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ABSTRACT

We extend the Differential Privacy (DP) framework to Hadamard manifolds, the
class of complete and simply connected Riemannian manifolds with non-positive
sectional curvature. Inspired by the Cartan—Hadamard theorem, we introduce
Exponential-Wrapped Laplace and Gaussian mechanisms to achieve ¢-DP, (&, §)-
DP, Gaussian DP (GDP), and Rényi DP (RDP) on these manifolds. Our approach
employs efficient, straightforward algorithms that circumvent the computationally
intensity Monte Carlo Markov Chain (MCMC) methods. This work is the first to
extend (e, 9)-DP, GDP, and RDP to Hadamard manifolds. We further demonstrate
the effectiveness of our methodology through simulations on the space of Symmet-
ric Positive Definite Matrices, a frequently used Hadamard manifold in statistics.
Our findings reveal that our Exponential-Wrapped mechanisms surpass traditional
MCMC-based approaches, which require careful tuning and extensive diagnostics,
in both performance and ease of use. Additionally, our methods achieve compara-
ble utility to the Riemannian Laplace mechanism with enhanced utility for smaller
privacy budgets (¢) and operate orders of magnitude faster computationally.

1 INTRODUCTION

The proliferation of Al and machine learning technologies has catalyzed the exploration of more
complex types of data. Notably, nonlinear manifold data, which frequently emerge in fields such as
medical imaging (Pennec et al.,|2019; |Dryden), 2005} Dryden et al., | 2009), computer vision (Turaga
& Srivastava, [2015; [Turaga et al., 2008; Cheng & Vemuri, 2013)), pattern recognition (Nielsen, [2013j
Hettiarachchi & Peters, 2015)), signal processing (Barachant et al., 2010} [Zanini et al., [2018)), and
geometric deep learning (Belkin et al., 2006; Niyogi, [2013)), pose unique challenges.

As data becomes increasingly complex, the task of safeguarding privacy also becomes more chal-
lenging and intricate. Differential Privacy (DP) (Dwork et al., 2006b), a leading mathematical
framework, has been widely recognized for its ability to quantify and ensure privacy protection.
While numerous mechanisms have been developed to achieve DP (McSherry & Talwar, |2007; Barak
et al.l 2007; Wasserman & Zhou, [2010; Reimherr & Awanl [2019)), these traditional mechanisms,
primarily designed for linear data, often fall short when applied to complex nonlinear data. For
instance, the commonly adopted extrinsic method embeds nonlinear data into Euclidean space, allow-
ing the application of standard differential privacy (DP) mechanisms. However, as Reimbherr et al.
(2021) demonstrated, leveraging the intrinsic properties of nonlinear data can significantly enhance
data utility while maintaining privacy. This underscores the necessity for privacy mechanisms that
integrate differential geometry to effectively address the complexities of nonlinear data and fully
leverage its geometric structure.

The differential privacy framework was first extended to general manifolds by Reimherr et al.| (2021)),
who introduced the Riemannian Laplace mechanism on Riemannian manifolds to achieve -DP.
However, the development of other differential privacy variations for broader manifold applications
remains limited. [Utpala et al.[{(2023a)) extended (e, §)-DP only to a specific manifold — the Symmetric
Positive Definite Matrices (SPDM) space — using the log-Euclidean metric instead of the usual
Rao-Fisher affine invariant metric. When equipped with the log-Euclidean metric, the SPDM space
becomes geometrically flat (Arsigny et al.| 2007)), which simplifies the approach but at the expense
of generality. In a similar vein, Jiang et al.| (2023) expanded Gaussian Differential Privacy (GDP)
to general manifolds, although their calibration algorithm is confined to constant curvature spaces
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and demands considerable computational resources. The sampling methods required for both the
Riemannian Laplace and Gaussian mechanisms, as described by Reimherr et al.[(2021)) and Jiang
et al.| (2023)), involve computationally intensive Markov Chain Monte Carlo (MCMC) processes,
particularly in complex, high-dimensional spaces such as the SPDM space. This highlights an
ongoing need for broader extensions of differential privacy variations to manifolds and the creation
of more computationally efficient mechanisms.

In this research, we significantly advance the application of differential privacy to Hadamard Rie-
mannian manifolds, showcasing robust mechanisms alongside empirical validations. Our main
contributions are outlined below::

* We are the first to extend (g, §)-DP, GDP, and RDP to Hadamard Riemannian manifolds
through the introduction of Exponential-Wrapped Laplace and Gaussian mechanisms. Im-
portantly, this is the first extension for RDP and broadens the scope of privacy frameworks
to general manifold settings.

* We develop fast and efficient implementations of these mechanisms that avoid the computa-
tionally intensive MCMC sampling methods. This development facilitates more feasible
and practical applications of differential privacy in real-world scenarios.

* Through comprehensive numerical experiments, our results demonstrate that our mecha-
nisms perform comparably to the traditional Riemannian Laplace mechanism. Notably,
when achieving GDP, our Exponential Gaussian mechanism exhibits superior performance
in scenarios with small privacy budgets.

This paper is structured as follows: First, we review key concepts from Riemannian Geometry and
Differential Privacy. Subsequently, we introduce the Exponential-Wrapped Distribution and detail its
calibration to achieve (&, ¢)-DP, GDP, and RDP. We then explore the task of releasing differentially
private Fréchet means and derive theoretical utility bounds for our mechanisms. Finally, we present
numerical simulations to demonstrate the effectiveness of our methods.

2 BACKGROUND MATERIALS

We begin by outlining core concepts in Riemannian Geometry, with reference to standard texts such
as Lee| (2006); Petersen| (2006); Pennec et al.| (2019); Said| (202 1)); \Grigoryan| (2009)). Following this,
we examine important definitions and results related to DP, GDP, and Rényi DP. For those seeking
a deeper understanding, see Dwork & Roth|(2014); [Mironov|(2017); Dong et al.| (2021} 2022)) for
comprehensive discussions.

2.1 RIEMANNIAN GEOMETRY

Let M denote a d-dimensional Riemannian manifold endowed with a Riemannian metric g, which
consists of a smoothly varying collection of inner products (-, -),. defined on each tangent space T, M
at points x on the manifold. At each point x, the inner product is a positive definite bilinear map
(,Ya : ToMx Ty M — R. Tt follows that anorm |- ||, : T, M — Ris induced by ||v[|, = (v, v)+/%.
The Riemannian metric g lets us define length and distance on M. Consider a smooth curve y(¢) on
M, its length is defined by the integral

Liy) = / 158 oyt = / G0 A0y dt

where the () is the velocity vector and the integral is over the domain of the curve 7(¢). Proceeding
from this, the distance between two points x,y € M is defined as the infimum of the lengths of all
piece-wise smooth curves from z to y, d(z,y) = inf,(0)—z,(1)=y L(7). Lastly, we introduce the
concept of a measure on M. In any chart U, the Riemannian metric g can be represented by the
matrix g = (g;;), and the Lebesgue measure is denoted by A. The metric g induces a unique measure
v on the Borel o-algebra of M, such that dv = /det gd\.

In Riemannian manifolds, curves that locally minimize length are referred to as geodesics. A
Riemannian manifold M is called geodesically complete if the domain of all geodesics can be
extended to R. From now on, M is assumed to be geodesically complete. Consider a point p € M
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and a tangent vector v € T, M. There exists a unique geodesic ;. (t) starting from p = (., (0)
with tangent vector v = %, ,(0), which is defined initially only in a small neighborhood of
zero, but can be extended to R due to the geodesics completeness assumption. This leads to the
definition of the exponential map Exp,, : T) M — M as Exp,,(v) = 7(,,,)(1). Furthermore, there
exists a neighborhood V' of the origin in 7, M and a neighborhood U of p such that the restriction
Exp, |y : V — U is a diffeomorphism. Within the neighborhood U, we can define the inverse of
Exp, as Log, (q) = v where ¢ = (;.,,(1). Additionally, we have d(p, q) = || Log,(q)l|,-

The primary focus of this paper is on Hadamard manifolds. A simply connected complete Riemannian
manifold of non-positive curvature is called a Hadamard Manifold. It is named after the famous
Cartan-Hadamard theorem which states that for any d-dimensional Hadamard manifold M, it is
differomorphic to R? and more precisely, at any point p € M, the exponential mapping Exp, :
TyM — M is a diffeomorphism and thus Log, is defined everywhere on M. This property
enables us to develop the Exponential-Wrapped mechanisms in Sections and Another
important property of the Hadamard manifold is that Log,, is a contraction for any p € M. That is,
| Log, q1 — Log, g2|| < d(q1, g2) for any p, g1, g2 € M. For more technical details on Hadamard
manifolds, please refer to Petersen| (2006); Shigal (1984)).

2.2 DIFFERENTIAL PRIVACY

Definition 2.1 ((Dwork et al., 2006a)). A data-releasing mechanism M is said to be (e, §)-DP with
€ > 0,0 <6 <1, iffor any adjacent datasets, denoted as D ~ D', differing in only one record, we
have Pr(M (D) € A) < e*Pr (M (D’) € A) + § for any measurable set A in the range of M. For
6 = 0, M is said to be e-DP.

Since (&, §)-DP is a well-defined concept on any measurable space (Wasserman & Zhoul, [2010), it
can be readily extended to any Riemannian manifold equipped with the Borel o-algebra.

One relaxation of e-DP is the Rényi DP, which is based on Rényi divergence. It shares many important
properties with e-DP while allowing tighter analysis of composite heterogeneous mechanisms.

Definition 2.2 ((Mironov, 2017)). A mechanism M is said to have e-Rényi Differential Privacy
(RDP) of order «, or (o, €)-RDP for short, if D, (M (D)||M (D')) < e for all neighboring datasets
D ~ D', where the Rényi divergence of a finite order o # 1 is defined as

aillog]EwNQ (gg;yy

and Renyi divergence at orders o« = 1, 00 are defined by continuity.

Do (P|Q) =

Another way of extending the differential privacy definition is through the viewpoint of the statistical
hypothesis testing (Wasserman & Zhou, |2010; Kairouz et al., 2017). In the context of hypothesis
testing, we define Hy: the underlying dataset is D and H;: the underlying dataset is D’. As the
values of ¢ and § decrease, the task of conducting this hypothesis testing becomes more difficult. This
means that detecting the presence of an individual based on the outcome of the mechanism becomes
increasingly challenging. With this interpretation in mind, we can extend (&, §)-differential privacy
to Gaussian differential privacy (GDP). Denote the outcome distribution under Hy and H; as M (D)
and M (D'), respectively. We introduce the optimal tradeoff function beween type I and type II errors
as follow,

T (M(D),M (D")):[0,1] — [0,1],a T (M (D), M (D")) ()

where T (M (D), M (D)) («) is the smallest type II error when type I error equals . GDP centers
around this optimal tradeoff function and is defined as follow.

Definition 2.3 ((Dong et al., [2022)). A mechanism M is said to satisfy p-Gaussian Differential
Privacy (1i-GDP) if T (M (D), M (D')) > G, for all neighboring datasets D ~ D' with G, :=
T(N(0,1),N(u,1)).

However, the involvement of the optimal trade-off function T'(M (D), M (D’)) makes Definition
difficult to work with on Riemannian manifolds. Instead, we adapt the GDP definition from Jiang
et al.| (2023), which is based on Corollary 1 from (Dong et al., 2022).
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Definition 2.4 (Gaussian Differential Privacy (Dong et al.l[2022; Jiang et al}[2023)). A M-valued
data-releasing mechanism M is said to be i-GDP if it’s (€,0,(¢))-DP for all € > 0, where

(S P (S F
6M(e)._¢( /~L+2> e@( p 2).

and © denotes the cumulative distribution function of the standard normal distribution.

3 DIFFERENTIAL PRIVACY ON HADAMARD RIEMANNIAN MANIFOLDS

In this section, we outline the key idea of this study, which revolves around the idea of Exponential-
Wrapped Distribution. Section provides the necessary background on Exponential-Wrapped
Distributions. Following this, Section introduces the Exponential-Wrapped Laplace Mechanism
which is calibrated to achieve e-DP. In Section [3.3] we present the Exponential-Wrapped Gaussian
Mechanism, calibrated to achieve (&, 6)-DP, GDP, and RDP.

3.1 EXPONENTIAL-WRAPPED DISTRIBUTION

In measure-theoretic terms, the Exponential-Wrapped Probability is the push-forward of the tangent
space probability via the exponential map. For manifold M with dimension d > 1, wrapping a
density around the manifold involves volume distortion. This occurs because the exponential map
typically does not preserve the area between the Lebesgue measure on the tangent space and the
reference measure on the manifold.

Let M be a manifold with a base measure v. Given p, a probability distribution on T, M with a
probability density & w.r.t the Lebegue measure A, on T, M, the corresponding exponential-wrapped
distribution is defined as the push-forward of 11 by the exponential, A = Exp,,, 1, where the x refers
to the push-forward by Exp,, such that A(A) = p (Logp(A)). Since we assume M is a Hadamard
manifold, Log,, is defined everywhere on M for any p € M. If follows that the density g of A can
be expressed from h and a volume change term,

T VT T dBw, () VT T v
where J,, is the Jacobian determinant of the exponential map.

h(Log, q)
Jp(Log,(q))’

9(q) (q9)h(Log, q) =

The most attractive property of the Exponential-Wrapped Distribution is its straightforward sampling
procedure. In order to sample from g, it suffices to sample from h: if Uy, ..., U, arei.i.d. random
variables on a tangent space 7, M following the density h, then X; = Expp(Ul), e X, =

Exp,(Uy) are i.i.d. random variables on M following the density g. For a more detailed discussion
on Exponential-Wrapped Distribution, please refer to|Chevallier et al.| (2022).

3.2 EXPONENTIAL-WRAPPED LAPLACE MECHANISM

Cetin et al.| (2023)

Definition 3.1 (Exponential-Wrapped Laplace Distribution). Let M be a Hadamard Riemannian
manifold with measure v, we define a probability density function w.r.t v as

1 ( | Log,, (y) — Log,, nll )
— eXp — 5
Ipo (Log,, () o

We called this distribution an Exponential-Wrapped Laplace Distribution with footpoint p,, center
n and rate o > Q.

9(y) o

The Exponential-Wrapped Laplace Distribution is the push-forward probability of the tangent space
probability defined by the probability density h(u) o< exp{—||u — Log, n|/oc}. We present the
following theorem to demonstrate how it can be used to achieve e-DP.

Theorem 3.1 (Exponential-Wrapped Laplace Mechanism). Let M be a Hadamard Riemannian
manifold and f be a M-valued summary with global sensitivi A. The Exponential-Wrapped
Laplace Distribution with footprint po, center f(D) and rate A /e satisfies e-DP.

'A summary f is said to have a global sensitivity of A < oo, with respect to d(-,-), if we have
d(f(D), f (D)) < A for any two datasets D ~ D’.
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Proof. See Appendix [A.T.T] O

Compared to the Riemannian Laplace mechanism proposed by Reimherr et al.[(2021), the Exponential-
Wrapped Laplace mechanism defined above offers two primary advantages. First, our method only
requires a rate of A/e to achieve e-DP across all manifolds, homogeneous or not. This is more
efficient than the Riemannian Laplace mechanism, which necessitates a rate of 2A /e for non-
homogeneous manifolds. Second, our approach is easier to implement and less computationally
complex. The Riemannian Laplace mechanism relies on MCMC sampling, which is computationally
intensive due to prolonged burn-in iterations and frequent recalculations of Riemannian distances.
These computations escalate in cost with increasing manifold dimensionality. Even in SPDM
space with the Rao-Fisher affine invariant metric, where efficient sampling techniques for the
Riemannian Laplace Distribution exist (Hajri et al.,2016) —- MCMC procedures remain necessary,
and the choice of proposal distribution critically affects convergence. In contrast, sampling from
the Exponential-Wrapped Laplace Distribution is straightforward: it involves 1) sampling from
u ~ h(u) o exp{—|u — Log, n[//c} and 2) computing Exp,, u. The complete algorithm is
detailed in Algorithm|[I]

Algorithm 1 Exponential-Wrapped Laplace Mechanism for e-DP

Input: Sensitivity A, privacy budget ¢, query result f (D), footpoint pg.
Output: Privatized query result f(D)
1: Sample v uniformly from S?~! and from Gamma distribution I'(d, 1)
2: Compute u = Log, f(D)+ rvo and f(D) = Exp,, u.
3: Return: f(D).

Remark 1. Note that there is no restriction on the choice of footpoint pg in the exponential-wrapped
Laplace mechanism. However, its selection can have an impact on the performance of the mechanism.
Furthermore, to be compliant with the differential privacy definition, the selection of the footpoint
po cannot be based on the private dataset D. For more discussion on the selection of footpoint, see
Section

3.3 EXPONENTIAL-WRAPPED GAUSSIAN MECHANISM

Beyond the Laplace mechanism, the Gaussian mechanism stands as one of the most prevalent tools in
DP (Dwork & Roth, 2014;[Balle & Wang, 2018). This section introduces the Exponential-Wrapped
Gaussian mechanism, calibrated to achieve (&, )-DP, RDP, and GDP. Initially, we will define the
Exponential-Wrapped Gaussian Distribution as follows.

Definition 3.2 (Exponential-Wrapped Gaussian Distribution). Let M be a Hadamard Riemannian
manifold with reference measure denoted by vol, we define a probability density function w.r.t vol as

1 <_ | Log,,, (y) — Log,,, 77||2>

9(y) x —————<exp

Ipo (Log,, (1)) 20°

We called this distribution an Exponential-Wrapped Gaussian Distribution with footpoint p, tangent
center 1, and rate o > .

The Exponential-Wrapped Gaussian Distribution is defined as the push-forward of the multivariate
Gaussian distribution, characterized by a mean of Log,, 7 and a covariance of o1, on the tangent
space T, M. We present the following theorem to demonstrate how it can be used to achieve (g, §)-DP.
Theorem 3.2. Let M be a Hadamard Riemannian manifold and f be a M-valued summary. The
Exponential-Wrapped Gaussian Distribution with footprint po, tangent center Log,, [ (D) and rate
o satisfies (€, 8)-DP if and only if the following condition is satisfied,

oe A oe A
P+ ) —eP | —— + =) < 1
( Ap, 20 Ap, 20 ) — M
where Ay, = supp.p || Log,, (f(D)) — Log,, (f(D'))|.
“Note that the purpose of step 1 is to sample a random variable with a density propositional to exp(—|| - ||).

For more details, refer to Appendix 1.4 of Reimbherr et al.| (2021).
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Proof. See Appendix [A.1.2] O

Theorem [3.2] shares similarities with the analytic Gaussian mechanism in [Balle & Wang| (2018).
Primary distinction lies in the use of A, rather than the standard sensitivity A in inequality (T). This
substitution generally does not pose significant challenges; if A, proves difficult to compute, A can
be use instead in (T) as A > A, since Log,, is a contraction for Hadamard manifolds.

Implementing the Exponential-Wrapped Gaussian mechanism for (&, ¢)-DP is straightforward. After
determining the appropriate o numerically from inequality (I)—using a method such as that proposed
in Balle & Wang| (2018)—one can proceed by first sampling u from the multivariate Gaussian
distribution Nd(0, 0°Id). The privatized summary is then computed as Exp po(u + Log po(f(D))).

Suppose M is the space of SPDM equipped with log-Euclidean metric, the Exponential-Wrapped
Gaussian mechanism with footprint pg = I reduces to the tangent Gaussian mechanism in|Utpala et al.
(2023b). Hence, the Exponential-Wrapped Gaussian mechanism is a generalization of the tangent
Gaussian mechanism as our mechanism can be employed for any Hadamard manifolds equipped with
any Riemannian metric.

Similar to how the Euclidean Gaussian Distribution can be used to achieve GDP, we can calibrate the
Exponential-Wrapped Gaussian Distribution to achieve GDP in the following manner.

Theorem 3.3 (Wrapped Gaussian Mechanism for GDP). Let M be a Hadamard Riemannian
manifold and f be a M-valued summary with global sensitivity A. The Exponential-Wrapped
Gaussian Distribution with footprint po, tangent center Log,, f (D) and rate A/ satisfies p-GDP.

Proof. See Appendix [A.T.3] O

Previously, Jiang et al.[(2023)) introduced the Riemannian Gaussian mechanism to achieve u-GDP.
However, our approach presents significant advantages in both calibration and sampling. Firstly, the
Riemannian Gaussian mechanism requires the resolution of infinitely many integral inequalities to
calibrate the rate o for a given privacy budget p. The calibration algorithm provided by Jiang et al.
(2023)) is only applicable to constant curvature spaces and is computationally intensive, involving
grid searches and MCMC techniques to compute the integrals. In contrast, our method simplifies
calibration to a straightforward calculation: 0 = A/u. Secondly, like the Riemannian Laplace distri-
bution, sampling from the Riemannian Gaussian distribution involves complex processes (detailed in
section[3.2). Our sampling technique is considerably simpler, requiring only the sampling from a
multivariate Gaussian distribution followed by computations using Exp pg and Log pg.

In a similar fashion, we can use Exponential-Wrapped Gaussian Distribution to achieve RDP.
Theorem 3.4 (Wrapped Gaussian Mechanism for Rényi DP). Let M be a Hadamard Riemannian
manifold and f be a M-valued summary with global sensitivity A. The Exponential-wrapped
Gaussian distribution with footprint po, tangent center Log, f(D) and rate A/+/2¢/« satisfies
(v, €)-RDP.

Proof. See Appendix O

4 DIFFERENTIALLY PRIVATE FRECHET MEAN AND UTILITY GUARANTEE

In Section[4.1] we discuss the task of releasing differentially private Fréchet mean, a topic extensively
discussed in the literature on differential privacy over manifolds (Reimherr et al.,[2021} Soto et al.,
2022; Utpala et al., [2023b). Section details the derivation of theoretical utility bounds for our
Exponential-Wrapped mechanisms for releasing a private Fréchet mean.

4.1 DIFFERENTIALLY PRIVATE FRECHET MEAN

For a comprehensive overview of the Fréchet mean in the context of DP, please refer to|Reimherr
et al.[(2021). Consider a set of data x4, . . ., zy on the manifold M. The Euclidean sample mean can
be generalized to Riemannian manifolds as the sample Fréchet mean, w defined as the minimizer of

the sum-of-squared distances to the data points, T = arg minge aq Zf\; d (x,2;)*. The properties
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of Hadamard manifolds guarantee the existence and uniqueness of the Fréchet mean. To ensure the
sensitivity of the sample Fréchet mean is finite and properly decreasing with sample size, we need
the following assumption:

Assumption 1. The data D C B,. (mg) for some mg € M, r < oc.

The assumption that data lies within a bounded ball is standard in the field of DP and should not
raise concerns. Consider two datasets D ~ D’ on M, and denote Z and Z’ as the two sample Fréchet
means of D and D’ respectively. Under Assumption|[I} we have d (z,z") < 2r/n.

4.2 UTILITY GUARANTEE

To evaluate the theoretical utility, we derive bounds on the expected distance between the output of
our mechanism and the true sample Fréchet mean F' (D).

Theorem 4.1. Let M be a d-dimensional Hadamard manifold and assume assumption |I| holds.
Denote Ty, as a sample drawn from an Exponential-Wrapped Laplace Distribution with footprint
po, tangent center Log,, f(D) and rate 0 = A/e. Zpwy is e-DP and we have

Ed(Zewe, ) < od + 2d(po, f(D)). 2)

With pg = mg and o < 2r/(ne), we have,
2
E d(fEWL, 53) < ld + 2r.
ne

Similarly, denote Zpwg as a sample drawn from an Exponential-Wrapped Gaussian Distribution with
footprint po, tangent center Log,, f(D) and rate 0 = A /. Tgwe is 1-GDP and we have,

B(ime ) < o\ [3 L3 (—d(pj(m)) T d(po. (D)), 3

where Ly ;5 denote the Laguerre polynomials. With py = mg and o < 2r/(npu), we have,

- _ 2r [m _ajppn (17
Ed(l‘Ew(;,.’L‘) < TL[},\/;LI/2 (—2> +r.
Proof. See Appendix [A.1.5] O

Observe where the footpoint py appears in the upper bounds (2) & (@). In the perfect scenario where
the footpoint py coincides with the true sample Fréchet mean f (D), then the upper boundes reduces
to od and o+/7/2, respectivel These upper bounds provide a perspective regarding how the
selection of the footpoint affect the performance of the mechanisms. To shrink the upper bounds, we
would like the quantity d(pg, f(D)) to be as small as possible. When the data is well-dispersed in
B,.(my), the true sample Fréchet mean will be near the center mg. Therefore, the choice of mg as the
footpoint is suitable. However, if there is prior knowledge that the majority of the data is clustered
within some smaller region R within B,.(my), then the selection of the center of the region R as the
footpoint would be the better choice.

5 SIMULATIONS

In this section, we evaluate the utility of our Exponential-Wrapped Mechanisms, specifically in
the context of releasing DP Fréchet means. Our numerical simulations are conducted on the space
of symmetric positive definite matrices (SPDM), a manifold commonly used in medical imaging
data (Pennec et al., 2019; Said et al., 2017; Hajri et al., 2016)). Section provides background
information on the SPDM space. The setup and results of our simulations are detailed in Section[5.2]
For further details on the simulations, please refer to Appendix [A.2]

*Note that L; /5(0) = 1 and L; »(—2?/2) is increasing as z increases.
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5.1 SPDM SPACE

First, we review some background material, refer to|Hajr1 et al.| (2016);|Said et al.[(2017); Reimherr
et al.| (2021) for more details. We denote the space of m x m real SPDM as P,, and identify
it as a subspace of R™*"™ as P,,, = {A € R™*™ : AT = A 2TAz > 0Vx € R™,z # 0}.
Similarly, at each p € P,,, we identify the tangent space T,,P,, as Sym(m), the space of m x m
symmetric matrices. When equipping with the Rao-Fisher affine-invariant metric, P,, turns into
a homogeneous Riemannian manifold of negative sectional curvature. Consider X,Y ¢ T,Pp,,
the Riemannian metric at p is given by (X,Y), = tr(p~* Xp~'Y). It follows that the geodesic

~ connecting p,q € P,, takes the form ~(t) = pl/? (p’l/qu’l/z)tpl/z. The distance function

induced by the Riemannian metric turns out to be d(p, q) = (tr[log,, (p~'/2qp~'/?)?])'/? where
log,, denotes the matrix logarithm. Under the Rao-Fisher metric, the Riemannian exponential

and logarithm maps take the form Exp,(X) = p/?expy, (p~/2Xp~1/2)p!/? and Log,(p) =
q"/?logy (g~ ?pg=1/2)q"/2.

5.2 SIMULATION RESULTS

First, we compare the performance between our Exponential-Wrapped Laplace mechanism described
in Section [3.2] and the Riemannian Laplace mechanism proposed by [Reimherr et al.| (2021). We
generate samples D = {z1,...,x,} from a ball of radius r centered at I,,, on P,,. The Fréchet
mean T is computed using the gradient descent procedure described in [Fletcher & Joshil (2004);
Reimherr et al.|(2021). To achieve ¢-DP, the Fréhet mean Z is perturbed using the Riemmanian
Laplace mechanism and the Exponential-Wrapped Laplace mechanism. We employ the method
from Hajri et al.| (2016) with a burn-in iteration of 10, 000 to sample from the Riemannian Laplace
mechanism and use the method described in Algorithm[I]with footprint py = I,,, to sample from the
Exponential-Wrapped Laplace mechanism.

To evaluate the performance, we compute the Riemannian distance between the output of the

mechanisms and the true Fréchet means. Denote ig{, :Eg{’VL as the output of the Riemannian Laplace
mechanism and Exponential-Wrapped Laplace mechanism, respectively.

Throughout these simulations, we fix the sample size at n = 40 to maintain a constant sensitivity
A. With A held constant, we varied the privacy budget € and manifold dimension d = m(m + 1) /2.

The top three plots in Figure|l|present the sample mean of the Riemannian distances d(z, :?g{)VL)

(depicted in red with circular symbols) and d(Zz, fﬁL) (in blue with triangular symbols) across 100

iterations, with the error band representing the sample mean =+ standard error of the mean. Observing
the plots, our Exponential-Wrapped Laplace mechanism yields comparable results to the Riemannian
Laplace mechanism. However, as the dimension d increases, its performance deteriorates relative
to the Riemannian Laplace mechanism. This outcome is expected since the utility advantages of
our exponential-wrapped Laplace mechanism over the Riemannian Laplace mechanism are reserved
for non-homogeneous manifolds. Additionally, volume distortion becomes more significant as the
dimension d increases. The computational advantage of our mechanism is demonstrated in Table|l|as
our mechanism is nearly 500 times faster to implement.

Next, we focus on releasing Fréchet mean in a GDP-compliant manner. We compare the performance
between our Exponential-Wrapped Gaussian mechanism described in Section[3.2]and the Riemannian
Laplace mechanism. Although the Riemannian Laplace mechanism is developed originally to achieve
e-DP, it’s shown in Liu et al.[(2022)) any mechanism that satisfies e-DP can achieve u-GDP with
e = log[(1 — ®(—u/2))/®(—u/2)]. Denote Z4¥, F94 as the output of the Riemannian Laplace
mechanism and Exponential-Wrapped Laplace mechanism respectively, the bottom three plots in
Figure |1| display the sample mean of the Riemannian distances d(Z, fgg&’(}) (in red with circular

symbols) and d(z, iﬁip ) (in blue with triangular symbols) across 100 iterations with the error band
indicating the sample mean =+ standard error. Across three dimensions d € {3, 6,15}, our Gaussian
mechanism achieves better utility with smaller privacy budgets p. The Gaussian mechanism does
not exhibit worse performance for d = 15 as in the case of the Exponential-Wrapped Laplace
mechanism. The reason behind this is the quadratic decay of the Gaussian distribution does a better
job of controlling the volume distortion.
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Figure 1: Top three figures: Simulation results for e-DP. The blue lines with triangular symbols
represent the sample mean of the Riemannian distances d(z, izﬁf) across 100 repeats, while the red

line with circular symbols indicates the Riemannian distances d(Z, ig{,’%). The error bands indicate
the sample mean + Standard Error. Bottom three figures: Simulation results for -GDP. Blue lines

with triangular symbols show the Riemannian distances d(Z, :Eﬁfp ), and the red line with circular

symbols represent the Riemannian distances d(Z, jgg&’(}). For more details, refer to Section E For
additional experiment results, refer to Appendix @

Lastly, we compare the computation times of the mechanisms as shown in Table[T] With a burn-in
iteration of 10,000, the Riemannian Laplace mechanism takes an average of 1.54 seconds for d = 15.
In contrast, our Laplace and Gaussian mechanisms take 4.06 x 1072 and 3.78 x 1072, respectively.
Additionally, sampling from the Riemannian Laplace mechanism necessitates careful consideration of
the proposal distribution during the MCMC procedure. During the simulation, we must fine-tune the
rate of the proposal distribution to achieve reasonable results for the Riemannian Laplace mechanism
with small p. Despite this, it can still produce unstable results, as observed in the two center plots for
e=0.1and g =0.1.

Table 1: Computation times (mean =+ standard error) for the Riemannian Laplace, Exponential-
Wrapped Laplace, and Gaussian mechanisms.

d  Riemannian Laplace Exponential-Wrapped Laplace Exponential-Wrapped Gaussian

1.05+7.09 x 1072 3.61 x 1073 £5.96 x 104 3.47 x 1073 £ 8.51 x 1074
6 1.154+690x1072 3.62x1073+4.91 x107* 3.53x 1073 +£5.74 x 1074
15 1.544+896x1072 4.06x 1073 +7.45x 1074 3.78 x 1073 + 1.27 x 1073

6 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we develop Exponential-Wrapped Laplace and Gaussian mechanisms and apply them
to achieve e-DP, (e, §)-DP, RDP, and GDP on Hadamard manifolds, the class of simply connected
complete manifolds with non-positive curvature. We provide simple and fast algorithms for these
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mechanisms. Finally, through simulations, we demonstrate that our Exponential-Wrapped Gaussian
mechanism has comparable results and better results for small privacy budgets compared to the
Riemannian Laplace mechanism for achieving GDP while having a magnitude of degree faster
computational time.

For future research, the initial step should be to identify the optimal selection of the footpoint pg in
both of our mechanisms. In non-constant curvature spaces, certain choices of py may more effectively
reduce the volume distortion introduced by the Riemannian exponential map. Since this paper focuses
on manifolds of non-positive curvature, another direction would be to extend various differential
privacy mechanisms to manifolds with non-negative curvature. Finally, instead of releasing privatized
Fréchet means, we aim to extend our work to more complex tasks such as principal geodesic analysis
(Huckemann et al.| [2010; Fletcher et al.,|2003; Zhang & Fletcher, 2013)) and regression on manifolds
(Cheng & Wu, |[2013)).

REFERENCES

Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Geometric means in a novel
vector space structure on symmetric positive-definite matrices. SIAM Journal on Matrix Analysis
and Applications, 29(1):328-347, 2007. doi: 10.1137/050637996. URL |https://doi.org/
10.1137/050637996.

Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for differential privacy:
Analytical calibration and optimal denoising. In International Conference on Machine Learning,
2018.

Alexandre Barachant, Stéphane Bonnet, Marco Congedo, and Christian Jutten. Riemannian geometry
applied to bci classification. Latent Variable Analysis and Signal Separation, 09 2010. doi:
10.1007/978-3-642-15995-4_78.

Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank McSherry, and Kunal
Talwar. Privacy, accuracy, and consistency too: A holistic solution to contingency table release.
In Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS °07, pp. 273-282, New York, NY, USA, 2007. Association for
Computing Machinery. ISBN 9781595936851. doi: 10.1145/1265530.1265569. URL https:
//doi.org/10.1145/1265530.1265569.

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7
(85):2399-2434, 2006. URL http://Jmlr.org/papers/v7/belkinO6a.htmll

Edoardo Cetin, Benjamin Paul Chamberlain, Michael M. Bronstein, and Jonathan J Hunt. Hy-
perbolic deep reinforcement learning. In The Eleventh International Conference on Learning
Representations, 2023.

Guang Cheng and Baba C. Vemuri. A novel dynamic system in the space of spd matrices with
applications to appearance tracking. SIAM J. Img. Sci., 6(1):592-615, jan 2013. doi: 10.1137/
110853376. URL https://doi.org/10.1137/110853376.

Ming-Yen Cheng and Hau-Tieng Wu. Local linear regression on manifolds and its geometric
interpretation. Journal of the American Statistical Association, 108(504):1421-1434, 2013.

Emmanuel Chevallier, Didong Li, Yulong Lu, and David Dunson. Exponential-wrapped distributions
on symmetric spaces. SIAM Journal on Mathematics of Data Science, 4(4):1347-1368, 2022.

Jinshuo Dong, Weijie Su, and Linjun Zhang. A central limit theorem for differentially private query
answering. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 14759—-14770. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/7c2c48a32443ad8f805e48520f3b26ad4-Paper.pdf.

Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian differential privacy. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 84(1):3-37, 2022.

10


https://doi.org/10.1137/050637996
https://doi.org/10.1137/050637996
https://doi.org/10.1145/1265530.1265569
https://doi.org/10.1145/1265530.1265569
http://jmlr.org/papers/v7/belkin06a.html
https://doi.org/10.1137/110853376
https://proceedings.neurips.cc/paper_files/paper/2021/file/7c2c48a32443ad8f805e48520f3b26a4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/7c2c48a32443ad8f805e48520f3b26a4-Paper.pdf

Under review as a conference paper at ICLR 2025

Ian L. Dryden. Statistical analysis on high-dimensional spheres and shape spaces. The Annals
of Statistics, 33(4):1643-1665, 2005. ISSN 00905364. URL http://www. jstor.org/
stable/3448620.

Ian L. Dryden, Alexey Koloydenko, and Diwei Zhou. Non-euclidean statistics for covariance matrices,
with applications to diffusion tensor imaging. The Annals of Applied Statistics, 3(3):1102-1123,
2009. ISSN 19326157, 19417330. URL http://www. jstor.org/stable/30242879.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found. Trends
Theor. Comput. Sci., 9:211-407, aug 2014. ISSN 1551-305X. doi: 10.1561/0400000042. URL
https://doi.org/10.1561/0400000042.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data,
ourselves: Privacy via distributed noise generation. In Proceedings of the 24th Annual International
Conference on The Theory and Applications of Cryptographic Techniques, EUROCRYPT’ 06,
pp. 486-503, Berlin, Heidelberg, 2006a. Springer-Verlag. ISBN 3540345469. doi: 10.1007/
1176167929. URL https://doi.org/10.1007/11761679_209.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
private data analysis. In Shai Halevi and Tal Rabin (eds.), Theory of Cryptography, pp. 265-284,
Berlin, Heidelberg, 2006b. Springer Berlin Heidelberg.

P. Thomas Fletcher and Sarang Joshi. Principal geodesic analysis on symmetric spaces: Statistics
of diffusion tensors. In Milan Sonka, Ioannis A. Kakadiaris, and Jan Kybic (eds.), Computer
Vision and Mathematical Methods in Medical and Biomedical Image Analysis, pp. 87-98, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-540-27816-0.

P.T. Fletcher, Conglin Lu, and S. Joshi. Statistics of shape via principal geodesic analysis on lie
groups. In 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2003. Proceedings., volume 1, pp. I-1, 2003. doi: 10.1109/CVPR.2003.1211342.

Alexander Grigoryan. Heat kernel and analysis on manifolds. American Mathematical Soc., 2009.

Hatem Hajri, Ioana Ilea, Salem Said, Lionel Bombrun, and Yannick Berthoumieu. Riemannian laplace
distribution on the space of symmetric positive definite matrices. Entropy, 18(3), 2016. ISSN 1099-
4300. doi: 10.3390/e18030098. URL https://www.mdpi.com/1099-4300/18/3/98.

R. Hettiarachchi and J.F. Peters. Multi-manifold lle learning in pattern recognition. Pattern
Recognition, 48(9):2947-2960, 2015. ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.
2015.04.003. URL https://www.sciencedirect.com/science/article/pii/
S0031320315001272.

Stephan Huckemann, Thomas Hotz, and Axel Munk. Intrinsic shape analysis: Geodesic pca for
riemannian manifolds modulo isometric lie group actions. Statistica Sinica, 20(1):1-58, 2010.
ISSN 10170405, 19968507.

Yangdi Jiang, Xiaotian Chang, Yi Liu, Lei Ding, Linglong Kong, and Bei Jiang. Gaussian differential
privacy on riemannian manifolds. In Advances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023, 2023.

Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem for differential
privacy. IEEE Transactions on Information Theory, 63(6):4037—4049, 2017. doi: 10.1109/TIT.
2017.2685505.

John M Lee. Riemannian manifolds: an introduction to curvature. Springer Science & Business
Media, 2006.

Yi Liu, Ke Sun, Bei Jiang, and Linglong Kong. Identification, amplification and measurement:
A bridge to gaussian differential privacy. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=UpNCpGvDI6A.

11


http://www.jstor.org/stable/3448620
http://www.jstor.org/stable/3448620
http://www.jstor.org/stable/30242879
https://doi.org/10.1561/0400000042
https://doi.org/10.1007/11761679_29
https://www.mdpi.com/1099-4300/18/3/98
https://www.sciencedirect.com/science/article/pii/S0031320315001272
https://www.sciencedirect.com/science/article/pii/S0031320315001272
https://openreview.net/forum?id=UpNCpGvD96A

Under review as a conference paper at ICLR 2025

Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. Proceedings -
Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp. 94-103, 11 2007. doi:
10.1109/FOCS.2007.66.

Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations symposium
(CSF), pp- 263-275. IEEE, 2017.

Frank Nielsen. Pattern learning and recognition on statistical manifolds: An information-geometric
review. In Edwin Hancock and Marcello Pelillo (eds.), Similarity-Based Pattern Recognition, pp.
1-25, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-39140-8.

Partha Niyogi. Manifold regularization and semi-supervised learning: Some theoretical analyses.
Journal of Machine Learning Research, 14(37):1229-1250, 2013. URL http://jmlr.org/
papers/vl14/niyogil3a.html.

Xavier Pennec, Stefan Sommer, and Tom Fletcher. Riemannian geometric statistics in medical image
analysis. Academic Press, 2019.

Peter Petersen. Riemannian geometry. Springer, 3rd edition, 2006.

Matthew Reimherr and Jordan Awan. Kng: The k-norm gradient mechanism. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/faefecd7428cf9a2f0875ba9c2042a81l-Paper.pdf.

Matthew Reimherr, Karthik Bharath, and Carlos Soto. Differential privacy over riemannian mani-
folds. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, volume 34, pp. 12292-12303. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/file/6600e06fe9350b62cle343504d4a7b86-Paper.pdf.

Salem Said. Statistical models and probabilistic methods on riemannian manifolds, 2021.

Salem Said, Lionel Bombrun, Yannick Berthoumieu, and Jonathan H. Manton. Riemannian gaus-
sian distributions on the space of symmetric positive definite matrices. IEEE Transactions on
Information Theory, 63(4):2153-2170, 2017. doi: 10.1109/TIT.2017.2653803.

Kiyoshi Shiga. Hadamard manifolds. Geometry of Geodesics and Related Topics, 3:239-282, 1984.

Carlos Soto, Karthik Bharath, Matthew Reimherr, and Aleksandra Slavkovié. Shape
and structure preserving differential privacy. In S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Pro-
cessing Systems, volume 35, pp. 24693-24705. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
9c84feb75eaelef6389f31b3ef050bba-Paper-Conference.pdfl.

Pavan Turaga, Ashok Veeraraghavan, and Rama Chellappa. Statistical analysis on stiefel and
grassmann manifolds with applications in computer vision. In 2008 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1-8, 2008. doi: 10.1109/CVPR.2008.4587733.

Pavan K. Turaga and Anuj Srivastava. Riemannian Computing in Computer Vision. Springer
Publishing Company, Incorporated, 1st edition, 2015. ISBN 3319229567.

Oncel Tuzel, Fatih Porikli, and Peter Meer. Region covariance: A fast descriptor for detection and
classification. In Ale§ Leonardis, Horst Bischof, and Axel Pinz (eds.), Computer Vision — ECCV
2006, pp. 589-600, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-33835-
2.

Saiteja Utpala, Andi Han, Pratik Jawanpuria, and Bamdev Mishra. Improved differentially private
riemannian optimization: Fast sampling and variance reduction. Transactions on Machine Learn-
ing Research, 2023a. ISSN 2835-8856. URL https://openreview.net/forum?id=
paguBNtgiOk

12


http://jmlr.org/papers/v14/niyogi13a.html
http://jmlr.org/papers/v14/niyogi13a.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/faefec47428cf9a2f0875ba9c2042a81-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/faefec47428cf9a2f0875ba9c2042a81-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/6600e06fe9350b62c1e343504d4a7b86-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/6600e06fe9350b62c1e343504d4a7b86-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9c84feb75eae1ef6389f31b3ef050b6a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9c84feb75eae1ef6389f31b3ef050b6a-Paper-Conference.pdf
https://openreview.net/forum?id=paguBNtqiO
https://openreview.net/forum?id=paguBNtqiO

Under review as a conference paper at ICLR 2025

Saiteja Utpala, Praneeth Vepakomma, and Nina Miolane. Differentially private fréchet mean on the
manifold of symmetric positive definite (SPD) matrices with log-euclidean metric. Transactions on
Machine Learning Research, 2023b. ISSN 2835-8856. URL https://openreview.net/
forum?id=mAx8Qqgzl4f.

Larry Wasserman and Shuheng Zhou. A statistical framework for differential privacy. Journal of
the American Statistical Association, 105(489):375-389, 2010. ISSN 01621459. URL http:
//www. jstor.org/stable/29747034.

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and
Bingbing Ni. Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical image
classification. Scientific Data, 10(1):41, 2023.

Paolo Zanini, Marco Congedo, Christian Jutten, Salem Said, and Yannick Berthoumieu. Transfer
learning: A riemannian geometry framework with applications to brain—computer interfaces. /[EEE
Transactions on Biomedical Engineering, 65(5):1107-1116, 2018. doi: 10.1109/TBME.2017.
2742541.

Miaomiao Zhang and Tom Fletcher. Probabilistic principal geodesic analysis. In C.J.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger (eds.), Ad-
vances in Neural Information Processing Systems, volume 26. Curran Associates, Inc.,
2013. URL https://proceedings.neurips.cc/paper_files/paper/2013/
file/eb6fdc36b281b7d5eabf33396c2683a2—-Paper.pdfl

A APPENDIX

A.1 PROOFS

A.1.1 PROOF OF THEOREM[3.1]

Proof. Denote the Exponential-Wrapped Laplace mechanism as M and its density as g; correspond-
ing to f(D) and g corresponding to f(D’). To show P(M (D) € S) < e*P(M(D') € S) for all
measurable set .S, it’s sufficient to show that,

91(y) < et
92(9)
We simplify the ratio on the left-hand side,
1 ex (_ || Log,,, (y)—Log,,, (m)\l)
G1(y)  Tog(og,, ) P -

92(y)

1 || Log,,, (y)—Log,, (n2)ll
Tpo Tog,g (@) XP (* B )

1

—exp { 2 [ Loty () Log,, Om)] = | Log,, ()~ Logy, (o)}
1

< exp{ —| Log,, (m) — Log,, (772)} , triangle inequality
o

1
< exp {Ud (m, 772)} , log, is a contraction for Hadamard manifold
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A.1.2 PROOF OF THEOREM[3.2]

Proof. Let gp, 5,0 denote the Exponential-Wrapped Gaussian Distribution with footprint pg, tangent
center Log, (7) and rate 0. From Balle & Wang (2018), our Exponential-Wrapped Gaussain

mechanism satisfies (g, §)-DP if and only if,

sup / Grom o (y) di(y) — ¢ / Grommo(y) dr(y) < 6
D' JA A

D~
where A = {y | 9po.n1,0(¥)/Ipons,0(y) > €}, = f(D) and o = f(D’). We have
gPoﬂh-,U(y)
gpo,nz,o(y)

—oxp { s [1 Loty () ~ Lo, (I = | Log,, ()~ Log,, )]}

=exp {;z [—2 (Logp, (y) — Log,, (m), Logp, (n2) — Logp, (1)) + || Logy, (112) — Logp, (m1) %] }

Denote Ay, n, = || Logp, (12) — Logp, (11)]]. It follows that,

2 AQ
A= Yy ‘ <L’ngo (y) - LngO (771)7 LOgPo (772> - Logpo (771)> < —o'e+ W

Apply change of variable with u = Log,, y, we have
sup N (u | Logp, (m),0%T) dA\(u) —e® [ N(u | Logp,(n2),0°I) d\(u) < §
DD’ J Ax A

where A is the Lebegue measure on the tangent space 7},, M and

A2
AT = {u | <u — Log,,, (1), Logp, (12) — Lngo(n1)> > o2 + pozmnz}

It follows that,

A
N(U | Logpo (771)’ 021) d/\(u) = (— o¢ + p07771»772> ]

A* JAVIRRR 2e

Take a similar approach for the second integral, we have

N (u | Logp, (n2), 0°T) dA\(u) = @ (— A Apommn) .

A Apon.ma 2
Finally, we have
oe A oe A
o (- 2o ) e | — —P) <
(Apo+20) ‘ (Apo+20)_
where A, = supp~ps Apg.ni.n, as needed. O

A.1.3 PROOF OF THEOREM[3.3]

Proof. Using definition[2.3] we need to show the following,

Vo2 050 [ oo W) (0) ~ & [ gpalv) dvly) < 5,00 @
D~D’' J A A
where g denotes the density of the Exponential-Wrapped Gaussian Distribution. From the proof in
[AT.2] we have

sup /A Gpom o (4) di(y) — € /A Gromo () dv(y)

D~D’

oe A oe A
=P ( + Po)eeq) < + Po).
Ap, 20 Ap, 20
Thus, the equality in holds if and only if o = A}, /u. Since Log, is a contraction for any
po € M (for Hadamard manifold M), we have A > A,/ and o = A/p achieves u-GDP as well.

O
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A.1.4 PROOF OF THEOREM [3.4]

Proof. Let M denote the Exponential-Wrapped Gaussian mechanism, we have

Dao(M(D)|[M(D"))

1 1 !
o108 / Jpo (Log,, (y)) (v27ro)d

o 11—«

exp { —= [|| Log,, ¥ — Log,, m||’] — = Log,, y — Log,, na|1* ¢ dv(y)
20 20

a(l —a)

20 2

1 ) .
= log exp {— | Log,,, m — Log,,, 2|l } , completing the squares

(07
= 553 Logy, m — Log,, n2 |

< 2&—2d(771 — 772)2, Logp0 is a contraction for Hadamard manifolds
o
«
< - 2
~ 202
A
<eg, foro =

A.1.5 PROOF OF THEOREM [4.1]
Lemma A.0.1. Let M be a d-dimensional Hadamard manifold,

1. denote y as a sample drawn from an Exponential-Wrapped Laplace Distribution with
Jootprint po, tangent center Log,, 1 and rate o, then we have,
Ed(y,n) < od + 2| Log,, n||

2. denote y as a sample drawn from an Exponential-Wrapped Gaussian Distribution with
Jootprint po, tangent center Log,, 1 and rate o, then we have

T 2—1 ) 2
B < oy 5203 (~U1) tdon. ) < V2R LW o og, i)

Proof. For Exponential-Wrapped Laplace Distribution, denote
then we have

C(o) = /exp (—Hj') d\(x),
Ed(y,n)

= [ty O e (L "”) avly)

Ipo (108, ) o

C(o)! Lo —Lo
S/d(y’po)z]m(l(jjgmy) exp (— I Logy, y - Spo 77) dv(y) + d(po, n), triangle inequality

C(o)t [ Logy, y — Log,, 1]
= [ 1oy, - GO exp (- ) 4
pO Po

|u + Log,,, nl| u
7)’“ exp Ha” d\(u) + d(po,n), u = Log, y— Log, n

70 /||uHex ( lu ”> AMu) + 2d(po,n), triangle inequality

-1 0o
= (a/ 41 exp(— )dr> / o?rdexp(—r) dr + 2d(po,n), spherical coordinates
0 0

=od + 2d(p0a 77)
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The lower bound can be derived similarly and using the fact that || Log, v — Log, 7| < d(y,n).
Similarly, for exponential-wrapped Gaussian distribution, we have,

Ed(y,n)

(V2ro) 4 | Log,, ¥ — Log,, nll*
/ (y,m) 7o (Lo, 7) exp 572 v(y)

< Ed(y, po) + d(po, n)
Note that since (Log,,, y)/o ~ N (Log,, n,1), d(y,po)/o follows a noncentral chi distribution and

have a mean of
™ a1 dlpom)?
2 1/2 2

where Ly /5 denote the Laguerre polynomials. Thus, we have

Ed(y,n)
T aj2—1 [ d(po,n)?
28 (459 L

However, this upper bound is hard to interpret. We will also derive a less tight upper bound but with
better interpretability as follows.

Ed(y,n)

B (vV2ro)~d || Log,, y — Log,, nll>
_/ W) 5 Tog, ) P 202 dv(y)

b Lol (I
- (V2ma)? 20

[l Nl o ,
< exp d\(u) 4+ 2d(po,n), triangle inequality

) d\(u) 4 d(po,n), u = Log,, y — Log, n

(V2ro)d 20
:oﬁW + 2d(po, ), since ”Z—” ~ Xd

The lower bound can be derived similarly and using the fact that || Log,, y —Log, 0|l < d(y,n). O
Theorem [41| follows from Lemma[A-0.T] directly.

A.2 R CODEs

For simulations in section [5] refer to simulation_laplace.R for simulation on -DP and simula-
tion_gaussian.R for simulation on GDP. vanilla_DP_plot.R and GDP_plot.R are for generating the
result plots in Figure[T}

The simulations were performed using R on a PC with a 12th Gen Intel Core i5-12600K CPU with
32 GB of RAM running Windows 11.

A.3 ADDITIONAL EXPERIMENT RESULTS
A.3.1 ADDITIONAL EXPERIMENT RESULTS ON REAL-WORLD DATASET

Here, we provide additional experiment results on the real-world dataset, OCTMNIST, from the
biomedical datasets MedMNISTS in|Yang et al.|(2023). OCTMNIST consists of 28 x 28 greyscale
images.

The MedMNIST dataset includes 12 standardized 2D datasets and 6 standardized 3D datasets,
sourced from carefully curated medical imaging modalities such as X-ray, OCT, ultrasound, CT, and
electron microscopy. It supports a variety of classification tasks, including binary, multi-class, ordinal
regression, and multi-label classification, with dataset sizes ranging from 100 to 100,000 samples.
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To obtain the covariance descriptor from the data, we follow a similar approach as in [Utpala et al]
(2023al); [Tuzel et al.| (2006). Let Z € R"*™ be an greyscale image of height i and width w. The
covariance descriptor is given by

1
Ry (1) = S D (@T)(x) = (D) (x) = )" | + L,
xeSs
where
_ OL(z,y)| |0Z(z,y)| |9*L(z,y)| |9*L(=,y)
¢(I) (X) - |:I({I?, y)7 83: ) 6y 9 6332 ) 8y2 )

and we set = 1076,

Follow a similar computation as in|Utpala et al.|(2023a)), we have

d(R,(Z),T) < v5max {|log(n)|, | log(5 - 2552 +1)|} ~ 31. 5)

Note that different from the experiment in |Utpala et al.| (2023a), we did not normalize the pixel
value/intensity Z to be between 0 and 1. Based on (3)), the data must reside in B, (I) where r is the
righthand side of (5)) and thus the sensitivity is A = sup,.; d(Z,Z’) < 2r/n.

Similarly to the simulation study in section [5] we focus on outputting the Fréchet mean in a GDP-
compliant way. Since the radius of the geodesic ball the data resides in is fairly large and we don’t
have any prior information on the data distribution, it’s necessary to use part of the privacy budget to
select a good footpoint. Given the total privacy budget ., we use /0.1 to select the footpoint and
/0.9 to output the Fréchet mean. To select the footpoint, we uniformly sample 5% of data, compute
its Fréchet mean and privatize it using the Riemannian Laplace mechanism in[Reimherr et al.| (2021).

There are four different classes in the OCTMNIST dataset, labelled from 0 to 3. Denote :Eﬁip , a?lggf(}
as the output of the Riemannian Laplace mechanism and Exponential-Wrapped Laplace mecha-
nism respectively, the two plots in Figure 2] display the sample mean of the Riemannian distances
d(, 22%) (in red with circular symbols) and d(z, Z%7) (in blue with triangular symbols) across 10
iterations for classes labelled 1 and 2. Similarly, Figure [3]shows the result for classes labelled 0 and
3.

GDP on OCTMNIST Class 1;d =15 GDP on OCTMNIST Class 2;d =15
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Figure 2: Results for Class 1 and Class 2 in the OCTMNIST data.
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Figure 3: Results for Class 0 and Class 3 in the OCTMNIST data.
e-DP;d =3 GDP;d=3
@ 81
S O
S -~ EWL IS -~ EWG
% 4 ~ RL 0 6 -~ RL
o o
=
S T4
= =
C 2; =
© © 2]
= =
© IS
® . o] . . - :
0.2 0.4 0.6 0.5 1.0 1.5 2.0
€ M

Figure 4: Simulation results for e-DP and ;~-GDP with d = 3.

A.3.2 ADDITIONAL SIMULATION RESULTS
A.4 BROADER IMPACTS

Differential privacy on manifolds ensures robust privacy protections for datasets with complex
geometric structures, such as those found in healthcare, geography, and neuroscience. By tailoring
privacy mechanisms to the unique properties of manifolds, we reduce re-identification risks, improve
data utility and promote ethical data use. This approach builds public trust, supports open data
initiatives, and drives innovation by enabling secure analysis of manifold-based data.

The challenge with differential privacy on manifolds lies in grasping and applying the manifold
concept itself. Adapting privacy mechanisms to these intricate geometric structures requires a deep
understanding, which might not be readily accessible, particularly for smaller organizations. This
complexity could slow down the adoption of these methods, potentially delaying progress in fields
such as healthcare, geospatial analysis, and scientific research, where manifold-based data holds
significant potential.
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Figure 5: Simulation results for e-DP and ;~-GDP with d = 6.
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Figure 6: Simulation results for e-DP and p-GDP with d = 15.
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Figure 7: Simulation results for e-DP and p-GDP with d = 21.
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