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Reproducibility Summary1

Scope of Reproducibility2

The paper presents two novel kinds of adversarial attacks against fairness: the IAF attack and the anchoring attacks.3

Our goal is to reproduce the five main claims of the paper. The first claim states that using the novel IAF attack we can4

directly control the trade-off between the test error and fairness bias metrics when attacking. Claims two to five suggest5

a superior performance of the novel IAF and anchoring attacks over the two baseline models. We also extend the work6

of the authors by implementing a different stopping method, which changes the effectiveness of some attacks.7

Methodology8

To reproduce the results, we use the open-source implementation provided by the authors as the main resource, although9

many modifications were necessary. Additionally, we implement the two baseline attacks which we compare to the10

novel proposed attacks. Since the assumed classifier model is a support vector machine, it is not computationally11

expensive to train. Therefore, we used a modern local machine and performed all of the attacks on the CPU.12

Results13

Due to many missing implementation details, it is not possible to reproduce the original results using the paper alone.14

However, in a specific setting motivated by the authors’ code (more details in section 3), we managed to obtain results15

that support 3 out of 5 claims. Even though the IAF and anchoring attacks outperform the baselines in certain scenarios,16

our findings suggest that the superiority of the proposed attacks is not as strong as presented in the original paper.17

What was easy18

The novel attacks proposed in the paper are presented intuitively, so even with the lack of background in topics such as19

fairness, we managed to easily grasp the core ideas of the paper.20

What was difficult21

The reproduction of the results requires much more details than presented in the paper. Thus, we were forced to make22

many educated guesses regarding classifier details, defense mechanisms, and many hyperparameters. The authors23

also provide an open-source implementation of the code, but the code uses outdated dependencies and has many24

implementation faults, which made it hard to use as given.25

Communication with original authors26

Contact was made with the authors on two occasions. First, we asked for some clarifications regarding the provided27

environment. They promptly replied with lengthy answers, which allowed us to correctly run their code. Then, we28

requested additional details concerning the pre-processing of the datasets. The authors pointed at some of their previous29

projects, where we could find further information on the processing pipeline.30

Submitted to ML Reproducibility Challenge 2020. Do not distribute.



1 Introduction31

Machine Learning models have shown impressive performance in countless domains in the last decade. However, it has32

been demonstrated that an adversary can input carefully-crafted perturbations to subvert the predictions of these models.33

The area of Adversarial Machine Learning has emerged to study vulnerabilities of machine learning approaches in34

adversarial settings and to develop techniques that make them robust against malicious attacks.35

Most of the research has focused on studying malign interventions that degrade the accuracy of a system: imagine, for36

example, the consequences of inducing wrong predictions in an autonomous driving system. Only recently, fairness37

has become a rising concern for the performance of machine learning models, especially for sensitive fields such as38

criminal justice and loan decisions. Along these lines, “Exacerbating Algorithmic Bias through Fairness Attacks” [1]39

proposes two families of poisoning attacks that inject malicious points into the models’ training sets and intentionally40

target the fairness of a classification model.41

The first, the influence attack, extends the optimization-based technique introduced by Koh et al. [2] by incorporating42

in the loss function a constraint for fair classification. An attacker can hence harm both accuracy and fairness43

simultaneously, with a trade-off regularized via a parameter λ. The second type of attack, the anchoring attack, affects44

solely fairness and aims to place poisoned data points to bias the decision boundary without modifying the attacker loss.45

Depending on whether the target point is chosen at random, anchoring attacks are classified as random or non-random.46

2 Scope of reproducibility47

This report investigates the reproducibility of the original paper by Mehrabi et al. and aims to verify its main claims.48

Since these heavily rely on the datasets and metrics used by the authors, the reader is invited to consult Sections 3.2 and49

3.3 – respectively – for a refresh of such concepts. Then, the main claims can be summarized as follows:50

– Influence Attack on Fairness (IAF):51

• Claim 1: Increasing the parameter λ results in stronger attacks against fairness. Contrarily, for lower values52

the model acts similarly to the original influence attack [2] targeted towards accuracy;53

• Claim 2: The proposed IAF outperforms the attack of Koh et al. [2] in affecting both fairness metrics (SPD54

and EOD), on all three datasets;55

• Claim 3: The proposed IAF also outperforms the attack based on the loss function proposed by Solans et al.56

[3] in affecting SPD and EOD, on all tested datasets.57

– Anchoring Attack:58

• Claim 4: Both random and non-random anchoring attacks (RAA and NRAA, respectively) outperform Koh59

et al. [2] in degrading the SPD and EOD of the classification model, on all three datasets;60

• Claim 5: On the German and Drug Consumption datasets, RNAA and NRAA have a greater impact on fairness61

metrics (SPD and EOD) compared to the attack based on Solans et al. [3]. However, the latter outperforms the62

proposed anchoring attack in affecting fairness when classification is performed on the COMPAS dataset.63

3 Methodology64

The authors provided an open-source implementation of their code on GitHub [4]. Unfortunately, the repository has65

several issues: dependencies are not sufficiently specified, and simply running the code in the given environment results66

in conflicts. Furthermore, the code does not provide an option to run baseline methods used in the paper, nor does it67

include the essential hyperparameter λ, which is used in the experiments. The majority of the code is based on Koh68

et al. [2]’s public implementation [5], and a code coverage analysis revealed that more than 50% is not used for running69

experiments related to this paper1. Moreover, the repository comes with pre-processed datasets and while this may70

sound advantageous, there is no mention of the processing procedure in the paper nor on GitHub. Finally, the code is71

generally complex and hard to understand due to insufficient comments and documentation.72

Therefore, we used the codebase provided by the authors and customized it for our purposes. First, to aid maintainability73

and scalability, as well as to ensure future reproducibility of the original experiments, the code was modernized and74

made compatible with the latest version of every dependency. This involved major changes to migrate from Tensorflow75

1The coverage.py tool [6] was used to measure code coverage, and the study was performed considering all possible attacks-
datasets combinations.
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1.12.0 to 2.6.2 and to update CVXpy from version 0.4.11 to 1.1.182. Secondly, datasets were downloaded from the76

original sources [7, 8] and processed from scratch. The procedure is thoroughly reported in Section 3.2. Furthermore,77

the code was trimmed down to the essential, and the user was given the option to choose any of the available models and78

the corresponding parameters. Lastly, we added comprehensive documentation to make the code more interpretable.79

3.1 Model descriptions80

It appears that the authors of the original paper do not specify the model that they use for the given classification81

task. From the implementation details given in Koh et al. [2], as well as from [1]’s codebase, we assume the use82

of a Support Vector Machine (SVM) trained with a smooth hinge loss and L2 regularization (refer to [2] for further83

details). Additionally, the optimization algorithm is not indicated; we assumed it to be Newtons Conjugate Gradient84

(Newton-CG) method, as suggested by the codebase. Such a method is used for both the minimization of the parameters85

on the training set and the update step of the poisoned points (for attacks utilizing an adversarial loss). The gradient86

is computed using the full datasets, i.e., without using mini-batches. Although hardly recognizable, this follows the87

implementation of the original paper: from our interpretation of the code, it seems that the authors define a variable88

containing the size of the mini-batch size and the necessary functionality, but then never use it.89

Our base algorithmic setup for the IAF, RAA, and NRAA attacks is described in the Methods section of the original90

paper. However, the authors omitted important details that we consequently had to assume based on more or less91

concrete evidence. First, an advantaged and disadvantaged group for the sensitive attribute (i.e., gender, as per the92

original work) has to be specified for all attacks. Since the rationale behind this choice does not seem to be included93

in the paper, we infer from the codebase that the authors did it automatically and deduced it from the datasets. More94

specifically, we assume that the advantaged group is chosen as the group with the highest ratio of data points with95

positive label (y = 1), regardless of the actual class label it corresponds to. This method is simple yet fallacious: for96

instance, it means that the group taking on the label "likely to perform a crime soon" more often (in the context of the97

COMPAS dataset) is considered "advantaged" in terms of the algorithm.98

Secondly, for the computation of the feasible set using an anomaly detector B, we assume that the intersection of the99

Slab defense and the L2 defense was originally employed, as described in Koh et al. [2]. For reprojecting poisoned data100

points into the feasible set, we again use the approach of [2], which incorporates LP rounding for discrete variables.101

Moreover, we implement two baselines. The three proposed attacks are compared against the original accuracy-targeting102

attack proposed by Koh et al. [2], and another attack that uses a loss function proposed by Solans et al. [3], which103

targets fairness3. Lastly, the model-specific changes/improvements are presented below:104

IAF. As mentioned before, we modified the code to include the hyperparameter λ which controls the trade-off between105

the accuracy and the fairness loss in the adversarial loss.106

Koh attack. We were not able to find a way of running this baseline attack using the given codebase. We have decided107

to implement it from scratch, treating it as the limiting case of the IAF attack when λ = 0 (meaning no fairness loss in108

the adversarial loss function). Consequently, it is not exactly as presented in [2]: in the original Koh attack sampling, the109

initial poisoned points are not drawn from advantaged and disadvantaged groups, contrary to the IAF attack. However,110

we argue that equalizing the sampling method provides a stronger comparison between the two methods, as we alleviate111

the issue of the missing inductive bias from the original Koh influence attack.112

Solans attack. This attack serves as the second baseline. We could not find it in the codebase, thus we implemented it113

by replacing the adversarial loss in the IAF attack with a weighted sum loss, as presented in [3]. Implementing this114

change posed a bigger issue than expected, due to the inflexibility of the TensorFlow-based implementation. Thus,115

major revisions were required.116

3.2 Datasets117

The authors provide compressed npz files of the three real-world datasets used for their experiments – the German118

Credit Dataset [7], the COMPAS Dataset [8] and the Drug Consumption Dataset [7]. However, these are already119

pre-processed, and the processing procedure is not reported nor documented in the code. This constitutes an important120

reproducibility barrier, because raw datasets4 are not directly usable with the given codebase.121

2In our repository we provide a YAML configuration file to quickly set up the required environment.
3For simplicity, we will refer to the influence attack presented in [2] as the Koh attack, and we will also refer to the attack

presented in [3] as the Solans attack.
4The German Credit Dataset and the Drug Consumption Dataset can be downloaded from the UCI machine learning repository

[7], while the COMPAS can be found in the corresponding GitHub repository[8].
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In this section, we present our pre-processing pipeline, which was mainly determined by reverse engineering of the122

given files. Like the authors, we provide a set of npz files containing already-processed data to run our implementation,123

but we also include the scripts used to pre-process each dataset in the Custom_data_preprocessing directory. Lastly,124

to run the attacks, we assume that the advantaged and disadvantaged groups are males and females respectively. We125

accordingly map them to 0 and 1 to create the group_label binary array.126

In the rest of this section, we outline our dataset-specific details of the pre-processing pipeline and the assumptions that127

were made for the sake of reproducibility of the original results.128

German Credit Dataset. The dataset contains the credit profile of 1000 individuals with 20 attributes associated with129

each person. In our experiments, we use all of them, as in [1]. The attributes are both numerical and categorical, and130

we assumed the original authors used one-hot representations to encode the latter. The assumption was based on an131

extensive study of the provided datasets, with particular attention to their shapes. We then autonomously standardize132

the data, as it is common practice in Machine Learning, and split the data into an 80-20 train and test split, as indicated133

in the original paper.134

COMPAS Dataset. ProPublica’s COMPAS dataset [8] contains information about 7214 defendants from Broward135

County. We use the features specified in Table 1 of [1]. In this case, based on the provided dataset, we concluded that136

the authors must have used numerical label encoding to represent the categorical attributes. Finally, we standardize the137

data and split it into an 80-20 train and test split.138

Drug Consumption Dataset. The dataset contains information about the drug consumption of 1885 individuals [9].139

We use the attributes indicated in Table 1 of the original paper. The pre-processing procedure is as follows: first, we140

binarize the categorical data linked to cocaine consumption into users and non-users. Intuitively, non-users should be141

mapped to 0 (and 1 in the opposite case), but an inspection of the provided npz file suggests that the authors reversed142

the mapping. We decided to adhere to their choice for the sake of reproducibility. Moreover, we suspect that the dataset143

was shuffled before splitting it into training and test sets5. By doing so, we obtain similar results in the experiments.144

Finally, we standardize the data. The original processing of this dataset was particularly difficult to replicate, because145

contrary to what was reported in the paper, the authors did not follow an exact 80-20 train and test split. Rather, the two146

contained 1500 and 385 data points respectively.147

To conclude, it is noteworthy that even the pre-processed datasets provided by the authors are not immediately usable:148

the position (specified as index) of the sensitive feature (i.e., gender) is different for each dataset and is only given for149

the German dataset in the running instructions. To account for this unnecessary confusion, our custom pre-processing150

procedure includes the moving of the gender column to the 0th index, which is taken as default by the main function. In151

this way, we simplify the running instructions and make them coherent across datasets. Still, the user is given the ability152

to pass the sensitive feature index as an argument, to facilitate future experiments on different and untested data.153

3.3 Metrics154

The attacks are evaluated in terms of accuracy and fairness. Along with classification (test) error, the original paper155

uses two important metrics to evaluate the attack in terms of fairness: Statistical Parity Difference and Equality of156

Opportunity Difference.157

Statistical Parity Difference. Statistical Parity Difference (SPD) was first introduced by Dwork et al. [11] and is used158

to capture the predictive outcome differences between different (advantaged and disadvantaged) demographic groups.159

The mathematical formulation is reported in Equation 1.160

SPD =
∣∣∣ p

(
Ŷ = +1 | x ∈ Da

)
− p

(
Ŷ = +1 | x ∈ Dd

)∣∣∣ (1)

where Da denotes the advantageous group and Dd denotes the disadvantageous group.161

Equality of Opportunity Difference. Equality of Opportunity Difference (EOD) (Hardt et al. [12]) captures differences162

in the true positive rate between different (advantaged and disadvantaged) demographic groups. It is defined as shown163

in Equation 2.164

EOD =
∣∣∣ p

(
Ŷ = +1 | x ∈ Da, Y = +1

)
− p

(
Ŷ = +1 | x ∈ Dd, Y = +1

)∣∣∣ (2)

5The main author followed a similar pre-processing procedure in another project that is publicly available on their GitHub [10].
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3.4 Experimental setup and hyperparameters165

All experiments shown in this paper can easily be reproduced using our code, which is publicly available on GitHub6.166

There we also provide technical details on how to run experiments and test different attacks in various settings. In this167

section, however, we list some additional details necessary to replicate the exact setup.168

• The original code constrains the maximum iterations of an attack to 10000 and uses early stopping to interrupt169

training if the accuracy on the test set does not decrease for a specific number of iterations, which is hardcoded to170

be 2. We follow this strategy but adapt it for our experiments. First, we implement early stopping on both accuracy171

and fairness, meaning that the user can also choose to stop training in the absence of changes in fairness. We utilize172

average fairness (SPD + EOD)/2 as the stopping criteria7 since the two metrics have similar behavior and equal173

range [0, 1]. Then, we set the early stopping patience as a controllable hyperparameter.174

• It is unclear from the paper how the best-performing model was selected by the authors. The code suggests the usage175

of the model after the last attack iteration and training of the model parameters. Instead, we decided to save the176

best-performing model on the test set according to the chosen stopping metric (average fairness or accuracy), to better177

reflect the actual best performance. By selecting the best model based on fairness, we hope to choose more relevant178

states of the poisoned data affecting the fairness metrics. We compare the results in Section 4.179

• The computation of the feasible set and the reprojection of poisoned points onto it is handled as a convex optimization180

problem (see [2]). Since we upgraded CVXpy to its newest version, we can let the library select the most appropriate181

solver for the given problem, instead of specifying one (the authors of [1] seem to have used the SCS solver).182

• Following the original implementation, we utilize the fmin_ncg optimizer of the scipy library [13] for the Newton-183

CG optimization. We comply with the choices of the authors and set the convergence threshold of the fmin optimizer184

to 10−8, and the maximum number of iterations to 100. We follow the implementation details specified in [2] for185

computing the inverse Hessian-vector.186

• During training, the temperature of the smooth hinge loss is chosen to be 0.001, as found hardcoded in the original187

implementation. The value for the weight decay is set to 0.09 for all datasets (apart from the code of the authors, this188

assumption is also backed up by the main experiments of Koh et al. [2]). The step size utilized in the IAF algorithm189

(and thus also in the Koh and Solans attack) is set to 0.1 for all experiments, as found in the codebase.190

• The threshold of the anomaly detector (see [2]) is controlled by a hyperparameter named "percentile", which191

specifies the percentage of the data left after applying the anomaly detector. We first experimented with a value of 95192

as suggested by Koh et al. [2] but, as this seemed to lead to some training failings, we settled on 90 (the default value193

given in the codebase).194

• The number of injected poisoned points is proportional to the number of clean data points, such that |Dp| = ϵ|Dp|195

(where Dc and Dp are the set of clean and poisoned data points respectively). The authors control such quantity196

by using the proportionality factor ϵ as a changeable parameter. Accordingly, we do the same and also make λ a197

controllable parameter.198

• After careful inspection and testing of the authors’ code, the EOD metric calculation was found to be faulty and was199

consequently re-implemented. Our adaptation is based on the paper that originally proposed it [12] and inspired by200

the implementation found in the AIF360 library [14].201

• Finally, the distance to original points in anchoring attacks τ was set to 0 for all experiments, as in the original paper.202

• The random seed in all experiments was set to 1203

3.5 Computational requirements204

To give a complete overview of our experimental setup, we collect the average runtimes per iteration for different205

datasets and types of attacks. These are presented in Table 1. All models have been trained on a local machine with an206

AMD Ryzen 5 5600x CPU (6 cores, Base clock 3.7 GHz). Since the datasets are small, there is no need for more than207

4Gb of RAM. In this sense, training should be virtually possible on any entry-level PC.208

4 Results209

4.1 Results reproducing original paper210

As stated in Section 2, five main claims were identified in the original paper. In our specific setting, we were able to211

reproduce three of these, as summarized in Table 2. In this section we elaborate on our reproduction results: first, in212

6https://anonymous.4open.science/r/MLRC2021_fairness_attack/
7In the rest of the paper, we might refer to it simply as the fairness stopping metric.
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Attack German dataset [s] COMPAS dataset [s] Drug dataset [s]
IAF 0.870 0.265 0.312
NRAA 1.123 106.23 3.678
RAA 0.934 0.306 0.324
Koh 0.474 0.267 0.201
Solans 0.862 0.332 0.262

Table 1: Average runtime per iteration for different attack types and datasets.
All values are stated in units of seconds.

Claim Reproducible?
Claim 1 Yes
Claim 2 Yes
Claim 3 No
Claim 4 Yes
Claim 5 No

Table 2: Summary of the claims in-
vestigation under our specific setup.
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Figure 1: Influence of λ on the different metrics for different ϵ on the German dataset, using accuracy as the stopping
criteria during training.

section 4.1.1 we show the effect of the hyperparameter λ on various metrics (Claim 1). In section 4.1.2 we compare the213

newly proposed attacks and the baselines (Claims 2-5).214

4.1.1 Effect of λ on the different metrics215

To verify Claim 1, we conducted the same experiment as the authors. We run an IAF attack for each dataset using216

different ϵ values and increasing λ, to recreate Figure 3 of the original paper (see Appendix B.3, Fig. 8). However,217

compared to the original experiment we test a larger range of λ values (from 0.0 to 2.0) to gain better insights into its218

effects. As depicted in Figure 1, increasing λ does result in stronger attacks against fairness. Here we use the German219

dataset and accuracy as the stopping metric, but similar trends were observed on the other datasets and using fairness220

for early stopping. The plots are included in Appendix B.1 for the sake of completeness. Therefore in this specific221

setup, we were able to reproduce the claim.222

4.1.2 Comparison between the proposed attacks and the baselines223

To investigate Claims 2-5 we design an experiment that is heavily inspired by the work of the authors. We perform224

each attack on each dataset, fixing λ = 1 and gradually increasing ϵ (from 0.0 to 1.0, with steps of 0.1), and repeat this225

procedure for each stopping metric. The results essentially replicate Figure 2 of the original paper (as seen in Appendix226

B.3, Fig. 7) and are collected in Figures 5 and 6 of Appendix B.2. However, to facilitate a comparative study between227

the proposed attacks and the baselines, we average the metrics over the ϵ values and report the results in Table 3. In this228

way, we can base our observations on quantifiable measures instead of solely using visual inspection.229

Assuming that the authors used accuracy as the early stopping criteria, the corresponding values in the table reveal that –230

in this specific setting:231

• Claim 2 is reproducible. On average, IAF has a much stronger influence on SPD and EOD compared to Koh’s232

attack, on all three datasets.233

• Claim 3 is not reproducible, because Solan’s attack outperformed IAF in affecting the EOD on the Compas dataset.234

• Claim 4 is reproducible. NRAA and RAA were found to degrade the fairness metrics (SPD and EOD) more than235

Koh’s attack, on all three datasets.236

• Claim 5 is not reproducible. Solans’ attack had a greater impact on the SPD than NRAA on the German and greater237

impact than NRAA on both SPD and EOD on the Compas dataset. It also has a greater impact on the EOD than the238

RAA attack on the Compas dataset.239
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German Dataset Compas Dataset Drug Dataset

Attack Test error SPD EOD Test Error SPD EOD Test error SPD EOD
(Stopping metric: Fairness / Accuracy) (Stopping metric: Fairness / Accuracy) (Stopping metric: Fairness / Accuracy)

IAF 0.40/0.47 0.84/0.68 0.88/0.74 0.46/0.47 0.83/0.75 0.87/0.77 0.43/0.45 0.89/0.75 0.90/0.76
NRAA 0.26/0.26 0.26/0.25 0.36/0.33 0.41/0.42 0.59/0.59 0.64/0.64 0.39/0.39 0.53/0.53 0.53/0.53
RAA 0.27/0.28 0.24/0.17 0.36/0.19 0.47/0.47 0.84/0.73 0.87/0.75 0.42/0.44 0.66/0.55 0.68/0.57
Koh 0.27/0.61 0.17/0.08 0.13/0.12 0.45/0.53 0.81/0.46 0.85/0.48 0.40/0.56 0.56/0.26 0.56/0.29
Solans 0.40/0.48 0.65/0.44 0.49/0.16 0.44/0.45 0.76/0.73 0.83/0.78 0.40/0.56 0.53/0.28 0.55/0.32

Table 3: Average metrics over ϵ values, obtained for each measure-attack combination and each dataset. We report one
pair of values in each entry, corresponding to the two stopping criteria (average fairness and accuracy), and highlight
the greatest one.

0 20 40 60 80
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ac
cu

ra
cy

/fa
irn

es
s m

et
ric

s

German dataset (Solans attack)
Test accuracy
Average fairness
Minimum accuracy
Maximum avg fairness

0 10 20 30 40 50
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ac
cu

ra
cy

/fa
irn

es
s m

et
ric

s

Drug dataset (IAF attack)

Test accuracy
Average fairness
Minimum accuracy
Maximum avg fairness

Difference between the two stopping metrics
(  = 0.5,  = 1)

Figure 2: Difference between the two stopping metrics (accuracy
and average fairness) for the Solans attack on the German dataset
(left), IAF attack on the Drug dataset (right).

Value German
(Solans)

Drug
(IAF)

Min. test accuracy 0.465 0.506

Avg. fairness at the point
of min. accuracy 0.229 0.822

Actual max. average
fairness 0.619 1.000

Table 4: Minimum accuracy, the value of
the average fairness at the point of minimum
accuracy, and maximum achievable average
fairness of the plots of Figure 2.

4.2 Results beyond the original paper: using fairness as the early stopping metric240

While the original codebase seems to use accuracy as the early stopping metric (and hence for selecting and saving the241

best model), we investigate the change in the results if fairness is used instead. The main motivation behind such an242

experiment lies in the assumption that interrupting training based on the fairness measures supposedly yields more243

relevant states of the poisoned data, effectively resulting in more efficient attacks against fairness. Since the SPD and244

EOD have similar behavior and equal range [0, 1], we employ average fairness (SPD +EOD)/2 for the task at hand.245

Figure 2 depicts the test accuracy and the average fairness over epochs for two different dataset-attack combinations. An246

analysis of the curves confirms that the maximum achievable average fairness is much greater than the same measure at247

the point of minimal accuracy (see Table 4). The same phenomenon is observed for any dataset-attack combinations,248

as reported in Table 3: fairness undergoes a stronger degradation if average fairness is used to interrupt the training249

process and save the best model. This is reflected in the corresponding values of the fairness measures, which appear250

much higher compared to when accuracy is used.251

5 Discussion252

Our reproduction reveals that although the proposed methods represent valid novel attacks against the fairness of a253

model, they are not always superior to other methods in the literature. IAF showed important performance in terms of254

SPD and EOD degradation, but anchoring attacks were outperformed by the baseline models on multiple occasions.255

This result conflicts with the findings of the main paper (see Appendix B.3, Fig.7) where the baselines are generally256

inferior to the proposed attacks. We had to make several assumptions to solve issues and inconsistencies between257

the original paper and corresponding implementation (many of which have already been mentioned throughout the258

report, but we systematically collect them in Appendix A). These assumptions are, by definition, uncertain and might259

have been the cause of the discrepant results. To better understand the source of discrepancy, we initially planned to260

perform an ablation study, which would have also unveiled more information regarding the model’s behavior. This was261

ultimately not possible, given the time constraints and the contingencies encountered in the reproduction process.262

In the remainder of this section, we elaborate on the main claims and our ability to reproduce them. We then present263

some personal reflections on the overall execution of the work and conclude with a summary and look into future works.264
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5.1 Discussion of the results265

The first claim was found to be reproducible under our experimental setup, as we expected. The parameter λ is266

specifically designed to control the trade-off between accuracy and fairness, hence a rejection of the claim would have267

implied a major flaw in the core idea of the paper. The other claims focused on the comparison with the two baselines268

and, while the results presented in Section 4.1.2 are explicative enough, some remarks are still noteworthy.269

In general, better statistics of the results would give us a clearer insight into the relative performance of the models.270

However, only four weeks were allocated for this project and we were unable to re-run the experiments with multiple271

seeds. For example, the Solans attack outperformed the IAF attack in terms of EOD metric on the Compas dataset272

(when using accuracy as the stopping method) and led to the non-reproducibility of Claim 3. Yet, this difference is273

relatively small and a measure of uncertainty could potentially reverse our decision.274

Furthermore, it was shown that the final fairness metrics can highly vary depending on the chosen stopping method.275

This is especially prominent for Claim 4, which was accepted under the assumption that accuracy was used for stopping276

and saving the best model. In reality, Koh attack outperforms NRAA on both Compas and Drug datasets in the terms of277

SPD/EOD metrics, if fairness is used instead. Since the validity of the claim depends on the stopping metric of choice,278

we argue that the claim is much weaker than originally proposed. Similarly, compare the IAF and the Koh attack in279

terms of fairness measures, using accuracy as the stopping criteria. On the Drug dataset, IAF’s SPD/EOD metrics are280

respectively 2.89×/2.62× higher than Koh’s. This gap tightens if fairness is used: IAF’s SPD/EOD metrics become281

1.022×/1.024× higher. Although these numbers indicate the same result, we find the claim to be weaker than proposed,282

as the superior performance of the IAF attack is diminished by the use of a different stopping metric.283

Finally it is important to notice the different behavior of the test accuracy and the average fairness (Fig. 2) used as284

stopping criteria. While the latter has a relatively high variance, the former is pretty constant, meaning that using285

fairness as the stopping metric does not result in significant variations in the model’s accuracy. Contrarily, as empirically286

proved by our experiments, it can be highly beneficial for the fairness measures.287

5.2 Reflection: What was easy? What was difficult?288

The new methods presented in the paper were described both intuitively and formally, with a clear mathematical289

structure. The authors also provided figures to aid the intuition on how new attacks can affect decision boundaries,290

which allowed us to easily understand the core novel ideas presented in the publication.291

However, it was not trivial to re-implement the proposed methods, because many details required for the implementation292

do not appear in the paper. The provided open-source implementation was ultimately hard to follow due to its convoluted293

organization, lack of documentation, poorly named functions/variables, and abundance of unused code. Even setting294

up a working environment using the authors-given dependencies took longer than one would expect, prompting us295

to get help from the authors. Eventually, the hope to aid future experiments motivated the decision to make the code296

compatible with up-to-date dependencies. This was one of the biggest struggles because the codebase heavily relies on297

packages that underwent major updates (e.g. TensorFlow and CVXpy).298

The authors also provided pre-processed datasets. We spent a considerable amount of time trying to replicate their exact299

pipeline through reverse-engineering of the given files. Additionally, after recognizing some imperfections in the code300

and inconsistencies with the paper, we verified all of the existing implementation details to make sure that no further301

errors were made. This was a daunting task, given the complete lack of documentation and intuitive variable use.302

5.3 Communication with original authors303

To reiterate, we have initially contacted the main author to aid us with the dependency issues, who helped us with304

setting up a working environment. We then had additional contacts regarding the dataset pre-processing procedure. The305

author provided us with some indications on the pipeline and pointed at some useful resources. Eventually, we decided306

to gain a better understanding of the datasets through reverse-engineering.307

5.4 Conclusion308

In this paper, we have presented a reproducibility study of "Exacerbating Algorithmic Bias through Fairness Attacks",309

whereon we can draw some conclusions. Due to all the mentioned issues and inconsistencies (collected in Appendix A),310

we find it not possible to reproduce the original results from sole use of the paper, and difficult even in possession of311

the provided codebase. Yet, we managed to obtain similar findings that supported three out of the five main claims of312

the publication, albeit using partial re-implementations and numerous assumptions. Ascertaining the validity of such313

assumptions is therefore important for future works. Moreover, further studies could extend the classifier to work with314

multiple demographic groups and investigate the results using different fairness metrics.315
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A Table of issues348

Issue Our contribution
Running the code in the given environment results in con-
flicts

Code modernized and made compatible with the latest
version of every dependency

The code is generally complex and hard to understand due
to insufficient comments and documentation as well as
leftover code

Trimmed down the code to the essential, included option
to choose any of the available models and the correspond-
ing parameters. Added comprehensive documentation to
make the code more interpretable

It appears that the pre-processing pipeline of the given
datasets is not specified

Made the scripts we used to pre-process each dataset avail-
able as well as a detailed description

It appears that the position (i.e. index) of the sensitive fea-
ture for the COMPAS and Drug Consumption datasets is
not indicated, posing a challenge to reproduce the authors’
results

Moved the sensitive feature (i.e. gender) of every dataset
to the 0th index, which is taken as default by the main
function

The advantaged and disadvantaged groups for the sensitive
attribute (gender) has not be specified for any attack

Assumed from the codebase that the authors did this auto-
matically and inferred it from the dataset (the advantaged
group is chosen as the group with a higher ratio of dat-
apoints with the positive label (y=1), regardless of the
actual class label it corresponds to) to be specified for all
attacks

The code does not provide an option to run baseline meth-
ods used in the paper, nor does it include the hyperparam-
eter λ

Included option to run baseline methods (Koh attack,
Solans attack) and to include λ in IAF attack

The code implements a deterministic point sampling in
the anchoring attacks (RAA, NRAA) due to the same seed
being reset in every attack iteration. Thus the sampling
yields the same point every iteration not properly applying
the randomness

Fixed the issue so that randomness takes effect

The code makes use of a faulty EOD metric calculation Re-implemented the EOD metric calculation to fix the
issue

The paper specifies the feasible set computation to be done
on the union of the clean dataset and the initial poisoned
points. The original code however does this on the clean
data only when using the running commands given by the
authors

Implemented the feasible set as specified in the paper

It appears that the model used for the given classification
task is not specified

Assumed they used a Support Vector Machine (SVM)
trained with a smooth hinge loss and L2 regularization

The optimization algorithm is not indicated Assumed it to be Newtons Conjugate Gradient (Newton-
CG) method, as suggested by the codebase

It is unclear how the best performing model was selected Saved best performing model on the test set according to
the chosen stopping metric

349

B Additional figures350

Here we collect additional figures that support the results discussed above.351

B.1 Effect of λ on the different metrics352

Figure 3 shows the influence of λ on the different metrics when accuracy is used as the stopping criteria. The experiment353

is repeated using average fairness as the stopping metric, and the results are collected in Figure 4. These results support354

Claim 1 of Section 2, effectively proving it.355
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B.2 Comparative study between the proposed attacks and the baselines356

We report the results of the experiment designed to support Claims 2-5 of Section 2. We perform each attack (IAF,357

NRAA, RAA, Koh, Solans) on each dataset (German, Compas, Drug), fixing λ = 1 and gradually increasing ϵ from 0.0358

to 1.0, with steps of 0.1. We repeat this procedure for each stopping metric (average fairness and accuracy). The results359

are respectively collected in Figures 4 and 5.360

B.3 Figures of the original paper361

For the sake of self-containedness of this reproducibility study, we report the two main figures of the original paper.362

Figures 7 and 8 correspond – respectively – to Figures 2 and 3 of "Exacerbating Algorithmic Bias through Fairness363

Attacks".364
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Figure 3: Results obtained for different attacks with regards to accuracy (test error) and fairness (SPD and EOD)
measures on German Credit, COMPAS, and Drug Consumption databases with different ϵ values and with accuracy as
the stopping method.

11



0.0 0.2 0.4 0.6 0.8 1.0
Epsilon ( )

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 E
rro

r

German Dataset
IAF
NRAA

RAA
Koh

Solans

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon ( )

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ar

ity
 D

iff
er

en
ce

 (S
PD

)

German Dataset
IAF
NRAA

RAA
Koh

Solans

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon ( )

0.0

0.2

0.4

0.6

0.8

1.0

Eq
ua

lit
y 

of
 O

pp
or

tu
ni

ty
 D

iff
er

en
ce

 (E
OD

)

German Dataset
IAF
NRAA

RAA
Koh

Solans

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon ( )

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 E
rro

r

Compas Dataset
IAF
NRAA

RAA
Koh

Solans

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon ( )

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ar

ity
 D

iff
er

en
ce

 (S
PD

)

Compas Dataset
IAF
NRAA

RAA
Koh

Solans

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon ( )

0.0

0.2

0.4

0.6

0.8

1.0

Eq
ua

lit
y 

of
 O

pp
or

tu
ni

ty
 D

iff
er

en
ce

 (E
OD

)

Compas Dataset
IAF
NRAA

RAA
Koh

Solans

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon ( )

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 E
rro

r

Drug Dataset
IAF
NRAA

RAA
Koh

Solans

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon ( )

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ar

ity
 D

iff
er

en
ce

 (S
PD

)

Drug Dataset
IAF
NRAA

RAA
Koh

Solans

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon ( )

0.0

0.2

0.4

0.6

0.8

1.0

Eq
ua

lit
y 

of
 O

pp
or

tu
ni

ty
 D

iff
er

en
ce

 (E
OD

)

Drug Dataset
IAF
NRAA

RAA
Koh

Solans

Stopping metric: fairness

Figure 4: Results obtained for different attacks with regards to accuracy (test error) and fairness (SPD and EOD)
measures on German Credit, COMPAS, and Drug Consumption databases with different ϵ values and with average
fairness as the stopping method.
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Figure 5: Accuracy (test error) and fairness (SPD and EOD) measures obtained after the IAF attack the on German
Credit, COMPAS, and Drug Consumption databases for different ϵ and increasing λ values, with accuracy as the
stopping method.
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Figure 6: Accuracy (test error) and fairness (SPD and EOD) measures obtained after the IAF attack the on German
Credit, COMPAS, and Drug Consumption databases for different ϵ and increasing λ values, with average fairness as
the stopping method.
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Figure 2: Results obtained for different attacks with regards to different fairness (SPD and EOD) and accuracy (test error)
measures on three different datasets (German Credit, COMPAS, and Drug Consumption) with different ✏ values.

effective since more poisoned points may be needed in order
to achieve the goal of infecting many points and shifting the
decision boundary. In our experiments we set ⌧ = 0.

Influence Attack (Koh et al.) This is a type of attack that
is targeted only toward affecting accuracy (Koh, Steinhardt,
and Liang 2018; Koh and Liang 2017). The reason we include
this type of attack along with attacks targeted toward fairness
is that it can help us understand how attacks targeting only
accuracy affect fairness measures. Attacks of this nature can
also serve as a good comparison because they show the effect
of attacks on accuracy; because this attack is specifically
designed to target accuracy, it can be a strong method to
compare against.

Poisoning Attack Against Algorithmic Fairness
(Solans et al.) In (Solans, Biggio, and Castillo 2020), the
authors propose a loss function that claims to target fairness
measures. We utilized the loss introduced in this paper as
depicted below in equation (3) in the influence attack from
(Koh, Steinhardt, and Liang 2018; Koh and Liang 2017) and
compared it to our proposed attacks. The goal of (Solans,
Biggio, and Castillo 2020) was to incorporate the loss in
(3) into an attack strategy that would maximize the loss;

thus, we incorporated this loss into the influence attack (Koh,
Steinhardt, and Liang 2018; Koh and Liang 2017), which we
found to be a strong attack strategy in maximizing the loss
and also the same attack strategy used in our influence attack
on fairness. In our experiments, we utilized the same � value
as proposed in (Solans, Biggio, and Castillo 2020) to balance
the class priors.

Ladv(✓̂; Dtest) =

pX

k=1

`(✓̂; xk, yk)

| {z }
disadvantaged

+�

mX

j=1

`(✓̂; xj , yj)

| {z }
advantaged

where � =
p

m
. (3)

Results
The results in Figure 2 demonstrate that the influence at-
tack (Koh et al.), although performing remarkably well in
attacking accuracy, does not attack fairness well. The results
also confirm that our influence attack on fairness method out-
performs (Solans et al.) (Solans, Biggio, and Castillo 2020)
in affecting fairness measures, and anchoring attack outper-
forms (Solans et al.) (Solans, Biggio, and Castillo 2020) in

Figure 7: Results of the original paper obtained for different attacks with regards to different fairness (SPD and EOD)
and accuracy (test error) measures on three different datasets (German Credit, COMPAS, and Drug Consumption) with
different ϵ values. Retrieved from [1].

Figure 3: Results obtained for different lambda values for the IAF attack with regards to different fairness (SPD and EOD) and
accuracy (test error) measures on three different datasets (German Credit, COMPAS, and Drug Consumption) with different ✏.

affecting fairness measures in most of the cases. One can
observe that influence attack on fairness is the most effective
amongst all the attacks in attacking fairness measures.

Due to the nature of our influence attack on fairness loss
function and its controlling parameter on accuracy and fair-
ness, it can be utilized in scenarios where the adversary wants
to maliciously harm the system in terms of accuracy, or fair-
ness, or both. On the other hand, anchoring attacks can be
utilized in places where the adversary wants to subtly harm
accuracy with an effective harm on fairness. These types of
attacks can be used by, e.g., adversaries who would want to
gain profit off of biasing decisions for their benefit; thus, to
remain less detectable they do not harm accuracy. Although
it is possible that anchoring attack can harm accuracy to a
higher degree, as shown empirically in our results, it is less
likely that anchoring attack is able to degrade accuracy by a
large amount in practice for real world datasets.

In addition, in Figure 3 we demonstrate the effect of our
regularized loss in the influence attack on fairness. The re-
sults show that with the increase of lambda the attack affects
fairness measures more as expected from the loss; however,
for the lower lambda values the attack acts similar to the orig-

inal influence attack targeted towards accuracy. The results
also show that higher epsilon values highlight the behavior
of the loss more as expected such that for high epsilon value
of 1 the changes are more significant with modifications to
the lambda value in the loss function, while less subtle for
lower epsilon values such as 0.1.

Related Work
Here, we cover related work from both fair machine learning
as well as adversarial machine learning research.

Adversarial Machine Learning
Research in adversarial machine learning is mostly focused
on designing defenses and attacks against machine learning
models (Steinhardt, Koh, and Liang 2017; Chakraborty et al.
2018; Li et al. 2018). Ultimately, the goal is for machine
learning models to be robust toward malicious activities de-
signed by adversaries. Thus, it is important to consider both
sides of the spectrum in terms of designing the attacks and de-
fenses that can overcome the attacks. In adversarial machine
learning, different types of attacks, such as data poisoning
and evasion attacks, exist. In evasion attacks, the goal is to

Figure 8: Results of the original paper obtained for different λ values for the IAF attack with regards to different fairness
(SPD and EOD) and accuracy (test error) measures on three different datasets (German Credit, COMPAS, and Drug
Consumption) with different ϵ. Retrieved from [1].
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