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ABSTRACT

Split Federated Learning (SFL) enables collaborative training between resource-
constrained edge devices and a compute-rich server by partitioning deep neural
networks. Communication overhead is a central issue in SFL and is well mitigated
with auxiliary networks; yet the core client-side computation challenge remains,
as back-propagation requires substantial memory and computation costs, severely
limiting the scale of models that edge devices can support. To make the client side
more resource-efficient, we propose HERON-SFL, a novel hybrid optimization
framework that integrates zeroth-order (ZO) optimization for local client training
while retaining first-order (FO) optimization on the server. With the assistance
of auxiliary networks, ZO updates enable clients to approximate local gradients
using perturbed forward-only evaluations per step, eliminating memory-intensive
activation caching and avoiding explicit gradient computation in the traditional
training process. Leveraging the low effective rank assumption, we theoretically
prove that HERON-SFL’s convergence rate is independent of model dimensional-
ity, addressing a key scalability concern common to ZO algorithms. Empirically,
on ResNet training and large language model (LLM) fine-tuning tasks, HERON-
SFL matches benchmark accuracy while reducing client peak memory by up to
64% and client-side compute cost by up to 33% per step, substantially expanding
the range of models that can be trained or adapted on resource-limited devices.

1 INTRODUCTION

Split Federated Learning (SFL) (Thapa et al., 2022; 2021) targets scenarios with resource-
constrained clients and compute-rich servers. Under the SFL framework, the full network is cut
into client-side and server-side sub-models: each client runs a forward pass up to the cut layer and
uploads the intermediate activations; the main server completes the forward pass, computes the loss,
back-propagates to the cut layer, and returns the gradients so the client can update its sub-model. In
parallel, the federated server (Fed Server) periodically aggregates the clients’ weight updates in a
federated way, enabling large-scale training that exploits cloud compute while keeping all raw data
on-device. However, the update lock (Belilovsky et al., 2020; 2019) imposed by back-propagation
means that, at every iteration, each client must idle until the server finishes its backward pass and
transmits the cut-layer gradients. This synchronization bottleneck both throttles overall training
throughput and amplifies communication overhead in SFL.

To mitigate this bottleneck, recent work equips each client with an auxiliary network (typically
a lightweight output layer) that estimates the cut-layer gradients locally (Mu & Shen, 2025; Han
et al., 2021; Oh et al., 2022). This design decouples the client from the server, allowing the client
sub-model to update immediately without waiting for the server’s backward pass, thereby drastically
reducing communication overhead and granting extra degrees of freedom for client-side optimiza-
tion. Previous works show that auxiliary-network SFL not only cuts communication volume by a
wide margin but also achieves higher convergence accuracy than the traditional methods (Mu &
Shen, 2025; Nair et al., 2025). However, as current approaches take advantage of the auxiliary
module as a communication shortcut, they often overlook the significant computational and storage
burden it imposes on edge devices. This overhead is primarily driven by the conventional first-order
(FO) optimization process, where backpropagation and gradient computation impose prohibitive
compute and memory demands on edge devices.
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Zeroth-order (ZO) optimization provides an appealing alternative. Unlike FO methods, ZO estimates
gradients through parameter perturbations and forward-only evaluations, bringing the computational
and storage overhead to a level comparable to those of inference (Malladi et al., 2023). This property
suggests that ZO could substantially reduce the client-side burden in SFL. However, ZO optimization
is known to suffer from biased gradient estimates and slower convergence compared to FO methods
(Qiu et al., 2023), thereby raising an open question:

Can ZO methods be effectively integrated into SFL to reduce client-side computation and storage
without sacrificing accuracy or convergence guarantees?

We answer this question affirmatively by proposing HERON-SFL, a novel Hybrid zEroth- and fiRst-
Order optimizatioN framework for SFL. In HERON-SFL, clients replace conventional FO gradient
computation with lightweight ZO updates, applied to the local model (comprising the client-side
and auxiliary networks). This design eliminates the need for backpropagation and caching, enabling
edge devices to operate with markedly reduced memory and compute budgets. Importantly, clients
transmit only the smashed activations required for the server-side FO training, while the server
performs standard updates on its own partition of the model.

Our main contributions are summarized as follows:

• We propose HERON-SFL, a novel hybrid zeroth- and first-order SFL framework. Building upon
an auxiliary network that enables decoupled local training, we introduce zeroth-order (ZO) op-
timization on the client side. This eliminates the need for backpropagation for local updates,
thereby significantly reducing on-device memory and computational costs.

• We provide the first theoretical study of hybrid ZO–FO optimization in SFL. Our analysis shows
that under a low effective rank assumption, HERON-SFL achieves anO(1/

√
T ) convergence rate,

which matches that of standard FO approaches. This result shows that the usual ZO slowdown
can be alleviated under the proposed hybrid structure and assumptions, yielding a convergence
rate comparable to FO methods.

• We conduct comprehensive experiments spanning both vision (ResNet training) and language
(LLM fine-tuning) tasks. Results show that HERON-SFL consistently reduces client peak mem-
ory by up to 64% and client computation per step by up to 33%, while matching the accuracy of
state-of-the-art, auxiliary-network-based FO SFL methods. These gains highlight HERON-SFL’s
practical potential for deploying advanced models on previously infeasible devices.

2 RELATED WORK

Split Federated Learning. While modern foundation models achieve state-of-the-art performance
(Brown et al., 2020; Chowdhery et al., 2023), their immense computational and memory require-
ments restrict them to data centers, limiting their real-world reach (Luo et al., 2024; Sani et al.,
2024). To bring large language models onto edge devices, SFL was proposed by merging Feder-
ated Learning (FL) (McMahan et al., 2017) with Split Learning (SL) (Vepakomma et al., 2018) to
enhance data privacy and robustness (Thapa et al., 2022; Lee et al., 2024). However, SFL remains
constrained by the SL training paradigm, leading to prohibitive communication overhead and a syn-
chronous update lock, as clients must await gradients from the server before updating (Kairouz et al.,
2021; Vepakomma et al., 2018). To mitigate these bottlenecks, recent research has primarily pursued
two complementary directions: system-level optimization and algorithmic decoupling.

System-level optimization aims to adapt the SFL protocol to the constraints of edge networks. This
includes methods for adaptive model splitting based on network conditions (Lin et al., 2024b), hier-
archical topologies to manage client resources (Lin et al., 2025), parallel training designs optimized
for wireless networks (Wu et al., 2023), and dynamic resource-based tiers to speed up FL/SFL train-
ing under heterogeneous environments Mohammadabadi et al. (2024). Underpinning these practical
advances, recent theoretical work has also focused on providing formal convergence guarantees for
SFL, particularly under realistic conditions such as data heterogeneity (Han et al., 2024; Li & Lyu,
2023).

Algorithmic decoupling aims to eliminate the synchronous lock by incorporating a client-side aux-
iliary model to decouple client and server updates by generating local gradient estimates, thereby
obviating the need for server-to-client gradient transmission (Han et al., 2021; Mu & Shen, 2025;
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Oh et al., 2022; Nair et al., 2025). Inspired by decoupled training (Belilovsky et al., 2020; 2019) in
centralized settings, this strategy can nearly halve communication costs. Despite their demonstrated
efficacy, these auxiliary models introduce a significant trade-off: a substantial increase in the client’s
computational and memory footprint, as the auxiliary network can be considerably larger than the
primary client-side model itself (Nair et al., 2025). Group Knowledge Transfer (He et al., 2020)
is another relevant approach that transfers logits from client-side auxiliary models to the server via
knowledge distillation (Hinton et al., 2015), although it differs from SFL in formulation and training
objective.

Zeroth-Order Optimization for Distributed Machine Learning. ZO optimization estimates gra-
dients through function evaluations (Liu et al., 2020), making it particularly useful when explicit
gradients are unavailable, such as in reinforcement learning (Nakashima & Kobayashi, 2025; Lei
et al., 2022; Zhang & Ying, 2024) and privacy-sensitive scenarios (Chen et al., 2017; Liu et al.,
2018; 2019). Recently, ZO has gained attention as an efficient strategy for training (Chen et al.,
2024) and fine-tuning (Malladi et al., 2023), since it avoids back-propagation’s memory and com-
pute overhead. In distributed machine learning, ZO has been explored as a gradient estimator in
FL, demonstrating promising benefits in privacy preservation (Zhang et al., 2021; Fang et al., 2022;
Ling et al., 2024) and communication reduction (Li et al., 2024). However, its adoption in the SFL
framework remains limited. The main barrier is that variance reduction in ZO requires multiple
perturbations, which would substantially increase intermediate activation transmissions and thus
communication overhead. To address this, we restrict ZO to the client side with the help of auxiliary
networks, enabling resource-efficient training while avoiding additional communication costs.

3 ALGORITHM DESIGN

3.1 SFL WITH AUXILIARY NETWORK

We consider an SFL system with one server and N clients, each holding a private dataset Di, where
the entire dataset is the set {Di}Ni=1. The global model is split at a cut layer into client- and server-
side sub-models, where we denote the collection of parameters as θg = {θc,θs}. Each client i owns
a local version of the client-side model, θc,i. For a sample ξi,j ∈ Di, client i performs a forward pass
up to the cut layer to produce the smashed data, si = θc,i(ξi,j), and uploads it to the main server.
The server then completes the forward pass by processing these activations with its sub-model θs.
The goal is to minimize the global loss function:

min
θc,θs

f(θg) =
1

N

∑N

i=1
fi(θg) =

1

N

∑N

i=1
Eξi,j∼Di

[ℓ(θg; ξi,j)] , (1)

where fi(θg) and f(θg) measure the expected loss on the global model over client i’s local dataset
Di and the entire dataset, respectively, computed using a task-specific loss function ℓ(·) (e.g., cross-
entropy).

We adopt the SFLV2 style framework: a single server-side model θs resides on the main server
and is trained by sequentially processing smashed data si from all clients, while a Fed-Server ag-
gregates client-side parameters into the average θ̄c := 1

N

∑
i θc,i (initial parameters for the next

round). To reduce communication overhead and enable client-side local feedback, each client i at-
taches an auxiliary (Aux) model θa,i to form a local predictor θl,i(ξi,j) = θa,i(θc,i(ξi,j)), where
θl,i = {θc,i,θa,i} (Mu & Shen, 2025; Oh et al., 2022). Because of the Aux model, the SFL system
breaks the training lock between θc and θs: by leveraging θa, the client can perform local updates
independently of server-side gradient feedback.

After initializing the global model {θc,θs}, the basic SFL-Aux algorithm proceeds: in each round,
client i computes smashed data Si = θc,i(ξi) on local mini-batches ξi = {ξi,j}Bj=1 and uploads them
to the Main-Server, while updating θl,i by minimizing a local loss from θa,i(Si), with backpropaga-
tion confined to the client. The Main-Server queues smashed data from all clients and sequentially
executes forward/backward passes to update θs. After a fixed number of local steps, the Fed-Server
aggregates all participated θl,i (e.g., via weighted averaging like FedAvg (McMahan et al., 2017))
and broadcasts updated global model θ̄l to all clients to initiate the next round.
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3.2 ZEROTH-ORDER GRADIENT ESTIMATOR

Unlike prior methods that rely on full forward and backward passes through the client and its aux-
iliary network to compute first-order gradients ∇ℓ(θl; ξi), we adopt a mini-batch-type stochastic
gradient estimator with two-point evaluation. Specifically, for function fl,i, the two-point type
stochastic ZO gradient estimator is defined as:

∇̂fl,i(θl; ξi)) =
1

B

B∑
j=1

du

µ
[ℓl,i(θl + µu; ξi,j)− ℓl,i(θl; ξi,j)], (2)

where u is a random vector drawn from either a Gaussian or a Uniform ball distribution, µ is
a positive perturbation step size. This estimator approximates the smoothed objective function’s
gradient. Formally, it can be shown that this estimator is an unbiased estimate of ∇fµ

l,i(θl), where
fµ
l,i is the Gaussian-smoothed surrogate of the original function fl,i. The bias with respect to the

true gradient ∇fl,i is therefore introduced by the smoothing process itself and is controlled by
the parameter µ. We defer the formal definition of the smoothed function and its properties to
Appendix A.2.

3.3 PROPOSED ALGORITHM

First-Order  Zeroth-OrderForward Pass

Main Server

Fed Server

Client N

Client i

Client 1

Figure 1: The proposed HERON-SFL algorithm.

We now summarize the end-to-end training pro-
cess of our proposed framework, which op-
erates over a series of communication rounds
(high-level illustration depicted in Figure 1).
Each round, indexed by t, encompasses four
key stages: model initialization, local client
computation, server-side updates, and local
model aggregation in Fed Server. The entire
process is formalized as follows:

1. Model Initialization. At the start of the t-
th communication round, the Fed-Server broad-
casts the global model parameters θt

c and θt
a

that are resulted from the federated aggregation
at the end of last round. Upon receiving these parameters, each client i initializes its local models
for the subsequent update process: θt,0

l,i = {θt,0
c,i ,θ

t,0
a,i} = {θt

c,θ
t
a}.

2. Local Model Update and Smashed Data Upload. The client then proceeds with h local model
updates. During this process, the update of the client-side model is decoupled from the server-side
model by leveraging an auxiliary network. Distinct from existing methods, our paradigm employs a
ZO gradient estimator (defined in Eq. 2) to approximate the gradients of a local loss function. This
allows the client to perform timely updates without requiring traditional back-propagation from the
server. After performing h local gradient descent steps, the cumulative update for the client-side
models can be concisely written as:

θt,h
l,i = θt,0

l,i − ηl
∑h

m=1
∇̂fl,i(θt,m

l,i ; ξi)) (3)

During the local update phase, the client uploads its smashed data to the server every k local steps
for the subsequent server-side training phase.

3. Server Model Update. The server receives the smashed data from each client i and performs
model updates sequentially using an SFLV2 (Thapa et al., 2022) training scheme. In this setting,
each client’s smashed data is processed one-by-one, and standard first-order optimization based on
forward and backward propagation is used to estimate gradients and update the server-side model
parameters θt

s accordingly:

θt+1
s = θt

s − ηs
∑N

i=1

1
|Di|

∑
ξi∈Di

∇ℓ(θt
s;θ

t
c,i(ξi)), (4)

where∇θs l(θ
t
s;θ

t
c,i(ξi)) is the real gradient of the server-side loss function using back propagation.

4
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4. Model Aggregation in Fed Server. Upon completion of the h local updates, each client transmits
its updated local parameters θt,h

l,i to the fed server for aggregation. The fed server averages these
parameters across all N clients to compute the global model combined by client-side and auxiliary
models for the next round:

θt+1
l = θ̄t

l =
1
N

∑N

i=1
θt,h
l,i (5)

The server-side model, θt+1
s , which was updated sequentially during the round, is already finalized

and requires no aggregation. Finally, the new global model θt+1
g = {θt+1

c ,θt+1
s } is assembled and

prepared for distribution in the subsequent communication round.

In essence, HERON-SFL replaces the clients’ local updates in standard SFL with updates driven by
a ZO gradient estimator, while retaining client-side auxiliary networks to guide local learning. This
design eliminates the need for explicit backpropagation on resource-constrained devices: clients
only perform a small number of forward computations and randomized probes to update parame-
ters, substantially reducing compute and memory demands. Clients periodically upload smashed
data (every h local steps) to supply the server with the activations required for its independent FO
training on the server-side model. A critical concern, however, is that ZO optimization is often as-
sociated with slow convergence. In the following sections, we will demonstrate both theoretically
and empirically that HERON-SFL overcomes this potential challenge within the SFL framework.

4 CONVERGENCE AND RESOURCE CONSUMPTION ANALYSIS

4.1 CONVERGENCE ANALYSIS

In this section, we provide a formal convergence analysis to establish the theoretical guarantees
for the proposed FSL-HERON framework. For the sake of clarity and conciseness, the detailed
mathematical proofs are deferred to Appendix A. The theoretical framework is built upon the fol-
lowing standard assumptions, which are widely adopted in the analysis of distributed optimization
algorithms (Karimireddy et al., 2020; Reddi et al., 2020; Mu & Shen, 2025; Fang et al., 2022).

Assumption 4.1 (L-smoothness). The loss functions of clients and server are L-smooth. Mathe-
matically, for any x ∈ Rd and y ∈ Rd, the following holds:

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, f(y) ≤ f(x) +∇f(x)T (y − x) + L
2 ∥y − x∥2, (6)

where f is the loss function, and L is the Lipschitz constant.

Assumption 4.2 (Bounded gradients). The gradients of the local loss function ℓi(θc,θs) are
bounded, i.e., there exists a constant G such that:

∥∇θc
ℓi(θc)∥2 ≤ G2

c , ∥∇θs
ℓi(θs)∥2 ≤ G2

s. (7)

Assumption 4.3 (Bounded variance). The variance of the zeroth-order gradient estimator is
bounded, i.e., there exists a constant σ2 such that:

E[∥ĝt,m
c,i −∇θc

fi(θc,θs)∥2] ≤ σ2. (8)

Assumption 4.4 (Convergence of client sub-model). For each client i at global round t, let
ztc,i = gxt

c,i,h
(z) be the output of the i-th client-side model (with input determined by xt

c,i and Di),
and denote by P t

c,i(z) its output distribution. Let P ∗
c,i(z) be the reference (time-invariant) output

distribution of the i-th client-side model evaluated at x∗
c and Di. Define the distribution distance

dtc,i :=

∫
Z

∣∣P t
c,i(z)− P ∗

c,i(z)
∣∣ dz, (9)

i.e. the L1 (total-variation) distance between P t
c,i and P ∗

c,i. We assume that the aggregate drift
across clients is uniformly bounded as follows:

1

T

T∑
t=1

N∑
i=1

dtc,i ≤ δ, and δ <∞. (10)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Remark 1 Together, the Assumptions above ensure a well-behaved optimization environment.
Assumption 4.1 guarantees Lipschitz-continuous gradients and provides the usual quadratic upper
bound used in descent arguments; Assumption 4.2 prevents arbitrarily large client/server updates
and thus promotes numerical stability; and Assumption 4.3 limits the stochastic error between
the estimator and the true gradient. Assumption 4.4 is tailored to the auxiliary-network-assisted
FSL setting, as also adopted in Mu & Shen (2025) and motivated by centralized synthetic-gradient
frameworks (Belilovsky et al., 2020). This condition is essential for guaranteeing the stability and
convergence of the SFL process under local gradient updates.

Theorem 4.5 (Convergence rate of HERON-SFL in i.i.d. setting). Under Assumptions 4.1–4.4 , if
the client learning rate satisfies ηc ≤ { 1

3Lh ,
2

NLh2 ,
N
72L}, and is chosen as ηc = O(

√
(NB)/(dhT ))

while the server learning rate is set to ηs = O(
√

(hB)/(dNT )), and perturbation step size is set
to µ = O(1/(dhNBT )1/4). The convergence rate of the HERON-SFl algorithm can be guaranteed
as:

min
t∈[T ]

E
[
∥∇f(θt

g)∥2
]
≤O

(√
d

hNBT

)
+O

(√
1

dhNBT

)
. (11)

Remark 2 The derived bounds on the expected gradient norm indicate that the algorithm can
achieve a favorable trade-off between the model complexity (characterized by the dimensionality d)
and the training batchsize (captured by B) over the training horizon T . The bound is dominated
by O(

√
d/(hNBT )) (the second term is smaller by 1/

√
d). Thus, larger N or B linearly reduces

the required rounds; increasing local steps h improves the rate as 1/
√
h, trading fewer communi-

cation rounds for more local computation. The dependence on model size is
√
d (or d in sample

complexity), which is the drawback of ZO optimization: convergence degrades with increasing di-
mensionality. Below, we show that the dependency on d can be reduced under structural assumptions
on an effective dimension.

Assumption 4.6 (Low κ-Effective Rank). Let Gt ≜ maxi,ξi⊂Di
∥∇θl

ll(θ
t
l,i; ξi)∥. There exists a

Hessian matrix Hl(θ
t
l,i) ⪯ L · Idl

such that:

• For all θl such that ∥θl − θtl,i∥ ≤ 2ηcdlGt, we have∇2ll(θl) ⪯ Hl(θ
t
l,i).

• The effective rank of Hl(θ
t
l,i), i.e.,

tr(Hl(θ
t
l,i))

∥Hl(θt
l,i)∥2

, is at most κ.

Theorem 4.7 (Convergence Rate of HERON-SFL with Low Effective Rank Assumption).
Under Assumptions 4.1–4.6 ,if the client learning rate satisfies ηc ≤ 1

4L (1 + dκ+d−2
d+2 ) and

µ ≤
4
√
κ

4√
NT
√

(d+3)3
, and is chosen as ηc = O(

√
(NB)/(κT )) while the server learning rate is

set to ηs = O(
√

B/(κNT )). The convergence rate of the HERON-SFL algorithm can be guaran-
teed as:

min
t∈[T ]

E
[
∥∇f(θt

g)∥2
]
≤ O

(√
κ

NBT

)
+O

(
1

T

)
+

2

δ

[
2G2

s

N(2N − 1)
∆ +

µ2L2

2
(d+ 3)3

]
. (12)

Remark 3 With the prescribed µ, the smoothing bias term∝ µ2(d+3)3 is at mostO
(√

κ/(NT )
)

and the drift term vanishes in the i.i.d. case (∆ = 0), so the bound simplifies to O
(√

κ/(NBT )
)
+

O(1/T ), which is independent with the model dimension d, removing the usual
√
d degradation of

ZO methods and matching the 1/
√
T rate of FO SFL (Mu & Shen, 2025; Nair et al., 2025) up to

condition number κ factors.

4.2 CLIENT-SIDE RESOURCE COST ANALYSIS

The following analysis, summarized in Table 1, compares the per-client resource consumption for a
single parameter update step on a fixed-size batch of data, assuming all other hyperparameters are
held constant. Let p be the data size of one local batch, q be the size of the smashed layer, and |θc|,
|θa| be the size of the client-side and auxiliary models, respectively.

Communication Load. The primary communication advantage of decoupled frameworks (CSE-
FSL, FSL-SAGE, and HERON-SFL) over traditional SFL (SFLV1/V2) stems from the elimination
of the server-to-client gradient download. While traditional SFL requires a two-way intermediate

6
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Table 1: Client-Side Resource Costs per Local Update.

Method Comms. per Client Peak Memory FLOPs

SFLV1/V2 2pq + 2|θc| O(|θc|) 3Fc

CSE-FSL / FSL-SAGE pq + 2(|θc|+ |θa|) O(|θc|+ |θa|) 3(Fc + Fa)

HERON-SFL pq + 2(|θc|+ |θa|) O(1) np(Fc + Fa)

data exchange for each batch (represented by the term 2pq), decoupled methods perform only a
one-way upload, halving this cost to pq. The trade-off for this gain is the added cost of exchanging
the auxiliary model parameters, |θa|. Nevertheless, this parameter exchange typically represents a
minor communication burden relative to the transmission of smashed data.

Peak Memory. FO frameworks like SFLV1/V2 and CSE-FSL require caching intermediate activa-
tions for backpropagation. This results in a peak memory footprint that scales with the size of the
locally trained models, i.e., O(|θc|) and O(|θc|+ |θa|) respectively. This overhead can be an order
of magnitude larger than that of inference (Griewank & Walther, 2008). In contrast, the ZO-based
HERON-SFL obviates activation caching, reducing its peak memory to O(1), which is equivalent
to that of inference (Malladi et al., 2023).
Remark 4 Local ZO updates are highly memory-efficient for two primary reasons. First, they
eliminate the need for backpropagation, thus avoiding the high cost of caching intermediate activa-
tions. Second, the perturbed parameters u generated in the calculation ∇̂fl,i(θl; ξi)) do not require
storing the full perturbation vector; instead, the vector can be procedurally generated from a single
random seed and applied in-place, further minimizing memory overhead.

FLOPs. Assuming a backward pass is twice as computationally expensive as a forward pass (F )
(Chen et al., 2016), first-order methods incur a cost of approximately 3Fc (for SFLV1/V2) or 3(Fc+
Fa) (for CSE-SFL and FSL-SAGE) per update, where Fc and Fa are the forward pass costs of the
client and auxiliary models, respectively. In contrast, HERON-SFL performs ZO updates directly
on the client, similar to the approach in MeZO (Malladi et al., 2023). In practice, a standard two-
point ZO estimator is typically sufficient for stable and effective parameter updates, requiring a
computational cost of 2(Fc + Fa) in HERON-SFL.

5 EXPERIMENTS

5.1 EXPERIMENT SETTING

In this section, we conduct experiments on both model training and fine-tuning to show the perfor-
mance of our proposed HERON-SFL algorithm1. For comparison, we use the following baseline
methods: SFLV1/V2 (Thapa et al., 2022) or SplitLoRA (Lin et al., 2024a)2, CSE-FSL (Mu & Shen,
2025), and FSL-SAGE (Nair et al., 2025). We conduct the experiments under two complementary
training paradigms, implementing all models in PyTorch and running them on NVIDIA RTX A6000
NVL GPU (48 GB):

Full Training from Scratch. We study the convergence of ResNet-18 (He et al., 2016) under SFL
on CIFAR-10 (Krizhevsky et al., 2009) with 5 clients. The model is split after the second 2-D
BatchNorm layer; the client holds the front part while the server holds the back part. An auxiliary
head consisting of a single fully connected layer is attached to the cut layer. Unless otherwise stated,
we adopt the hyperparameters in Thapa et al. (2022): batch size 256 and Adam optimizers on both
sides with a learning rate of 1e−4.

1Our source code is available at https://anonymous.4open.science/r/HERON-SFL-BB31/.
2While SFLV1/V2 are designed for the training-from-scratch paradigm, our focus on the distinct task of

language fine-tuning led to the development of SplitLoRA, which integrates LoRA with the SFLV2 frame-
work. We omit a comparison with an SFLV1-based approach because its need for multiple server models is
computationally prohibitive for large-scale models.
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Language Model Fine-tuning. We fine-tune GPT2-Small and GPT2-Medium (Radford et al., 2021)
on the E2E dataset Novikova et al. (2017) with 3 clients. Unless specified otherwise, for GPT2-
Small, the model is split after the third transformer block, with an auxiliary network consisting of
one transformer block and the unembedding layer. For GPT2-Medium, the split occurs after the sixth
block, with a three-block auxiliary network plus the unembedding layer. As the auxiliary network
is not pre-trained, we initialize its parameters by copying the weights from the initial blocks of the
server-side model. All components are fine-tuned using Low-Rank Adaptation (LoRA) (Hu et al.,
2022), where only adapters of rank 8 are updated and all other parameters are frozen.

The former setting evaluates whether SFL can train a model from scratch, a prerequisite when no
reliable checkpoint exists. The latter mirrors the prevailing industrial practice of pre-training a large
language model once and then adapting it with parameter- and memory-efficient techniques such
as LoRA. By examining both regimes, we separately measure the contributions of data-parallel
federation, model partitioning, and parameter-efficient adapters, and we show that HERON-SFL
consistently outperforms strong baselines in both scenarios.

5.2 TRAINING FROM SCRATCH: RESNET18 ON CIFAR-10

Convergence Behavior. Figure 2 illustrates the test accuracy of each method versus the number of
communication rounds. In the IID setting, our proposed HERON-SFL shows convergence behavior
nearly identical to other auxiliary-network baselines like CSE-FSL and FSL-SAGE3, with all three
performing slightly below the top-performing SFLV2. A similar trend is observed in the more chal-
lenging non-IID setting, which confirms that our hybrid algorithm achieves convergence comparable
to its first-order counterparts.
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Figure 2: ResNet-18 test accuracy vs. communication
rounds on CIFAR-10 for IID (left) and non-IID (right) dis-
tributions.

Table 2: Client consumptions for
ResNet-18 on CIFAR-10.

Algorithms Comm. Peak FP FLOPS
(GB) (MB) (G)

SFLV1 1216.00
709.93 59.51

SFLV2 390.67
CSE-FSL 258.55

726.46 59.85
FSL-SAGE 244.24

HERON-SFL 244.19 259.44 39.90

Communication, Storage, and Computational Costs. Table 2 provides a quantitative comparison
of the resource consumption on the client side. In terms of communication load, HERON-SFL is
among the most efficient methods, requiring only 244.19 GB of total communication, a volume
nearly identical to FSL-SAGE (244.24 GB) and superior to all other baselines.

The most significant advantages of HERON-SFL are evident in its on-device resource requirements.
By eliminating client-side backpropagation, it drastically reduces the peak memory footprint (Peak
FP) to just 259.44 MB—a reduction of approximately 63% compared to the almost 710 MB required
by SFLV1 and SFLV2. Similarly, the computational cost (FLOPs) is lowered to 39.90 G FLOPs, a
reduction of over 33% compared to the ˜59 G FLOPs of other methods. This substantial decrease in
both storage and compute burden confirms that HERON-SFL is highly suitable for deployment in
resource-constrained environments.

5.3 LANGUAGE MODEL FINE-TUNING

For the task of language model fine-tuning, HERON-SFL demonstrates superior communication ef-
ficiency and faster convergence. As illustrated in Figure 3, its validation perplexity decreases more

3We note that FSL-SAGE does not exhibit a significant advantage in our experiments, which we attribute to
our design choice of using a minimal auxiliary network purely for decoupling the updates of server and clients.
This contrasts with the approach in (Nair et al., 2025), where the alignment mechanism of FSL-SAGE is more
impactful as the auxiliary model is intentionally designed to be even larger than the client model, thus requiring
explicit alignment to ensure consistency with the server’s task.
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Figure 3: GPT2 perplexity curves vs. Communication Volume on
E2E for small (left) and medium (right) models.

Table 3: Client consumptions
for GPT2-Medium on E2E.

Algorithms Peak FP FLOPS
(GB) (T)

SplitLora 4.59 5.68
CSE-FSL

9.09 9.48
FSL-SAGE

HERON-SFL 4.03 5.26

rapidly than the baselines for both GPT2-Small and GPT2-Medium. Notably, for GPT2-Small,
HERON-SFL converges faster and achieves a final perplexity that is competitive with SplitLoRA
while outperforming both CSE-FSL and FSL-SAGE. While all methods reach a similar perfor-
mance on GPT2-Medium, HERON-SFL does so with significantly less communication costs, and
even slightly surpasses CSE-FSL and FSL-SAGE on GPT2-Small. This mild performance gain is
consistent with recent findings in ZO-based LLM fine-tuning, where the update landscape exhibits
strong low-rank structure, making zeroth-order steps exceptionally effective. Similar behavior is re-
ported in MeZO (Malladi et al., 2023), which shows that ZO fine-tuning can match or even surpass
first-order methods under comparable settings.

Echoing the resource efficiency observed in the ResNet experiments, HERON-SFL substantially
lowers the on-device computational and memory burden for clients. Table 3 provides a clear compar-
ison of the resource consumption per local update. HERON-SFL requires a peak memory (Peak FP)
of only 4.03 GB, which is less than half that of CSE-FSL (9.09 GB) and also more efficient than the
SplitLoRA baseline (4.59 GB). The reduction in computational cost is even more pronounced, with
HERON-SFL needing only 5.26 TFLOPS, a decrease of approximately 44% compared to CSE-FSL
and FSL-SAGE. This reduction in both memory footprint and floating-point operations confirms
that by eliminating client-side backpropagation, our method significantly lowers the hardware bar-
rier, making it feasible to fine-tune large language models on resource-constrained edge devices.

5.4 ABLATION STUDY OF LOCAL MODEL COMPLEXITY

We investigate the impact of local model complexity on the GPT2-medium fine-tuning task.
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Figure 4: Effect of aux-model com-
plexity.

In this ablation study, we evaluate two primary scenarios:
one where the client-side model contains the initial 3 trans-
former blocks, and another with 6 blocks. For each sce-
nario, we vary the auxiliary network’s architecture from
a lightweight base (LayerNorm and unembedding layers
only) to progressively larger versions containing one, two,
or three transformer blocks. Figure 4 plots the final train-
ing loss after a fixed number of training rounds. The results
show that our proposed HERON-SFL is largely insensitive
to the complexity of the auxiliary network; in both the 3-
block and 6-block settings, it achieves a strong final training
loss even with the simplest auxiliary model. In contrast, the
performance of the first-order baseline, CSE-FSL, is highly dependent on a more powerful auxiliary
model, showing a clear trend of improvement as the network becomes more complex. This sug-
gests that for ZO-based methods, there is little justification for using a resource-intensive auxiliary
network, whereas first-order methods require one to reach their full potential.

This study validates the comprehensive efficiency of HERON-SFL, which stems from two key ad-
vantages. First, its use of zeroth-order optimization reduces the peak memory footprint to the level
of inference by eliminating backpropagation. Second, it attains excellent global convergence while
requiring only a minimal auxiliary architecture. Crucially, these resource savings do not come at
the cost of performance; our experimental results highlight the dual advantages of HERON-SFL in
achieving both fast convergence and low on-device costs. This provides a superior performance-to-
cost balance when compared to first-order baselines like FSL-SAGE and CSE-FSL.
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6 CONCLUSION

This work proposes HERON-SFL, a novel hybrid ZO-FO framework that addresses the critical com-
putation and memory limitations on edge devices within SFL. It performs ZO optimization on edge
devices to eliminate costly backpropagation, thereby significantly reducing on-device memory and
computational requirements. Empirical and theoretical analysis demonstrate that the framework not
only achieves a theoretical convergence rate of O(1/

√
T ) independent of model dimensionality un-

der the low effective rank assumption, but also empirically matches the accuracy of SFL benchmarks
on diverse tasks while substantially reducing client-side resource costs.

Future work may explore non-differentiable objectives—for example, directly optimizing evaluation
metrics or incorporating human feedback (Ouyang et al., 2022), which align well with the gradient-
free nature of client-side updates. Another promising direction is to strengthen privacy guarantees,
as HERON-SFL inherits the cut-layer privacy profile of standard SL/SFL and can benefit from ad-
vances in privacy-preserving techniques (Niu et al., 2024).
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Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. The e2e dataset: New challenges for end-
to-end generation. arXiv preprint arXiv:1706.09254, 2017.

Seungeun Oh, Jihong Park, Praneeth Vepakomma, Sihun Baek, Ramesh Raskar, Mehdi Bennis,
and Seong-Lyun Kim. Locfedmix-sl: Localize, federate, and mix for improved scalability, con-
vergence, and latency in split learning. In Proceedings of the ACM Web Conference 2022, pp.
3347–3357, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yuyang Qiu, Uday Shanbhag, and Farzad Yousefian. Zeroth-order methods for nondifferentiable,
nonconvex, and hierarchical federated optimization. Advances in Neural Information Processing
Systems, 36:3425–3438, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
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A THEORETICAL PROOF

A.1 NOTATIONS

Table 4: Notation and unified conventions used in this paper.

Symbol Meaning

System & Data
N Number of clients
Di Local dataset of client i
ξi = {ξi,j}Bj=1 Mini-batch sampled from Di

B Batch size

Model Parameters
θg = {θc,θs} Global model split into client/server parameters
θs Server-side parameters
θc,i Client-side parameters owned by client i
θa,i Auxiliary model parameters at client i
θl,i = (θc,i,θa) Local predictor on client i
dc, da Dimensions of θc and θa

Objective Functions
ℓ(·; ξi,j) Task loss on sample ξi,j ∈ Di

fi(θg) Expected loss for global model over client i’s local dataset Di

f(θg) Expected loss for global model over the entire dataset
∑N

i=1Di

fl,i(θl) Expected loss for local model θl over client i’s local dataset

Optimization & Algorithm
t,m Global round index t; local step index m

h Local steps per round before optional upload
ηc, ηs Client / server learning rates
si = θc,i(ξi,j) Smashed data produced by client i
ut,m Random direction for ZO estimator
µ > 0 Smoothing/perturbation radius in ZO estimator
ĝt,m
l,i ZO gradient estimates for local parameters

g t
s,i Server-side gradient on smashed data from client i

θt+1
s Server parameters after sequential updates

θt+1
c ,θt+1

a Aggregated client/aux parameters after Fed-Server

Theoretical Analysis
L Smoothness constant (Lipschitz gradient)
Gc, Gs Bounds on client/server gradient norms
σ2 Variance bound of ZO estimator
d t
c,i Distributional drift of the output from client i’s model at round t

δ Upper bound for the average distributional drift
κ Upper bound on the effective rank of the local loss Hessian

A.2 LEMMAS FOR ZEROTH-ORDER OPTIMIZATION

Before presenting the proofs of our main theorems, we recall several classical lemmas on zeroth-
order optimization, which serve as the basis for the subsequent analysis. For the analysis of zeroth-
order optimization algorithms, it is standard to introduce a smoothed approximation of the objective
function. We formalize this by first defining the smoothed function and then stating its key properties
in a lemma.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Definition A.1 (Gaussian Smoothed Function with Unit-Sphere Normalization). A function f :
Rd → R is said to be (Gaussian-derived) spherically smoothed with smoothing radius µ > 0 if for
any x ∈ Rd,

fµ(x) = Ez∼N (0,Id)

[
f
(
x+ µ z

∥z∥
)]
,

where we define u := z/∥z∥ so that ∥u∥ = 1 almost surely and u ∼ Unif(Sd−1).
Lemma A.2 (Gradient and Smoothness for Gaussian Smoothed Functions (Nesterov &
Spokoiny, 2017)). Let f : Rd → R be differentiable with an L-Lipschitz gradient (i.e., f is L-
smooth). Then, for any µ > 0, the spherically smoothed function fµ defined in Definition A.1 is
continuously differentiable and its gradient is Lµ-Lipschitz continuous with Lµ ≤ L. Moreover, the
gradient of fµ can be expressed as:

∇fµ(x) = Eu

[
f(x+ µu)− f(x)

µ
du

]
. (13)

The result from Lemma A.2 provides the theoretical foundation for the zeroth-order gradient esti-
mator used in our work. We recall our estimator from Eq. 2 in the main text. The lemma establishes
that this estimator is an unbiased estimate of the gradient of the corresponding smoothed function,
fµ
l,i(θl). Formally, taking the expectation of the estimator over the random direction u yields the

exact gradient of the smoothed function:

Eu∼N (0,I)

[
∇̂fl,i(θl; ξi)

]
= ∇fµ

l,i(θl; ξi). (14)

The bias of this estimator with respect to the true gradient ∇fl,i arises from the difference between
the smoothed function fµ

l,i and the original function fl,i, not from the sampling process itself. This
distinction is crucial for the subsequent convergence analysis.

A.3 PROOF OF THEOREM 4.5

A.3.1 PRELIMINARY LEMMAS

To begin the convergence analysis, we start with a few lemmas that will be useful in the subsequent
proofs.
Lemma A.3 (Bound on the Second Moment of the ZO Estimator 4). Under Assumptions 4.1–4.3,
the second moment of the zeroth-order gradient estimator ĝt,m

c,i is bounded as follows:

Et,m

[
∥ĝt,m

c,i ∥
2
]
≤2dG2

c

B
+

d2L2µ2

2B
+ 2µ2L2 + 6σ2

c

+ 6∥∇fc(θt
c)∥2 + 6L2Et,m−1

[∥∥θt
c − θt,m

c,i

∥∥2] . (15)

Proof. The proof proceeds by decomposing the second moment of the estimator into several terms
and bounding each one. First, we apply the law of total expectation and the law of total variance,
which states E[∥a∥2] = Var(a)+∥E[a]∥2. We recognize that ĝt,m

c,i is the average of estimators over
the mini-batch ξi. As established in Lemma A.2, its expectation over the random direction u is the
gradient of the smoothed function,∇fµ

c,i(θ
t,m
c,i ).

Et,m

[
∥ĝt,m

c,i ∥
2
]
=Et,m−1

[
Em
t

[
∥ĝt,m

c,i ∥
2
]]

=Et,m−1

[
Varmt (ĝt,m

c,i ) + ∥Em
t [ĝt,m

c,i ]∥2
]

=Et,m−1

[
Varmt (ĝt,m

c,i )
]
+ Et,m−1

[
∥∇fµ

c,i(θ
t,m
c,i )∥2

]
.

(16)

4This bound decomposes the second moment of the estimator into several distinct sources of error and
variance. The terms scaled by the mini-batch size, such as 2dG2

c/B and d2L2µ2/2B, represent the intrinsic
variance of the ZO estimator, which is dependent on the model dimension d. The terms 2µ2L2 and 6σ2

c capture
the bias introduced by the Gaussian smoothing and the variance from client data heterogeneity, respectively.
The term 6∥∇fc(θ

t
c)∥2 relates the analysis back to the global gradient norm at the start of the round. Crucially,

the final term, 6L2Et,m−1[∥θt
c − θt,m

c,i ∥2], quantifies the client model divergence that arises from performing
multiple local updates. This divergence term is a key challenge in federated learning and is explicitly bounded
in subsequent analysis.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Since the estimators for each sample ξi,j in the mini-batch are i.i.d., the variance of their average
is the variance of a single-point estimator divided by the batch size. Using the property Var(X) ≤
E[∥X∥2], we have:

Varmt (ĝt,m
c,i ) =

1

B
Varmt

(
ĝt,m
c,i (θl; ξi,1)

)
≤ 1

B
Em
t

[∥∥ĝt,m
c,i (θl; ξi,1)

∥∥2] . (17)

Substituting this back, we arrive at the decomposition as follows:

Et,m

[
∥ĝt,m

c,i ∥
2
]
≤ 1

B
Et,m

[∥∥ĝt,m
c,i (θl; ξi,1)

∥∥2]+ Et,m−1

[∥∥∇fµ
c,i(θ

t,m
c,i )

∥∥2] . (18)

We now bound the two terms separately. For the first term, we use the bound for two-point estimators
(Lemma 4.1 in Gao et al. (2018)) and Assumption 4.2:

Et,m

[∥∥ĝt,m
c,i (θl; ξi,1)

∥∥2] ≤ 2dEt,m

[
∥∇ℓc,i(θt,m

c,i ; ξi,1)∥2
]
+
1

2
d2L2µ2 ≤ 2dG2

c+
1

2
d2L2µ2. (19)

For the second term, we use the triangle inequality and ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2:

Et,m−1

[∥∥∇fµ
c,i(θ

t,m
c,i )

∥∥2]
≤2Et,m−1

[∥∥∇fµ
c,i(θ

t,m
c,i )−∇fc,i(θt,m

c,i )
∥∥2]+ 2Et,m−1

[∥∥∇fc,i(θt,m
c,i )

∥∥2]
≤2µ2L2 + 2Et,m−1

[∥∥∇fc,i(θt,m
c,i )

∥∥2] .
(20)

Finally, we bound the remaining term by relating it to the global model state θt
c. Using inequality

||a+ b+ c||2 ≤ 3||a||2 + 3||b||2 + 3||c||2, we have:

Et,m−1

[∥∥∇fc,i(θt,m
c,i )

∥∥2]
=Et,m−1

[∥∥(∇fc,i(θt,m
c,i )−∇fc,i(θt

c)) + (∇fc,i(θt
c)−∇fc(θt

c)) +∇fc(θt
c)
∥∥2]

≤3Et,m−1

[∥∥∇fc,i(θt,m
c,i )−∇fc,i(θt

c)
∥∥2]+ 3∥∇fc,i(θt

c)−∇fc(θt
c)∥2 + 3∥∇fc(θt

c)∥2

≤3L2Et,m−1

[∥∥θt,m
c,i − θt

c

∥∥2]+ 3σ2
c + 3∥∇fc(θt

c)∥2,

(21)

where the final inequality follows from Assumptions 4.1 and 4.3. Combining all these bounds yields
the result stated in the lemma.

Lemma A.4 (Bound on Client Model Divergence). For ηc ≤ 1
3Lh , we have:

Et

[
1

N

∑N

i=1

∑h

m=1
∥θt,m

c,i − θt
c∥2
]
≤3h3η2c∥∇fc(θt

c)∥2 +
dG2

ch
3η2c

B

+
d2L2µ2h3η2c

4B
+

(6σ2
c + 2µ2L2)h3η2c

2
.

(22)

Proof. For simplicity, define

st,mc ≜
1

N

N∑
i=1

Et,m

[∥∥θt,m
c,i − θt

c

∥∥2] .
For the τ -th local update, unrolling the client recursion gives

θt,τ
c,i − θt

c = − ηc

τ−1∑
m=0

gt,m
c,i .

By Cauchy–Schwarz,

st,τc =
1

N

N∑
i=1

Et,τ

[∥∥∥− ηc

τ−1∑
m=0

gt,m
c,i

∥∥∥2] ≤ τ η2c ·
1

N

N∑
i=1

τ−1∑
m=0

Et,τ

[∥∥gt,m
c,i

∥∥2]
(tower)
= τ η2c ·

1

N

N∑
i=1

τ−1∑
m=0

Et,m

[∥∥gt,m
c,i

∥∥2] . (23)
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We now invoke the second-moment bound (Lemma A.3): for every m,

1

N

N∑
i=1

Et,m

[∥∥ĝt,m
c,i

∥∥2] ≤ 6L2 st,m+1
c +

(
6∥∇fc(θt

c)∥2 +
2dG2

c

B + d2L2µ2

2B + 6σ2
c + 2µ2L2

)
︸ ︷︷ ︸

≜ β

,

(24)
by definition of st,·c , the term 1

N

∑
i Et,m

[
∥θt

c − θt,m+1
c,i ∥2

]
is identified with st,m+1

c .5 Combining
Eq. 23 and Eq. 24 yields, for each τ ,

st,τc ≤ 6L2 τ η2c

τ−1∑
m=0

st,m+1
c + τ2η2cβ. (25)

By taking the sum over τ = 1, . . . , h, we have

h∑
τ=1

st,τc ≤ 6L2 η2c

h∑
τ=1

τ

τ−1∑
m=0

st,m+1
c + η2cβ

h∑
τ=1

τ2

≤ 3h2L2 η2c

h∑
τ=1

st,τc +
h(h+ 1)(2h+ 1)

6
η2cβ ≤ 3h2L2 η2c

h∑
τ=1

st,τc +
h3η2cβ

3
,

(26)

where we utilized the fact that
∑h

τ=1 τ ≤
h(h+1)

2 ≤ h2

2 and
∑h

τ=1 τ
2 = h(h+1)(2h+1)

6 ≤ h3

3 . By
rearranging the terms, we have:

(1− 3L2h2η2c )

h∑
τ=0

st,τc ≤
h3η2c
3

(
6∥∇fc(θt

c)∥2 +
2dG2

c

B
+

d2L2µ2

2B
+ 6σ2

c + 2µ2L2
)

(27)

When ηc ≤ 1
3Lh , we have 1− 3L2h2η2c ≥ 2

3 and the lemma’s proof is complete.

Lemma A.5 (Bound on the Client-Side Contribution). Under Assumptions 4.1–4.3, and for a
client learning rate ηc satisfying the following conditions:

ηc ≤ min

{
1

3Lh
,

2

NLh2
,
N

72L

}
, (28)

the expectation of the client-side contribution, C = ∇f(θt
c)

T (θt+1
c − θt

c) +
L
2 ∥θ

t+1
c − θt

c∥2, is
bounded as:

Et[C] ≤ −
ηch

4
∥∇fc(θt

c)∥2 +Φc(ηc), (29)

where Φc(ηc) is an error term defined as:

Φc(ηc) := η2c

(
6hLdG2

c

N |ξi|
+

18hLσ2
c

N

)
+ ηc

(
d2L2hµ2

48|ξi|
+

13hL2µ2

12

)
. (30)

Proof. We start from the definition of C and take the expectation over all randomness up to round t.
The client update rule gives Et[θ

t+1
c − θt

c] = −
ηc

N Et[
∑N

i=1

∑h
m=1 ĝ

t,m
c,i ]. This allows us to expand

Et[C] into two terms:

Et[C] = −
ηc
N

〈
∇f(θt

c),Et

[
N∑
i=1

h∑
m=1

ĝt,m
c,i

]〉
︸ ︷︷ ︸

≜C1

+
η2cL

2N2
Et

∥∥∥∥∥
N∑
i=1

h∑
m=1

ĝt,m
c,i

∥∥∥∥∥
2


︸ ︷︷ ︸
≜C2

. (31)

We proceed by bounding C1 and C2 separately.

5One may equivalently write the last expectation with Et,m+1; since it is the same unconditional quantity
after averaging over the step-(m+1) randomness, using st,m+1

c is a safe upper bound.
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Bounding the First Term (C1). Using the identity 2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a − b∥2, we rewrite
C1:

C1 = −ηch

2
∥∇f(θt

c)∥2 −
ηch

2
Et

∥∥∥∥∥ 1

Nh

N∑
i=1

h∑
m=1

ĝt,m
c,i

∥∥∥∥∥
2
+

ηch

2
C1,1, (32)

where C1,1 ≜ Et[∥ 1
Nh

∑
i,m(ĝt,m

c,i − ∇f(θt
c))∥2]. We bound C1,1 using Jensen’s inequality, the

triangle inequality, and Assumptions B.3 and B.5:

C1,1 ≤
1

Nh
Et

[
N∑
i=1

h∑
m=1

∥ĝt,m
c,i −∇f(θ

t
c)∥2

]

≤ 2

Nh
Et

∑
i,m

∥ĝt,m
c,i −∇f(θ

t,m
c,i )∥2

+
2

Nh
Et

∑
i,m

∥∇f(θt,m
c,i )−∇f(θt

c)∥2


≤ 2σ2 +
2L2

Nh
Et

[
N∑
i=1

h∑
m=1

∥θt,m
c,i − θt

c∥2
]
.

(33)

Substituting this back provides a bound on C1.

Bounding the Second Term (C2).For C2, according to Cauchy-Schwartz inequality, we have:

C2 =
η2cL

2
Et

∥∥∥∥∥− 1

N

N∑
i=1

h∑
m=1

ĝt,m
c,i

∥∥∥∥∥
2


≤ η2cLEt

∥∥∥∥∥ 1

N

N∑
i=1

h∑
m=1

(ĝt,m
c,i −∇f

µ
c,i(θ

t,m
c,i ))

∥∥∥∥∥
2


︸ ︷︷ ︸
C2,1

+η2cLEt

∥∥∥∥∥ 1

N

N∑
i=1

h∑
m=1

∇fµ
c,i(θ

t,m
c,i )

∥∥∥∥∥
2
.
(34)

According to the statistical properties of zeroth-order gradient estimators (Lemma A.2), we have
Et[
∑h

m=1(ĝ
t,m
c,i −∇f

µ
c,i(θ

t,m
c,i ))] = 0. And we have E[⟨

∑h
m=1(ĝ

t,m
c,i1
−∇fµ

c,i1
(θt,m

c,i1
)),
∑h

m=1(ĝ
t,m
c,i2
−

∇fµ
c,i2

(θt,m
c,i2

))⟩] = 0, since the two sums correspond to independent, zero-mean random vectors (one
coming from client i1, the other from client i2, i1 ̸= i2) and hence the expectation of their inner
product vanishes. Thus, we have:

C2,1 = Et

∥∥∥∥∥ 1

N

N∑
i=1

h∑
m=1

(ĝt,m
c,i −∇f

µ
c,i(θ

t,m
c,i ))

∥∥∥∥∥
2


=
1

N2

N∑
i=1

Et

∥∥∥∥∥
h∑

m=1

(ĝt,m
c,i −∇f

µ
c,i(θ

t,m
c,i ))

∥∥∥∥∥
2
 .

(35)

According to Equation Eq. 14 and Lemma 2 in Wang et al. (2021), we have:

C2,1 =
1

N2

N∑
i=1

h∑
m=1

Et,m

[∥∥ĝt,m
c,i −∇f

µ
c,i(θ

t,m
c,i )

∥∥2]
(a)

≤ 1

N2

N∑
i=1

h∑
m=1

Et,m

[
∥ĝt,m

c,i ∥
2
]
,

(36)

where (a) holds because E[∥a − E[a]∥2] ≤ E[∥a∥2]. Now by applying the second-moment bound
from Lemma A.3, and substituting these result back, we have:

C2 ≤η2cLC2,1 + η2cLEt

∥∥∥∥∥ 1

N

N∑
i=1

h∑
m=1

∇fµ
c,i(θ

t,m
c,i )

∥∥∥∥∥
2
, (37)
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where C2,1 is bounded as follows:

C2,1 ≤
6L2

N2

N∑
i=1

h∑
m=1

Et,m−1

[
∥θt

c − θt,m
c,i ∥

2
]
+

6h

N
∥∇fc(θt

c)∥2

+
2dG2

ch

NB
+

d2L2µ2h

2NB
+

(6σ2
c + 2µ2L2)h

N

≤6L2

N
Et

[
1

N

N∑
i=1

h∑
m=1

∥θt
c − θt,m

c,i ∥
2

]
+

6h

N
∥∇fc(θt

c)∥2

+
2dG2

ch

NB
+

d2L2µ2h

2NB
+

(6σ2
c + 2µ2L2)h

N
.

(38)

Combining the Bounds. Combining the bounds of C1 and C2, we have:

Et[C]

≤(6η
2
cLh

N
− ηch

2
)∥∇fc(θt

c)∥2 + (η2L− ηc
2h

)Et

∥∥∥∥∥ 1

N

N∑
i=1

h∑
m=1

∇fµ
c,i(θ

t,m
c,i )

∥∥∥∥∥
2


+ (ηcL
2 +

6η2cL
3

N
)Et

[
1

N

N∑
i=1

h∑
m=1

∥θt,m
c,i − θt

c∥2
]

+ ηchL
2µ2 +

2η2cLdG
2
ch

NB
+

η2cd
2L3µ2h

2NB
+

(6σ2
cL+ 2µ2L3)η2ch

N

(a)

≤ (
6η2cLh

N
− ηch

2
)∥∇fc(θt

c)∥2 + (ηcL
2 +

6η2cL
3

N2
)Et

[
1

N

N∑
i=1

h∑
m=1

∥θt,m
c,i − θt

c∥2
]

+ ηchL
2µ2 +

2η2cLdG
2
ch

NB
+

η2cd
2L3µ2h

2NB
+

(6σ2
cL+ 2µ2L3)η2ch

N
.

(39)

where (a) holds if and only if ηc ≤ 1
2hL , which means the term (η2L −

ηc

2h )Et[∥ 1
N

∑N
i=1

∑h
m=1∇f

µ
c,i(θ

t,m
c,i )∥2] is non-positive.

Finally, we substitute the bound on the client model divergence from Lemma A.4 into the expression
for Et[C]. This gives us the following inequality:

Et[C] ≤
(
6η2cLh

N
− ηch

2

)
∥∇fc(θt

c)∥2 + ηchL
2µ2 +

2η2cLdG
2
ch

NB
+

η2cd
2L3µ2h

2NB

+
(6σ2

cL+ 2µ2L3)η2ch

N
+ (ηcL

2 +
6η2cL

3

N
)×(

3h3η2c∥∇fc(θt
c)∥2 +

dG2
ch

3η2c
B

+
d2L2µ2h3η2c

4B
+

(6σ2
c + 2µ2L2)h3η2c

2

)
.

(40)

To simplify this complex expression, we collect the coefficients for the dominant term, ∥∇fc(θt
c)∥2,

and the remaining bias terms. Let us define a helper variable α to consolidate terms originating from
the client drift bound:

α ≜ ηch
3L2 +

6η2ch
3L3

N
. (41)

By grouping terms, the bound on Et[C] can be rewritten as:

Et[C] ≤
((

6Lh

N
+ 3α

)
η2c −

ηch

2

)
∥∇fc(θt

c)∥2 + α

(
dG2

cη
2
c

B
+

d2L2µ2η2c
4B

+
(6σ2

c + 2µ2L2)η2c
2

)
+ ηchL

2µ2 +
2η2cLdG

2
ch

NB
+

η2cd
2L3µ2h

2NB
+

(6σ2
cL+ 2µ2L3)η2ch

N
.

(42)
Under sufficiently small learning rate ηc, the negative term −ηch

2 ∥∇fc(θ
t
c)∥2 will dominate the

other terms multiplying the squared gradient norm. Specifically, by setting conditions on ηc such
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that: (
6Lh

N
+ 3α

)
η2c ≤

ηch

4
, (e.g., satisfied if ηc ≤ O( N

Lh2 )), (43)

we can simplify the bound on the gradient term to −ηch
4 ∥∇fc(θ

t
c)∥2. After collecting all remaining

bias and variance terms, we arrive at the final simplified bound:

Et[C] ≤ −
ηch

4
∥∇fc(θt

c)∥2 + η2c

(
6hLdG2

c

NB
+

18hLσ2
c

N

)
+ ηc

(
d2L2hµ2

48B
+

13hL2µ2

12

)
. (44)

where the left part is defined as Φc(ηc).

A.3.2 PROOF OF THEOREM 4.5

Now, we are ready to present the proof of the main theorem with the above lemmas. We denote the
global model parameters at round t as θt

g = {θt
c,θ

t
s}, and the local model parameters at client Ci as

θt
l,i = {θt

c,i,θ
t
a,i}.

Local Model Update. According to the local update Eq. 3 (ĝt,m
c,i = ∇̂f t,m

c,i (θc; ξi))) at clients and
the aggregation at Fed Server, each communication round in Eq. 5, we have:

θt+1
c − θt

c = θt,h
c − θt

c = −
ηc
N

∑N

i=1

∑h

m=1
ĝt,m
c,i , (45)

Proof. First, we decompose the global model’s convergence behavior into client-side and server-
side contributions. Same as the Proposition 3.4 and 3.5 in Han et al. (2024), under Assumptions 4.1,
we have:

Et[f(θ
t+1
g )]− f(θt

g) ≤ Et[C] + Et[S] (46)

where C = ∇f(θt
c)

T (θt+1
c −θt

c)+
L
2 ∥θ

t+1
c −θt

c∥2 and S = ∇f(θt
s)

T (θt+1
s −θt

s)+
L
2 ∥θ

t+1
s −θt

s∥2
denote the contributions from the client-side and server-side models, respectively. Et[·] denotes the
expectation on all randomness up to round t.

Next, we analyze the contributions from the client-side and server-side models separately. Since we
have already bounded Et[C] in Lemma A.4, we now focus on bounding Et[S] Under our proposed
SFL framework, we decouple the parameter updates of the client-side and server-side models during
training by introducing auxiliary networks. From the server’s point of view, the smashed data it
receives can be regarded as the smashed data in the conventional, non-decoupled scenario, but with
its inputs subject to a distributional shift (Belilovsky et al., 2020). The distribution of the smashed
data is shifted by the client-side model updates, which can be modeled as a local parameter bias.
This shift can be expressed as:

dtc,i =

∫
∥P t

c,i(z)− P ∗
c,i(z)∥dz. (47)

Essentially, by modeling this shift, we capture the local parameter bias introduced by the client’s
updates and thereby integrate the update dynamics of both the client and server models into a unified
whole. For the server-side model, we have:

Et[S] = Et

[
∇fs(θt

s ;θ
∗
c,:)

T (θt+1
s − θt

s) +
L

2
∥θt+1

s − θt
s∥2
]

=
〈
∇fs(θt

s ;θ
∗
c,:),Et[θ

t+1
s − θt

s ]
〉
+

L

2
Et

[
∥θt+1

s − θt
s∥2
]

(48)

(a)
=

〈
∇fs(θt

s ;θ
∗
c,:),−ηsEt

[∑N

i=1
∇fs(θt

s,i;θ
t
c,:)

]〉
︸ ︷︷ ︸

S1

+
Lη2s
2

Et

[∥∥∥∥∑N

i=1
∇fs(θt

s,i;θ
t
c,:)

∥∥∥∥2
]

︸ ︷︷ ︸
S2

where (a) holds because of the update rule ( Eq. 4) of the server-side model. At this part, we follow
the same steps as in Mu & Shen (2025) to bound S1 and S2. So with additional Assumption 4.4,
based on the theoretical results of the server-side model, we can derive the following bound of Et[S]:

Et[S]
(a)

≤ ηsG
2
s

∑N

i=1
dtc,i −

ηs(2N − 1)

4
∥∇fs(θt

s)∥2 +
L

2
N2η2sG

2
s

(49)
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where (a) holds if and only if ηs ≤ 1
NL , which means the term (

Lη2
s

2 −
ηs

2N )Et[∥
∑N

i=1∇fs(θt
s,i)∥2]

is non-positive.

Final Bound. Combining the bounds of Et[C] and Et[S], we have:

Et[C + S]

≤− ηch

4
∥∇fc(θt

c)∥2 +Φc(ηc)

+
ηsG

2
s

2N

∑N

i=1
dtc,i −

ηs(2N − 1)

4
∥∇fs(θt

s)∥2 +
L

2
N2η2sG

2
s

(50)

With ηc ≤ min{ 1
3Lh ,

2
NLh2 ,

N
72L} we have:

E
[
f(θt+1

g )
]
≤f(θt

g)−
ηch

4
∥∇fc(θt

c)∥2 +Φc(ηc) +
ηsG

2
s

2N

∑N

i=1
dtc,i

− ηs(2N − 1)

4
∥∇fs(θt

s)∥2 +
L

2
N2η2sG

2
s

(51)

By rearranging the terms, we have:

ηch

4
∥∇fc(θt

c)∥2 +
ηs(2N − 1)

4
∥∇fs(θt

s)∥2 ≤f(θt
g)− E

[
f(θt+1

g )
]
+Φc(ηc)

+
ηs
2N

∑N

i=1
G2

sd
t
c,i +

L

2
N2η2sG

2
s (52)

=⇒ min{ηch
4

,
ηs(2N − 1)

4
}∥∇f(θt

g)∥2 ≤f(θt
g)− E

[
f(θt+1

g )
]
+Φc(ηc)

+
ηs
2N

∑N

i=1
G2

sd
t
c,i +

L

2
N2η2sG

2
s (53)

∥∇f(θt
g)∥2 ≤

f(θt
g)− E

[
f(θt+1

g )
]
+Φc(ηc) +

ηs

2N

∑N
i=1 G

2
sd

t
c,i +

L
2N

2η2sG
2
s

min{ηch
4 , ηs(2N−1)

4 }
(54)

Taking full expectation on both sides, and summing over t from 1 to T , we have:

min
t∈[T ]

E
[
∥∇f(θt

g)∥2
]

≤
f(θt

g)− f(θ∗
g )

min{ηch
4 , ηs(2N−1)

4 }T
+

ηs

2NG2
s

∑N
i=1 d

t
c,i

min{ηch
4 , ηs(2N−1)

4 }
+

L
2N

2η2sG
2
s

min{ηch
4 , ηs(2N−1)

4 }

+
1

min{ηch
4 , ηs(2N−1)

4 }

[
η2c

(
6hLdG2

c

NB
+

18hLσ2
c

N

)
+ ηc

(
d2L2hµ2

48B
+

13hL2µ2

12

)]
with respect to ηc ≤ min{ 1

3Lh
,

2

NLh2
,
N

72L
},∀t ∈ [T ].

(55)

We want the convergence rate to hold at the same level for both the client-side and server-side, so
first we set η = ηch/4 = (2N − 1)ηs/4, then we can rewrite the above bound as:

min
t∈[T ]

E
[
∥∇f(θt

g)∥2
]

≤
f(θt

g)− f(θ∗
g )

ηT
+

ηs

2NG2
s

∑N
i=1 d

t
c,i

η
+

L
2N

2η2sG
2
s

η

+
1

η

[
η2c

(
6hLdG2

c

NB
+

18hLσ2
c

N

)
+ ηc

(
d2L2hµ2

48B
+

13hL2µ2

12

)]
=
f(θt

g)− f(θ∗
g )

ηT
+

(
8LG2

s

N2

(2N − 1)2
+ 96(

LdG2
c

hNB
+

3Lσ2
c

hN
)

)
η

+
1

N(2N − 1)
G2

s

∑N

i=1
dtc,i +

(
d2L2µ2

12B
+

13L2µ2

3

)
(56)
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then we should have

η = O

(√
hNB

dT

)
, ηc = O

(√
NB

dhT

)
, ηs = O

(√
hB

dNT

)
, (57)

and µ = O(dhNBT )−
1
4 , and we can obtain the convergence rate as:

min
t∈[T ]

E
[
∥∇f(θt

g)∥2
]
≤O

(√
d

hNBT

)
+O

(√
1

dhNBT

)
. (58)

Then we complete the proof.

A.4 PROOF OF THEOREM 4.7

In this section, we consider the convergence behavior from the perspective of the language model
fine-tuning situation. Since the loss landscape of deep learning lies in a very low-dimensional sub-
space, where the Hessian of the loss has a remarkably low effective rank, we can leverage this
property to analyze the convergence rates more effectively.
Lemma A.6 (Client-side bound with low effective-rank). Under Assumption 4.1–4.3, and 4.6,
drawing ut

i from the uniform distribution on the unit sphere with radius
√
d, it holds the contribution

from the client side:

E[C] ≤− ηc
4
∥∇fc(θt

c)∥2 +
ηcµ

2L2

8
(d+ 3)3 + η2cL

4µ2d3

+ η2cL

(
1 +

dκ+ d− 2

d+ 2

)
1

N
(σ2 +G2

s)

+ η3cL
2

(
1 +

dκ+ d− 2

d+ 2

)2

.

(59)

Since we hold the same assumptions as the proof of Theorem 2 in Li et al. (2024), we use the results
of Equation (69) in this paper with characters adapted to our notation, which is given as follows:

E[C] ≤− ηc
2
∥∇fc(θt

c)∥2 +
ηcµ

2L2

8
(d+ 3)3 + η2cL

4µ2d3

+ η2cL

(
1 +

dκ+ d− 2

d+ 2

)(
∥∇fc(θt

c)∥+
1

N
(σ2 +G2

s)

)
.

(60)

This is achieved by applying Young’s inequality. Let us first isolate the terms dependent on the
gradient norm from the right-hand side (RHS) of Eq. 60:

RHS ≤ −ηc
2
∥∇fc(θt

c)∥2 + η2cL

(
1 +

dκ+ d− 2

d+ 2

)
∥∇fc(θt

c)∥+ C1, (61)

where C1 collects all terms that are independent of ∥∇fc(θt
c)∥:

C1 =
ηcµ

2L2

8
(d+ 3)3 + η2cL

4µ2d3 + η2cL

(
1 +

dκ+ d− 2

d+ 2

)
1

N
(σ2 +G2

s).

We use Young’s inequality, which states that for any a, b ≥ 0 and δ > 0, we have ab ≤ δ
2a

2 + 1
2δ b

2.
We apply this to the linear gradient term in Eq. 61 by defining:

a := ηcL

(
1 +

dκ+ d− 2

d+ 2

)
,

b := ηc∥∇fc(θt
c)∥.

This application yields the following bound:

η2cL

(
1 +

dκ+ d− 2

d+ 2

)
∥∇fc(θt

c)∥ ≤
δ

2

[
ηcL

(
1 +

dκ+ d− 2

d+ 2

)]2
+

1

2δ

[
ηc∥∇fc(θt

c)∥
]2

=
δη2cL

2

2

(
1 +

dκ+ d− 2

d+ 2

)2

+
η2c
2δ
∥∇fc(θt

c)∥2.

(62)
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Substituting the bound Eq. 62 back into our main expression, we can group the coefficients of the
∥∇fc(θt

c)∥2 term:

RHS ≤
(
−ηc

2
+

η2c
2δ

)
∥∇fc(θt

c)∥2 + C1 +
δη2cL

2

2

(
1 +

dκ+ d− 2

d+ 2

)2

. (63)

To simplify the coefficient of the squared gradient norm to a more convenient form, such as −ηc

4 ,
we select a specific value for the free parameter δ. By setting the new coefficient to this target, we
solve for δ:

−ηc
2

+
η2c
2δ

= −ηc
4

=⇒ η2c
2δ

=
ηc
2
− ηc

4
=

ηc
4

=⇒ δ = 2ηc.

Since the learning rate ηc > 0, our choice δ > 0 is valid. With δ = 2ηc, the new term arising

from Young’s inequality that is independent of the gradient becomes η3cL
2
(
1 + dκ+d−2

d+2

)2
. By

substituting this result into Eq. 63, we obtain the simplified upper bound for E[C]. This final form is
advantageous for convergence analysis, as the negative squared gradient term is now clearly isolated
from other terms that are of a higher order in ηc or are related to statistical variance.

A.4.1 PROOF OF THEOREM 4.7

Following the proof strategy of Theorem 1, the analysis can be naturally divided into two parts:
client-side optimization and server-side optimization. Now we are ready to prove Theorem 4.7.

Proof. Combining the bounds of Et[C] from Lemma A.6 and Et[S] same as Eq. 49, we have:

Et[C + S] = E[C + S]

≤− ηc
4
∥∇fc(θt

c)∥2 +Φ′
c(ηc)

+
ηsG

2
s

2N

∑N

i=1
dtc,i −

ηs(2N − 1)

4
∥∇fs(θt

s)∥2 +
L

2
N2η2sG

2
s

(64)

where Φ′
c is defined as:

Φ′
c =

ηcµ
2L2

8
(d+ 3)3 + η2cL

4µ2d3 + η2cL

(
1 +

dκ+ d− 2

d+ 2

)
1

N
(σ2 +G2

s)

+ η3cL
2

(
1 +

dκ+ d− 2

d+ 2

)2

.

(65)

With the same methods in proof of Theorem 4.1, we can have

∥∇f(θt
g)∥2 ≤

f(θt
g)− E

[
f(θt+1

g )
]
+Φ′

c(ηc) +
ηs

2N

∑N
i=1 G

2
sd

t
c,i +

L
2N

2η2sG
2
s

min{ηc

4 , ηs(2N−1)
4 }

(66)

Taking full expectation on both sides, and summing over t from 1 to T (with Assumption 4.4), we
have:

min
t∈[T ]

E
[
∥∇f(θt

g)∥2
]

≤
f(θ1

g )− f(θT+1
g )

min{ηc

4 , ηs(2N−1)
4 }T

+
ηs

2NG2
s

∑N
i=1 d

t
c,i

min{ηc

4 , ηs(2N−1)
4 }

+
L
2N

2η2sG
2
s

min{ηc

4 , ηs(2N−1)
4 }

+
Φ′

c(ηc)

min{ηc

4 , ηs(2N−1)
4 }

.

(67)
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We want the convergence rate can hold at the same level for both the client-side and server-side, so
first we set η = ηc/4 = (2N − 1)ηs/4, then we can rewrite the above bound as:

min
t∈[T ]

E
[
∥∇f(θt

g)∥2
]

≤
f(θ1

g )− f(θT+1
g )

ηT

+ η

[
8LN2G2

s

(2N − 1)2
+ 16L4µ2d3 +

16L

N

(
1 +

dκ+ d− 2

d+ 2

)
(σ2 +G2

s)

]
+ η2

[
64L2

(
1 +

dκ+ d− 2

d+ 2

)2
]

+

[
2G2

s

N(2N − 1)

∑N

i=1
dtc,i +

µ2L2

2
(d+ 3)3

]
.

(68)

To achieve a more informative rate, we specify the structure of the dominant terms. In many feder-
ated learning analyses, the coefficient of the leading O(η) error term scales with key system param-
eters. Let us assume the dominant part of this coefficient is characterized by the condition number
κ, the number of clients N , and the average local data size B. We can thus define the coefficient of
the primary O(η) term as being of order O(κ/(NB)).

Then we should have the learning rates set by balancing the O(1/(ηT )) and the dominant O(η)

terms to optimize the bound. This balance, 1
ηT ≈ η κ

NB , yields η ∝
√
NB/(κT ). We thus set:

η = O

(√
NB

κT

)
, ηc = O

(√
NB

κT

)
, ηs = O

(√
B

NκT

)
, (69)

andµ ≤
4
√
κ

4√
NT
√

(d+3)3
, we can obtain the convergence rate as:

min
t∈[T ]

E
[
∥∇f(θt

g)∥2
]
≤ O

(√
κ

NBT

)
+O

(
1

T

)
+ Cerr, (70)

where the O(1/T ) term arises from the η2 components of the bound, and Cerr =
2
δ

[
2G2

s

N(2N−1)∆+ µ2L2

2 (d+ 3)3
]

is a constant error floor independent of T , indicating convergence
to a neighborhood of the optimum.

Then we complete the proof.
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B PSEUDO CODE OF HERON-SFL

Algorithm 1 Hybrid Zeroth- and First-Order Optimization SFL (HERON-SFL)

Require: Client learning rate ηc, Server learning rate ηs, ZO radius µ, local steps h, upload period
k

1: Server Initialization:
2: Initialize global model θ0

g = {θ0
c ,θ

0
s} and auxiliary model θ0

a

3: Fed-Server broadcasts θ0
c ,θ

0
a to all clients

4: procedure CLIENTUPDATE(i,θt
c,θ

t
a)

5: θt,0
c,i ← θt

c, θt,0
a,i ← θt

a

6: for m = 0, 1, . . . , h− 1 do ▷ Local Training Steps
7: Sample mini-batch ξi and random direction ut,m

8: Compute ∆ℓi by perturbating θt,m
l,i = {θt,m

c,i ,θt,m
a,i } with ±µut,m

9: Estimate ZO gradients: ĝt,m
l,i ← ∇̂fl,i(θl; ξi))

10: Update local models: θt,m+1
l,i ← θt,m

l,i − ηcĝ
t,m
l,i

11: if (m+ 1) mod k = 0 then ▷ Periodic upload every k steps
12: Generate smashed data st,mi ← θt,m+1

c,i (ξi) and send to Main-Server

13: return θt,h
c,i ,θ

t,h
a,i to Fed-Server

14: for t = 0, 1, . . . , T − 1 do ▷ Main Training Loop (Global Rounds)
15: // — Phase 1: Parallel Client Training & Concurrent Server Updates —
16: for each client i = 1, . . . , N in parallel do
17: Execute CLIENTUPDATE(i,θt

c,θ
t
a)

18: ▷ Concurrently, server receives periodic client uploads
19: Main-Server collects all received data {st,mi } from the round
20: Main-Server sequentially updates θt

s using all received smashed data: θt+1
s ← updated θt

s

21: // — Phase 2: Federated Aggregation —
22: Fed-Server receives final local models {θt,h

c,i ,θ
t,h
a,i}Ni=1

23: θt+1
c ← 1

N

∑N
i=1 θ

t,h
c,i and θt+1

a ← 1
N

∑N
i=1 θ

t,h
a,i

24: Fed-Server broadcasts θt+1
c ,θt+1

a for the next round

C EXPERIMENTAL DETAILS

C.1 DETAILS OF THE OVERHEAD EVALUATION SETUP

Communication Cost Measurement. The client–server communication load is computed by mea-
suring the total number of bits transmitted during each local update step. For smashed-data up-
loads, we follow the definition in Table 1 and calculate the communication as the tensor size of the
smashed activations (i.e., the number of elements multiplied by the batch size) times the numerical
precision used in transmission (FP16 in all our experiments). For federated aggregation, we addi-
tionally account for the upload of the client-side and auxiliary model parameters, multiplied by the
same precision. The overall communication per update step is therefore the sum of (i) smashed-data
upload bits and (ii) model-parameter upload bits.

Client-Side Peak Footprint per Local Update Step. Peak FP for client-side model update is
measured using torch.cuda.max memory allocated() during a single local client update,
capturing the maximum GPU allocation—including model parameters, optimizer states, inter-
mediate activations, and all temporary CUDA buffers—required by the update step. For FO
baselines (SFLV1/V2, CSE-FSL, FSL-SAGE), the peak occurs during backpropagation because all
layerwise activations of both the client model and the auxiliary network must be cached. In contrast,
HERON-SFL performs only forward evaluations for its ZO update, so no activations are stored, and
the perturbation direction is generated procedurally from a seed rather than stored as a full vector.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Client-Side Peak FLOPs per Local Update Step. To measure the peak FLOPs incurred by
the client during a single model-update step, we use PyTorch’s operator-level FLOP instrumenta-
tion, which records the floating-point operations executed by all CUDA kernels involved in for-
ward or backward computations. For first-order baselines (SFLV1/V2, CSE-FSL, FSL-SAGE), we
profile the entire forward-backward pipeline of the client-side model and auxiliary network using
torch.profiler.profile(), and sum all FLOP counts across recorded events. For HERON-
SFL, we profile the two forward evaluations required by the two-point ZO estimator, without any
backward operations. The peak FLOPs of the client step are computed as the sum of FLOPs from
two forward passes. All reported numbers represent FLOPs executed within one local update step
on a single client GPU.

D ADDITIONAL EXPERIMENTS

D.1 ABLATION STUDY ON HYPER-PARAMETERS OF SFL
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(a) Effect of data heterogeneity.
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(b) Effect of the number of clients.
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(c) Effect of partial participation.

Figure 5: Test accuracy of different SFL algorithms on CIFAR-10 using a ResNet-18 model. (a)
Impact of data heterogeneity under varying Dirichlet α values. (b) Client scalability under different
total numbers of clients. (c) Performance under different fractions of participating clients per round.

D.1.1 EFFECT OF DATA HETEROGENEITY (NON-IID)

The impact of data heterogeneity is evaluated on CIFAR-10 using a ResNet-18 model with ten
clients under full participation. As shown in Figure 5a, varying the Dirichlet concentration parameter
creates a broad range of non-IID conditions, yet HERON-SFL maintains accuracy comparable to
first-order SFL baselines across all levels of heterogeneity. The zeroth-order updates do not weaken
the model’s ability to handle distributional shifts, and the perturbation-induced noise remains well
controlled. These results indicate that HERON-SFL preserves the robustness to non-IID client data
that is characteristic of first-order SFL training.

Additionally, we further test the training accuracy on α = 0.1, an extremely heterogeneous setting
where client label distributions exhibit minimal overlap. Under this regime, all SFL variants fail
to converge, which aligns with findings in prior FL studies where such severe non-IID conditions
cause strong client drift and unstable global updates. Achieving stable training at α = 0.1 typically
requires dedicated mechanisms such as data sharing (Zhu et al., 2021), gradient regularization (Li
et al., 2020), or distribution alignment (Mahmud & Dividino, 2024), none of which are incorporated
in standard SFL pipelines. A full investigation of these techniques falls outside the scope of this
work, and our study therefore focuses on the heterogeneity regimes commonly examined in the SFL
work (Nair et al., 2025). We emphasize that this failure mode is not caused by the use of zeroth-
order optimization: even first-order SFL baselines collapse under such extreme non-IID conditions,
consistent with prior FL findings.

D.1.2 EFFECT OF THE NUMBER OF CLIENTS

Scalability is examined by varying the total number of clients while keeping the dataset (CIFAR-
10), model architecture (ResNet-18), and full participation unchanged under an IID configuration.
As shown in Figure 5b, HERON-SFL sustains nearly identical accuracy as the federation expands
from ten to one hundred clients, demonstrating that our HERON-SFL remains stable at larger scales.
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D.1.3 EFFECT OF PARTIAL PARTICIPATION

Training performance under partial participation is assessed on CIFAR-10 with a ResNet-18 model
and 10 IID clients. As shown in Figure 5c, HERON-SFL maintains stable accuracy over a wide range
of participation ratios, including cases where only a small fraction of clients contributes updates in
each round. Its behavior closely matches that of first-order SFL baselines, indicating that partial
participation does not impair the convergence behavior of the zeroth-order client updates. These
findings confirm that HERON-SFL remains reliable even when participation is limited, a setting
commonly encountered in practical cross-device federated learning.

D.2 ABLATION STUDY ON HYPER-PARAMETERS OF ZO
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(a) Perturbation count: 2 per epoch.
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(b) µ=0.01.

Figure 6: Ablation study on local zeroth-order training hyper-parameters using ResNet-18 on
CIFAR-10 under an IID setting with ten clients, with all experiments using the same auxiliary model
implemented as a single linear layer. Client Size 1 denotes the first convolutional layer and one
residual block on the client, while Client Size 2 places three residual blocks on the client. (a) Test
accuracy under different perturbation step lengths µ. (b) Test accuracy under different perturbation
counts per epoch.

As shown in Figure 6, HERON-SFL exhibits stable performance across a wide range of zeroth-
order hyper-parameters, demonstrating robustness to both the perturbation step size and the number
of perturbations per epoch. When an appropriate step size µ is selected, using only two perturbations
per epoch is sufficient to ensure reliable convergence, indicating that HERON-SFL does not suffer
from the instability often associated with zeroth-order optimization. Across both figures, Client Size
1 consistently achieves higher accuracy than Client Size 2 (align with the ablation experiments in
Figure 4), reflecting the expected increase in optimization difficulty when a larger portion of the
model is placed on the client. This mild degradation is acceptable in SFL settings because resource-
constrained devices typically hold only small client sub-models, while the majority of parameters
remain on the server for first-order training. Overall, the results confirm that HERON-SFL main-
tains strong accuracy under practical ZO configurations and remains reliable even when client-side
capacity varies.

D.3 EVIDENCE FOR LOW RANK ASSUMPTION

Given the prohibitive cost of full Hessian computation for LLMs, we validated the low-effective rank
assumption using a modified ResNet-18 (He et al., 2016) on CIFAR-10. We estimated the Hessian
eigenvalue density via the stochastic Lanczos algorithm (Golub & Welsch, 1969), following the
methodology of Ghorbani et al. (2019). As shown in Figure 7, the resulting distribution, heavily
concentrated at zero, suggests that the low-rank structure is an intrinsic property of the optimization
landscape rather than a strong constraint. For empirical evidence of the low-rank assumption, the
same evidence can be seen in Li et al. (2024) Appendix C.3.1.

This observation extends to the regime of LLMs, particularly during the fine-tuning phase. Recent
works, such as GaLore (Zhao et al., 2024), have provided robust evidence that while pre-training
may necessitate high-rank updates, the weight modifications required for fine-tuning naturally reside
in a low-rank subspace. This intrinsic low-dimensionality is a critical factor explaining the success of
Zeroth-Order (ZO) optimization methods in this domain. It theoretically justifies why methods like
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MeZO (Malladi et al., 2023) can achieve competitive performance with memory-efficient, gradient-
free updates, as they effectively navigate this low-rank manifold.
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Figure 7: Hessian eigenvalue distribution with training custom ResNet on CIFAR-10 dataset.

E LLM USAGE STATEMENT
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The research ideas, experiments, analyses, and conclusions presented in this work are solely the
result of the authors’ efforts. The LLM did not contribute to the design of experiments, development
of algorithms, data analysis, or any substantive scientific content.
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