
r.1

.0
.S

el
fA

tte
nt

io
n.

o.
w

ei
gh

t

en
co

de
r.1

.0
no

rm
.w

ei
gh

t

en
co

de
r.1

.1
.D

en
se

R
el

uD
en

se
.w

i.w
ei

gh
t

en
co

de
r.1

.1
.D

en
se

R
el

uD
en

se
.w

o.
w

ei
gh

t

en
co

de
r.1

.1
no

rm
.w

ei
gh

t

en
co

de
r.2

.0
.S

el
fA

tte
nt

io
n.

q.
w

ei
gh

t

en
co

de
r.2

.0
.S

el
fA

tte
nt

io
n.

k.
w

ei
gh

t

en
co

de
r.2

.0
.S

el
fA

tte
nt

io
n.

v.
w

ei
gh

t

en
co

de
r.2

.0
.S

el
fA

tte
nt

io
n.

o.
w

ei
gh

t

en
co

de
r.2

.0
no

rm
.w

ei
gh

t

en
co

de
r.2

.1
.D

en
se

R
el

uD
en

se
.w

i.w
ei

gh
t

en
co

de
r.2

.1
.D

en
se

R
el

uD
en

se
.w

o.
w

ei
gh

t

en
co

de
r.2

.1
no

rm
.w

ei
gh

t

en
co

de
r.3

.0
.S

el
fA

tte
nt

io
n.

q.
w

ei
gh

t

en
co

de
r.3

.0
.S

el
fA

tte
nt

io
n.

k.
w

ei
gh

t

en
co

de
r.3

.0
.S

el
fA

tte
nt

io
n.

v.
w

ei
gh

t

en
co

de
r.3

.0
.S

el
fA

tte
nt

io
n.

o.
w

ei
gh

t

en
co

de
r.3

.0
no

rm
.w

ei
gh

t

en
co

de
r.3

.1
.D

en
se

R
el

uD
en

se
.w

i.w
ei

gh
t

en
co

de
r.3

.1
.D

en
se

R
el

uD
en

se
.w

o.
w

ei
gh

t

en
co

de
r.3

.1
no

rm
.w

ei
gh

t

en
co

de
r.4

.0
.S

el
fA

tte
nt

io
n.

q.
w

ei
gh

t

en
co

de
r.4

.0
.S

el
fA

tte
nt

io
n.

k.
w

ei
gh

t

en
co

de
r.4

.0
.S

el
fA

tte
nt

io
n.

v.
w

ei
gh

t

en
co

de
r.4

.0
.S

el
fA

tte
nt

io
n.

o.
w

ei
gh

t

en
co

de
r.4

.0
no

rm
.w

ei
gh

t

en
co

de
r.4

.1
.D

en
se

R
el

uD
en

se
.w

i.w
ei

gh
t

en
co

de
r.4

.1
.D

en
se

R
el

uD
en

se
.w

o.
w

ei
gh

t

en
co

de
r.4

.1
no

rm
.w

ei
gh

t

en
co

de
r.5

.0
.S

el
fA

tte
nt

io
n.

q.
w

ei
gh

t

en
co

de
r.5

.0
.S

el
fA

tte
nt

io
n.

k.
w

ei
gh

t

en
co

de
r.5

.0
.S

el
fA

tte
nt

io
n.

v.
w

ei
gh

t

en
co

de
r.5

.0
.S

el
fA

tte
nt

io
n.

o.
w

ei
gh

t

en
co

de
r.5

.0
no

rm
.w

ei
gh

t

en
co

de
r.5

.1
.D

en
se

R
el

uD
en

se
.w

i.w
ei

gh
t

en
co

de
r.5

.1
.D

en
se

R
el

uD
en

se
.w

o.
w

ei
gh

t

en
co

de
r.5

.1
no

rm
.w

ei
gh

t

en
co

de
r.fi

na
ll

ay
er

no
rm

.w
ei

gh
t

de
co

de
r.0

.0
.S

el
fA

tte
nt

io
n.

q.
w

ei
gh

t

de
co

de
r.0

.0
.S

el
fA

tte
nt

io
n.

k.
w

ei
gh

t

de
co

de
r.0

.0
.S

el
fA

tte
nt

io
n.

v.
w

ei
gh

t

de
co

de
r.0

.0
.S

el
fA

tte
nt

io
n.

o.
w

ei
gh

t

de
co

de
r.0

.0
no

rm
.w

ei
gh

t

de
co

de
r.0

.1
.E

nc
D

ec
A

tte
nt

io
n.

q.
w

ei
gh

t

de
co

de
r.0

.1
.E

nc
D

ec
A

tte
nt

io
n.

k.
w

ei
gh

t

de
co

de
r.0

.1
.E

nc
D

ec
A

tte
nt

io
n.

v.
w

ei
gh

t

de
co

de
r.0

.1
.E

nc
D

ec
A

tte
nt

io
n.

o.
w

ei
gh

t

de
co

de
r.0

.1
no

rm
.w

ei
gh

t

de
co

de
r.0

.2
.D

en
se

R
el

uD
en

se
.w

i.w
ei

gh
t

de
co

de
r.0

.2
.D

en
se

R
el

uD
en

se
.w

o.
w

ei
gh

t

de
co

de
r.0

.2
no

rm
.w

ei
gh

t

de
co

de
r.1

.0
.S

el
fA

tte
nt

io
n.

q.
w

ei
gh

t

de
co

de
r.1

.0
.S

el
fA

tte
nt

io
n.

k.
w

ei
gh

t

de
co

de
r.1

.0
.S

el
fA

tte
nt

io
n.

v.
w

ei
gh

t

de
co

de
r.1

.0
.S

el
fA

tte
nt

io
n.

o.
w

ei
gh

t

de
co

de
r.1

.0
no

rm
.w

ei
gh

t

de
co

de
r.1

.1
.E

nc
D

ec
A

tte
nt

io
n.

q.
w

ei
gh

t

de
co

de
r.1

.1
.E

nc
D

ec
A

tte
nt

io
n.

k.
w

ei
gh

t

de
co

de
r.1

.1
.E

nc
D

ec
A

tte
nt

io
n.

v.
w

ei
gh

t

de
co

de
r.1

.1
.E

nc
D

ec
A

tte
nt

io
n.

o.
w

ei
gh

t

de
co

de
r.1

.1
no

rm
.w

ei
gh

t

de
co

de
r.1

.2
.D

en
se

R
el

uD
en

se
.w

i.w
ei

gh
t

de
co

de
r.1

.2
.D

en
se

R
el

uD
en

se
.w

o.
w

ei
gh

t

de
co

de
r.1

.2
no

rm
.w

ei
gh

t

de
co

de
r.2

.0
.S

el
fA

tte
nt

io
n.

q.
w

ei
gh

t

de
co

de
r.2

.0
.S

el
fA

tte
nt

io
n.

k.
w

ei
gh

t

de
co

de
r.2

.0
.S

el
fA

tte
nt

io
n.

v.
w

ei
gh

t

de
co

de
r.2

.0
.S

el
fA

tte
nt

io
n.

o.
w

ei
gh

t

de
co

de
r.2

.0
no

rm
.w

ei
gh

t

de
co

de
r.2

.1
.E

nc
D

ec
A

tte
nt

io
n.

q.
w

ei
gh

t

de
co

de
r.2

.1
.E

nc
D

ec
A

tte
nt

io
n.

k.
w

ei
gh

t

de
co

de
r.2

.1
.E

nc
D

ec
A

tte
nt

io
n.

v.
w

ei
gh

t

de
co

de
r.2

.1
.E

nc
D

ec
A

tte
nt

io
n.

o.
w

ei
gh

t

de
co

de
r.2

.1
no

rm
.w

ei
gh

t

de
co

de
r.2

.2
.D

en
se

R
el

uD
en

se
.w

i.w
ei

gh
t

de
co

de
r.2

.2
.D

en
se

R
el

uD
en

se
.w

o.
w

ei
gh

t

de
co

de
r.2

.2
no

rm
.w

ei
gh

t

de
co

de
r.3

.0
.S

el
fA

tte
nt

io
n.

q.
w

ei
gh

t

de
co

de
r.3

.0
.S

el
fA

tte
nt

io
n.

k.
w

ei
gh

t

de
co

de
r.3

.0
.S

el
fA

tte
nt

io
n.

v.
w

ei
gh

t

de
co

de
r.3

.0
.S

el
fA

tte
nt

io
n.

o.
w

ei
gh

t

de
co

de
r.3

.0
no

rm
.w

ei
gh

t

de
co

de
r.3

.1
.E

nc
D

ec
A

tte
nt

io
n.

q.
w

ei
gh

t

de
co

de
r.3

.1
.E

nc
D

ec
A

tte
nt

io
n.

k.
w

ei
gh

t

de
co

de
r.3

.1
.E

nc
D

ec
A

tte
nt

io
n.

v.
w

ei
gh

t

de
co

de
r.3

.1
.E

nc
D

ec
A

tte
nt

io
n.

o.
w

ei
gh

t

de
co

de
r.3

.1
no

rm
.w

ei
gh

t

de
co

de
r.3

.2
.D

en
se

R
el

uD
en

se
.w

i.w
ei

gh
t

de
co

de
r.3

.2
.D

en
se

R
el

uD
en

se
.w

o.
w

ei
gh

t

de
co

de
r.3

.2
no

rm
.w

ei
gh

t

de
co

de
r.4

.0
.S

el
fA

tte
nt

io
n.

q.
w

ei
gh

t

de
co

de
r.4

.0
.S

el
fA

tte
nt

io
n.

k.
w

ei
gh

t

de
co

de
r.4

.0
.S

el
fA

tte
nt

io
n.

v.
w

ei
gh

t

de
co

de
r.4

.0
.S

el
fA

tte
nt

io
n.

o.
w

ei
gh

t

de
co

de
r.4

.0
no

rm
.w

ei
gh

t

de
co

de
r.4

.1
.E

nc
D

ec
A

tte
nt

io
n.

q.
w

ei
gh

t

de
co

de
r.4

.1
.E

nc
D

ec
A

tte
nt

io
n.

k.
w

ei
gh

t

de
co

de
r.4

.1
.E

nc
D

ec
A

tte
nt

io
n.

v.
w

ei
gh

t

de
co

de
r.4

.1
.E

nc
D

ec
A

tte
nt

io
n.

o.
w

ei
gh

t

de
co

de
r.4

.1
no

rm
.w

ei
gh

t

de
co

de
r.4

.2
.D

en
se

R
el

uD
en

se
.w

i.w
ei

gh
t

de
co

de
r.4

.2
.D

en
se

R
el

uD
en

se
.w

o.
w

ei
gh

t

de
co

de
r.4

.2
no

rm
.w

ei
gh

t

de
co

de
r.5

.0
.S

el
fA

tte
nt

io
n.

q.
w

ei
gh

t

de
co

de
r.5

.0
.S

el
fA

tte
nt

io
n.

k.
w

ei
gh

t

de
co

de
r.5

.0
.S

el
fA

tte
nt

io
n.

v.
w

ei
gh

t

de
co

de
r.5

.0
.S

el
fA

tte
nt

io
n.

o.
w

ei
gh

t

de
co

de
r.5

.0
no

rm
.w

ei
gh

t

de
co

de
r.5

.1
.E

nc
D

ec
A

tte
nt

io
n.

q.
w

ei
gh

t

de
co

de
r.5

.1
.E

nc
D

ec
A

tte
nt

io
n.

k.
w

ei
gh

t

de
co

de
r.5

.1
.E

nc
D

ec
A

tte
nt

io
n.

v.
w

ei
gh

t

de
co

de
r.5

.1
.E

nc
D

ec
A

tte
nt

io
n.

o.
w

ei
gh

t

de
co

de
r.5

.1
no

rm
.w

ei
gh

t

de
co

de
r.5

.2
.D

en
se

R
el

uD
en

se
.w

i.w
ei

gh
t

de
co

de
r.5

.2
.D

en
se

R
el

uD
en

se
.w

o.
w

ei
gh

t

de
co

de
r.5

.2
no

rm
.w

ei
gh

t

de
co

de
r.fi

na
ll

ay
er

no
rm

.w
ei

gh
t0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
tR

em
ai

ni
ng

R
at

io

TaLoS (Ours) - T5-Small (QASC)

Figure 5: Visualization of mask calibration. Percentage of parameters selected for sparse fine-
tuning in a ViT-B/32 (top) and a T5-Small (bottom) models, after our method’s mask calibration vs.
LoTA’s mask calibration, at 90% sparsity. On ViT-B/32, we calibrate the masks on the Cars dataset
(Krause et al., 2013), while on T5-Small we use QASC (Khot et al., 2020).

the network. To face this problem, we set c to some positive value close to zero (e.g. 0.01) and we
don’t include in the ranking those entries that are already soft-masked. This ensures that we are not
changing the nature of our estimation, while countering the possibility of disrupting gradient flow in
the network, during calibration.
Unfortunately, mask calibration introduces some amount of overhead before training. It is of
paramount importance that such overhead doesn’t hinder the computational gains obtained during
fine-tuning.
Time overhead. The time spent for a single iteration of mask calibration is comparable to that of a
single forward-backward iteration of non-linear fine-tuning (refer to Table 3). Our mask calibration
process typically employs an average of 10 iterations per round, with satisfactory results observed at
just 4 rounds (i.e., approximately 40 iterations total, we use the same batch size for mask calibration
as for fine-tuning). Given that fine-tuning generally requires around 2,000 iterations for vision
experiments and substantially more for language tasks, we argue that the time overhead introduced
by our mask calibration is negligible.
Memory overhead. The memory cost of each mask calibration iteration is equivalent to that of each
training iteration in non-linear fine-tuning. While we have not implemented any specific mechanism to
reduce the memory footprint for calculating gradients (used as scores) during mask calibration, there
are several approaches available to achieve this. Most of these methods involve estimating gradients
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Figure 6: Testing linearized behavior. Single-task accuracies of different fine-tuning strategies, each
used to obtain their corresponding task vectors τt, and the accuracy of their post-hoc linearization
flin(·,θ0 + τt). Different colors represent distinct fine-tuning strategies, while different markers
indicate different tasks. Points that lie on the bisector (black dashed line) indicate that the fine-tuning
process exhibited linearized behavior.
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Figure 7: Change in parameter sensitivity throughout fine-tuning. We visualize the average
relative change in the output derivative of the parameters of a CLIP ViT-B/32 model when fine-tuned
using different approaches. The starting point is the same for all methods.

using zeroth-order information (Hinton, 2022; Malladi et al., 2023a; Sung et al., 2024), which allows
to trade off speed for reduced memory usage by approximating gradients through multiple forward
passes, eliminating the need to store computational graphs for automatic differentiation. Alternatively,
gradient checkpointing (Chen et al., 2016) is another practical solution.
To further clarify the overall computational cost of TaLoS, encompassing both mask calibration and
sparse fine-tuning, we provide a comparison in Table 4 of the timings in seconds (averaged over the 8
vision tasks) and the peak memory usage in Gibibytes of mask calibration and fine-tuning on a CLIP
ViT-L/14. The results show that mask calibration time is approximately the same for TaLoS and
LoTA, however, the costs in terms of memory are very different (LoTA requires storing optimizer
states). Regarding total time, we recover what was presented in Table 3, highlighting the beneficial
effect of the highly structured sparsity of TaLoS on fine-tuning. The task arithmetic results are in
line with Tables 1, 2, with no detrimental effect given by the usage of gradient checkpointing.

A.3 FULL MASK CALIBRATION VISUALIZATIONS

For the sake of completeness, we provide a full visualization in Figure 5 of the masks obtained after
calibration with TaLoS and LoTA. As shown, a repeating sparsity pattern emerges for our method
across each transformer block. Notably, TaLoS consistently identifies only the Q and K parameters
for fine-tuning, demonstrating a more structured behavior. In contrast, the mask generated by LoTA
appears far more unstructured, with no clear pattern across the blocks.

A.4 ANALYZING THE FINE-TUNING BEHAVIOR

We provide an empirical validation on the linear fine-tuning regime of our TaLoS (i.e. the change
in the network output can be well-approximated by its first-order Taylor expansion around θ0). As
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discussed by Ortiz-Jimenez et al. (2023), a cheap test consists of performing post-hoc linearization of
the fine-tuned model around θ0 and checking whether the performance produced by such a linearized
model matches that of the original fine-tuned model. We use this approach and report the results
in Figure 6. The scatter plots compare the fine-tuning accuracy against the post-hoc linearization
accuracy for various tasks and fine-tuning strategies across different ViT architectures. Our method,
TaLoS, consistently demonstrates linearized behavior during fine-tuning for most tasks, as evidenced
by its proximity to the bisector line. This supports our claim that sparse fine-tuning, which both
TaLoS and LoTA employ, inherently promotes the emergence of linearized behavior during fine-
tuning. Interestingly, while TaLoS exhibits this property across a wide range of tasks, LoTA does
not consistently demonstrate the same level of linearized behavior. This discrepancy can be attributed
to differences in parameter selection, as discussed in the next paragraph, closely matching what
happens during linearized fine-tuning. It’s worth noting that linearized behavior may arise for various
fine-tuning strategies, but its occurrence depends on the interaction between the task and pre-training
(Malladi et al., 2023b). For instance, tasks such as GTSRB (Stallkamp et al., 2011), MNIST (LeCun,
1998), and SVHN (Netzer et al., 2011) do not exhibit fine-tuning in the linear regime, hinting at a
potential mismatch with the pre-training, as evidence suggests (Radford et al., 2021).
To further test the fine-tuning regime, we examine the evolution of parameter sensitivity during fine-
tuning across different methods, as depicted in Figure 7. Notably, for TaLoS, the gradient∇θf(x,θ)
remains almost unchanged throughout training, closely mirroring the behavior of linearized fine-
tuning. In contrast, LoTA diverges from this pattern, behaving more in line with non-linear fine-
tuning. This phenomenon reinforces our claim that our method fine-tunes in the linearized regime, as
maintaining a constant∇θf(x,θ) during fine-tuning is critical for operating in the linearized regime
(Malladi et al., 2023b).
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Figure 8: Effect of the choice of k in TaLoS. Results of hyperparameter tuning of k in TaLoS for
task addition and negation on both vision and language. Note that we tune k indirectly by controlling
its value via the sparsity ratio. For task addition (top) we report the average single-task accuracy
(before addition), absolute and normalized accuracies (after addition). For task negation (bottom)
we report average target and control accuracies (after negation).

A.5 ABLATIONS ON MASK SPARSITY RATIO

For a clear understanding of the effect of sparsity on TaLoS, we report in Figure 8 the task arithmetic
performance achieved by TaLoS, while varying the sparsity level. At 0% sparsity, we recover full
(non-linear) fine-tuning results. Increasing the sparsity improves the task arithmetic performance,
while slightly decreasing the average single-task accuracy, as fewer parameters are updated during
fine-tuning. Optimal values for absolute accuracy (in task addition) and target accuracy (in task
negation) are observed for a sparsity level of 90% across a variety of models. After 90% sparsity
there is a slight drop in both task arithmetic and single-task performance, making such sparsity levels
not ideal. Intuitively, if the fine-tuning involves too little weight the resulting entries in the task vector
will be mostly zero, reducing the ability to perform task arithmetic effectively. We can conclude that,
like other parameter-efficient fine-tuning methods, our approach trades some single-task performance
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Figure 9: Task performance after fine-tuning. Single-task accuracies obtained by different fine-
tuning approaches across vision and language experiments. Results are displayed for three model
sizes of CLIP ViT (B/32, B/16, L/14) and T5 (Small, Base, Large), with outer edges representing
higher accuracy. The dashed line represents the accuracies before fine-tuning.

for parameter efficiency. But this trade-off allows also for superior task arithmetic capabilities for
TaLoS (Tables 1, 2) while maintaining competitive single-task accuracy, especially for larger models
where the performance drop becomes negligible (Figure 9).

A.6 SINGLE-TASK PERFORMANCE OF FINE-TUNING METHODS

In this analysis we focus on discussing the single-task performance of TaLoS before task addition.
To this goal, we compare in Figure 9 the accuracies obtained by TaLoS (at 90% sparsity) vs. the other
fine-tuning strategies. In almost all cases TaLoS achieves approximately the same performance of
full fine-tuning methods (Non-linear FT and Linearized FT), occasionally improving over Linearized
FT (ViT-B/32 on SVHN), which is remarkable, as TaLoS updates only a very small subset of
parameters, while full fine-tuning (both linearized and non-linear) updates the whole set of model
parameters. Furthermore, compared with parameter-efficient fine-tuning methods, which allows for
a truly fair comparison (the parameter count is the same across methods), almost always TaLoS
improves with respect to Linearized LoRA and matches the performance of LoTA. However, we
remark that the task arithmetic performance of TaLoS is much higher than the latter (see Tables 1,
2).

A.7 SENSITIVITY ANALYSIS OF PARAMETERS AND CONNECTION TO FISHER INFORMATION

Applying a perturbation θ′
0 ← θ0 + δθ0 to a subset of the pre-trained weights θ0 and observing no

change in the output f(x,θ′
0) ≈ f(x,θ0) intuitively means that those weights have low sensitivity

to the task. So, pruning or randomizing them would not affect input-output behavior.
However, there may be a problem in assessing sensitivity via extreme randomizations/perturbations:
if “extreme” randomization refers to very high magnitude perturbations (perhaps, additive), then such
perturbations will not be suitable to assess the sensitivity of the parameters, as this could potentially
move the current solution (parametrized by θ0 ∈ Rm) away from the current local optimum, to
a distinct region of the loss landscape. Indeed, sensitivity analysis generally refers to “robustness
to small perturbation”. This concept, alongside how to perform proper sensitivity analysis on the
parameters of a neural network has been formalized by a rich literature dedicated to applications of
information geometry (Amari, 1996; Chaudhry et al., 2018; Pascanu & Bengio, 2013). Specifically,
as shown by Chaudhry et al. (2018); Pascanu & Bengio (2013), to assess the influence of each weight
on the output of a network, we can use the Kullback-Leibler (KL) divergence between the output
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Figure 10: Perturbing parameters with low sensitivity. The heatmaps illustrate the effect of
perturbing the parameters with the lowest sensitivity (measured by Ex∈Dt

[|∇θf(x,θ0)|]) on different
tasks across various pre-trained models. Each grid compares the accuracy ratios for models after
pruning, with the rows representing the task Dt used to identify the parameters with the lowest
sensitivity and the columns showing the model’s performance on each task after pruning those
parameters. The accuracy ratios are normalized by the model’s performance before perturbation. The
average magnitude µ and standard deviation σ across perturbed parameters, prior to applying noise
are also reported. The ratio of perturbed parameters (10%) is chosen based on the experiment of
Figure 1.

distribution induced by the original network (pθ0
) vs. the one induced by the perturbed network

(pθ0+δθ). Mathematically, assuming δθ → 0 (a small perturbation),

DKL(pθ0
∥pθ0+δθ) =

1

2
δθ⊤F (θ0)δθ +O(∥δθ∥3)

The KL divergence is zero if the perturbation doesn’t affect the output, revealing that the modified
weights are not influential for the output. It is > 0 otherwise. Here F (θ0) ∈ Rm×m is the Fisher
Information matrix (FIM) (Fisher, 1922; Amari, 1996). It is a positive semi-definite symmetric matrix
defined as,

F (θ0) = Ex[Ey∼pθ0
(y|x)[∇θ log pθ0(y|x)∇θ log pθ0(y|x)⊤]]

It can be used to relate the changes in the parameters to the changes in the outputs, effectively
implementing a proper sensitivity analysis of the parameters of a neural network by studying the
magnitude of its diagonal elements, as they represent the sensitivity of each parameter (Chaudhry
et al., 2018; Pascanu & Bengio, 2013; Matena & Raffel, 2022). Formally, for each parameter j, with
j ∈ 1, ...,m its corresponding entry on the diagonal of the FIM has value

Fjj(θ0) = Ex[Ey∼pθ0
(y|x)[∇θj log pθ0(y|x)]2]

The higher this value is, the more the j-th parameter will be sensitive (i.e. will influence the output
of the model). Note that in our work we rank parameter sensitivity using |∇θf(x,θ0)|, which is
equivalent to using information from the diagonal elements of the FIM. Modeling pθ0

as a categorical
distribution induced by the outputs of f (which is a proper assumption for multi-class classification
tasks), the logarithm function (y = log(x)), the squaring function (y = x2) and the absolute value
function (y = |x|) are monotonically increasing in the open interval ]0,+∞[. Hence, the sensitivity
ranking is the same as [∇θ log pθ0

(y|x)]2.
We repeat in Figure 10 the experiment of Figure 1, but by adding noise distributed as N (0, 2σI) to
the bottom-10% of parameters, instead of pruning them. σ is the standard deviation of the parameters,
previous to perturbation. The results align with the analysis reported in Figure 1, highlighting the
stability of these parameters across tasks.
Additionally, in Figure 11 we provide further evidence about the overlap of low-sensitivity parameters
across tasks. For each parameter, we compute the mean Intersection over Union (mIoU) of masks,
between each task pair: starting from pre-trained parameters θ0, we predict the mask on task t and
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Figure 11: Masks intersections of low sensitivity parameters. The heatmaps illustrate the mean
Intersection over Union (mIoU) between masks pairs of the lowest sensitivity parameters (measured
by Ex∈Dt

[|∇θf(x,θ0)|]) on all tasks across different pre-trained models. For each mask, the amount
of selected parameters (10%) is chosen based on the experiment of Figure 1.

Method ViT-B/32 T5-Small
Abs. (↑) Norm. (↑) Abs. (↑) Norm. (↑)

Pre-trained (Zero-shot) 47.72 - 55.70 -
Non-linear FT (Ilharco et al., 2023) 71.25 76.94 65.04 87.98
TIES-Merging (Yadav et al., 2023) 74.79 82.84 62.53 94.83
Task-wise AdaMerging (Yang et al., 2024) 73.39 79.02 66.19 89.86
Layer-wise AdaMerging (Yang et al., 2024) 77.06 82.98 66.61 89.86
TaLoS (Ours) 79.67 90.73 65.04 97.22
TaLoS + TIES-Merging 78.15 89.10 54.54 85.42
TaLoS + Task-wise AdaMerging 79.73 90.84 66.47 99.21
TaLoS + Layer-wise AdaMerging 80.25 91.40 66.76 99.63

Table 5: TaLoS on different model merging schemes. Average absolute accuracies (%) and
normalized accuracies (%) of CLIP ViT-B/32 and T5-Small pre-trained models edited by adding
task vectors on each of the downstream tasks. We normalize performance of each method by their
single-task accuracy. Bold indicates the best results. Underline the second best.

then check its intersection over union against the mask predicted on task t′ (which acts as a ground
truth). A mIoU of 1 signals perfect mask overlap between tasks. The number of parameters selected
by each mask is 10%, in line with the experiment of Figure 1. Smaller vision models (ViT-B/32)
exhibit high parameter sharing (> 0.7 mIoU) of low-sensitivity parameters, while smaller language
models (T5-Small) share fewer (0.3–0.5 mIoU). However, with a fixed 10% mask sparsity, larger
models in both vision and language domains share more low-sensitivity parameters across tasks.

A.8 COMBINING TALOS WITH OTHER MODEL MERGING SCHEMES

We extend Table 1 in Table 5 by testing our TaLoS in combination with other merging schemes
(TIES-Merging Yadav et al. (2023) and AdaMerging Yang et al. (2024)). Specifically, for TIES-
Merging we skip the sparsification part, as the task vectors obtained by TaLoS are already sparse.
Regarding AdaMerging, we test both Task-wise AdaMerging and Layer-wise AdaMerging. As we
can see, in both vision and language experiments, applying TIES-Merging to our TaLoS is harmful.
Seemingly, the signs of task vectors obtained via TaLoS play an important role and disrupting them
according to some heuristics causes a drop in performance. Regarding AdaMerging, we can see that
TaLoS has full compatibility with existing methods for automating the selection of optimal merging
coefficients, highlighting its versatility. However, by itself TaLoS is already robust enough that it
doesn’t benefit this much from neither task-wise tunings nor layer-wise tunings.
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