2410.00215v1 [cs.LG] 30 Sep 2024

arxXiv

Characterizing and Efficiently Accelerating
Multimodal Generation Model Inference

Yejin Lee, Anna Sun, Basil Hosmer, Bilge Acun, Can Balioglu, Changhan Wang, Charles David Hernandez, Christian Puhrsch,
Daniel Haziza, Driss Guessous, Francisco Massa, Jacob Kahn, Jeffrey Wan, Jeremy Reizenstein, Jiaqi Zhai,
Joe Isaacson, Joel Schlosser, Juan Pino, Kaushik Ram Sadagopan, Leonid Shamis, Linjian Ma, Min-Jae Hwang,
Mingda Chen, Mostafa Elhoushi, Pedro Rodriguez, Ram Pasunuru, Scott Yih, Sravya Popuri, Xing Liu, and Carole-Jean Wu

Al Research at Meta

Abstract—Generative artificial intelligence (AI) technology is
revolutionizing the computing industry. Not only its applications
have broadened to various sectors but also poses new system de-
sign and optimization opportunities. The technology is capable of
understanding and responding in multiple modalities. However,
the advanced capability currently comes with significant system
resource demands. To sustainably scale generative Al capabilities
to billions of users in the world, inference must be fast and
efficient. This paper pinpoints key system design and optimization
opportunities by characterizing a family of emerging multi-
modal generation models on real systems. Auto-regressive token
generation is a critical latency performance bottleneck, typically
dominated by GPU idle time. In addition to memory-intensive
attention across the generative AI models, linear operations
constitute significant inference latency due to the feed forward
networks in Transformer-based models. We demonstrate that
state-of-the-art optimization levers, spanning from applications
to system software and hardware, set a 3.88 xbetter baseline.

I. INTRODUCTION

Generative Al technologies are driving an unprecedented
growth for the computing industry, introducing a new
paradigm shift for Al This technology redefines the interaction
between humans and Al by enabling the creation of highly
realistic images [38]], videos [14], [39], texts, and speech [6]], as
well as intricate textual patterns or even new materials. Large
language models (LLMs), such as ChatGPT [28]], Llama [44],
[45], or Gemini [43|], demonstrate remarkable capabilities.
LLMs not only enhance user experience by providing con-
textually relevant interactions but also play a critical role in
automating complex tasks. It has already germinated a wide
variety of applications, leading to higher productivity.

Beyond LLMs, multi-lingual speech translation and tran-
scription models, such as Seamless [6]], Whisper [33], or
Translatotron [22], are pivotal in breaking down the language
barriers and enhancing communication on a global scale.
The speech models provide accurate and real-time trans-
lation/transcription across different languages by processing
speech and text modalities together, such as Speech to Speech
and Text (S-ST), Text to Speech and Text (T-ST), and Auto-
matic Speech Recognition (ASR).

In addition to text and speech modalities, state-of-the-art
Al technologies can take inputs of multiple modalities to serve
multi-modal use cases. Taking Chameleon [42] as an example,
this multi-modal foundation model can take images and text

Memory Capacity [Text to Image] MSCOCO
[Image-Text to Text] Vizwiz

—8— [Speech To Text] Fleurs

—8— [Text to Text] HumanEval

[

History to Action] HSTU

Latency
Require

Computation

GPU Util Arithmetic Intensity

Fig. 1: Multi-modal generation tasks exhibit distinct system
requirements across end-to-end inference latency, GPU uti-
lization, memory capacity and computation requirement.

as input and generate outputs in either modality. Such models
are the foundation of image editing or visual question-answer
(VQA) use cases. Also, the multi-modal models are capable
of image generation based on text prompts or even ChatBot
style conversations.

Beyond learning from texts, language, speeches, images or
videos, generative Al technologies are also adopted in deep
learning recommendation systems as well. Leveraging the abil-
ity of Attention-based Transformers for automatically extract-
ing and learning features from datasets, recent deep learning
recommendation models, such as HSTU [50], TIGER [34],
introduce a new feature generation paradigm by adopting
sequential generative models. Such new model architecture
uses generative models to accurately predict items of inter-
est. Generative recommendation models overcome the model
quality saturation problem faced by existing deep learning
recommendation models (DLRMs) [25]], exceeding prediction
quality over prior recommender system technologies.

While a disproportional investment is currently focused
on LLMs, generative Al technologies that are capable of
processing multi-modal inputs and outputs are on the horizon.
Depending on distributions of input prompt lengths and use
cases (Section and the characteristics of model archi-

tectures (Section [[IlI-B), the system design space for efficiency
presents unique optimization opportunities. For example, a
recent work shows that training a state-of-the-art text-to-
image model can use /4x more GPUs per model parameter
than that of an industry-scale LLM [15]]. To efficiently ac-
celerate multi-modal generation model inference, this paper
provides an in-depth system performance characterization for
important industry-scale generative Al tasks: language (Code
Llama [35]]), speech translation (Seamless [6]), text and image
generation (Chameleon [42]]), and generative deep learning
recommender systems (gDLRM [50]).

To sustainably scale generative Al technologies for a large,
diverse variety of applications [47], we must understand and
enable Al deployment in a resource-efficient manner [49].
Figure [I] illustrates the system requirements for four multi-
modal generation models at a single batch size. The chart
highlights the latency requirement, overall memory capacity,
communication requirement, and GPU utilization, for different
tasks across these models. It is evident that, depending on input
modalities and model architectures of a specific task, system
resource utilization characteristics are distinct. For example,
Chameleon can perform image-to-text (I-T), text-to-image (T-
I), and image-text-to-text (IT-T) without requiring fine-tuning
for each task. However, the T-I task demands significantly
higher resource requirements across all four axes.

To scale advanced generative Al capabilities to billions
of user in the world, inference needs to complete in the
order of millisecond and efficiently. The in-depth real-system
performance characterization results in Section guide the
focus of inference performance and efficiency optimization.
We take a step further to enable state-of-the-art inference
performance optimization techniques — torch.compile and
CUDA Graph for memory efficiency optimization [1]], Scaled
Dot Product Attention (SDPA) / Flash Attention to speed up
Transformer’s key performance bottleneck [9]], quantization
to further improve compute density and memory bandwidth
utilization. When enabling state-of-the-art optimization levers
properly, the inference performance over the important gener-
ative Al tasks can be improved by 3.8x, setting a new, more
rigorous baseline. Beyond efficiently accelerating inference
performance horizontally across the key generative Al tasks, in
Section we present ways to further improve inference
performance efficiency with application-specific, algorithmic
optimization. We enable LayerSkip [12], a self-speculative
decoding approach to our workloads to speedup generation
and show the inference performance is improved by 1.58 .

The key contributions of this paper are as follows:

o System Performance Characterization for Emerging
Multi-Modal Generative AI Tasks This paper delivers
an in-depth examination of system performance across
four pivotal generative Al models: LLM (Code Llama),
Speech Translation (Seamless), Generative Text and Im-
age Models (Chameleon), and Generative Deep Learn-
ing Recommendation Models (gDLRM). Our analysis
covers critical aspects, such as computational demands,
memory bandwidth requirements, and variations in input

distributions — key to inference performance efficiency
optimization.

o Optimized Baseline for Generative AI Inference Ac-
celeration We demonstrate the importance of enabling
state-of-the-art optimization methods — torch.compile,
CUDA Graph, SDPA/Flash Attention, and quantization
— that accelerate the inference performance across the
generative Al tasks by upto 28 x. Algorithmic optimiza-
tion — LayerSkip — improves inference performance as
well by 1.58x. Altogether, cross-stack solutions, span-
ning algorithm and systems, improve inference perfor-
mance by an average of 3.88x.

o Design Implications and New Directions for Future
Systems We distill the implications of our findings for
future research and development — 1) New solutions
must improve upon stronger baseline 2) With proper
understandings of the distinct characteristics and end-
to-end inference pipeline of a given model, we can
achieve 3.88x speedup with state-of-the-art optimiza-
tions leverages 3) Enhancing the baseline with software
optimization methods unlocks new possibilities for both
current and future hardware architectures.

II. BACKGROUND AND MOTIVATION

A. Understanding the Lay of the Land for Multi-modal Gen-
erative Al Tasks

We provide an overview for key generative Al tech-
nologies. Figure [J] illustrates the model architectures for
four generative Al models — LLM (Code Llama), Speech
Translation (Seamless), Generative Text and Image Models
(Chameleon) and Generative Deep Learning Recommendation
Models (gDLRM). Table summarizes input/output modal-
ities and sequence length distribution for different

1) Llama for Language Generation: Code Llama is a
family of large language models based on Llama-2 for coding
tasks. Code Llama takes text-based code as input and generates
code as output. The input sequence length distribution for
Code Llama can vary depending on the specific model and task
it is being used for. However, in general, Code Llama models
are trained on a wide range of input sequence lengths to be
able to handle varying sizes of code snippets. For example,
Code Llama support sequence lengths up to 100,000 tokens
which is enough to capture a reasonably sized code snippet
while keeping the computation feasible.

The model architecture of Code Llama is a standard trans-
former architecture [46] as shown in Figure [2a] In this paper,
we take Code Llama as our model representing language
generative Al model. And we refer Code Llama as Llama from
now on for convenience. The model consists of embedding
layer followed by consecutive Transformer decoder blocks that
includes attention and feed forward layer. Specifically, Llama
34B model has 48 layers of Transformer decoder blocks.

Llama is an autoregressive generation model where infer-
ence pipeline is broken down into two phases: prefill (Prefill)
and incremental decoding (Decoding) . Prefill takes the full
input prompt whereas Decoding generates output tokens one

Text Text Speech

Output Output Output
LlnTear Vocoder
FFN T
Layer N-1 NART2U
Attention
T2TT
FFN Decoder
Layer O
Attention
T . T2TT Conformer
Embedding Encoder Speech Encoder
Lookup

t ! I

Text Text Speech
Input Input Input

(a) Code Llama (b) Seamless

Text/Image Top
Output MLP
Linear Pointwise Transformation
4 x21 with

Spatial A ti
N patial Aggregation seq_len=1024

Point- wise Projection

Layer N-1
Attention
Downsample intermediate
embedding sequence
Pointwise Transformation
FFN 3 with
. . X3 wi
Layer O Spatial Aggregation _
Attention seq_len=3072
T Point- wise Projection
Embedding
Lookup Embedding
T Lookup
Text/Image Categorical
Input Features
(c) Chameleon (d) HSTU

Fig. 2: Model Architectures of Llama [35], Seamless [6]], Chameleon [42], HSTU [50].

Auto- . Modality
Category Model regressive Notation | Tasks Toput I Output
Text-based LLM | Llama [35] v T Code Completion, Infilling, ~ | "y, Text
nstruction
] I-T Image Captioning Image Text
Iégiiii;{;“ Chameleon [42]] v T-1 Image Generation Text Image
IT-T Visual Question Answering Image & Text | Text
A S-S Speech-to-Speech Translation | Speech Speech
Speech&Text Seamless [6] Only text S-T Speech-to-Text Translation Speech Text
Translation dec}; der T-T Text-to-Text Translation Text Text
T-S Text-to-Speech Translation Text Speech
Generative DLRM | HSTU [50] X H-A Ranking and Retrieval User History | Lngagement Type (ranking)
Recommended Item (retrieval)

TABLE I: The input and output modality of each task performed by four multimodal generative models, LLM (Llama),
speech&text translation (Seamless), text&image generation (Chameleon) and generative DLRM (HSTU).

by one based on previously generated tokens. In Decoding, KV
cache optimization is key to relieve computational intensity.
The input sequence length for Decoding is always 1 with KV
cache optimization while the input sequence length for Prefill
is determined by the length of the full input prompt.

2) Seamless for Speech Translation: Seamless [6] is a
family of speech translation models that enable more natural
and authentic communication across languages. SeamlessM4T
is the foundation model for multilingual multimodal machine
translation supporting around 100 languages. SeamlessM4T
achieves state-of-the-art semantic accuracy, supports a wide
range of languages, and provides multitasking capabilities
from and into text or speech.

SeamlessM4T, which we refer to as Seamless in this paper,
consists of multiple pretrained blocks that are finetuned as a
unified model. The four main building blocks are shown in
Figure [2b] including

¢ Conformer Speech Encoder (Blue) Conformer speech
encoder is a speech representation learning model that
leverages unlabeled speech audio data.

o Text-to-Text Translator (T2TT) (Pink) T2TT is a text-
to-text translation model pre-trained on NLLB data in
nearly 100 languages. This is the “only” autoregressive
module among all modules in Seamless.

« Non-autoregressive (NAR) T2U (Green) NAR T2U is a
text-to-unit sequence-to-sequence module.

o Vocoder (Orange) Vocoder is a HiFi-GAN unit-vocoder
that converts generated units to waveform output where
an unit is a representation of speech that combines dif-
ferent aspects such as phonemes and syllables, which can
be used to generate sounds that are audible to humans.

Seamless utilizes different set of modules according to the
task it is performing. For text generation tasks, such as S-
T and T-T,the conformer speech encoder and T2TT modules
are utilized. For speech generation tasks, such as T-S and S-
S, NAR T2U and Vocoder are additionally activated and the
output of the translated text from T2TT is fed as an input to
NAR T2U.

3) Chameleon for Text and Image Generation: Chameleon
is a foundational model for the family of early-fusion token-
based mixed-modal models capable of understanding and gen-
erating images and text in any arbitrary sequence. The model is
capable of performing various tasks including visual question
answering, image captioning, text generation, image gener-
ation, and long-form mixed modal generation. Chameleon
demonstrates broad and general capabilities, including state-
of-the-art performance in image captioning tasks all in a single
model. The model architecture of Chameleon largely follows

Llama-2 [45] as shown in Figure thus Chameleon is
also an auto-regressive generation model. For normalization,
Chameleon continue to use RMSNorm [51]]; and Chameleon
uses the SwiGLU [37] activation function and rotary positional
embeddings (RoPE) [41]]. Chameleon 34B model has 48 layers
of Transformer decoder blocks.

Chameleon represents all modalities — images, text, and
code, as discrete tokens and uses a uniform transformer-
based architecture that is trained from scratch in an end-to-
end fashion on around 10T tokens of interleaved mixed-modal
data. Chameleon can take any combination of image and
text and utilizes image tokenizer [[13]] and text tokenizer [36]]
respectively to generate tokens to be fed to the model. For
text generation, generated tokens are decoded by text tokenizer
to generate readable texts. For image generation, Chameleon
generates 1024 image tokens and then detokenize them using
an image detokenizer to generate images in a format that
can be interpreted by human such as jpg. And Chameleon
uses a contrastive decoding method specifically for T-I task,
which aims to maximize the differences between a weak and
a strong model. Logits from conditioned outputs are treated
as the strong model, while unconditional logits are considered
as the weak model. As a result, Chameleon decodes twice at
each time step for T-I task.

4) gDLRM for Generative Recommendations: Generative
recommenders approach information retrieval and recommen-
dation problems by modeling the underlying joint distribution
of user-item interactions, and adopting homogeneous, large-
scale sequential backbones to replace the traditional heteroge-
neous modules in DLRMs. gDLRMs enables the main tasks
in recommendations, namely retrieval (predict the next item to
recommend) and ranking (predict the engagement type given
the retrieved item), to be formulated as a next-token prediction
problem. We refer to both type of outputs for retrieval and
ranking tasks as “Action”. Compared to prior DLRMs [18]],
[21]], [25], [48]], gDLRMs have demonstrated superior accuracy
performance [50] and further enable a unified feature space to
be used across different domains.

One key sequential architecture used in the generative
recommender system — HSTU — can be viewed as a variant
of self-attention or Transformers specialized for sequence-to-
sequence (sequential transduction) tasks. HSTU is composed
of a stack of identical layers connected by residual connec-
tions [20] as shown in Figure [2d] Each layer consists of three
main sub-layers: Point-wise Projection, Spatial Aggregation,
and Pointwise Transformation. Spatial Aggregation replaces
sequence-level normalized Softmax with pointwise normalized
attention and relative attention bias, and Point-wise Projection
together with Pointwise Transformation together performs
efficient token-level transformation augmented by element-
wise gating. This reduces the number of matrix multiplication
operations from standard Transformers. In general, training
throughput performance can be significantly improvement
through feature deduplication optimization [52]. Note that
HSTU is the only model that is non-autoregressive among the
generation tasks studied in this paper.

[T-T] MBPP I
Llama
[T-T] HumanEval I

[T-I] Coco_Image IR

Chameleon [IT-T] Vizwiz i
[I-T] MSCOCO |
[T-T] Fleurs 1fh
[T-S] Fleurs ifH
[S-T] Fleurs ifh
[S-S] Fleurs HE]
[H-A] Synthetic {H{I}1

Seamless

HSTU

QS
N
©

. S

Q Q N QO QL Q Q
> N N Q Q Q N Q
IS S $ & O

Fig. 3: Latency Distribution of each workload.

III. SYSTEM PERFORMANCE CHARACTERIZATION ON
MULTI-MODAL MODEL INFERENCE

We present real-system performance characterization results
for the key generative Al tasks in this section. The deeper
understanding of application-level characteristics and perfor-
mance bottlenecks on real systems help guide our performance
and efficiency optimization focus systematically. The data-
driven analysis also underpins key system design and opti-
mization opportunities, as what we later show in Section [[TI-B}

A. Sequence Length and Latency Distribution

Sequence length is a key task-specific dimension that de-
termines where the most important performance acceleration
opportunities come from. Sequence length distribution also
affects the computational efficiency of generative models. For
instance, models with shorter sequence lengths require less
computation time to generate samples compared to models
with longer sequence lengths. Transformer-based models, in
particular, are highly sensitive to sequence length distributions
due to their attention operation, where computational costs
increase quadratically (i.e., O(N?2d), where N and d denote
sequence length and embedding dimension, respectively). In
Table |lIL we delve into the sequence length distribution for the
four different generative Al models.

And in Figure 3] we show end-to-end inference latency
distribution to show the correlation between the sequence
length and the latency. We measure the inference latency
of each sample with a batch size of 1 on NVIDIA A100
GPU to get the latency distribution. Based on our analysis,
latency distribution is highly correlated to the sequence length
distribution. We are going to discuss the correlation in detail
in the following parts. By understanding the sequence length
and latency distribution and its correlation, our goal is to better
understand what determines the different system performance
of four generative Al models and help optimizing those models
by understanding the trade-off between the length of the
sample and the computational efficiency.

Llama: For the Llama-based coding tasks (Code Llama), we
focus on programming problems and the evaluation of AI’s
coding capabilities using the HumanEval [5] and MBPP [3]],
respectively. The input prompts describe the programming

Modality Decodin Avg. Inf
Model Dataset Input Output Ste COEHI Time (ms)
Modality | Min | Max [Avg Modality | Min [Max [Avg P (5 Sample)
Llam HumanEval | Text 44 430 153.5 | Text 35 10000 691.84 | 538.33 4493.66
ama MBPP Text 29 1748 5041 | Text 33 10000 1075.66 | 1016.25 5566.732
Speech 129.00 | 1029.00 | 385.07 1577.45
Souions | Flewrs Speech 179.00 | 1464.00 | 492.83 |-P= = o7 B 34.68 1320.97
Eng-Spa Speech 145 1030 393.18 1431.97
Text 12 80 3048 1o 4 95 35.35 3391 1186.51
MSCOCO | Image 1030 1030 1030 | Text 30 30 30 30 2912.73
Chame- Vizwiz Img&Txt | 1033 1095 1040 Text 10 10 10 10 1253.1
leon MSCOCO | Text 10 22 39 Tmage O(1025) | O(1025) | O(1025) | 1024 159702.4
HSTU Synthetic I‘if:trory 4507.0 | 5121.0 | 4813.9 | Action 4507.0 | 5121.0 | 48139 | N/A 49.89

TABLE II: Sequence Length Distribution of Four Generative AI Models.

problems in text, such as ”"Write a python function to find the
first repeated character in a given string.”. We define input
sequence lengths of Coda Llama as the number of text tokens
fed into the model whereas output sequence lengths represent
the number of text tokens generated by the model. In general,
the input sequence length for MBPP is in the order of tens
of tokens while the input sequence length for HumanEval is
in the hundreds. This is because the HumanEval dataset gives
more detailed constraints of problems with simple examples
in the input prompts. In contrast, the output sequence lengths
for HumanEval is in the order of hundreds since the solution
for these datasets are quite simple that could be solvable in
few lines of code (around 10 lines in general).

In Table 3] we report the latency distribution of HumanEval

and MBPP dataset. Overall, MBPP has longer end-to-end
latency than HumanEval as the number of decoding step is
the key factor in deciding the end-to-end latency which will
be discussed in more detail in Section [II-B] Observation #1.
Also, T-T tasks have the widest latency distribution among all
tasks as the end-to-end latency has high correlation with the
sequence lengths and the number of decoding steps distribu-
tion. The standard deviation is one of the most representative
metric to show how broadly the values are distributed. Based
on our analysis, T-T tasks have the largest standard deviation
for input sequence lengths and decoding steps.
Seamless: For sequence length analysis of Seamless, we focus
on the Fleurs [7] dataset which contains the speech version
of the FLoRes [17] machine translation benchmark in 102
different languages. This dataset is used for a variety of speech
tasks, including automatic speech recognition (ASR), speech
language identification, translation and retrieval.

The input sequence for the Seamless M4T model is gener-
ated by extracting 80-dimensional filterbank features from the
raw audio waveform at the 100Hz frame rate and by stacking
every 2 frames for the final 160-dimensional 50Hz features.
These extracted features, i.e., a dimension of 160 for Seamless
MAT, become the input and the number of features becomes
the sequence length of the model. The input sequence length
statistics are for speech encoder in case of S-T and S-S tasks
and text encoder in case of T-T and T-S tasks. For output
sequence lengths statistics, we report the output sequence
lengths of text decoder module in case of text generation
tasks (S-T, T-T) and the output sequence lengths of NAR T2U

module in case of speech generation tasks (S-S, T-S).

The output sequence of Seamless is specific to the corre-
sponding tasks. For text generation tasks (T-T, T-S), we define
the output sequences as the generated text tokens from T2TT
module. For speech generation tasks (S-T, S-S), we define the
output sequences as generated units from NAR T2U module.
Furthermore, we take English to Spanish translation as our
analysis use case since it is one of the most frequently used
combinations for translation task. We use en_us and es_419
subset from Fleurs dataset for English source language and
Spanish target language, respectively. The average duration of
input speech files of en_us are around 9.88 sec, resulting in
the average input sequence length for speech modality as 986
and 30 for text modality.

In Seamless, text generation tasks only utilize conformer
speech encoder and T2TT modules while speech generation
tasks run NAR T2U and vocoder in addition. Thus, speech
generation tasks generally take longer than text generation
tasks. In our analysis, S-S tasks are 24% slower than S-T
tasks and T-S tasks are 20% slower than T-T tasks on average
in terms of inference latency.

Chameleon: For Chameleon-based multi-modal tasks, we
focus on the widely-used MSCOCO [23]], Vizwiz [[19] datasets
for I-T&T-I and IT-T tasks, respectively.

o Image to Text (I-T) tasks: Chameleon uses newly
trained image tokenizers [[13[] for the image input modal-
ity and the BPE tokenizer [36] for the text input modality.
The image tokenizer generates 1024 image tokens per im-
age. Thus, the I-T task has a fixed input sequence length
of 1030 tokens, including the 1024 tokens representing an
image and an additional 6 tokens representing the static
prompting telling the model to generate the caption (e.g.,
“Describe the figure”).

o Image/Text to Text (IT-T) tasks: For the IT-T gener-
ation task, a representative use case is Visual Question
Answering (VQA), which generates response given an
image and a question for the image, such as “Can you
tell me what this image is about?”. In this case, the input
sequence is the concatenation of image tokens from the
image tokenizer and text tokens from the text tokenizer,
resulting in an input sequence length of 1024, plus the
number of tokens representing the question. Taking the

Vizwiz dataset as an example, the number of text tokens
for the questions range from 3 to 65.

Note that I-T and I'T-T tasks have fixed number of decod-
ing steps because Chameleon decodes until a maximum
output length for a given task and then extracts the
substring containing the desired predictions using task-
specific templates. This is why the number of decoding
steps remains fixed, even though the output lengths for
different tasks may vary.

In Figure [3 I-T tasks generally have longer latency than
IT-T tasks even though they have similar input sequence
length. This is because the number of decoding steps of I-
T tasks are longer than IT-T tasks. The maximum output
length of I-T (30) is longer than that of I'T-T (10) because
generated text caption for image (image captioning) is
generally longer than the generated text answers for the
image (visual question answering, VQA) because VQA
asks questions that can be answered in few words such
as ’Q: Which one is the blue one? A: Right”, ”Q: "What
color is this A: White”.

o Text to Image (T-I) tasks: For the T-I generation task,

instructions to generate image such as ”An upstairs living
room is decorated nicely and holds a sewing machine.” is
given as the text input prompt. Thus, the input sequence
length is determined by the number of text tokens gen-
erated by the text tokenizer. We use the MSCOCO [23]
dataset, for which the average input sequence length is
13.9.
In Figure |3] T-I tasks have the longest latency among
the all tasks. Even though T-I tasks have shorter input
sequence lengths, the number of decoding is highest
which is 1024 resulting in the longest latencies. Also, as
mentioned in Section[[lIzZA3} Chameleon uses a contrastive
decoding methiod for T-I task, thus Chameleon runs the
model twice at each incremental decoding step.

gDLRM: For recommendation tasks with feature generation
(HSTU), we focus on a synthetically generated dataset, where
a sequence of user history is randomly generated. We gener-
ated 16384 number of inference samples, and the sequence of
each sample comes with random integer indices, which range
from 0 to 6000. The synthetically-generated sequence lengths
are configured to represent the distribution we observed in the
production environment as mentioned in the work [50].

Even though the average input sequence length is 3000, the
average of generated user history is 4813.9, because Also, as
mentioned in Section HSTU is composed of a stack of
identical 14 layers but they limit the maximum input sequence
length for later 11 layers as 1024 for speed improvement
performance.

Based on the sequence length distribution unique to each
generative Al task, in the next section, we delve into under-
standing where inference latency comes from.

B. Operator Time Breakdown

System performance bottlenecks are distinct across the key
generative Al tasks Llama (CodeLlama), Chameleon (CM3),

Seamless (Seamless), and generative DLRM (HSTU). Depend-
ing on the input and output modality types and the corre-
sponding sequence lengths, system performance optimization
opportunities vary.

Figure [] presents the end-to-end model inference time
breakdown for Llama, Seamless, Chameleon and gDLRM. We
characterize the inference time by maximizing the batch size
for each workload to fit in the HBM memory capacity (i.e.,
80GB) of a single NVIDIA A100 GPU [27]. We report the
averaged breakdown result for 5 samples after 15 iterations
of warmup for Code Llama, Seamless, Chameleon and HSTU
(3 samples for T-I task of Chameleon model). For detailed
description of the codebase and environment setup, please
refer to Section [[V]

Four generative Al models consist of different sets of
operators. “Idle” time indicates idle time on GPU device
during the inference when GPU is in the idle status because
of the GPU kernel launch overhead on CPU side. We divide
prefill and decoding stage for Llama and Chameleon to better
understand the different characteristics of each stage. And we
show the normalized inference time to the end-to-end prefill
time of Llama on top of each bar. Also note that we exclude
embedding table lookup time of HSTU given that DLRM
serving disaggregates embedding from the main model itself.

Observation #1 The auto-regressive nature of token gener-
ation in Llama and CM3 makes token generation (decoding)
a performance-critical phase that is primarily determined by

the number of decoding steps, whereas the inference latency of

HSTU is much faster and does not depend on token generation.

For autoregressive generative models (Llama, Seamless, and
Chameleon), the number of decoding steps matters the most
to the end-to-end latency. As these models generate tokens
sequentially, larger the number of decoding steps prolongs the
generation process. For example, I-T task and I'T-T task have
similar average input sequence length while I-T task have 3
times higher number of decoding step according to Table
This result in longer end-to-end inference latency as shown
in Figure E} Also, the T-I task in the Chameleon model takes
the longest latency per inference sample because the image
generation process involves 1024 decoding steps to produce
a single image, significantly larger than the number of steps
required by other tasks. This results in the longest latency
per inference sample among the four models. Also, Llama
has longer latency compared to I-T task and IT-T task of
Chameleon even the input sequence lengths for Code Llama is
much smaller (upto 13x). One of the primary cause for this is
because Llama has higher number of decoding steps, resulting
in the increased end-to-end latency.

Considering that the prefill stage is only performed once
while the incremental decoding stage is repeated multiple
times, the number of decoding steps has a more significant
impact on end-to-end inference latency than the input sequence
length of the prefill stage when the number of decoding steps
is non-trivial.

On the other hand, non-autoregressive models generate
all tokens simultaneously rather than sequentially, so they

- Attention LayerNorm Embedding Misc
= Linear Convld KV_Cache_Reorder Idle
§ 100 A
o
T 80 -
o
& 60 -
o
E 40
|_
_5 20
§ 0 T 11 T 11 T 11 T 11 T T T T T
X P D P D P D P D
TT IT-T I-T T-1 S2TT S2ST T2TT T2ST
Llama Chameleon Seamless HSTU
Workloads

Fig. 4: Operator Time Breakdown of Code Llama [35], Seamless [6], Chameleon [42]], HSTU [50]. P stands for the Prefill

stage whereas D stands for the Decoding stage, respectively.

can be significantly faster than autoregressive models during
inference. This is particularly beneficial for long sequences or
when real-time performance is crucial and this can lead to a
better user experience. HSTU [50] demonstrates the potential
benefits of non-autoregressive models.

Observation #2 The inference time of autoregressive mod-

els is often dominated by the GPU idle time, indicating that

these models depend heavily on CPU-bound modules.

We observed a significant gap incurred by CPU overhead
that delayed the launch of GPU kernels, resulting in GPU
underutilization and a substantial increase in the execution
time especially for Llama and Chameleon.

Seamless and HSTU have relatively higher GPU utiliza-
tion compared to Llama and Chameleon. For Seamless,
Speech/Text Encoder and Text Decoder are always activated
and NAR T2U and Vocoder are selectively activated depending
on the tasks. Among the four modules, only the text decoder is
an autoregressive module indicating that only this module will
be operating on matrix size of sequence length 1 except for
Prefill while the rest modules are operating on the matrix size
of the given full input sequence length. Thus, the overall GPU
utilization for Seamless is higher than Llama and Chameleon
since it has only one autoregressive module. For HSTU, the
input sequence length is much larger (4813.9 x batch size) than
other models according to Table[[l] so GPU spends much more
time on computation resulting in high GPU utilization.

To address CPU-bound issue, optimizing techniques like
torch.compile and CUDA Graph can significantly reduce the
GPU kernel launch overhead. The latency improvement results
and detailed explanations of torch.compile and CUDA Graph
are provided in Section

Observation #3 Across all workloads, linear operations
constitute a comparable portion of the overall model inference
latency as the attention operations due to the Feed Forward
Networks (FFNs) in Transformer-based models.

For Llama and Chameleon, Linear operation dominates
the end-to-end inference time. For Seamless, linear operation

takes a comparable portion of the inference time to attention
operation. And for HSTU, attention operation dominates the
inference time, unlike the other models. That is because the
computation cost of attention operation grows quadratically
(O(N?)) to the input sequence length and the input sequence
length of HSTU is in higher order than other generative models
as addressed in Table [

Generally, the linear operation takes an insignificant amount
of the inference time, so accelerating linear layer operations
could bring more significant improvements to end-to-end la-
tency than accelerating attention operations. In Section
we delve more deeply into inference acceleration using differ-
ent numeric precision levels (e.g., FP16, BF16, or FP32) on
the linear operation performance and output quality.

Observation #4 KV Cache reordering operation dominates
Seamless inference time, which is a necessary operation for
the decoding strategy based on beam search.

Autoregressive models perform incremental decoding steps
based on the decoding strategy that the model adopts. Decod-
ing strategy is a sampling method used to choose the next
token based on the output probability distribution over the
vocabulary dictionary. The popular decoding strategies include
deterministic methods such as greedy and beam search and
stochastic (sampling) methods such as top-p, top-k, random,
etc. Llama and Chameleon use top-p decoding strategy and
Seamless uses beam search decoding strategy. Beam search
decoding strategy is widely used for closed form generation
tasks such as translation, because sampling based decoding
strategies are way too stochastic which often lead to a worse
semantic match between the predicted and reference sequence.

Beam search maintains a beam of the K best sequences so
far and considers the probabilities of the combination of all
of the preceding words along with the word in the current
position. Beam search maintains a separate copy of the KV
cache for each sequence, and it needs to reorder KV caches for
all attention layers according to the selected sequences from
the previous decoding step to make sure each selected beam

Code Max. # of

Model base Task Dataset Batch Size | Samples
Llama 4] T-T HumanEval 4 164
Charme- I-T MSCOCO 16 5000
Jeon 42] | IT-T Vizwiz 16 4319

T-1 Coco Image | 16 500

S-S & S-T 128
Seamless [24] TT & TS Fleurs 384 643
HSTU [50] H-A Synthetic 32 16384

TABLE III: Datasets, codebase and batch size configuration
for each workload.

Category | Optimization | Impact to Accuracy
SDPA X
System-level Optimization torch.compile X
AutoQuant v
. L LayerSkip v
‘Workload-s fic Opt t
orkload-specific Optimization |—=+-= Ve

TABLE IV: Accuracy Impact of Optimization Techniques.

performs with the corresponding KV cache. This step requires
copying all KV cache into a new memory space resulting
in a significant portion of the inference runtime. This could
be further optimized with torch.compile and we discuss the
torch.compile case study for Seamless in Section

IV. ACCELERATING MULTI-MODAL MODEL INFERENCE
VIA CROSS-STACK OPTIMIZATION

In this section, we highlight the importance of enhancing
inference performance by taking into account state-of-the-art
system optimization techniques as well as algorithmic ad-
vancement. There are (1) horizontal system-level optimizations
and (2) vertical workload-specific optimization techniques.

o System-level techniques optimize inference time per-
formance horizontally across the generative Al tasks
while being agnostic to specific algorithms. We consider
Scaled Dot Product Attention (SDPA), torch.compile
and CUDA graph optimization (CUDA Graph). SDPA
leverages highly optimized and fused implementation to
reduce the number of kernel launches and intermediate
data transfers, which contributes to lower latency and
memory usage. torch.compile and CUDA Graph facilitate
streamline GPU task scheduling and execution, opti-
mizing parallelism and resource utilization given sys-
tem hardware. We also deploy quantization optimization
using the PyTorch AutoQuant framework [30] — in
Section AutoQuant automates the parameter tuning
process by determining the most efficient quantization
method for each layer.

o Workload-specific techniques optimize design objectives
tailoring to algorithm or neural network specific char-
acteristics. Taking a recent neural network optimiza-
tion technique — LayerSkip [12] — tailor-designed for
Transformer-based large language models, we customize
and evaluate the impact of LayerSkip across the genera-
tive Al tasks in Section

Metholody Detail: Table presents the datasets and the
corresponding codebase used for each task, as well as the max-

imum batch size that fits in a single NVIDIA A100 GPU [27]]
used in our study. For the MSCOCO image dataset, we sub-
sampled 500 out of 2000 data samples so the experiment time
is more manageable and used the full dataset for the rest
tasks. For HSTU, we generated synthetically a dataset with
16,384 samples, where a sequence of user history for each
sample is randomly generated as explained in Section
We validated and ensured the dataset is representative of
production usecases.

A. Baseline is All You Need

1) Accelerating Attention: The Attention operation in
Transformer-based model architectures is an Amdahl’s law
bottleneck. Based on the real-system performance characteri-
zation in Figure f] Attention contributes to 3.4% of the end-
to-end inference time in the decoding phase for Code Llama
whereas, for HSTU, over 90% of the inference time comes
from the Attention operation.

To accelerate Attention, we enable PyTorch SDPA
(Scaled Dot Product Attention) [29] that is designed
specifically to accelerate the execution time of the
fundamental building block — Attention — in
Transformer-based model architectures. PyTorch provides
torch.nn.functional.scaled_dot_product_attention as
a function to optimize the inference time performance by
accelerating the dot product computation between the Query,
Key, and Value matrices using SDPA [46].

Instead of relying on the PyTorch SDPA API directly,
for HSTU, we manually implemented the memory-efficient
attention [32] and Flash Attention [[I0] as is in PyTorch,
directly at HSTU’s internal code base. The memory-efficient
attention implementation divides the input into blocks and
avoid materializing the large h x N x N intermediate attention
tensors for the backward pass. This reduces the attention
computation as a group of back-to-back GEMMs with different
shapes, which enables the sparsity of input sequences to be
exploited. The construction of the relative attention bias is also
a bottleneck due to memory accesses. To address this issue, we
fused the relative bias construction and grouped GEMMs into
a single GPU kernel, and accumulates gradients using GPU’s
fast shared memory in the backward pass.

Results — SPDA. Figure [0] presents the end-to-end inference
latency speedup across the family of multi-modal generation
tasks for the settings of batch size=1 and of the maximum
batch size (the largest batch size that can support each model
on a single A100 NVIDIA GPU as configured in Table [II).
PyTorch SDPA accelerates inference time performance of
the generation tasks by an average of 1.07xand 1.43xfor
the single-batch and maximum-batch settings, respectively. In
particular for HSTU, using the same fundamental principle,
we observe 2.11x and 9.87x inference time improvement
for the single-batch and maximum-batch settings, respec-
tively. The significant inference time speedup stems from the
proportionally-larger amount of time spent on the Attention
operation for HSTU than the other generation tasks. And we

=
o

SDPA SDPA+Torch.compile SDPA+Torch.compile+AutoQuant

Normalized Speedup

w

34B 7B |34B 7B 34B 7B 34B 7B |34B 7B |34B 7B 34B 7B 34B 7B
L I-T T T - 1T ITT T
HumanEv, MSCOCO Vizwiz MSCOCO [HumanEv.f MSCOCO Vizwiz MSCOCO
Llama Chameleon Llama Chameleon
Batch Size 1 Maximum Batch Size

Workloads

Fig. 5: End-to-end inference time speedup with SDPA and
SDPA+torch.compile for Llama and Chameleon

w

10

S SDPA SDPA+Torch.compile SDPA
J 5
o 24
) 61
o
R
51 4
€
5 21
= 0
S ST TS TT|SS ST TS TT H-A H-A
Fleurs Fleurs Synthetic Synthetic
Seamless Seamless HSTU HSTU
Batch Size 1 Maximum Batch Size Batch Max. Batch
Size 1 Size
Workloads Workloads
(a) Seamless (b) HSTU

Fig. 6: End-to-end inference time speedup with SDPA and
SDPA+torch.compile for Seamless and HSTU, excluding Au-
toQuant optimization as linear operation is not a bottleneck
according to Figure Ef} Refer to Section for more details.

observed that HSTU optimized implementation achieves up to
15x speedups on 8K sequences.

In general, PyTorch SDPA generally establishes a more
competitive baseline for inference performance across all
tested scenarios. However, it’s important to note that perfor-
mance gains may be negligible in cases where the attention
operation constitutes a significantly smaller proportion of the
overall inference runtime. For instance, we observed no perfor-
mance improvement when applying SDPA to Seamless, as it
allocates the smallest portion of runtime to attention operations
among the four generative Al models examined—Iess than 7%
across all tasks accordign to Figure {4}

2) Improving GPU Utilization: During inference, espe-
cially for the single batch setting, the workloads are typically
not compute bound, which raises 2 issues. First, each kernel
that runs on the GPU becomes so fast, the overhead of
launching kernels starts dominating the overall inference time.
We reduce the number of kernels with PyTorch’s compiler.
torch.compile [2] accelerates PyTorch models by cap-
turing and optimizing their entire computation graph. This
includes fusing multiple operations into a single kernel. The
second and more important issue of inference is that the GPU
computations can be faster than the time it takes to execute the
corresponding python code on CPU. The consequence is that
the GPU is inactive most of the time, waiting for instructions

Qo
=}
e
(9]
22
(%]
°
()
N
E 1 ——
£
[=]
=2
0 T T T T T
[Text Decoder [Text Deoder] +[KV Cache +[Vocoder] +[Vocoder]
Compile Compile Reorder] Compile Compile
+CUDA Graph Compile +CUDA Graph
Fig. 7: End-to-end inference speedup of applying

torch.compile and CUDA graph incrementally.

from the CPU. We address this with CUDA graphs [26]. A
CUDA graph is a succession of GPU operations that can be
executed as a whole, without having to execute CPU code to
schedule kernels one-by-one. In particular, this ensures that the
GPU is always active during the graph execution. In practice,
the graph is captured once when running the PyTorch model,
and can then be replayed whenever we have a new input.

One key limitation is that the operations must be in ex-

actly the same static tensor shapes with the same mem-
ory addresses. This is incompatible with inference work-
loads, because the KV cache increases with each iteration,
as tokens get appended (cache=torch.cat ((cache,
new_value), dim=0)). To enable CUDA Graph under
this limitation, we deployed a static buffer for the KV cache
with the maximum sequence length supported by the model
prior to the inference. As new keys and values are added to
the cache, we increment the current token position on a GPU
tensor. This counter is used by the kernel that copies the new
tokens inside the KV cache. It is also used by the attention
kernel, to skip the part of the KV cache that is not filled
yet. This change enables CUDA Graphs, since now the KV
cache and the counter have a static shape with a static GPU
memory address. Note the baseline we compare with adopts
the optimized implementation with a dynamic KV cache.
Results — torch.compile/CUDA Graph. Figure [6] presents the
additional inference performance speedup with torch.compile
and CUDA Graph for the two settings. Overall, the end-to-end
inference performance sees an average of 2.14x and 2.16x ad-
ditional speedup on top of sdpa for the two batch settings,
respectively. This results in total 2.28 x and 3.09x speedup
over the baseline without any optimization.
A Deeper Dive with Seamless: Seamless is an emerging
speech translation technology that is important to many prod-
uct surfaces but has not received similar amount of attention
as LLMs nor deep learning recommendation models. We focus
significant performance acceleration efforts to enable real-
time speech translation built on Seamless and present our key
findings in a deeper dive here.

As Figure 2(b) shows , there are four primary modules
in Seamless. The T2TT decoder and vocoder are the most
time-consuming modules, accounting for 61% and 23% of
the end-to-end model inference time, respectively. Enabling
torch.compile (mode="max-autotune””) and CUDA Graph for
the T2TT decoder and vocoder achieves 2x speedup for the

Label Description

[Text Decoder]

Compile Apply torch.compile to the text decoder

[Text Decoder]
Compile + CUDA Graph

Apply torch.compile+CUDA Graph to
the text decoder on top of the above row

+[KV Cache Reorder] Apply torch.compile to KV cache reordering

Compile operation on top of the above row
+[Vocoder] Apply torch.compile to the vocoder
Compile on top of the above row

+[Vocoder] Apply torch.compile + CUDA Graph

Compile + CUDA Graph | to the vocoder on top of the above row

TABLE V: Table for description of the labels used in Figure

text decoder and 30x speedup for the vocoder. This leads
to 2.65x faster end-to-end inference latency. It turns out,
in particular for single batch inference, GPU kernel launch
time is hardly amortized, leading to substantial GPU idle
time. Enabling torch.compile without CUDA Graph leaves
the performance acceleration potential to to 1.17x and 18.4x
for the text decoder and the vocoder, respectively. While still
significant, it shows the important role of CUDA Graph.

While torch.compile and CUDA Graph are key to inference
time improvement, our detailed operator time breakdown in
Figure [illustrates that Seamless spends significant amount
of time on KV cache management (KV_Cache_Reorder).
This is because Seamless adopts beam search as a text decod-
ing strategy. In each incremental decoding step, beam search
picks the N’ beams containing the best sequences so far based
on the probabilities of the combination of all of the preceding
words + current word. For each incremental decoding step,
KV cache reordering is needed by all Attention layers to
ensure that newly selected beams perform on the correspond-
ing KV caches from previous decoding step — kv_cache
= kv_cache.index_select (new_beams). This code
allocates new memory space and overwrites the original mem-
ory pointer for kv_cache. In order to enable torch.compile
for KV_Cache_Reorder, we had to modify KV cache
reordering to keep the memory pointer of each cache as
was recorded by using torch.Tensor.copy_ operator.
By enabling torch.compile, all GPU kernelrs related to this
operations are fused into a single function and compiled,
resulting in the final speedup for Seamless.

Figure [/| presents the overall inference speedup we achieve
for Seamless step-by-step and Table describes the each
label used for the figure. While application-specific perfor-
mance optimization, such as incremental decoding and KV
cache reordering, is important, significant inference acceler-
ation potential can be further achieved by torch.compile and
CUDA Graph optimization. For Seamless M4T, an end-to-end
inference speedup of 2.7x can be achieved for the challenging
single-batch setting. This is key to efficiently enable low-
latency, real-time speech translation tasks.

B. Data Type Optimization

Quantization is an important optimization step before mod-
els are deployed for downstream inference. To understand
the potential of state-of-the-art quantization capabilities and
the impact on the baseline, we assess data type optimization
by applying AutoQuant (Auto-Quantization) [30]. AutoQuant

is a recently developed quantization implementation within
the PyTorch torchao library [30] designed to integrate high-
performance custom data types, layouts, and kernels into
PyTorch workflows. AutoQuant optimizes the quantization
process by determining the most efficient quantization method
for each model layer. It supports two quantization types — int8
dynamic quantization, int8 weight-only quantization.

Depending on downstream tasks, models of different in-
put modalities, architectures and layer specifications can be
quantized in distinct ways. For compute-intensive models,
dynamic quantization tends to be most effective as it replaces
expensive floating-point matrix multiplication operations with
faster integer versions. In contrast, weight-only quantization
is more beneficial for memory-bound scenarios, where the
primary advantage is reduced weight data loading rather than
decreased computational demand.

We enable AutoQuant as follows. First, in the model

preparation step, linear layers within a model is identified as
candidates for quantization. Then, in the shape calibration step,
the model with one or more inputs is profiled for the shape and
data types of activations recorded for subsequent uses. Finally,
the timing performance of the recorded shape and data types
are measured, and the fastest quantization setting is applied to
speed up model inference.
Results — AutoQuant. Figure [6] presents the inference time
speedup when AutoQuant is enabled. Compared with the
speedup with torch.compile (Section [V-A2), AutoQuant pro-
vides additional 1.20x, 1.57x performance improvements for
single batch setting. Compared to the baseline without any op-
timization, we observe an average of 2.13x and 4.38x latency
improvement for the single and the maximum batch settings,
respectively.

For the other generation tasks using the model architectures
of Seamless and HSTU, we do not expect performance im-
provement based on the operator time characterization results
in Figure] — linear operations do not contribute signif-
icant runtime to end-to-end model inference. Furthermore,
quantization optimization needs careful tuning, especially for
production use cases of recommendation models [11]]. Thus,
we do not enable AutoQuant for HSTU.

C. Algorithm and Neural Network Specific Optimizations

To meet the low inference latency requirement with resource
efficiency in mind, we prioritize enabling system optimization
levers that come with minimal accuracy impact — SDPA
and Flash Attention in Section [16]l, torch.compile
and CUDA Graph in Section and AutoQuant in Sec-
tion [[V-B] To further efficiently accelerate inference, algorithm
and neural network specific optimizations are introduced. In
this section, we focus on a state-of-the-art inference optimiza-
tion technique: LayerSkip [12]]. This technique is originally
proposed to accelerate inference time for Llama. Here, we
show how this techniques could be utilized to accelerate other
multi-modal generative models.

LayerSkip [12] is specialized to minimize single-batch infer-
ence latency of LLMs for real-time, interactive conversations.

LayerSkip Only SDPA + torch.compile+ AutoQuant + LayerSkip

Qo
>
©
o
a4
(73] 34
3 2]
N
E 1
0
5 348 7B
=z TT I-T IT-T
HumanEval MSCOCO Vizwiz
Llama Chameleon (7B)
Workloads

Fig. 8: End-to-end inference time speedup with LayerSkip with
batch size = 1.

During training, layer dropout [40] is applied, using low
dropout rates for earlier layers and higher dropout rates for
later layers with an early exit loss where all layers share the
same classification head. Then, during inference, the training
recipe increases the accuracy of early exit at the earlier layers,
without adding any auxiliary layers or modules to the model.
Finally, self-speculative decoding is introduced, where a subset
of earlier layers are used to generate tokens sequentially, and
remaining layers are used to verify and corrects tokens in
parallel, amortizing the cost of loading their weights.
Results — LayerSkip. To show the performance gain from
workload-specific optimizations, LayerSkip, we choose Llama
and Chameleon as our target models and show the inference
time speedup in Figure [8} We focus on batch size 1 because
efficient speculative decoding for larger batch sizes require
significant modification to the attention mechanism [8]], [31]].
However, LayerSkip is an optimization technique that achieves
significant inference time speedup at the cost of accuracy
loss. We achieve 1.59x and 1.53x speedup with +2.5% and
-1.2% accuracy impact for CodeLlama 7B and 34B model,
respectively. For Chameleon 7B model, LayerSkip achieves
1.43x and 1.83x speedup with -3.2 and -6.36 cider score
loss for I-T and IT-T tasks, respectively. Overall, we observed
the geomean 1.58 xspeedup only with LayerSkip.

Results — Putting It Altogether. We further explored per-
formance gains by enabling all cross-stack optimization tech-
niques, including system-level optimization techniques (SDPA,
torch.compile, AutoQuant) and workload-load specific opti-
mization technique (LayerSkip). This enhanced the speedup
from 1.58x to 3.88x, demonstrating the significant potential
of combining these techniques for optimal performance gains.

V. KEY LESSONS AND CONCLUDING REMARKS

Generative Al technologies are reshaping the computing
landscape by offering new capabilities. This paper presents
detailed system performance characterization of key mul-
timodal generation models from Meta: Llama, Seamless,
Chameleon, and gDLRM. We highlight the distinct resource
requirements and performance characteristics, emphasizing the
need for tailored optimization strategies. Enabling state-of-the-
art system-level optimizations, such as Flash Attention/SDPA,
torch.compile, CUDA Graph and quantization, brings signifi-
cant improvements, leading to stronger baseline performance.
Enabling workload-specific optimizations, such as LayerSkip,

unlocks even further optimization opportunities by exploiting
workload specific characteristics.

Our analysis reveals several key insights that are crucial for
the computer architecture community:

e Multi-modal models exhibit unique workload character-
istics that set them apart from traditional AI models.
Our quantitative results demonstrate significant difference
in latency, compute and memory requirements across
different modalities and tasks. For instance, we observed
that Text to Image and Image-Text to Text tasks of
Chameleon demands 1.7x more compute than HSTU,
while the arithmetic intensity of HSTU is 1.25x higher.

o Optimization solutions must consider the entire model
inference pipeline end-to-end. Our research shows that
focusing on isolated components may lead to suboptimal
performance gains. For example, optimizing only the
attention operation with SDPA gives 1.43 x improvement,
and additionally optimizing linear operations with Auto-
Quant gives additional 3.06x speedup, resulting in total
4.38x inference time speedup.

o While new hardware accelerators are exciting prospects,
our results emphasize the importance of first exhaust-
ing state-of-the-art software optimizations. We demon-
strated that enabling state-of-the-art optimization, such as,
SDPA, torch.compile, and AutoQuant, already led to an
4.38x performance improvement across all the models,
highlighting the untapped potential in existing hardware.

o The diversity in model architectures, input modalities
necessitates flexible and adaptable optimization strate-
gies. Our work shows that a one-size-fits-all approach is
insufficient, as evidenced by showing that PyTorch SDPA
might not be always helpful depending on the significance
of the attention operation portion of the total runtime.

o Hardware design for generative Al tasks should prioritize
flexibility and adaptability to accommodate diverse com-
putational patterns and requirements across models, tasks
and optimization knobs. Reconfigurable hardware design
is essential to efficiently handle these variations. Address-
ing growing network demands through increased on-chip
memory or enhanced inter/intra host communication is
crucial for large-scale generative models.

We hope this work provides deeper understanding and
insights on the landscape of generative Al technologies and
cross-stack system optimization solutions. Focusing on opti-
mizing fundamental components and considering unique input
modalities of the key generative Al technologies are the key
to efficiently accelerate model inference. The findings and
methodologies in this paper enhance our understanding of
generative Al system performance and set the stage for future
innovations, leading to more efficient and scalable Al systems.
As the field of generative Al continues to evolve rapidly, we
believe that the computer architecture community has a crucial
role to play in shaping the next generation of efficient, high-
performance Al systems.

VI. ACKNOWLEDGEMENT

This work is an outcome of the extensive collaborations
with many teams: Chameleon, Seamless, and HSTU. We are
thankful for the valuable insights, numerous discussions, and
refinement on the multimodal models. We would also like
to thank the PyTorch and the xFormers teams, especially
their inputs on ML system optimization. In particular, we
thank Mostafa Elhoushi for the assistance in implementing and
debugging LayerSkip for the multi-modal generation tasks.

[1]

[2]

[5]

[6]

REFERENCES

J. Ansel, E. Yang, H. He, N. Gimelshein, A. Jain, M. Voznesensky,
B. Bao, P. Bell, D. Berard, E. Burovski, G. Chauhan, A. Chourdia,
W. Constable, A. Desmaison, Z. DeVito, E. Ellison, W. Feng, J. Gong,
M. Gschwind, B. Hirsh, S. Huang, K. Kalambarkar, L. Kirsch, M. La-
zos, M. Lezcano, Y. Liang, J. Liang, Y. Lu, C. K. Luk, B. Maher,
Y. Pan, C. Puhrsch, M. Reso, M. Saroufim, M. Y. Siraichi, H. Suk,
S. Zhang, M. Suo, P. Tillet, X. Zhao, E. Wang, K. Zhou, R. Zou,
X. Wang, A. Mathews, W. Wen, G. Chanan, P. Wu, and S. Chintala,
“Pytorch 2: Faster machine learning through dynamic python bytecode
transformation and graph compilation,” in Proceedings of the 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, 2024.

J. Ansel, E. Yang, H. He, N. Gimelshein, A. Jain, M. Voznesensky,
B. Bao, P. Bell, D. Berard, E. Burovski, G. Chauhan, A. Chourdia,
W. Constable, A. Desmaison, Z. DeVito, E. Ellison, W. Feng, J. Gong,
M. Gschwind, B. Hirsh, S. Huang, K. Kalambarkar, L. Kirsch,
M. Lazos, M. Lezcano, Y. Liang, J. Liang, Y. Lu, C. K. Luk, B. Maher,
Y. Pan, C. Puhrsch, M. Reso, M. Saroufim, M. Y. Siraichi, H. Suk,
S. Zhang, M. Suo, P. Tillet, X. Zhao, E. Wang, K. Zhou, R. Zou,
X. Wang, A. Mathews, W. Wen, G. Chanan, P. Wu, and S. Chintala,
“Pytorch 2: Faster machine learning through dynamic python bytecode
transformation and graph compilation,” in Proceedings of the 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ser. ASPLOS °24. New
York, NY, USA: Association for Computing Machinery, 2024, p.
929-947. [Online]. Available: https://doi.org/10.1145/3620665.3640366
J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan,
E. Jiang, C. Cai, M. Terry, Q. Le, and C. Sutton, “Program synthesis
with large language models,” 2021.

L. Ben Allal, N. Muennighoff, L. Kumar Umapathi, B. Lipkin,
and L. von Werra, “A framework for the evaluation of code gen-
eration models,” https://github.com/bigcode-project/bigcode-evaluation-
harness, 2022.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian,
C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis,
E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak,
J. Tang, 1. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford,
M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew,
D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating
large language models trained on code,” 2021.

S. Communication, L. Barrault, Y.-A. Chung, M. C. Meglioli, D. Dale,
N. Dong, M. Duppenthaler, P.-A. Duquenne, B. Ellis, H. Elsahar, J. Haa-
heim, J. Hoffman, M.-J. Hwang, H. Inaguma, C. Klaiber, I. Kulikov,
P. Li, D. Licht, J. Maillard, R. Mavlyutov, A. Rakotoarison, K. R.
Sadagopan, A. Ramakrishnan, T. Tran, G. Wenzek, Y. Yang, E. Ye,
1. Evtimov, P. Fernandez, C. Gao, P. Hansanti, E. Kalbassi, A. Kallet,
A. Kozhevnikov, G. M. Gonzalez, R. S. Roman, C. Touret, C. Wong,
C. Wood, B. Yu, P. Andrews, C. Balioglu, P--J. Chen, M. R. Costa-jussa,
M. Elbayad, H. Gong, F. Guzman, K. Heffernan, S. Jain, J. Kao, A. Lee,
X. Ma, A. Mourachko, B. Peloquin, J. Pino, S. Popuri, C. Ropers,
S. Saleem, H. Schwenk, A. Sun, P. Tomasello, C. Wang, J. Wang,
S. Wang, and M. Williamson, “Seamless: Multilingual expressive and
streaming speech translation,” 2023.

A. Conneau, M. Ma, S. Khanuja, Y. Zhang, V. Axelrod, S. Dalmia,
J. Riesa, C. Rivera, and A. Bapna, “Fleurs: Few-shot learning evaluation
of universal representations of speech,” 2022.

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

C. Daniel, “Optimizing attention for spec decode can reduce latency
/ increase throughput,” |https://docs.google.com/document/d/1T-
JaS2T1NR{dP51qzqpyakoCXxSXTtORppiwajSasxA/edit#theading=h.
kk7dq051c6q8, [Accessed 16-09-2024].

T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré, “Flashattention:
Fast and memory-efficient exact attention with io-awareness,” 2022.
[Online]. Available: https://arxiv.org/abs/2205.14135

T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré, “Flashattention:
Fast and memory-efficient exact attention with io-awareness,” 2022.
[Online]. Available: https://arxiv.org/abs/2205.14135

Z. Deng, J. Park, P. T. P. Tang, H. Liu, J. Yang, H. Yuen, J. Huang,
D. Khudia, X. Wei, E. Wen, D. Choudhary, R. Krishnamoorthi, C.-J. Wu,
S. Nadathur, C. Kim, M. Naumov, S. Naghshineh, and M. Smelyanskiy,
“Low-precision hardware architectures meet recommendation model
inference at scale,” IEEE Micro, vol. 41, no. 5, pp. 93-100, 2021.

M. Elhoushi, A. Shrivastava, D. Liskovich, B. Hosmer, B. Wasti, L. Lai,
A. Mahmoud, B. Acun, S. Agarwal, A. Roman, A. A. Aly, B. Chen, and
C.-J. Wu, “Layerskip: Enabling early exit inference and self-speculative
decoding,” 2024. [Online]. Available: https://arxiv.org/abs/2404.16710,
O. Gafni, A. Polyak, O. Ashual, S. Sheynin, D. Parikh, and Y. Taig-
man, “Make-a-scene: Scene-based text-to-image generation with human
priors,” 2022.

R. Girdhar, M. Singh, A. Brown, Q. Duval, S. Azadi, S. S. Rambhatla,
A. Shah, X. Yin, D. Parikh, and I. Misra, “Emu video: Factorizing text-
to-video generation by explicit image conditioning,” 2023.

A. Golden, S. Hsia, F. Sun, B. Acun, B. Hosmer, Y. Lee, Z. DeVito,
J. Johnson, G.-Y. Wei, D. Brooks, and C.-J. Wu, “Generative Al
beyond LLMs: System implications of multi-modal generation,” in
IEEE International Symposium on Performance Analysis of Systems and
Software, 2024.

A. Golden, S. Hsia, F. Sun, B. Acun, B. Hosmer, Y. Lee,
Z. DeVito, J. Johnson, G.-Y. Wei, D. Brooks, and C.-J. Wu, “Is
flash attention stable?” in arXiv 2405.02803, 2024. [Online]. Available:
https://arxiv.org/abs/2405.02803

N. Goyal, C. Gao, V. Chaudhary, P.-J. Chen, G. Wenzek, D. Ju,
S. Krishnan, M. Ranzato, F. Guzman, and A. Fan, “The flores-101 evalu-
ation benchmark for low-resource and multilingual machine translation,”
2021.

U. Gupta, C.-J. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks,
B. Cottel, K. Hazelwood, M. Hempstead, B. Jia, H.-H. S. Lee,
A. Malevich, D. Mudigere, M. Smelyanskiy, L. Xiong, and X. Zhang,
“The architectural implications of facebook’s dnn-based personalized
recommendation,” in 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2020.

D. Gurari, Q. Li, A. J. Stangl, A. Guo, C. Lin, K. Grauman, J. Luo,
and J. P. Bigham, “Vizwiz grand challenge: Answering visual questions
from blind people,” 2018.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

S. Hsia, U. Gupta, B. Acun, N. Ardalani, P. Zhong, G.-Y. Wei,
D. Brooks, and C.-J. Wu, “Mp-rec: Hardware-software co-design to
enable multi-path recommendation,” in Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, 2023.

Y. Jia, R. J. Weiss, F. Biadsy, W. Macherey, M. Johnson, Z. Chen,
and Y. Wu, “Direct speech-to-speech translation with a sequence-
to-sequence model,” CoRR, vol. abs/1904.06037, 2019. [Online].
Available: http://arxiv.org/abs/1904.06037

T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,
P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollar, “Microsoft coco:
Common objects in context,” 2015.

“Seamless,” https://github.com/facebookresearch/seamless_|
communication, Meta, 2023.

M. Naumov, D. Mudigere, H. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C. Wu, A. G. Azzolini, D. Dzhulgakov,
A. Mallevich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu,
V. Kondratenko, S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia,
L. Xiong, and M. Smelyanskiy, “Deep learning recommendation
model for personalization and recommendation systems,” CoRR, vol.
abs/1906.00091, 2019. [Online]. Available: https://arxiv.org/abs/1906.
00091

“CUDA GRaph,” https://developer.nvidia.com/blog/cuda- 10-features-
revealed/, NVIDIA, 2018.

https://doi.org/10.1145/3620665.3640366
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://docs.google.com/document/d/1T-JaS2T1NRfdP51qzqpyakoCXxSXTtORppiwaj5asxA/edit#heading=h.kk7dq05lc6q8
https://docs.google.com/document/d/1T-JaS2T1NRfdP51qzqpyakoCXxSXTtORppiwaj5asxA/edit#heading=h.kk7dq05lc6q8
https://docs.google.com/document/d/1T-JaS2T1NRfdP51qzqpyakoCXxSXTtORppiwaj5asxA/edit#heading=h.kk7dq05lc6q8
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2404.16710
https://arxiv.org/abs/2405.02803
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1904.06037
https://github.com/facebookresearch/seamless_communication
https://github.com/facebookresearch/seamless_communication
https://arxiv.org/abs/1906.00091
https://arxiv.org/abs/1906.00091
https://developer.nvidia.com/blog/cuda-10-features-revealed/
https://developer.nvidia.com/blog/cuda-10-features-revealed/

[27

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

(48]

“NVIDIA A100 Tensor Core GPU,” https://images.nvidia.com/aem-
dam/en-zz/Solutions/data-center/nvidia-ampere- architecture-
whitepaper.pdf, NVIDIA, 2020.

OpenAl, “Chatgpt,” https://openai.com/gpt, 2024.

“SDPA,” https://pytorch.org/docs/stable/generated/torch.nn.functional.
scaled_dot_product_attention.html, PyTorch, 2023.

“torchao,” https://github.com/pytorch/ao/tree/main/torchao/quantization,
PyTorch, 2024.

H. Qian, S. K. Gonugondla, S. Ha, M. Shang, S. K. Gouda,
R. Nallapati, S. Sengupta, X. Ma, and A. Deoras, “Bass: Batched
attention-optimized speculative sampling,” 2024. [Online]. Available:
https://arxiv.org/abs/2404.15778

M. N. Rabe and C. Staats, “Self-attention does not need o(n?)
memory,” 2022. [Online]. Available: https://arxiv.org/abs/2112.05682
A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever, “Robust speech recognition via large-scale weak super-
vision,” 2022.

S. Rajput, N. Mehta, A. Singh, R. H. Keshavan, T. Vu, L. Heldt, L. Hong,
Y. Tay, V. Q. Tran, J. Samost, M. Kula, E. H. Chi, and M. Sathiamoorthy,
“Recommender systems with generative retrieval,” 2023.

B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, R. Sauvestre, T. Remez, J. Rapin, A. Kozhevnikov, I. Evtimov,
J. Bitton, M. Bhatt, C. C. Ferrer, A. Grattafiori, W. Xiong, A. Défossez,
J. Copet, F. Azhar, H. Touvron, L. Martin, N. Usunier, T. Scialom, and
G. Synnaeve, “Code llama: Open foundation models for code,” 2024.
R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation
of rare words with subword units,” CoRR, vol. abs/1508.07909, 2015.
[Online]. Available: http://arxiv.org/abs/1508.07909

N. Shazeer, “GLU variants improve transformer,” CoRR, vol.
abs/2002.05202, 2020. [Online]. Available: https://arxiv.org/abs/2002.
05202

S. Sheynin, A. Polyak, U. Singer, Y. Kirstain, A. Zohar, O. Ashual,
D. Parikh, and Y. Taigman, “Emu edit: Precise image editing via
recognition and generation tasks,” 2023.

U. Singer, A. Polyak, T. Hayes, X. Yin, J. An, S. Zhang, Q. Hu, H. Yang,
O. Ashual, O. Gafni, D. Parikh, S. Gupta, and Y. Taigman, “Make-a-
video: Text-to-video generation without text-video data,” 2022.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from overfit-
ting,” J. Mach. Learn. Res., vol. 15, no. 1, p. 1929-1958, jan 2014.

J. Su, Y. Lu, S. Pan, B. Wen, and Y. Liu, “Roformer: Enhanced trans-
former with rotary position embedding,” CoRR, vol. abs/2104.09864,
2021. [Online]. Available: https://arxiv.org/abs/2104.09864

C. Team, “Chameleon: Mixed-modal early-fusion foundation models,”
arXiv preprint arXiv:2405.09818, 2024. [Online]. Available: https:
//github.com/facebookresearch/chameleon

G. Team, “Gemini: A family of highly capable multimodal models,”
2024.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Roziere, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez,
A. Joulin, E. Grave, and G. Lample, “Llama: Open and efficient
foundation language models,” 2023.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher,
C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu,
W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn,
S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa,
I. Kloumann, A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee,
D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra,
I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi,
A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang,
R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang,
A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov,
and T. Scialom, “Llama 2: Open foundation and fine-tuned chat models,”
2023.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2023.

C.-J. Wu, B. Acun, R. Raghavendra, and K. Hazelwood, “Beyond
efficiency: Scaling ai sustainably,” IEEE Micro, 2024.

C.-J. Wu, R. Burke, E. H. Chi, J. Konstan, J. McAuley, Y. Raimond,
and H. Zhang, “Developing a recommendation benchmark for
mlperf training and inference,” 2020. [Online]. Available: https:
/larxiv.org/abs/2003.07336

[49]

(501

[51]

[52]

C.-J. Wu, R. Raghavendra, U. Gupta, B. Acun, N. Ardalani, K. Maeng,
G. Chang, F. A. Behram, J. Huang, C. Bai, M. Gschwind, A. Gupta,
M. Ott, A. Melnikov, S. Candido, D. Brooks, G. Chauhan, B. Lee, H.-
H. S. Lee, B. Akyildiz, M. Balandat, J. Spisak, R. Jain, M. Rabbat, and
K. Hazelwood, “Sustainable Al: Environmental implications, challenges
and opportunities,” in Proceedings of Machine Learning and Systems,
2022.

J. Zhai, L. Liao, X. Liu, Y. Wang, R. Li, X. Cao, L. Gao,
Z. Gong, F. Gu, M. He, Y. Lu, and Y. Shi, “Actions speak
louder than words: Trillion-parameter sequential transducers for
generative recommendations,” 2024. [Online]. Available: https://github.
com/facebookresearch/generative-recommenders

B. Zhang and R. Sennrich, “Root mean square layer normalization,”
CoRR, vol. abs/1910.07467, 2019. [Online]. Available: http://arxiv.org/
abs/1910.07467

M. Zhao, D. Choudhary, D. Tyagi, A. Somani, M. Kaplan, S.-H. Lin,
S. Pumma, J. Park, A. Basant, N. Agarwal, C.-J. Wu, and C. Kozyrakis,
“Recd: Deduplication for end-to-end deep learning recommendation
model training infrastructure,” in Proceedings of Machine Learning and
Systems, 2023.

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://openai.com/gpt
https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
https://github.com/pytorch/ao/tree/main/torchao/quantization
https://arxiv.org/abs/2404.15778
https://arxiv.org/abs/2112.05682
http://arxiv.org/abs/1508.07909
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2104.09864
https://github.com/facebookresearch/chameleon
https://github.com/facebookresearch/chameleon
https://arxiv.org/abs/2003.07336
https://arxiv.org/abs/2003.07336
https://github.com/facebookresearch/generative-recommenders
https://github.com/facebookresearch/generative-recommenders
http://arxiv.org/abs/1910.07467
http://arxiv.org/abs/1910.07467

	Introduction
	Background and Motivation
	Understanding the Lay of the Land for Multi-modal Generative AI Tasks
	Llama for Language Generation
	Seamless for Speech Translation
	Chameleon for Text and Image Generation
	gDLRM for Generative Recommendations

	System Performance Characterization on Multi-Modal Model Inference
	Sequence Length and Latency Distribution
	Operator Time Breakdown

	Accelerating Multi-Modal Model Inference via Cross-Stack Optimization
	Baseline is All You Need
	Accelerating Attention
	Improving GPU Utilization

	Data Type Optimization
	Algorithm and Neural Network Specific Optimizations

	Key Lessons and Concluding Remarks
	Acknowledgement
	References

