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ABSTRACT

We extend the Differential Privacy (DP) framework to Hadamard manifolds, the
class of complete and simply connected Riemannian manifolds with non-positive
sectional curvature. Inspired by the Cartan–Hadamard theorem, we introduce
Exponential-Wrapped Laplace and Gaussian mechanisms to achieve ε-DP, (ε, δ)-
DP, Gaussian DP (GDP), and Rényi DP (RDP) on these manifolds. Our approach
employs efficient, straightforward algorithms that circumvent the computationally
intensity Monte Carlo Markov Chain (MCMC) methods. This work is the first to
extend (ε, δ)-DP, GDP, and RDP to Hadamard manifolds. We further demonstrate
the effectiveness of our methodology through simulations on the space of Symmet-
ric Positive Definite Matrices, a frequently used Hadamard manifold in statistics.
Our findings reveal that our Exponential-Wrapped mechanisms surpass traditional
MCMC-based approaches, which require careful tuning and extensive diagnostics,
in both performance and ease of use. Additionally, our methods achieve compara-
ble utility to the Riemannian Laplace mechanism with enhanced utility for smaller
privacy budgets (ε) and operate orders of magnitude faster computationally.

1 INTRODUCTION

The proliferation of AI and machine learning technologies has catalyzed the exploration of more
complex types of data. Notably, nonlinear manifold data, which frequently emerge in fields such as
medical imaging (Pennec et al., 2019; Dryden, 2005; Dryden et al., 2009), computer vision (Turaga
& Srivastava, 2015; Turaga et al., 2008; Cheng & Vemuri, 2013), pattern recognition (Nielsen, 2013;
Hettiarachchi & Peters, 2015), signal processing (Barachant et al., 2010; Zanini et al., 2018), and
geometric deep learning (Belkin et al., 2006; Niyogi, 2013), pose unique challenges.

As data becomes increasingly complex, the task of safeguarding privacy also becomes more chal-
lenging and intricate. Differential Privacy (DP) (Dwork et al., 2006b), a leading mathematical
framework, has been widely recognized for its ability to quantify and ensure privacy protection.
While numerous mechanisms have been developed to achieve DP (McSherry & Talwar, 2007; Barak
et al., 2007; Wasserman & Zhou, 2010; Reimherr & Awan, 2019), these traditional mechanisms,
primarily designed for linear data, often fall short when applied to complex nonlinear data. For
instance, the commonly adopted extrinsic method embeds nonlinear data into Euclidean space, allow-
ing the application of standard differential privacy (DP) mechanisms. However, as Reimherr et al.
(2021) demonstrated, leveraging the intrinsic properties of nonlinear data can significantly enhance
data utility while maintaining privacy. This underscores the necessity for privacy mechanisms that
integrate differential geometry to effectively address the complexities of nonlinear data and fully
leverage its geometric structure.

The differential privacy framework was first extended to general manifolds by Reimherr et al. (2021),
who introduced the Riemannian Laplace mechanism on Riemannian manifolds to achieve ε-DP.
However, the development of other differential privacy variations for broader manifold applications
remains limited. Utpala et al. (2023a) extended (ε, δ)-DP only to a specific manifold – the Symmetric
Positive Definite Matrices (SPDM) space – using the log-Euclidean metric instead of the usual
Rao-Fisher affine invariant metric. When equipped with the log-Euclidean metric, the SPDM space
becomes geometrically flat (Arsigny et al., 2007), which simplifies the approach but at the expense
of generality. In a similar vein, Jiang et al. (2023) expanded Gaussian Differential Privacy (GDP)
to general manifolds, although their calibration algorithm is confined to constant curvature spaces
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and demands considerable computational resources. The sampling methods required for both the
Riemannian Laplace and Gaussian mechanisms, as described by Reimherr et al. (2021) and Jiang
et al. (2023), involve computationally intensive Markov Chain Monte Carlo (MCMC) processes,
particularly in complex, high-dimensional spaces such as the SPDM space. This highlights an
ongoing need for broader extensions of differential privacy variations to manifolds and the creation
of more computationally efficient mechanisms.

In this research, we significantly advance the application of differential privacy to Hadamard Rie-
mannian manifolds, showcasing robust mechanisms alongside empirical validations. Our main
contributions are outlined below::

• We are the first to extend (ε, δ)-DP, GDP, and RDP to Hadamard Riemannian manifolds
through the introduction of Exponential-Wrapped Laplace and Gaussian mechanisms. Im-
portantly, this is the first extension for RDP and broadens the scope of privacy frameworks
to general manifold settings.

• We develop fast and efficient implementations of these mechanisms that avoid the computa-
tionally intensive MCMC sampling methods. This development facilitates more feasible
and practical applications of differential privacy in real-world scenarios.

• Through comprehensive numerical experiments, our results demonstrate that our mecha-
nisms perform comparably to the traditional Riemannian Laplace mechanism. Notably,
when achieving GDP, our Exponential Gaussian mechanism exhibits superior performance
in scenarios with small privacy budgets.

This paper is structured as follows: First, we review key concepts from Riemannian Geometry and
Differential Privacy. Subsequently, we introduce the Exponential-Wrapped Distribution and detail its
calibration to achieve (ε, δ)-DP, GDP, and RDP. We then explore the task of releasing differentially
private Fréchet means and derive theoretical utility bounds for our mechanisms. Finally, we present
numerical simulations to demonstrate the effectiveness of our methods.

2 BACKGROUND MATERIALS

We begin by outlining core concepts in Riemannian Geometry, with reference to standard texts such
as Lee (2006); Petersen (2006); Pennec et al. (2019); Said (2021); Grigoryan (2009). Following this,
we examine important definitions and results related to DP, GDP, and Rényi DP. For those seeking
a deeper understanding, see Dwork & Roth (2014); Mironov (2017); Dong et al. (2021; 2022) for
comprehensive discussions.

2.1 RIEMANNIAN GEOMETRY

Let M denote a d-dimensional Riemannian manifold endowed with a Riemannian metric g, which
consists of a smoothly varying collection of inner products ⟨·, ·⟩x defined on each tangent space TxM
at points x on the manifold. At each point x, the inner product is a positive definite bilinear map
⟨·, ·⟩x : TxM×TxM → R. It follows that a norm ∥·∥x : TxM → R is induced by ∥v∥x = ⟨v, v⟩1/2x .
The Riemannian metric g lets us define length and distance on M. Consider a smooth curve γ(t) on
M, its length is defined by the integral

L(γ) =

∫
∥γ̇(t)∥γ(t)dt =

∫ √
⟨γ̇(t), γ̇(t)⟩γ(t) dt

where the γ̇(t) is the velocity vector and the integral is over the domain of the curve γ(t). Proceeding
from this, the distance between two points x, y ∈ M is defined as the infimum of the lengths of all
piece-wise smooth curves from x to y, d(x, y) = infγ(0)=x,γ(1)=y L(γ). Lastly, we introduce the
concept of a measure on M. In any chart U , the Riemannian metric g can be represented by the
matrix g = (gij), and the Lebesgue measure is denoted by λ. The metric g induces a unique measure
ν on the Borel σ-algebra of M, such that dν =

√
det gdλ.

In Riemannian manifolds, curves that locally minimize length are referred to as geodesics. A
Riemannian manifold M is called geodesically complete if the domain of all geodesics can be
extended to R. From now on, M is assumed to be geodesically complete. Consider a point p ∈ M
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and a tangent vector v ∈ TpM. There exists a unique geodesic γ(p,v)(t) starting from p = γ(p,v)(0)
with tangent vector v = γ̇(p,v)(0), which is defined initially only in a small neighborhood of
zero, but can be extended to R due to the geodesics completeness assumption. This leads to the
definition of the exponential map Expp : TpM → M as Expp(v) = γ(p,v)(1). Furthermore, there
exists a neighborhood V of the origin in TpM and a neighborhood U of p such that the restriction
Expp |V : V → U is a diffeomorphism. Within the neighborhood U , we can define the inverse of
Expp as Logp(q) = v where q = γ(p,v)(1). Additionally, we have d(p, q) = ∥Logp(q)∥p.

The primary focus of this paper is on Hadamard manifolds. A simply connected complete Riemannian
manifold of non-positive curvature is called a Hadamard Manifold. It is named after the famous
Cartan-Hadamard theorem which states that for any d-dimensional Hadamard manifold M, it is
differomorphic to Rd and more precisely, at any point p ∈ M, the exponential mapping Expp :
TpM → M is a diffeomorphism and thus Logp is defined everywhere on M. This property
enables us to develop the Exponential-Wrapped mechanisms in Sections 3.2 and 3.3. Another
important property of the Hadamard manifold is that Logp is a contraction for any p ∈ M. That is,
∥Logp q1 − Logp q2∥ ≤ d(q1, q2) for any p, q1, q2 ∈ M. For more technical details on Hadamard
manifolds, please refer to Petersen (2006); Shiga (1984).

2.2 DIFFERENTIAL PRIVACY

Definition 2.1 ((Dwork et al., 2006a)). A data-releasing mechanism M is said to be (ε, δ)-DP with
ε ≥ 0, 0 ≤ δ ≤ 1, if for any adjacent datasets, denoted as D ≃ D′, differing in only one record, we
have Pr(M(D) ∈ A) ≤ eε Pr (M (D′) ∈ A) + δ for any measurable set A in the range of M . For
δ = 0, M is said to be ε-DP.

Since (ε, δ)-DP is a well-defined concept on any measurable space (Wasserman & Zhou, 2010), it
can be readily extended to any Riemannian manifold equipped with the Borel σ-algebra.

One relaxation of ε-DP is the Rényi DP, which is based on Rényi divergence. It shares many important
properties with ε-DP while allowing tighter analysis of composite heterogeneous mechanisms.

Definition 2.2 ((Mironov, 2017)). A mechanism M is said to have ϵ-Rényi Differential Privacy
(RDP) of order α, or (α, ϵ)-RDP for short, if Dα (M(D)∥M (D′)) ≤ ϵ for all neighboring datasets
D ≃ D′, where the Rényi divergence of a finite order α ̸= 1 is defined as

Dα(P∥Q) =
1

α− 1
logEx∼Q

(
P (x)

Q(x)

)α

,

and Renyi divergence at orders α = 1,∞ are defined by continuity.

Another way of extending the differential privacy definition is through the viewpoint of the statistical
hypothesis testing (Wasserman & Zhou, 2010; Kairouz et al., 2017). In the context of hypothesis
testing, we define H0: the underlying dataset is D and H1: the underlying dataset is D′. As the
values of ε and δ decrease, the task of conducting this hypothesis testing becomes more difficult. This
means that detecting the presence of an individual based on the outcome of the mechanism becomes
increasingly challenging. With this interpretation in mind, we can extend (ε, δ)-differential privacy
to Gaussian differential privacy (GDP). Denote the outcome distribution under H0 and H1 as M(D)
and M(D′), respectively. We introduce the optimal tradeoff function beween type I and type II errors
as follow,

T (M(D),M (D′)) : [0, 1] → [0, 1], α 7→ T (M(D),M (D′)) (α)

where T (M(D),M (D′)) (α) is the smallest type II error when type I error equals α. GDP centers
around this optimal tradeoff function and is defined as follow.

Definition 2.3 ((Dong et al., 2022)). A mechanism M is said to satisfy µ-Gaussian Differential
Privacy (µ-GDP) if T (M(D),M (D′)) ≥ Gµ for all neighboring datasets D ≃ D′ with Gµ :=
T (N(0, 1), N(µ, 1)).

However, the involvement of the optimal trade-off function T (M(D),M(D′)) makes Definition 2.3
difficult to work with on Riemannian manifolds. Instead, we adapt the GDP definition from Jiang
et al. (2023), which is based on Corollary 1 from (Dong et al., 2022).
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Definition 2.4 (Gaussian Differential Privacy (Dong et al., 2022; Jiang et al., 2023)). A M-valued
data-releasing mechanism M is said to be µ-GDP if it’s (ε, δµ(ε))-DP for all ε ≥ 0, where

δµ(ε) := Φ

(
− ε

µ
+

µ

2

)
− eεΦ

(
− ε

µ
− µ

2

)
.

and Φ denotes the cumulative distribution function of the standard normal distribution.

3 DIFFERENTIAL PRIVACY ON HADAMARD RIEMANNIAN MANIFOLDS

In this section, we outline the key idea of this study, which revolves around the idea of Exponential-
Wrapped Distribution. Section 3.1 provides the necessary background on Exponential-Wrapped
Distributions. Following this, Section 3.2, introduces the Exponential-Wrapped Laplace Mechanism
which is calibrated to achieve ε-DP. In Section 3.3, we present the Exponential-Wrapped Gaussian
Mechanism, calibrated to achieve (ε, δ)-DP, GDP, and RDP.

3.1 EXPONENTIAL-WRAPPED DISTRIBUTION

In measure-theoretic terms, the Exponential-Wrapped Probability is the push-forward of the tangent
space probability via the exponential map. For manifold M with dimension d > 1, wrapping a
density around the manifold involves volume distortion. This occurs because the exponential map
typically does not preserve the area between the Lebesgue measure on the tangent space and the
reference measure on the manifold.

Let M be a manifold with a base measure ν. Given µ, a probability distribution on TpM with a
probability density h w.r.t the Lebegue measure λp on TpM, the corresponding exponential-wrapped
distribution is defined as the push-forward of µ by the exponential, Λ = Expp∗ µ, where the ∗ refers
to the push-forward by Expp such that Λ(A) = µ

(
Logp(A)

)
. Since we assume M is a Hadamard

manifold, Logp is defined everywhere on M for any p ∈ M. If follows that the density g of Λ can
be expressed from h and a volume change term,

g(q) =
dΛ

dν
(q) =

dExpp∗ (λp)

dν

dΛ

dExpp∗ (λp)
(q) =

dExpp∗ (λp)

dν
(q)h(Logp q) =

h(Logp q)

Jp(Logp(q))
,

where Jp is the Jacobian determinant of the exponential map.

The most attractive property of the Exponential-Wrapped Distribution is its straightforward sampling
procedure. In order to sample from g, it suffices to sample from h: if U1, . . . , Un are i.i.d. random
variables on a tangent space TpM following the density h, then X1 = Expp(U1), . . . , Xn =
Expp(Un) are i.i.d. random variables on M following the density g. For a more detailed discussion
on Exponential-Wrapped Distribution, please refer to Chevallier et al. (2022).

3.2 EXPONENTIAL-WRAPPED LAPLACE MECHANISM

Cetin et al. (2023)
Definition 3.1 (Exponential-Wrapped Laplace Distribution). Let M be a Hadamard Riemannian
manifold with measure ν, we define a probability density function w.r.t ν as

g(y) ∝ 1

Jp0
(Logp0

(y))
exp

(
−
∥Logp0

(y)− Logp0
η∥

σ

)
,

We called this distribution an Exponential-Wrapped Laplace Distribution with footpoint p0, center
η and rate σ > 0.

The Exponential-Wrapped Laplace Distribution is the push-forward probability of the tangent space
probability defined by the probability density h(u) ∝ exp{−∥u − Logp0

η∥/σ}. We present the
following theorem to demonstrate how it can be used to achieve ε-DP.
Theorem 3.1 (Exponential-Wrapped Laplace Mechanism). Let M be a Hadamard Riemannian
manifold and f be a M-valued summary with global sensitivity1 ∆. The Exponential-Wrapped
Laplace Distribution with footprint p0, center f(D) and rate ∆/ε satisfies ε-DP.

1A summary f is said to have a global sensitivity of ∆ < ∞, with respect to d(·, ·), if we have
d (f(D), f (D′)) ≤ ∆ for any two datasets D ≃ D′.
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Proof. See Appendix A.1.1.

Compared to the Riemannian Laplace mechanism proposed by Reimherr et al. (2021), the Exponential-
Wrapped Laplace mechanism defined above offers two primary advantages. First, our method only
requires a rate of ∆/ε to achieve ε-DP across all manifolds, homogeneous or not. This is more
efficient than the Riemannian Laplace mechanism, which necessitates a rate of 2∆/ε for non-
homogeneous manifolds. Second, our approach is easier to implement and less computationally
complex. The Riemannian Laplace mechanism relies on MCMC sampling, which is computationally
intensive due to prolonged burn-in iterations and frequent recalculations of Riemannian distances.
These computations escalate in cost with increasing manifold dimensionality. Even in SPDM
space with the Rao-Fisher affine invariant metric, where efficient sampling techniques for the
Riemannian Laplace Distribution exist (Hajri et al., 2016) – MCMC procedures remain necessary,
and the choice of proposal distribution critically affects convergence. In contrast, sampling from
the Exponential-Wrapped Laplace Distribution is straightforward: it involves 1) sampling from
u ∼ h(u) ∝ exp{−∥u − Logp0

η∥/σ} and 2) computing Expp0
u. The complete algorithm is

detailed in Algorithm 1.

Algorithm 1 Exponential-Wrapped Laplace Mechanism for ε-DP
Input: Sensitivity ∆, privacy budget ε, query result f(D), footpoint p0.
Output: Privatized query result f̃(D)

1: Sample v uniformly from Sd−1 and r from Gamma distribution Γ(d, 1).2

2: Compute u = Logp0
f(D) + rvσ and f̃(D) = Expp0

u.
3: Return: f̃(D).

Remark 1. Note that there is no restriction on the choice of footpoint p0 in the exponential-wrapped
Laplace mechanism. However, its selection can have an impact on the performance of the mechanism.
Furthermore, to be compliant with the differential privacy definition, the selection of the footpoint
p0 cannot be based on the private dataset D. For more discussion on the selection of footpoint, see
Section 4.2.

3.3 EXPONENTIAL-WRAPPED GAUSSIAN MECHANISM

Beyond the Laplace mechanism, the Gaussian mechanism stands as one of the most prevalent tools in
DP (Dwork & Roth, 2014; Balle & Wang, 2018). This section introduces the Exponential-Wrapped
Gaussian mechanism, calibrated to achieve (ε, δ)-DP, RDP, and GDP. Initially, we will define the
Exponential-Wrapped Gaussian Distribution as follows.
Definition 3.2 (Exponential-Wrapped Gaussian Distribution). Let M be a Hadamard Riemannian
manifold with reference measure denoted by vol, we define a probability density function w.r.t vol as

g(y) ∝ 1

Jp0(Logp0
(y))

exp

(
−
∥Logp0

(y)− Logp0
η∥2

2σ2

)
.

We called this distribution an Exponential-Wrapped Gaussian Distribution with footpoint p0, tangent
center η, and rate σ > 0.

The Exponential-Wrapped Gaussian Distribution is defined as the push-forward of the multivariate
Gaussian distribution, characterized by a mean of Logp0

η and a covariance of σ2I, on the tangent
space TpM. We present the following theorem to demonstrate how it can be used to achieve (ε, δ)-DP.
Theorem 3.2. Let M be a Hadamard Riemannian manifold and f be a M-valued summary. The
Exponential-Wrapped Gaussian Distribution with footprint p0, tangent center Logp0

f(D) and rate
σ satisfies (ε, δ)-DP if and only if the following condition is satisfied,

Φ

(
− σε

∆p0

+
∆p0

2σ

)
− eεΦ

(
− σε

∆p0

+
∆p0

2σ

)
≤ δ (1)

where ∆p0
= supD≃D′ ∥Logp0

(f(D))− Logp0
(f(D′))∥.

2Note that the purpose of step 1 is to sample a random variable with a density propositional to exp(−∥ · ∥).
For more details, refer to Appendix 1.4 of Reimherr et al. (2021).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Proof. See Appendix A.1.2.

Theorem 3.2 shares similarities with the analytic Gaussian mechanism in Balle & Wang (2018).
Primary distinction lies in the use of ∆p0

rather than the standard sensitivity ∆ in inequality (1). This
substitution generally does not pose significant challenges; if ∆p0 proves difficult to compute, ∆ can
be use instead in (1) as ∆ ≥ ∆p0 since Logp0

is a contraction for Hadamard manifolds.

Implementing the Exponential-Wrapped Gaussian mechanism for (ε, δ)-DP is straightforward. After
determining the appropriate σ numerically from inequality (1)—using a method such as that proposed
in Balle & Wang (2018)—one can proceed by first sampling u from the multivariate Gaussian
distribution Nd(0, σ2Id). The privatized summary is then computed as Exp p0(u+ Log p0(f(D))).

Suppose M is the space of SPDM equipped with log-Euclidean metric, the Exponential-Wrapped
Gaussian mechanism with footprint p0 = I reduces to the tangent Gaussian mechanism in Utpala et al.
(2023b). Hence, the Exponential-Wrapped Gaussian mechanism is a generalization of the tangent
Gaussian mechanism as our mechanism can be employed for any Hadamard manifolds equipped with
any Riemannian metric.

Similar to how the Euclidean Gaussian Distribution can be used to achieve GDP, we can calibrate the
Exponential-Wrapped Gaussian Distribution to achieve GDP in the following manner.
Theorem 3.3 (Wrapped Gaussian Mechanism for GDP). Let M be a Hadamard Riemannian
manifold and f be a M-valued summary with global sensitivity ∆. The Exponential-Wrapped
Gaussian Distribution with footprint p0, tangent center Logp0

f(D) and rate ∆/µ satisfies µ-GDP.

Proof. See Appendix A.1.3.

Previously, Jiang et al. (2023) introduced the Riemannian Gaussian mechanism to achieve µ-GDP.
However, our approach presents significant advantages in both calibration and sampling. Firstly, the
Riemannian Gaussian mechanism requires the resolution of infinitely many integral inequalities to
calibrate the rate σ for a given privacy budget µ. The calibration algorithm provided by Jiang et al.
(2023) is only applicable to constant curvature spaces and is computationally intensive, involving
grid searches and MCMC techniques to compute the integrals. In contrast, our method simplifies
calibration to a straightforward calculation: σ = ∆/µ. Secondly, like the Riemannian Laplace distri-
bution, sampling from the Riemannian Gaussian distribution involves complex processes (detailed in
section 3.2). Our sampling technique is considerably simpler, requiring only the sampling from a
multivariate Gaussian distribution followed by computations using Exp p0 and Log p0.

In a similar fashion, we can use Exponential-Wrapped Gaussian Distribution to achieve RDP.
Theorem 3.4 (Wrapped Gaussian Mechanism for Rényi DP). Let M be a Hadamard Riemannian
manifold and f be a M-valued summary with global sensitivity ∆. The Exponential-wrapped
Gaussian distribution with footprint p0, tangent center Logp0

f(D) and rate ∆/
√
2ε/α satisfies

(α, ε)-RDP.

Proof. See Appendix A.1.4.

4 DIFFERENTIALLY PRIVATE FRÉCHET MEAN AND UTILITY GUARANTEE

In Section 4.1, we discuss the task of releasing differentially private Fréchet mean, a topic extensively
discussed in the literature on differential privacy over manifolds (Reimherr et al., 2021; Soto et al.,
2022; Utpala et al., 2023b). Section 4.2 details the derivation of theoretical utility bounds for our
Exponential-Wrapped mechanisms for releasing a private Fréchet mean.

4.1 DIFFERENTIALLY PRIVATE FRÉCHET MEAN

For a comprehensive overview of the Fréchet mean in the context of DP, please refer to Reimherr
et al. (2021). Consider a set of data x1, . . . , xN on the manifold M. The Euclidean sample mean can
be generalized to Riemannian manifolds as the sample Fréchet mean, w defined as the minimizer of
the sum-of-squared distances to the data points, x̄ = argminx∈M

∑N
i=1 d (x, xi)

2. The properties

6
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of Hadamard manifolds guarantee the existence and uniqueness of the Fréchet mean. To ensure the
sensitivity of the sample Fréchet mean is finite and properly decreasing with sample size, we need
the following assumption:

Assumption 1. The data D ⊆ Br (m0) for some m0 ∈ M, r < ∞.

The assumption that data lies within a bounded ball is standard in the field of DP and should not
raise concerns. Consider two datasets D ≃ D′ on M, and denote x̄ and x̄′ as the two sample Fréchet
means of D and D′ respectively. Under Assumption 1, we have d (x̄, x̄′) ≤ 2r/n.

4.2 UTILITY GUARANTEE

To evaluate the theoretical utility, we derive bounds on the expected distance between the output of
our mechanism and the true sample Fréchet mean F (D).

Theorem 4.1. Let M be a d-dimensional Hadamard manifold and assume assumption 1 holds.
Denote x̃EWL as a sample drawn from an Exponential-Wrapped Laplace Distribution with footprint
p0, tangent center Logp0

f(D) and rate σ = ∆/ε. x̃EWL is ε-DP and we have

E d(x̃EWL, x̄) ≤ σd+ 2d(p0, f(D)). (2)

With p0 = m0 and σ ≤ 2r/(nε), we have,

E d(x̃EWL, x̄) ≤
2r

nε
d+ 2r.

Similarly, denote x̃EWG as a sample drawn from an Exponential-Wrapped Gaussian Distribution with
footprint p0, tangent center Logp0

f(D) and rate σ = ∆/µ. x̃EWG is µ-GDP and we have,

E d(x̃EWG, x̄) ≤ σ

√
π

2
L
d/2−1
1/2

(
−d2(p0, f(D))

2

)
+ d(p0, f(D)). (3)

where L1/2 denote the Laguerre polynomials. With p0 = m0 and σ ≤ 2r/(nµ), we have,

E d(x̃EWG, x̄) ≤
2r

nµ

√
π

2
L
d/2−1
1/2

(
−r2

2

)
+ r.

Proof. See Appendix A.1.5.

Observe where the footpoint p0 appears in the upper bounds (2) & (3). In the perfect scenario where
the footpoint p0 coincides with the true sample Fréchet mean f(D), then the upper boundes reduces
to σd and σ

√
π/2, respectively3. These upper bounds provide a perspective regarding how the

selection of the footpoint affect the performance of the mechanisms. To shrink the upper bounds, we
would like the quantity d(p0, f(D)) to be as small as possible. When the data is well-dispersed in
Br(m0), the true sample Fréchet mean will be near the center m0. Therefore, the choice of m0 as the
footpoint is suitable. However, if there is prior knowledge that the majority of the data is clustered
within some smaller region R within Br(m0), then the selection of the center of the region R as the
footpoint would be the better choice.

5 SIMULATIONS

In this section, we evaluate the utility of our Exponential-Wrapped Mechanisms, specifically in
the context of releasing DP Fréchet means. Our numerical simulations are conducted on the space
of symmetric positive definite matrices (SPDM), a manifold commonly used in medical imaging
data (Pennec et al., 2019; Said et al., 2017; Hajri et al., 2016). Section 5.1 provides background
information on the SPDM space. The setup and results of our simulations are detailed in Section 5.2.
For further details on the simulations, please refer to Appendix A.2.

3Note that L1/2(0) = 1 and L1/2(−x2/2) is increasing as x increases.
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5.1 SPDM SPACE

First, we review some background material, refer to Hajri et al. (2016); Said et al. (2017); Reimherr
et al. (2021) for more details. We denote the space of m × m real SPDM as Pm and identify
it as a subspace of Rm×m as Pm = {A ∈ Rm×m : A⊤ = A, x⊤Ax > 0 ∀x ∈ Rm, x ̸= 0}.
Similarly, at each p ∈ Pm, we identify the tangent space TpPm as Sym(m), the space of m ×m
symmetric matrices. When equipping with the Rao-Fisher affine-invariant metric, Pm turns into
a homogeneous Riemannian manifold of negative sectional curvature. Consider X,Y ∈ TpPm,
the Riemannian metric at p is given by ⟨X,Y ⟩p = tr(p−1Xp−1Y ). It follows that the geodesic
γ connecting p, q ∈ Pm takes the form γ(t) = p1/2

(
p−1/2qp−1/2

)t
p1/2. The distance function

induced by the Riemannian metric turns out to be d(p, q) = (tr[logM (p−1/2qp−1/2)2])1/2 where
logM denotes the matrix logarithm. Under the Rao-Fisher metric, the Riemannian exponential
and logarithm maps take the form Expp(X) = p1/2 expM (p−1/2Xp−1/2)p1/2 and Logq(p) =

q1/2 logM (q−1/2pq−1/2)q1/2.

5.2 SIMULATION RESULTS

First, we compare the performance between our Exponential-Wrapped Laplace mechanism described
in Section 3.2 and the Riemannian Laplace mechanism proposed by Reimherr et al. (2021). We
generate samples D = {x1, . . . , xn} from a ball of radius r centered at Im on Pm. The Fréchet
mean x̄ is computed using the gradient descent procedure described in Fletcher & Joshi (2004);
Reimherr et al. (2021). To achieve ε-DP, the Frćhet mean x̄ is perturbed using the Riemmanian
Laplace mechanism and the Exponential-Wrapped Laplace mechanism. We employ the method
from Hajri et al. (2016) with a burn-in iteration of 10, 000 to sample from the Riemannian Laplace
mechanism and use the method described in Algorithm 1 with footprint p0 = Im to sample from the
Exponential-Wrapped Laplace mechanism.

To evaluate the performance, we compute the Riemannian distance between the output of the
mechanisms and the true Fréchet means. Denote x̃dp

RL, x̃
dp
EWL as the output of the Riemannian Laplace

mechanism and Exponential-Wrapped Laplace mechanism, respectively.

Throughout these simulations, we fix the sample size at n = 40 to maintain a constant sensitivity
∆. With ∆ held constant, we varied the privacy budget ε and manifold dimension d = m(m+ 1)/2.
The top three plots in Figure 1 present the sample mean of the Riemannian distances d(x̄, x̄dp

EWL)

(depicted in red with circular symbols) and d(x̄, x̄dp
RL) (in blue with triangular symbols) across 100

iterations, with the error band representing the sample mean ± standard error of the mean. Observing
the plots, our Exponential-Wrapped Laplace mechanism yields comparable results to the Riemannian
Laplace mechanism. However, as the dimension d increases, its performance deteriorates relative
to the Riemannian Laplace mechanism. This outcome is expected since the utility advantages of
our exponential-wrapped Laplace mechanism over the Riemannian Laplace mechanism are reserved
for non-homogeneous manifolds. Additionally, volume distortion becomes more significant as the
dimension d increases. The computational advantage of our mechanism is demonstrated in Table 1 as
our mechanism is nearly 500 times faster to implement.

Next, we focus on releasing Fréchet mean in a GDP-compliant manner. We compare the performance
between our Exponential-Wrapped Gaussian mechanism described in Section 3.2 and the Riemannian
Laplace mechanism. Although the Riemannian Laplace mechanism is developed originally to achieve
ε-DP, it’s shown in Liu et al. (2022) any mechanism that satisfies ε-DP can achieve µ-GDP with
ε = log[(1 − Φ(−u/2))/Φ(−u/2)]. Denote x̃gdp

RL , x̃gdp
EWG as the output of the Riemannian Laplace

mechanism and Exponential-Wrapped Laplace mechanism respectively, the bottom three plots in
Figure 1 display the sample mean of the Riemannian distances d(x̄, x̄gdp

EWG) (in red with circular
symbols) and d(x̄, x̄gdp

RL ) (in blue with triangular symbols) across 100 iterations with the error band
indicating the sample mean ± standard error. Across three dimensions d ∈ {3, 6, 15}, our Gaussian
mechanism achieves better utility with smaller privacy budgets µ. The Gaussian mechanism does
not exhibit worse performance for d = 15 as in the case of the Exponential-Wrapped Laplace
mechanism. The reason behind this is the quadratic decay of the Gaussian distribution does a better
job of controlling the volume distortion.
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Figure 1: Top three figures: Simulation results for ε-DP. The blue lines with triangular symbols
represent the sample mean of the Riemannian distances d(x̄, x̃dp

RL) across 100 repeats, while the red
line with circular symbols indicates the Riemannian distances d(x̄, x̃dp

EWL). The error bands indicate
the sample mean ± Standard Error. Bottom three figures: Simulation results for µ-GDP. Blue lines
with triangular symbols show the Riemannian distances d(x̄, x̃gdp

RL ), and the red line with circular
symbols represent the Riemannian distances d(x̄, x̃gdp

EWG). For more details, refer to Section 5.2. For
additional experiment results, refer to Appendix A.3.

Lastly, we compare the computation times of the mechanisms as shown in Table 1. With a burn-in
iteration of 10,000, the Riemannian Laplace mechanism takes an average of 1.54 seconds for d = 15.
In contrast, our Laplace and Gaussian mechanisms take 4.06× 10−3 and 3.78× 10−3, respectively.
Additionally, sampling from the Riemannian Laplace mechanism necessitates careful consideration of
the proposal distribution during the MCMC procedure. During the simulation, we must fine-tune the
rate of the proposal distribution to achieve reasonable results for the Riemannian Laplace mechanism
with small µ. Despite this, it can still produce unstable results, as observed in the two center plots for
ε = 0.1 and µ = 0.1.

Table 1: Computation times (mean ± standard error) for the Riemannian Laplace, Exponential-
Wrapped Laplace, and Gaussian mechanisms.

d Riemannian Laplace Exponential-Wrapped Laplace Exponential-Wrapped Gaussian

3 1.05± 7.09× 10−2 3.61× 10−3 ± 5.96× 10−4 3.47× 10−3 ± 8.51× 10−4

6 1.15± 6.90× 10−2 3.62× 10−3 ± 4.91× 10−4 3.53× 10−3 ± 5.74× 10−4

15 1.54± 8.96× 10−2 4.06× 10−3 ± 7.45× 10−4 3.78× 10−3 ± 1.27× 10−3

6 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we develop Exponential-Wrapped Laplace and Gaussian mechanisms and apply them
to achieve ε-DP, (ε, δ)-DP, RDP, and GDP on Hadamard manifolds, the class of simply connected
complete manifolds with non-positive curvature. We provide simple and fast algorithms for these
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mechanisms. Finally, through simulations, we demonstrate that our Exponential-Wrapped Gaussian
mechanism has comparable results and better results for small privacy budgets compared to the
Riemannian Laplace mechanism for achieving GDP while having a magnitude of degree faster
computational time.

For future research, the initial step should be to identify the optimal selection of the footpoint p0 in
both of our mechanisms. In non-constant curvature spaces, certain choices of p0 may more effectively
reduce the volume distortion introduced by the Riemannian exponential map. Since this paper focuses
on manifolds of non-positive curvature, another direction would be to extend various differential
privacy mechanisms to manifolds with non-negative curvature. Finally, instead of releasing privatized
Fréchet means, we aim to extend our work to more complex tasks such as principal geodesic analysis
(Huckemann et al., 2010; Fletcher et al., 2003; Zhang & Fletcher, 2013) and regression on manifolds
(Cheng & Wu, 2013).
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A APPENDIX

A.1 PROOFS

A.1.1 PROOF OF THEOREM 3.1

Proof. Denote the Exponential-Wrapped Laplace mechanism as M and its density as g1 correspond-
ing to f(D) and g2 corresponding to f(D′). To show P(M(D) ∈ S) ≤ eεP(M(D′) ∈ S) for all
measurable set S, it’s sufficient to show that,

g1(y)

g2(y)
≤ eε.

We simplify the ratio on the left-hand side,

g1(y)

g2(y)
=

1
Jp0 (Logp0

(y)) exp
(
−∥Logp0

(y)−Logp0
(η1)∥

σ

)
1

Jp0
(Logp0

(y)) exp
(
−∥Logp0

(y)−Logp0
(η2)∥

σ

)
= exp

{
1

σ

[
∥Logp0

(y)− Logp0
(η2)∥ − ∥Logp0

(y)− Logp0
(η1)∥

]}
≤ exp

{
1

σ
∥Logp0

(η1)− Logp0
(η2)∥

}
, triangle inequality

≤ exp

{
1

σ
d(η1, η2)

}
, logy is a contraction for Hadamard manifold

≤ exp

{
∆

σ

}
≤ eε, for σ =

∆

ε
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A.1.2 PROOF OF THEOREM 3.2

Proof. Let gp0,η,σ denote the Exponential-Wrapped Gaussian Distribution with footprint p0, tangent
center Logp0

(η) and rate σ. From Balle & Wang (2018), our Exponential-Wrapped Gaussain
mechanism satisfies (ε, δ)-DP if and only if,

sup
D≃D′

∫
A

gp0,η1,σ(y) dν(y)− eε
∫
A

gp0,η2,σ(y) dν(y) ≤ δ

where A = {y | gp0,η1,σ(y)/gp0,η2,σ(y) ≥ eε}, η1 = f(D) and η2 = f(D′). We have
gp0,η1,σ(y)

gp0,η2,σ(y)

= exp

{
1

2σ2

[
∥Logp0

(y)− Logp0
(η2)∥2 − ∥Logp0

(y)− Logp0
(η1)∥2

]}
=exp

{
1

2σ2

[
−2
〈
Logp0

(y)− Logp0
(η1),Logp0

(η2)− Logp0
(η1)

〉
+ ∥Logp0

(η2)− Logp0
(η1)∥2

]}
Denote ∆p0,η1,η2

= ∥Logp0
(η2)− Logp0

(η1)∥. It follows that,

A =

{
y |
〈
Logp0

(y)− Logp0
(η1),Logp0

(η2)− Logp0
(η1)

〉
≤ −σ2ε+

∆2
p0,η1,η2

2

}
Apply change of variable with u = Logp0

y, we have

sup
D≃D′

∫
A∗

N (u | Logp0
(η1), σ

2I) dλ(u)− eε
∫
A∗

N (u | Logp0
(η2), σ

2I) dλ(u) ≤ δ

where λ is the Lebegue measure on the tangent space Tp0
M and

A∗ =

{
u |
〈
u− Logp0

(η1),Logp0(η2)− Logp0(η1)
〉
≥ −σ2ε+

∆2
p0,η1,η2

2

}
It follows that,∫

A∗
N (u | Logp0(η1), σ

2I) dλ(u) = Φ

(
− σε

∆p0,η1,η2

+
∆p0,η1,η2

2ε

)
.

Take a similar approach for the second integral, we have∫
A∗

N (u | Logp0
(η2), σ

2I) dλ(u) = Φ

(
− σε

∆p0,η1,η2

− ∆p0,η1,η2

2ε

)
.

Finally, we have

Φ

(
− σε

∆p0

+
∆p0

2σ

)
− eεΦ

(
− σε

∆p0

+
∆p0

2σ

)
≤ δ

where ∆p0
= supD≃D′ ∆p0,η1,η2

as needed.

A.1.3 PROOF OF THEOREM 3.3

Proof. Using definition 2.3, we need to show the following,

∀ε ≥ 0, sup
D≃D′

∫
A

gp0,η1,σ(y) dν(y)− eε
∫
A

gp0,η2,σ(y) dν(y) ≤ δµ(ε) (4)

where g denotes the density of the Exponential-Wrapped Gaussian Distribution. From the proof in
A.1.2, we have

sup
D≃D′

∫
A

gp0,η1,σ(y) dν(y)− eε
∫
A

gp0,η2,σ(y) dν(y)

=Φ

(
− σε

∆p0

+
∆p0

2σ

)
− eεΦ

(
− σε

∆p0

+
∆p0

2σ

)
.

Thus, the equality in (4) holds if and only if σ = ∆p0/µ. Since Logp0
is a contraction for any

p0 ∈ M (for Hadamard manifold M), we have ∆ ≥ ∆p0
and σ = ∆/µ achieves µ-GDP as well.

14
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A.1.4 PROOF OF THEOREM 3.4

Proof. Let M denote the Exponential-Wrapped Gaussian mechanism, we have
Dα(M(D)∥M(D′))

=
1

α− 1
log

∫
1

Jp0
(Logp0

(y))

1

(
√
2πσ)d

exp

{
− α

2σ2

[
∥Logp0

y − Logp0
η1∥2

]
− 1− α

2σ2
∥Logp0

y − Logp0
η2∥2

}
dν(y)

=
1

α− 1
log exp

{
−α(1− α)

2σ2
∥Logp0

η1 − Logp0
η2∥2

}
, completing the squares

=
α

2σ2
∥Logp0

η1 − Logp0
η2∥2

≤ α

2σ2
d(η1 − η2)

2, Logp0
is a contraction for Hadamard manifolds

≤ α

2σ2
∆2

≤ ε, for σ =
∆√
2ε/α

A.1.5 PROOF OF THEOREM 4.1

Lemma A.0.1. Let M be a d-dimensional Hadamard manifold,

1. denote y as a sample drawn from an Exponential-Wrapped Laplace Distribution with
footprint p0, tangent center Logp0

η and rate σ, then we have,
E d(y, η) ≤ σd+ 2∥Logp0

η∥

2. denote y as a sample drawn from an Exponential-Wrapped Gaussian Distribution with
footprint p0, tangent center Logp0

η and rate σ, then we have

E d(y, η) ≤ σ

√
π

2
L
d/2−1
1/2

(
−d(p0, η)

2

2

)
+d(p0, η) ≤ σ

√
2
Γ((d+ 1)/2)

Γ(d/2)
+2∥Logp0

η∥.

Proof. For Exponential-Wrapped Laplace Distribution, denote

C(σ) =

∫
exp

(
−∥x∥

σ

)
dλ(x),

then we have
Ed(y, η)

=

∫
d(y, η)

C(σ)−1

Jp0(Logp0
y)

exp

(
−
∥Logp0

y − Logp0
η∥

σ

)
dν(y)

≤
∫

d(y, p0)
C(σ)−1

Jp0(Logp0
y)

exp

(
−
∥Logp0

y − Logp0
η∥

σ

)
dν(y) + d(p0, η), triangle inequality

=

∫
∥Logp0

y∥ C(σ)−1

Jp0(Logp0
y)

exp

(
−
∥Logp0

y − Logp0
η∥

σ

)
dν(y) + d(p0, η)

=

∫ ∥u+ Logp0
η∥

C(σ)
exp

(
−∥u∥

σ

)
dλ(u) + d(p0, η), u = Logp0

y − Logp0
η

≤ 1

C(σ)

∫
∥u∥ exp

(
−∥u∥

σ

)
dλ(u) + 2d(p0, η), triangle inequality

=

(
σ

∫ ∞

0

rd−1 exp(−r) dr

)−1 ∫ ∞

0

σ2rd exp(−r) dr + 2d(p0, η), spherical coordinates

=σd+ 2d(p0, η)

15
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The lower bound can be derived similarly and using the fact that ∥Logp0
y − Logp0

η∥ ≤ d(y, η).
Similarly, for exponential-wrapped Gaussian distribution, we have,

Ed(y, η)

=

∫
d(y, η)

(
√
2πσ)−d

Jp0
(Logp0

y)
exp

(
−
∥Logp0

y − Logp0
η∥2

2σ2

)
dν(y)

≤ Ed(y, p0) + d(p0, η)

Note that since (Logp0
y)/σ ∼ N (Logp0

η, I), d(y, p0)/σ follows a noncentral chi distribution and
have a mean of √

π

2
L
d/2−1
1/2

(
−d(p0, η)

2

2

)
where L1/2 denote the Laguerre polynomials. Thus, we have

Ed(y, η)

≤σ

√
π

2
L
d/2−1
1/2

(
−d(p0, η)

2

2

)
+ d(p0, η)

However, this upper bound is hard to interpret. We will also derive a less tight upper bound but with
better interpretability as follows.

Ed(y, η)

=

∫
d(y, η)

(
√
2πσ)−d

Jp0
(Logp0

y)
exp

(
−
∥Logp0

y − Logp0
η∥2

2σ2

)
dν(y)

≤
∫ ∥u+ Logp0

η∥
(
√
2πσ)d

exp

(
−∥u∥2

2σ

)
dλ(u) + d(p0, η), u = Logp0

y − Logp0
η

≤
∫

∥u∥
(
√
2πσ)d

exp

(
−∥u∥2

2σ

)
dλ(u) + 2d(p0, η), triangle inequality

=σ
√
2
Γ((d+ 1)/2)

Γ(d/2)
+ 2d(p0, η), since

∥u∥
σ

∼ χd

The lower bound can be derived similarly and using the fact that ∥Logp0
y−Logp0

η∥ ≤ d(y, η).

Theorem 4.1 follows from Lemma A.0.1 directly.

A.2 R CODES

For simulations in section 5, refer to simulation laplace.R for simulation on ε-DP and simula-
tion gaussian.R for simulation on GDP. vanilla DP plot.R and GDP plot.R are for generating the
result plots in Figure 1.

The simulations were performed using R on a PC with a 12th Gen Intel Core i5-12600K CPU with
32 GB of RAM running Windows 11.

A.3 ADDITIONAL EXPERIMENT RESULTS

A.3.1 ADDITIONAL EXPERIMENT RESULTS ON REAL-WORLD DATASET

Here, we provide additional experiment results on the real-world dataset, OCTMNIST, from the
biomedical datasets MedMNISTS in Yang et al. (2023). OCTMNIST consists of 28× 28 greyscale
images.

The MedMNIST dataset includes 12 standardized 2D datasets and 6 standardized 3D datasets,
sourced from carefully curated medical imaging modalities such as X-ray, OCT, ultrasound, CT, and
electron microscopy. It supports a variety of classification tasks, including binary, multi-class, ordinal
regression, and multi-label classification, with dataset sizes ranging from 100 to 100,000 samples.
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To obtain the covariance descriptor from the data, we follow a similar approach as in Utpala et al.
(2023a); Tuzel et al. (2006). Let I ∈ Rh×w be an greyscale image of height h and width w. The
covariance descriptor is given by

Rη(I) =

[
1

|S|
∑
x∈S

(ϕ(I)(x)− µ)(ϕ(I)(x)− µ)T

]
+ ηI,

where

ϕ(I)(x) =
[
I(x, y),

∣∣∣∣∂I(x, y)∂x

∣∣∣∣ , ∣∣∣∣∂I(x, y)∂y

∣∣∣∣ , ∣∣∣∣∂2I(x, y)
∂x2

∣∣∣∣ , ∣∣∣∣∂2I(x, y)
∂y2

∣∣∣∣] ,
and we set η = 10−6.

Follow a similar computation as in Utpala et al. (2023a), we have

d(Rη(I), I) ≤
√
5max

{
| log(η)|, | log(5 · 2552 + η)|

}
≈ 31. (5)

Note that different from the experiment in Utpala et al. (2023a), we did not normalize the pixel
value/intensity I to be between 0 and 1. Based on (5), the data must reside in Br(I) where r is the
righthand side of (5) and thus the sensitivity is ∆ = supx̄≃x̄′ d(x̄, x̄′) ≤ 2r/n.

Similarly to the simulation study in section 5, we focus on outputting the Fréchet mean in a GDP-
compliant way. Since the radius of the geodesic ball the data resides in is fairly large and we don’t
have any prior information on the data distribution, it’s necessary to use part of the privacy budget to
select a good footpoint. Given the total privacy budget µ, we use

√
0.1µ to select the footpoint and√

0.9µ to output the Fréchet mean. To select the footpoint, we uniformly sample 5% of data, compute
its Fréchet mean and privatize it using the Riemannian Laplace mechanism in Reimherr et al. (2021).

There are four different classes in the OCTMNIST dataset, labelled from 0 to 3. Denote x̃gdp
RL , x̃gdp

EWG
as the output of the Riemannian Laplace mechanism and Exponential-Wrapped Laplace mecha-
nism respectively, the two plots in Figure 2 display the sample mean of the Riemannian distances
d(x̄, x̄gdp

EWG) (in red with circular symbols) and d(x̄, x̄gdp
RL ) (in blue with triangular symbols) across 10

iterations for classes labelled 1 and 2. Similarly, Figure 3 shows the result for classes labelled 0 and
3.

Figure 2: Results for Class 1 and Class 2 in the OCTMNIST data.
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Figure 3: Results for Class 0 and Class 3 in the OCTMNIST data.

Figure 4: Simulation results for ε-DP and µ-GDP with d = 3.

A.3.2 ADDITIONAL SIMULATION RESULTS

A.4 BROADER IMPACTS

Differential privacy on manifolds ensures robust privacy protections for datasets with complex
geometric structures, such as those found in healthcare, geography, and neuroscience. By tailoring
privacy mechanisms to the unique properties of manifolds, we reduce re-identification risks, improve
data utility and promote ethical data use. This approach builds public trust, supports open data
initiatives, and drives innovation by enabling secure analysis of manifold-based data.

The challenge with differential privacy on manifolds lies in grasping and applying the manifold
concept itself. Adapting privacy mechanisms to these intricate geometric structures requires a deep
understanding, which might not be readily accessible, particularly for smaller organizations. This
complexity could slow down the adoption of these methods, potentially delaying progress in fields
such as healthcare, geospatial analysis, and scientific research, where manifold-based data holds
significant potential.
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Figure 5: Simulation results for ε-DP and µ-GDP with d = 6.

Figure 6: Simulation results for ε-DP and µ-GDP with d = 15.

Figure 7: Simulation results for ε-DP and µ-GDP with d = 21.
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