Under review as a conference paper at ICLR 2026

LEAN CLIENTS, FULL ACCURACY: HYBRID ZEROTH-
AND FIRST-ORDER SPLIT FEDERATED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Split Federated Learning (SFL) enables collaborative training between resource-
constrained edge devices and a compute-rich server by partitioning deep neural
networks. Communication overhead is a central issue in SFL and is well mitigated
with auxiliary networks; yet the core client-side computation challenge remains,
as back-propagation requires substantial memory and computation costs, severely
limiting the scale of models that edge devices can support. To make the client side
more resource-efficient, we propose HERON-SFL, a novel hybrid optimization
framework that integrates zeroth-order (ZO) optimization for local client training
while retaining first-order (FO) optimization on the server. With the assistance
of auxiliary networks, ZO updates enable clients to approximate local gradients
using perturbed forward-only evaluations per step, eliminating memory-intensive
activation caching and avoiding explicit gradient computation in the traditional
training process. Leveraging the low effective rank assumption, we theoretically
prove that HERON-SFL’s convergence rate is independent of model dimensional-
ity, addressing a key scalability concern common to ZO algorithms. Empirically,
on ResNet training and large language model (LLM) fine-tuning tasks, HERON-
SFL matches benchmark accuracy while reducing client peak memory by up to
64% and client-side compute cost by up to 33% per step, substantially expanding
the range of models that can be trained or adapted on resource-limited devices.

1 INTRODUCTION

Split Federated Learning (SFL) (Thapa et al| 2022 [2021) targets scenarios with resource-
constrained clients and compute-rich servers. Under the SFL framework, the full network is cut
into client-side and server-side sub-models: each client runs a forward pass up to the cut layer and
uploads the intermediate activations; the main server completes the forward pass, computes the loss,
back-propagates to the cut layer, and returns the gradients so the client can update its sub-model. In
parallel, the federated server (Fed Server) periodically aggregates the clients’ weight updates in a
federated way, enabling large-scale training that exploits cloud compute while keeping all raw data
on-device. However, the update lock (Belilovsky et al., |2020; 2019) imposed by back-propagation
means that, at every iteration, each client must idle until the server finishes its backward pass and
transmits the cut-layer gradients. This synchronization bottleneck both throttles overall training
throughput and amplifies communication overhead in SFL.

To mitigate this bottleneck, recent work equips each client with an auxiliary network (typically
a lightweight output layer) that estimates the cut-layer gradients locally (Mu & Shenl 2025} |Han
et al.| 2021} |Oh et al., 2022). This design decouples the client from the server, allowing the client
sub-model to update immediately without waiting for the server’s backward pass, thereby drastically
reducing communication overhead and granting extra degrees of freedom for client-side optimiza-
tion. Previous works show that auxiliary-network SFL not only cuts communication volume by a
wide margin but also achieves higher convergence accuracy than the traditional methods (Mu &
Shen, [2025; Nair et al., 2025). However, as current approaches take advantage of the auxiliary
module as a communication shortcut, they often overlook the significant computational and storage
burden it imposes on edge devices. This overhead is primarily driven by the conventional first-order
(FO) optimization process, where backpropagation and gradient computation impose prohibitive
compute and memory demands on edge devices.

Under review as a conference paper at ICLR 2026

Zeroth-order (ZO) optimization provides an appealing alternative. Unlike FO methods, ZO estimates
gradients through parameter perturbations and forward-only evaluations, bringing the computational
and storage overhead to a level comparable to those of inference (Malladi et al.,2023)). This property
suggests that ZO could substantially reduce the client-side burden in SFL. However, ZO optimization
is known to suffer from biased gradient estimates and slower convergence compared to FO methods
(Q1u et al., 2023), thereby raising an open question:

Can ZO methods be effectively integrated into SFL to reduce client-side computation and storage
without sacrificing accuracy or convergence guarantees?

We answer this question affirmatively by proposing HERON-SFL, a novel Hybrid zEroth- and fiRst-
Order optimizatioN framework for SFL. In HERON-SFL, clients replace conventional FO gradient
computation with lightweight ZO updates, applied to the local model (comprising the client-side
and auxiliary networks). This design eliminates the need for backpropagation and caching, enabling
edge devices to operate with markedly reduced memory and compute budgets. Importantly, clients
transmit only the smashed activations required for the server-side FO training, while the server
performs standard updates on its own partition of the model.

Our main contributions are summarized as follows:

* We propose HERON-SFL, a novel hybrid zeroth- and first-order SFL framework. Building upon
an auxiliary network that enables decoupled local training, we introduce zeroth-order (ZO) op-
timization on the client side. This eliminates the need for backpropagation for local updates,
thereby significantly reducing on-device memory and computational costs.

* We provide the first theoretical study of hybrid ZO-FO optimization in SFL. Our analysis shows
that under a low effective rank assumption, HERON-SFL achieves an O(1/+/T) convergence rate,
which matches that of standard FO approaches. This result shows that the usual ZO slowdown
can be alleviated under the proposed hybrid structure and assumptions, yielding a convergence
rate comparable to FO methods.

¢ We conduct comprehensive experiments spanning both vision (ResNet training) and language
(LLM fine-tuning) tasks. Results show that HERON-SFL consistently reduces client peak mem-
ory by up to 64% and client computation per step by up to 33%, while matching the accuracy of
state-of-the-art, auxiliary-network-based FO SFL methods. These gains highlight HERON-SFL’s
practical potential for deploying advanced models on previously infeasible devices.

2 RELATED WORK

Split Federated Learning. While modern foundation models achieve state-of-the-art performance
(Brown et al.| |2020; |Chowdhery et al., [2023), their immense computational and memory require-
ments restrict them to data centers, limiting their real-world reach (Luo et al., 2024; Sani et al.,
2024). To bring large language models onto edge devices, SFL was proposed by merging Feder-
ated Learning (FL) (McMahan et al.l |2017) with Split Learning (SL) (Vepakomma et al., [2018) to
enhance data privacy and robustness (Thapa et al., [2022; |Lee et al.| |2024). However, SFL remains
constrained by the SL training paradigm, leading to prohibitive communication overhead and a syn-
chronous update lock, as clients must await gradients from the server before updating (Kairouz et al.,
2021;|Vepakomma et al.,2018). To mitigate these bottlenecks, recent research has primarily pursued
two complementary directions: system-level optimization and algorithmic decoupling.

System-level optimization aims to adapt the SFL protocol to the constraints of edge networks. This
includes methods for adaptive model splitting based on network conditions (Lin et al., 2024b)), hier-
archical topologies to manage client resources (Lin et al.l 2025)), parallel training designs optimized
for wireless networks (Wu et al.| [2023), and dynamic resource-based tiers to speed up FL/SFL train-
ing under heterogeneous environments | Mohammadabadi et al.| (2024). Underpinning these practical
advances, recent theoretical work has also focused on providing formal convergence guarantees for
SFL, particularly under realistic conditions such as data heterogeneity (Han et al.} 2024} [Li & Lyu,
2023).

Algorithmic decoupling aims to eliminate the synchronous lock by incorporating a client-side aux-
iliary model to decouple client and server updates by generating local gradient estimates, thereby
obviating the need for server-to-client gradient transmission (Han et al., 2021; Mu & Shen, 2025;

Under review as a conference paper at ICLR 2026

Oh et al.} 2022} |Nair et al., [2025). Inspired by decoupled training (Belilovsky et al.|[2020;2019) in
centralized settings, this strategy can nearly halve communication costs. Despite their demonstrated
efficacy, these auxiliary models introduce a significant trade-off: a substantial increase in the client’s
computational and memory footprint, as the auxiliary network can be considerably larger than the
primary client-side model itself (Nair et al., [2025). Group Knowledge Transfer (He et al., [2020)
is another relevant approach that transfers logits from client-side auxiliary models to the server via
knowledge distillation (Hinton et al.| 2015)), although it differs from SFL in formulation and training
objective.

Zeroth-Order Optimization for Distributed Machine Learning. ZO optimization estimates gra-
dients through function evaluations (Liu et al., 2020), making it particularly useful when explicit
gradients are unavailable, such as in reinforcement learning (Nakashima & Kobayashi| 2025} |Lei
et all 2022; Zhang & Ying| |2024) and privacy-sensitive scenarios (Chen et all 2017} [Liu et al.,
2018; 2019). Recently, ZO has gained attention as an efficient strategy for training (Chen et al.,
2024)) and fine-tuning (Malladi et al., |2023)), since it avoids back-propagation’s memory and com-
pute overhead. In distributed machine learning, ZO has been explored as a gradient estimator in
FL, demonstrating promising benefits in privacy preservation (Zhang et al.l 2021} [Fang et al., 2022}
Ling et al.,|2024) and communication reduction (Li et al.| [2024). However, its adoption in the SFL
framework remains limited. The main barrier is that variance reduction in ZO requires multiple
perturbations, which would substantially increase intermediate activation transmissions and thus
communication overhead. To address this, we restrict ZO to the client side with the help of auxiliary
networks, enabling resource-efficient training while avoiding additional communication costs.

3 ALGORITHM DESIGN

3.1 SFL WITH AUXILIARY NETWORK

We consider an SFL system with one server and N clients, each holding a private dataset D;, where
the entire dataset is the set {D;}¥,. The global model is split at a cut layer into client- and server-
side sub-models, where we denote the collection of parameters as 8, = {6, 8, }. Each client i owns
alocal version of the client-side model, 8, ;. For a sample §; ; € D;, client ¢ performs a forward pass
up to the cut layer to produce the smashed data, s; = 6.;(§; ;), and uploads it to the main server.
The server then completes the forward pass by processing these activations with its sub-model 6.
The goal is to minimize the global loss function:

1 1
min f(0,) =3 [i(0,) = =30 Eep [00,:6:5)). M

6..,0,

where f;(0,) and f(6,) measure the expected loss on the global model over client ¢’s local dataset
D; and the entire dataset, respectively, computed using a task-specific loss function £(-) (e.g., cross-
entropy).

We adopt the SFLV2 style framework: a single server-side model 6, resides on the main server
and is trained by sequentially processing smashed data s; from all clients, while a Fed-Server ag-
gregates client-side parameters into the average 0. := % >, 6c,; (initial parameters for the next
round). To reduce communication overhead and enable client-side local feedback, each client 7 at-
taches an auxiliary (Aux) model 6, ; to form a local predictor 0, ;(§; ;) = 6a,i(0c,:(& ;)), where
0, =160} (Mu & Shen, 2025} Oh et al.| 2022). Because of the Aux model, the SFL system
breaks the training lock between 6, and 6,: by leveraging 8, the client can perform local updates
independently of server-side gradient feedback.

After initializing the global model {0, 6, }, the basic SFL-Aux algorithm proceeds: in each round,
client ¢ computes smashed data S; = 6. ;(§;) on local mini-batches §; = {&; ; }le and uploads them
to the Main-Server, while updating 6; ; by minimizing a local loss from 8, ;(S;), with backpropaga-
tion confined to the client. The Main-Server queues smashed data from all clients and sequentially
executes forward/backward passes to update 8. After a fixed number of local steps, the Fed-Server
aggregates all participated 6, ; (e.g., via weighted averaging like FedAvg (McMahan et al.| 2017))
and broadcasts updated global model 8; to all clients to initiate the next round.

Under review as a conference paper at ICLR 2026

3.2 ZEROTH-ORDER GRADIENT ESTIMATOR

Unlike prior methods that rely on full forward and backward passes through the client and its aux-
iliary network to compute first-order gradients V£(0;;&;), we adopt a mini-batch-type stochastic
gradient estimator with two-point evaluation. Specifically, for function f;;, the two-point type
stochastic ZO gradient estimator is defined as:

. 1 & d
V11,:(01;6)) =3 Z ju[él,i(el +pw; & 5) — 4,i(05605)) (2)
=

where u is a random vector drawn from either a Gaussian or a Uniform ball distribution, p is
a positive perturbation step size. This estimator approximates the smoothed objective function’s
gradient. Formally, it can be shown that this estimator is an unbiased estimate of V fl‘fi(el), where
fl’f . is the Gaussian-smoothed surrogate of the original function f; ;. The bias with respect to the

true gradient V f;; is therefore introduced by the smoothing process itself and is controlled by
the parameter . We defer the formal definition of the smoothed function and its properties to

Appendix [A2]

3.3 PROPOSED ALGORITHM

We now summarize the end-to-end training pro- cmm * Forward Pass == First-Order - Zeroth-Order

cess of our proposed framework, which op- @@ FedServer O

erates over a series of communication rounds 1 & —_—
. 0= N 291,, Client 1

(high-level illustration depicted in Figure [T). wE T ’

Each round, indexed by ¢, encompasses four > G

key stages: model initialization, local client ..

. . [-]
computation, server-side updates, and local ===
model aggregation in Fed Server. The entire
process is formalized as follows:

Main Server Client i

1. Model Initialization. At the start of the ¢-

i “ etN @%
e cii
th communication round, the Fed-Server broad- ent N

casts the global model parameters 6; and ,02 Figure 1: The proposed HERON-SFL algorithm.
that are resulted from the federated aggregation

at the end of last round. Upon receiving these parameters, each client ¢ initializes its local models
for the subsequent update process: Bf”? ={6"2,0"%) = {6!,0"}.

C’L’ a,1 cr a

2. Local Model Update and Smashed Data Upload. The client then proceeds with i local model
updates. During this process, the update of the client-side model is decoupled from the server-side
model by leveraging an auxiliary network. Distinct from existing methods, our paradigm employs a
ZO0 gradient estimator (defined in Eq. [2) to approximate the gradients of a local loss function. This
allows the client to perform timely updates without requiring traditional back-propagation from the
server. After performing h local gradient descent steps, the cumulative update for the client-side
models can be concisely written as:

oy =0, *mz V0] 6)) 3)

During the local update phase, the client uploads its smashed data to the server every k local steps
for the subsequent server-side training phase.

3. Server Model Update. The server receives the smashed data from each client ¢ and performs
model updates sequentially using an SFLV2 (Thapa et al.| [2022) training scheme. In this setting,
each client’s smashed data is processed one-by-one, and standard first-order optimization based on
forward and backward propagation is used to estimate gradients and update the server-side model
parameters 0% accordingly:

N
0§+1 == 02 - 778 Zi:l ﬁ ZE'LE'DZ v 6‘27 02 Z(f’i))’ (4)

where Vg, 1(6%; 07, ;(£;)) is the real gradient of the server-side loss function using back propagation.

Under review as a conference paper at ICLR 2026

4. Model Aggregation in Fed Server. Upon completion of the & local updates, each client transmits
its updated local parameters Oflh to the fed server for aggregation. The fed server averages these

parameters across all N clients to compute the global model combined by client-side and auxiliary
models for the next round:

_ N
0" =6 =x> o (5)

The server-side model, 8.1, which was updated sequentially during the round, is already finalized
and requires no aggregation. Finally, the new global model 8! = {6.7", 6.} is assembled and
prepared for distribution in the subsequent communication round.

In essence, HERON-SFL replaces the clients’ local updates in standard SFL with updates driven by
a ZO gradient estimator, while retaining client-side auxiliary networks to guide local learning. This
design eliminates the need for explicit backpropagation on resource-constrained devices: clients
only perform a small number of forward computations and randomized probes to update parame-
ters, substantially reducing compute and memory demands. Clients periodically upload smashed
data (every h local steps) to supply the server with the activations required for its independent FO
training on the server-side model. A critical concern, however, is that ZO optimization is often as-
sociated with slow convergence. In the following sections, we will demonstrate both theoretically
and empirically that HERON-SFL overcomes this potential challenge within the SFL framework.

4 CONVERGENCE AND RESOURCE CONSUMPTION ANALYSIS

4.1 CONVERGENCE ANALYSIS

In this section, we provide a formal convergence analysis to establish the theoretical guarantees
for the proposed FSL-HERON framework. For the sake of clarity and conciseness, the detailed
mathematical proofs are deferred to Appendix [A] The theoretical framework is built upon the fol-
lowing standard assumptions, which are widely adopted in the analysis of distributed optimization
algorithms (Karimireddy et al.,2020; |[Redd:i et al.,[2020; Mu & Shenl 2025} [Fang et al.| 2022).

Assumption 4.1 (L-smoothness). The loss functions of clients and server are L-smooth. Mathe-
matically, for any x € R? and y € R?, the following holds:

IVf(@) = VIl <Lz —yl, fly)<fl@)+Vi@) (y-—z)+5ly—=z* ©
where f is the loss function, and L is the Lipschitz constant.

Assumption 4.2 (Bounded gradients). The gradients of the local loss function ¢;(0.,0s) are
bounded, i.e., there exists a constant G such that:

Ve li(0:)|* < G2, [V, £:(8,)]* < G2 (7

Assumption 4.3 (Bounded variance). The variance of the zeroth-order gradient estimator is
bounded, i.e., there exists a constant o2 such that:

E(lg:7" — Ve.fi(0c,0,)[°] < 0. ®)

Assumption 4.4 (Convergence of client sub-model). For each client i at global round t, let
zﬁq = Gat 7h(z) be the output of the i-th client-side model (with input determined by xﬁz and D;),

and denote by P} ;(z) its output distribution. Let Py ;(z) be the reference (time-invariant) output
distribution of the i-th client-side model evaluated at x. and D;. Define the distribution distance

de; = /z | PLi(2) = Pti(2) | dz, 9)

i.e. the Ly (total-variation) distance between Pct’i and P ;. We assume that the aggregate drift
across clients is uniformly bounded as follows:

1 T N
2D ey <0, and § < oo, (10)

t=1 i=1

Under review as a conference paper at ICLR 2026

Remark 1 Together, the Assumptions above ensure a well-behaved optimization environment.
Assumption guarantees Lipschitz-continuous gradients and provides the usual quadratic upper
bound used in descent arguments; Assumption [4.2] prevents arbitrarily large client/server updates
and thus promotes numerical stability; and Assumption 4.3] limits the stochastic error between
the estimator and the true gradient. Assumption is tailored to the auxiliary-network-assisted
FSL setting, as also adopted in Mu & Shen| (2025) and motivated by centralized synthetic-gradient
frameworks (Belilovsky et al., [2020). This condition is essential for guaranteeing the stability and
convergence of the SFL process under local gradient updates.

Theorem 4.5 (Convergence rate of HERON-SFL in i.i.d. setting). Under Assumptions{.IH4.4), if
the client learning rate satisfies . < {577, vz %}, and is chosen as . = O(/(NB)/(dhT))
while the server learning rate is set to ns = O(\/(hB)/(dNT)), and perturbation step size is set
to i = O(1/(dhN BT)Y*). The convergence rate of the HERON-SFI algorithm can be guaranteed

as.
, o d 1
tIél{l%E [IVf(6))]°] <O (hNBT) +0 (‘/thBT> . (11)

Remark 2 The derived bounds on the expected gradient norm indicate that the algorithm can
achieve a favorable trade-off between the model complexity (characterized by the dimensionality d)
and the training batchsize (captured by B) over the training horizon 7T'. The bound is dominated
by O(\/d/(hNBT)) (the second term is smaller by 1/+/d). Thus, larger N or B linearly reduces
the required rounds; increasing local steps h improves the rate as 1/ V'h, trading fewer communi-
cation rounds for more local computation. The dependence on model size is v/d (or d in sample
complexity), which is the drawback of ZO optimization: convergence degrades with increasing di-
mensionality. Below, we show that the dependency on d can be reduced under structural assumptions
on an effective dimension.

Assumption 4.6 (Low x-Effective Rank). Ler G, £ max; ¢, D,
Hessian matrix H,(0} ;) < L - I, such that:

L

* For all 0; such that ||6; — 6} ;|| < 2n.diGy, we have V?1,(6;) =< H,(6] ;).

o The effective rank of H,(6},), i.e., %,
’ L,

Vo, li(0] ;)| There exists a

is at most K.

Theorem 4.7 (Converience Rate of HERON-SFL with Low Effective Rank Assumption).

Under Assumptions W JIf the client learning rate satisfies n. < ﬁ(l + d"jﬁ;) and

u < {‘/N7T47\\72d+73)3’ and is chosen as 1. = O(\/(NB)/(kT)) while the server learning rate is

set tons = O(\/B/(kNT)). The convergence rate of the HERON-SFL algorithm can be guaran-
teed as:

:)12 K 1 2 2G2 pL? 3
gél{lj{l}E[HVf(%)H] <0< NBT) +(9<T) +5[N(2N_1)A+ o (d+3)7. (12)

Remark 3 With the prescribed 4, the smoothing bias term o< p1?(d + 3)® is at most O (y/x/(NT))
and the drift term vanishes in the i.i.d. case (A = 0), so the bound simplifies to (’)(\ /k/(N BT)) +

O(1/T), which is independent with the model dimension d, removing the usual v/d degradation of

Z0 methods and matching the 1/ VT rate of FO SFL (Mu & Shen, 2025}, [Nair et al., 2025) up to
condition number « factors.

4.2 CLIENT-SIDE RESOURCE COST ANALYSIS

The following analysis, summarized in Table[I] compares the per-client resource consumption for a
single parameter update step on a fixed-size batch of data, assuming all other hyperparameters are
held constant. Let p be the data size of one local batch, g be the size of the smashed layer, and |6..|,
|6, | be the size of the client-side and auxiliary models, respectively.

Communication Load. The primary communication advantage of decoupled frameworks (CSE-
FSL, FSL-SAGE, and HERON-SFL) over traditional SFL (SFLV1/V2) stems from the elimination
of the server-to-client gradient download. While traditional SFL requires a two-way intermediate

Under review as a conference paper at ICLR 2026

Table 1: Client-Side Resource Costs per Local Update.

Method Comms. per Client | Peak Memory FLOPs
SFLV1/V2 2pq + 216, O(|6.]) 3F,
CSE-FSL/FSL-SAGE | pq +2(]6.| + [6.]) | O(|0:]| +10.]) | 3(F.+ F,)
HERON-SFL pq +2(]160.| + 10.|) o) ny(Fe + F)

data exchange for each batch (represented by the term 2pgq), decoupled methods perform only a
one-way upload, halving this cost to pq. The trade-off for this gain is the added cost of exchanging
the auxiliary model parameters, |0,|. Nevertheless, this parameter exchange typically represents a
minor communication burden relative to the transmission of smashed data.

Peak Memory. FO frameworks like SFLV1/V2 and CSE-FSL require caching intermediate activa-
tions for backpropagation. This results in a peak memory footprint that scales with the size of the
locally trained models, i.e., O(|0.|) and O(|60.| + |0,]|) respectively. This overhead can be an order
of magnitude larger than that of inference (Griewank & Walther, [2008). In contrast, the ZO-based
HERON-SFL obviates activation caching, reducing its peak memory to O(1), which is equivalent
to that of inference (Malladi et al., [2023)).

Remark 4 Local ZO updates are highly memory-efficient for two primary reasons. First, they
eliminate the need for backpropagation, thus avoiding the high cost of caching intermediate activa-
tions. Second, the perturbed parameters u generated in the calculation v 11,:(01;&;)) do not require
storing the full perturbation vector; instead, the vector can be procedurally generated from a single
random seed and applied in-place, further minimizing memory overhead.

FLOPs. Assuming a backward pass is twice as computationally expensive as a forward pass (F’)
(Chen et al | 2016), first-order methods incur a cost of approximately 3 F, (for SFLV1/V2) or 3(F. +
F,) (for CSE-SFL and FSL-SAGE) per update, where F, and F, are the forward pass costs of the
client and auxiliary models, respectively. In contrast, HERON-SFL performs ZO updates directly
on the client, similar to the approach in MeZO (Malladi et al., [2023). In practice, a standard two-
point ZO estimator is typically sufficient for stable and effective parameter updates, requiring a
computational cost of 2(F, + F,) in HERON-SFL.

5 EXPERIMENTS

5.1 EXPERIMENT SETTING

In this section, we conduct experiments on both model training and fine-tuning to show the perfor-
mance of our proposed HERON-SFL algorithnﬂ For comparison, we use the following baseline
methods: SFLV1/V2 (Thapa et al.,[2022) or SplitLoRA (Lin et al., 2024a CSE-FSL (Mu & Shen,
2025)), and FSL-SAGE (Nair et al.,|2025). We conduct the experiments under two complementary
training paradigms, implementing all models in PyTorch and running them on NVIDIA RTX A6000
NVL GPU (48 GB):

Full Training from Scratch. We study the convergence of ResNet-18 (He et al., |2016) under SFL
on CIFAR-10 (Krizhevsky et al. |2009) with 5 clients. The model is split after the second 2-D
BatchNorm layer; the client holds the front part while the server holds the back part. An auxiliary
head consisting of a single fully connected layer is attached to the cut layer. Unless otherwise stated,
we adopt the hyperparameters in|Thapa et al.|(2022): batch size 256 and Adam optimizers on both
sides with a learning rate of le—4.

'Our source code is available at ht tps: //anonymous . 4open . science/r/HERON-SFL-BB31/,

>While SFLV1/V2 are designed for the training-from-scratch paradigm, our focus on the distinct task of
language fine-tuning led to the development of SplitLoRA, which integrates LoRA with the SFLV2 frame-
work. We omit a comparison with an SFLV1-based approach because its need for multiple server models is
computationally prohibitive for large-scale models.

https://anonymous.4open.science/r/HERON-SFL-BB31/

Under review as a conference paper at ICLR 2026

Language Model Fine-tuning. We fine-tune GPT2-Small and GPT2-Medium (Radford et al.,[2021})
on the E2E dataset [Novikova et al.| (2017) with 3 clients. Unless specified otherwise, for GPT2-
Small, the model is split after the third transformer block, with an auxiliary network consisting of
one transformer block and the unembedding layer. For GPT2-Medium, the split occurs after the sixth
block, with a three-block auxiliary network plus the unembedding layer. As the auxiliary network
is not pre-trained, we initialize its parameters by copying the weights from the initial blocks of the
server-side model. All components are fine-tuned using Low-Rank Adaptation (LoRA) (Hu et al.
2022), where only adapters of rank 8 are updated and all other parameters are frozen.

The former setting evaluates whether SFL can train a model from scratch, a prerequisite when no
reliable checkpoint exists. The latter mirrors the prevailing industrial practice of pre-training a large
language model once and then adapting it with parameter- and memory-efficient techniques such
as LoRA. By examining both regimes, we separately measure the contributions of data-parallel
federation, model partitioning, and parameter-efficient adapters, and we show that HERON-SFL
consistently outperforms strong baselines in both scenarios.

5.2 TRAINING FROM SCRATCH: RESNET18 ON CIFAR-10

Convergence Behavior. Figure [2|illustrates the test accuracy of each method versus the number of
communication rounds. In the IID setting, our proposed HERON-SFL shows convergence behavior
nearly identical to other auxiliary-network baselines like CSE-FSL and FSL-SAGE’| with all three
performing slightly below the top-performing SFLV2. A similar trend is observed in the more chal-
lenging non-IID setting, which confirms that our hybrid algorithm achieves convergence comparable
to its first-order counterparts.

Non-IID (Dirichlet a=1)

sz*\/ﬂ’ %WWW%W Table 2: Client consumptions for
AT

©
S

%

S
%
S

ResNet-18 on CIFAR-10.

A

Test Accuracy (%)
3
Test Accuracy (%)
>
3

/ o —— SFLV1 . Comm. | Peak FP | FLOPS
/) Sy —— SFLV2 | —— SFLV2 Algorithms
60y \ ///"‘/ —— CSE-FSL { —— CSE-FSL (GB) (MB) G
|\ ANY —— FSL-SAGE ol —— FSL-SAGE SFLV1 1216.00
50 T HERON-SFL HERON-SFL SFLV2 9067 709.93 59.51
0 40 80 120 160 0 20 20 60 80
Communication Rounds Communication Rounds CSE-FSL 258.55 726.46 59.85
FSL-SAGE 244.24
Figure 2: ResNet-18 test accuracy vs. communication HERON-SFL | 244.19 | 259.44 | 39.90

rounds on CIFAR-10 for IID (left) and non-IID (right) dis-
tributions.

Communication, Storage, and Computational Costs. Table [2] provides a quantitative comparison
of the resource consumption on the client side. In terms of communication load, HERON-SFL is
among the most efficient methods, requiring only 244.19 GB of total communication, a volume
nearly identical to FSL-SAGE (244.24 GB) and superior to all other baselines.

The most significant advantages of HERON-SFL are evident in its on-device resource requirements.
By eliminating client-side backpropagation, it drastically reduces the peak memory footprint (Peak
FP) to just 259.44 MB—a reduction of approximately 63% compared to the almost 710 MB required
by SFLV1 and SFLV2. Similarly, the computational cost (FLOPs) is lowered to 39.90 G FLOPs, a
reduction of over 33% compared to the 59 G FLOPs of other methods. This substantial decrease in
both storage and compute burden confirms that HERON-SFL is highly suitable for deployment in
resource-constrained environments.

5.3 LANGUAGE MODEL FINE-TUNING

For the task of language model fine-tuning, HERON-SFL demonstrates superior communication ef-
ficiency and faster convergence. As illustrated in Figure [3] its validation perplexity decreases more

3We note that FSL-SAGE does not exhibit a significant advantage in our experiments, which we attribute to
our design choice of using a minimal auxiliary network purely for decoupling the updates of server and clients.
This contrasts with the approach in (Nair et al., [2025)), where the alignment mechanism of FSL-SAGE is more
impactful as the auxiliary model is intentionally designed to be even larger than the client model, thus requiring
explicit alignment to ensure consistency with the server’s task.

Under review as a conference paper at ICLR 2026

v
>
>
>

2z 4'6 — Spliora || 2 SpliloRA Table 3: Client consumptions
X 38 .
5 — CSE-FSL 3 —— CSE-FSL for GPT2-Medium on E2E.
Sy —— FSL-SAGE || 536 —— FSL-SAGE
A 2al HERON-SFL ‘3; sal HERON-SFL
g 5] . Peak FP | FLOPS
g £ Algorithms
B 34l S 32 (GB) (D
S — . NS ; ol SplitLora 4.59 5.68
30 560]dOO 1500 2000 260 4(‘)0 660 860 10‘00 1200 1400 CSE-FSL
Communication Volume (GB) Communication Volume (GB) ——— 9.09 9.48
FSL-SAGE
Figure 3: GPT2 perplexity curves vs. Communication Volume on ~ HERON-SFL | 4.03 5.26

E2E for small (left) and medium (right) models.

rapidly than the baselines for both GPT2-Small and GPT2-Medium. Notably, for GPT2-Small,
HERON-SFL converges faster and achieves a final perplexity that is competitive with SplitLoRA
while outperforming both CSE-FSL and FSL-SAGE. While all methods reach a similar perfor-
mance on GPT2-Medium, HERON-SFL does so with significantly less communication costs, and
even slightly surpasses CSE-FSL and FSL-SAGE on GPT2-Small. This mild performance gain is
consistent with recent findings in ZO-based LLM fine-tuning, where the update landscape exhibits
strong low-rank structure, making zeroth-order steps exceptionally effective. Similar behavior is re-
ported in MeZO (Malladi et al., 2023)), which shows that ZO fine-tuning can match or even surpass
first-order methods under comparable settings.

Echoing the resource efficiency observed in the ResNet experiments, HERON-SFL substantially
lowers the on-device computational and memory burden for clients. Table[3|provides a clear compar-
ison of the resource consumption per local update. HERON-SFL requires a peak memory (Peak FP)
of only 4.03 GB, which is less than half that of CSE-FSL (9.09 GB) and also more efficient than the
SplitLoRA baseline (4.59 GB). The reduction in computational cost is even more pronounced, with
HERON-SFL needing only 5.26 TFLOPS, a decrease of approximately 44% compared to CSE-FSL
and FSL-SAGE. This reduction in both memory footprint and floating-point operations confirms
that by eliminating client-side backpropagation, our method significantly lowers the hardware bar-
rier, making it feasible to fine-tune large language models on resource-constrained edge devices.

5.4 ABLATION STUDY OF LOCAL MODEL COMPLEXITY

We investigate the impact of local model complexity on the GPT2-medium fine-tuning task.
In this ablation study, we evaluate two primary scenarios: ——/——————
. . . .l Liak —&— CSE-FSL (3-block)
one where the client-side model contains the initial 3 trans- HERON-SFL (3-block)
former blocks, and another with 6 blocks. For each sce- —h— CSE-FSL (6-block)
. ey N . - HERON-SFL (6-block)
nario, we vary the auxiliary network’s architecture from
a lightweight base (LayerNorm and unembedding layers
only) to progressively larger versions containing one, two,

)
T

Training loss
S
T

or three transformer blocks. Figure [] plots the final train- tor I -
ing loss after a fixed number of training rounds. The results LayerNom _Tblock ook bl
show that our proposed HERON-SFL is largely insensitive Auxiliary Model composition

to the complexity of the auxiliary network; in both the 3- Figu're 4: Effect of aux-model com-
block and 6-block settings, it achieves a strong final training plexity.

loss even with the simplest auxiliary model. In contrast, the

performance of the first-order baseline, CSE-FSL, is highly dependent on a more powerful auxiliary
model, showing a clear trend of improvement as the network becomes more complex. This sug-
gests that for ZO-based methods, there is little justification for using a resource-intensive auxiliary
network, whereas first-order methods require one to reach their full potential.

This study validates the comprehensive efficiency of HERON-SFL, which stems from two key ad-
vantages. First, its use of zeroth-order optimization reduces the peak memory footprint to the level
of inference by eliminating backpropagation. Second, it attains excellent global convergence while
requiring only a minimal auxiliary architecture. Crucially, these resource savings do not come at
the cost of performance; our experimental results highlight the dual advantages of HERON-SFL in
achieving both fast convergence and low on-device costs. This provides a superior performance-to-
cost balance when compared to first-order baselines like FSL-SAGE and CSE-FSL.

Under review as a conference paper at ICLR 2026

6 CONCLUSION

This work proposes HERON-SFL, a novel hybrid ZO-FO framework that addresses the critical com-
putation and memory limitations on edge devices within SFL. It performs ZO optimization on edge
devices to eliminate costly backpropagation, thereby significantly reducing on-device memory and
computational requirements. Empirical and theoretical analysis demonstrate that the framework not
only achieves a theoretical convergence rate of O(1/+/T) independent of model dimensionality un-
der the low effective rank assumption, but also empirically matches the accuracy of SFL benchmarks
on diverse tasks while substantially reducing client-side resource costs.

Future work may explore non-differentiable objectives—for example, directly optimizing evaluation
metrics or incorporating human feedback (Ouyang et al.,|2022), which align well with the gradient-
free nature of client-side updates. Another promising direction is to strengthen privacy guarantees,
as HERON-SFL inherits the cut-layer privacy profile of standard SL/SFL and can benefit from ad-
vances in privacy-preserving techniques (Niu et al.,2024).

REFERENCES

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale
to imagenet. In International conference on machine learning, pp. 583-593. PMLR, 2019.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Decoupled greedy learning of cnns.
In International Conference on Machine Learning, pp. 736-745. PMLR, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Aochuan Chen, Yimeng Zhang, Jinghan Jia, James Diffenderfer, Konstantinos Parasyris, Jiancheng
Liu, Yihua Zhang, Zheng Zhang, Bhavya Kailkhura, and Sijia Liu. Deepzero: Scaling up zeroth-
order optimization for deep model training. In /CLR, 2024.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order opti-
mization based black-box attacks to deep neural networks without training substitute models. In
Proceedings of the 10th ACM workshop on artificial intelligence and security, pp. 15-26, 2017.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1-113, 2023.

Wenzhi Fang, Ziyi Yu, Yuning Jiang, Yuanming Shi, Colin N Jones, and Yong Zhou.
Communication-efficient stochastic zeroth-order optimization for federated learning. IEEE Trans-
actions on Signal Processing, 70:5058-5073, 2022.

Xiang Gao, Bo Jiang, and Shuzhong Zhang. On the information-adaptive variants of the admm: an
iteration complexity perspective. Journal of Scientific Computing, 76:327-363, 2018.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
via hessian eigenvalue density. In International Conference on Machine Learning, pp. 2232—
2241. PMLR, 2019.

Gene H Golub and John H Welsch. Calculation of gauss quadrature rules. Mathematics of compu-
tation, 23(106):221-230, 1969.

Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of algo-
rithmic differentiation. SIAM, 2008.

10

Under review as a conference paper at ICLR 2026

Dong-Jun Han, Hasnain Irshad Bhatti, Jungmoon Lee, and Jackyun Moon. Accelerating federated
learning with split learning on locally generated losses. In ICML 2021 workshop on federated
learning for user privacy and data confidentiality. ICML Board, 2021.

Pengchao Han, Chao Huang, Geng Tian, Ming Tang, and Xin Liu. Convergence analysis of split
federated learning on heterogeneous data. Advances in Neural Information Processing Systems,
37:103476-103544, 2024.

Chaoyang He, Murali Annavaram, and Salman Avestimehr. Group knowledge transfer: Federated
learning of large cnns at the edge. Advances in neural information processing systems, 33:14068—
14080, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and trends® in machine learning,
14(1-2):1-210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132-5143. PMLR, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical Report, University of Toronto, 2009.

Joohyung Lee, Mohamed Seif, Jungchan Cho, and H Vincent Poor. Exploring the privacy-energy
consumption tradeoff for split federated learning. IEEE Network, 38(6):388-395, 2024.

Yuheng Lei, Jianyu Chen, Shengbo Eben Li, and Sifa Zheng. Zeroth-order actor-critic. arXiv
preprint arXiv:2201.12518, 2022.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and sys-
tems, 2:429-450, 2020.

Yipeng Li and Xinchen Lyu. Convergence analysis of sequential federated learning on heteroge-
neous data. Advances in Neural Information Processing Systems, 36:56700-56755, 2023.

Zhe Li, Bicheng Ying, Zidong Liu, Chaosheng Dong, and Haibo Yang. Achieving dimension-
free communication in federated learning via zeroth-order optimization. arXiv preprint
arXiv:2405.15861, 2024.

Zheng Lin, Xuanjie Hu, Yuxin Zhang, Zhe Chen, Zihan Fang, Xianhao Chen, Ang Li, Praneeth
Vepakomma, and Yue Gao. Splitlora: A split parameter-efficient fine-tuning framework for large
language models. arXiv preprint arXiv:2407.00952, 2024a.

Zheng Lin, Guangiao Qu, Wei Wei, Xianhao Chen, and Kin K Leung. Adaptsfl: Adaptive split fed-
erated learning in resource-constrained edge networks. arXiv preprint arXiv:2403.13101, 2024b.

Zheng Lin, Wei Wei, Zhe Chen, Chan-Tong Lam, Xianhao Chen, Yue Gao, and Jun Luo. Hierarchi-
cal split federated learning: Convergence analysis and system optimization. /EEE Transactions
on Mobile Computing, 2025.

Zhenqing Ling, Daoyuan Chen, Liuyi Yao, Yaliang Li, and Ying Shen. On the convergence
of zeroth-order federated tuning for large language models. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1827-1838, 2024.

11

Under review as a conference paper at ICLR 2026

Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini. Zeroth-
order stochastic variance reduction for nonconvex optimization. Advances in neural information
processing systems, 31, 2018.

Sijia Liu, Pin-Yu Chen, Xiangyi Chen, and Mingyi Hong. signsgd via zeroth-order oracle. In
International conference on learning representations, 2019.

Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and Pramod K
Varshney. A primer on zeroth-order optimization in signal processing and machine learning:
Principals, recent advances, and applications. [EEE Signal Processing Magazine, 37(5):43-54,
2020.

Wengiang Luo, Jacky Keung, Boyang Yang, He Ye, Claire Le Goues, Tegawende F Bissyande,
Haoye Tian, and Xuan Bach D Le. When fine-tuning llms meets data privacy: An empirical study
of federated learning in llm-based program repair. ACM Transactions on Software Engineering
and Methodology, 2024.

Antor Mahmud and Renata Dividino. Federated learning on knowledge graph embeddings via con-
trastive alignment. In 2024 IEEFE International Conference on Big Data (BigData), pp. 3466—
3474. 1IEEE, 2024.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038-53075, 2023.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273-1282. PMLR, 2017.

Seyed Mahmoud Sajjadi Mohammadabadi, Syed Zawad, Feng Yan, and Lei Yang. Speed up fed-
erated learning in heterogeneous environments: a dynamic tiering approach. IEEE Internet of
Things Journal, 2024.

Yujia Mu and Cong Shen. Federated split learning with improved communication and storage effi-
ciency. IEEE Transactions on Mobile Computing, 2025.

Srijith Nair, Michael Lin, Peizhong Ju, Amirreza Talebi, Elizabeth Serena Bentley, and Jia Liu.
Fsl-sage: Accelerating federated split learning via smashed activation gradient estimation. arXiv
preprint arXiv:2505.23182, 2025.

So Nakashima and Tetsuya J Kobayashi. Unifying zeroth-order optimization and genetic algorithms
for reinforcement learning. In Proceedings of the Genetic and Evolutionary Computation Con-
ference Companion, pp. 311-314, 2025.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527-566, 2017.

Yue Niu, Ramy E Ali, Saurav Prakash, and Salman Avestimehr. All rivers run to the sea: Private
learning with asymmetric flows. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 12353-12362, 2024.

Jekaterina Novikova, Ondfej Dusek, and Verena Rieser. The e2e dataset: New challenges for end-
to-end generation. arXiv preprint arXiv:1706.09254, 2017.

Seungeun Oh, Jihong Park, Praneeth Vepakomma, Sihun Baek, Ramesh Raskar, Mehdi Bennis,
and Seong-Lyun Kim. Locfedmix-sl: Localize, federate, and mix for improved scalability, con-
vergence, and latency in split learning. In Proceedings of the ACM Web Conference 2022, pp.
3347-3357, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730-27744, 2022.

12

Under review as a conference paper at ICLR 2026

Yuyang Qiu, Uday Shanbhag, and Farzad Yousefian. Zeroth-order methods for nondifferentiable,
nonconvex, and hierarchical federated optimization. Advances in Neural Information Processing
Systems, 36:3425-3438, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PmLR, 2021.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konecny,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

Lorenzo Sani, Alex lacob, Zeyu Cao, Bill Marino, Yan Gao, Tomas Paulik, Wanru Zhao, William F
Shen, Preslav Aleksandrov, Xinchi Qiu, et al. The future of large language model pre-training is
federated. arXiv preprint arXiv:2405.10853, 2024.

Chandra Thapa, Mahawaga Arachchige Pathum Chamikara, and Seyit A Camtepe. Advancements
of federated learning towards privacy preservation: from federated learning to split learning. In
Federated Learning Systems: Towards Next-Generation Al, pp. 79—109. Springer, 2021.

Chandra Thapa, Pathum Chamikara Mahawaga Arachchige, Seyit Camtepe, and Lichao Sun.
Splitfed: When federated learning meets split learning. In Proceedings of the AAAI conference
on artificial intelligence, volume 36, pp. 8485-8493, 2022.

Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learning for health:
Distributed deep learning without sharing raw patient data. arXiv preprint arXiv:1812.00564,
2018.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. A novel framework
for the analysis and design of heterogeneous federated learning. IEEE Transactions on Signal
Processing, 69:5234-5249, 2021.

Wen Wu, Mushu Li, Kaige Qu, Conghao Zhou, Xuemin Shen, Weihua Zhuang, Xu Li, and Weisen
Shi. Split learning over wireless networks: Parallel design and resource management. IEEE
Journal on Selected Areas in Communications, 41(4):1051-1066, 2023.

Qingsong Zhang, Bin Gu, Zhiyuan Dang, Cheng Deng, and Heng Huang. Desirable companion for
vertical federated learning: New zeroth-order gradient based algorithm. In Proceedings of the
30th ACM international conference on information & knowledge management, pp. 2598-2607,
2021.

Qining Zhang and Lei Ying. Zeroth-order policy gradient for reinforcement learning from human
feedback without reward inference. arXiv preprint arXiv:2409.17401, 2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous
federated learning. In International conference on machine learning, pp. 12878-12889. PMLR,
2021.

13

Under review as a conference paper at ICLR 2026

A THEORETICAL PROOF

A.1 NOTATIONS

Table 4: Notation and unified conventions used in this paper.

Symbol Meaning
System & Data
N Number of clients
D; Local dataset of client ¢
& =1{&,; }le Mini-batch sampled from D;
B Batch size
Model Parameters
0,=1{6.,0,} Global model split into client/server parameters
0, Server-side parameters
0. Client-side parameters owned by client ¢
0., Auxiliary model parameters at client ¢
0., =(6.,:,0,) Local predictor on client %
de,dg Dimensions of 6, and 6,
Objective Functions
0(3&,5) Task loss on sample &; ; € D;
fi(8y) Expected loss for global model over client ¢’s local dataset D;
£(0y) Expected loss for global model over the entire dataset Zfil D;
f1.:(6) Expected loss for local model @; over client i’s local dataset
Optimization & Algorithm
t,m Global round index ¢; local step index m
h Local steps per round before optional upload
Nes Ns Client / server learning rates
s; =0c:(&.5) Smashed data produced by client ¢
Ut,m Random direction for ZO estimator
w>0 Smoothing/perturbation radius in ZO estimator
gtl;” Z0 gradient estimates for local parameters
9l Server-side gradient on smashed data from client %
oi+t Server parameters after sequential updates
ol g+t Aggregated client/aux parameters after Fed-Server
Theoretical Analysis
L Smoothness constant (Lipschitz gradient)
G., Gy Bounds on client/server gradient norms
o? Variance bound of ZO estimator
i Distributional drift of the output from client ¢’s model at round ¢
) Upper bound for the average distributional drift
K Upper bound on the effective rank of the local loss Hessian

A.2 LEMMAS FOR ZEROTH-ORDER OPTIMIZATION

Before presenting the proofs of our main theorems, we recall several classical lemmas on zeroth-
order optimization, which serve as the basis for the subsequent analysis. For the analysis of zeroth-
order optimization algorithms, it is standard to introduce a smoothed approximation of the objective
function. We formalize this by first defining the smoothed function and then stating its key properties

in a lemma.

14

Under review as a conference paper at ICLR 2026

Definition A.1 (Gaussian Smoothed Function with Unit-Sphere Normalization). A function f :
R? — R is said to be (Gaussian-derived) spherically smoothed with smoothing radius p > 0 if for
any x € R4,

JHi(x) = Eonr(o,12) {f(ﬂC + p H%H)} ,
where we define u := z/||z|| so that ||u|| = 1 almost surely and u ~ Unif (S?~1).

Lemma A.2 (Gradient and Smoothness for Gaussian Smoothed Functions (Nesterov &
Spokoiny, 2017)). Let f : R® — R be differentiable with an L-Lipschitz gradient (i.e., f is L-
smooth). Then, for any i > 0, the spherically smoothed function f" defined in Definition is
continuously differentiable and its gradient is L,,-Lipschitz continuous with L,, < L. Moreover, the
gradient of f* can be expressed as:

V(@) =5 |

ot @), -
. .

The result from Lemma[A.2] provides the theoretical foundation for the zeroth-order gradient esti-
mator used in our work. We recall our estimator from Eq. 2in the main text. The lemma establishes
that this estimator is an unbiased estimate of the gradient of the corresponding smoothed function,
fl“ ;(0;). Formally, taking the expectation of the estimator over the random direction u yields the
exact gradient of the smoothed function:

Ew~no,1) [@fl,i(eﬁgz')} =V (01:&). (14)

The bias of this estimator with respect to the true gradient V f; ; arises from the difference between
the smoothed function f/'; and the original function f; ;, not from the sampling process itself. This
distinction is crucial for the subsequent convergence analysis.

A.3 PROOF OF THEOREM [4.3]
A.3.1 PRELIMINARY LEMMAS

To begin the convergence analysis, we start with a few lemmas that will be useful in the subsequent
proofs.

Lemma A.3 (Bound on the Second Moment of the ZO Estimator[Y). Under Assumptions
the second moment of the zeroth-order gradient estimator gﬁ;" is bounded as follows:

2dG; &L 272 2
i + ¥e] +2p°L* + 60 as)

+ 6V £(00)]12 + 6L Eem 1 [||6E— 027"(1"]

Eem [l9271%] <

("L

Proof. The proof proceeds by decomposing the second moment of the estimator into several terms
and bounding each one. First, we apply the law of total expectation and the law of total variance,
which states E[||a||?] = Var(a)+||E[a]||?>. We recognize that gﬁj" is the average of estimators over
the mini-batch &;. As established in Lemmal[A.2] its expectation over the random direction w is the
gradient of the smoothed function, V f%; (Otm)

Etm (1907 17] =Eom—1 [E7" [Ig2717]]
=Epm-1 [Var]"(927") + 1B (9271117 (16)
:Et7m71 [Vart g('z] +]Etm 1 [vaf«7(0t m)H }

“This bound decomposes the second moment of the estimator into several distinct sources of error and
variance. The terms scaled by the mini-batch size, such as 2dG?2/B and d?L?u? /2B, represent the intrinsic
variance of the ZO estimator, which is dependent on the model dimension d. The terms 2% L? and 602 capture
the bias introduced by the Gaussian smoothing and the variance from client data heterogeneity, respectively.
The term 6|V £.(0%)||? relates the analysis back to the global gradient norm at the start of the round. Crucially,
the final term, 6 LB ,,—1[||@% — 6%7"||?], quantifies the client model divergence that arises from performing
multiple local updates. This divergence term is a key challenge in federated learning and is explicitly bounded
in subsequent analysis.

15

Under review as a conference paper at ICLR 2026

Since the estimators for each sample &; ; in the mini-batch are i.i.d., the variance of their average
is the variance of a single-point estimator divided by the batch size. Using the property Var(X) <
E[|| X|?], we have:

Varf' (gL = BVart (9L (01 €i)) .

m A 2
EEt U gii” (61:&1) || } .
Substituting this back, we arrive at the decomposition as follows:

1
Evon (1957 12) < ZBum [[857 00 60)|*] + Evmmr [[V72657 a®)

We now bound the two terms separately. For the first term, we use the bound for two-point estimators
(Lemma 4.1 in|Gao et al.| (2018)) and Assumption 4.2}

Et,m |:
For the second term, we use the triangle inequality and ||a + b||? < 2||a||? + 2/|b]|?:
s 9202

S2Et,m—1 |:vaf:2(022n) - vfcz atm || :| +2]Et,7n—1 |:vacz et "L H :| (20)

IN

~T,m 2 m 1 1
3T (06"] < 2Ben [IV6es(8L7's) |2] + 3d2L20? < 2462+ Sd* L2, (19)

§2M2L2 +2Et,m71 |:vacz Btm || i|

Finally, we bound the remaining term by relating it to the global model state 8. Using inequality
lla+ b+ cl[2 < 3l[al[2 -+ 3][b]| + 3[[][%, we have:
IEt,mfl |:vacz atm H :|
t,m t t ¢ NIk
Bt [[[(VeilO007) = Ve (61) + (V fes(02) = V£o(62) + V16| on
m 2
3Byt [||V£ei(O27) = V £ei(O2)] + IV £ei(82) = VL6 + 3V S(6L)]

<3L2Eqn1 [[|657 — 61| + 302 + 3]V 1.(61)]2,
where the final inequality follows from Assumptions.T|and[4.3] Combining all these bounds yields

the result stated in the lemma. O
Lemma A.4 (Bound on Client Model Divergence). For 7. < 3 L -, we have:
dG2 h3772
- t,m _pt2 3,2) t\ 12 c c
SN S SN L e A o
EL2p2hPn? | (607 + 2u L) hPn?
4B 2 '
Proof. For simplicity, define
1 & 2
t,m t
& Eu|00 - 6]
i=1
For the 7-th local update, unrolling the client recursion gives
T—1
0 —0.=—n.) 9.7
m=0
By Cauchy-Schwarz,
2) 1 N 7-—1
ZEtT ’_770 gcl STUC'NZ Et"'[“ H}
i=1 m=0 (23)
N 7—1

(tower) Z Z E, m[|gc i }

i=1 m=0

16

Under review as a conference paper at ICLR 2026

We now invoke the second-moment bound (LemmalA.3): for every m,

1 N
LS
N; t

g:.7"| } < 6L2stmt 4 (6||Vfc(0§)||2+ G L LL L 62 +2M2L2)

(>

B
(24)
by definition of s’", the term 3 >, Eq [[|6% — 02:2”"'1 1?] is identified with si’m“ Combining
Eq.[23|and Eq. 24] yields, for each 7,

seT < 67T Z s+ T (25)

By taking the sum over 7 = 1, ..., h, we have

h

h T—1 h
DI B BEERE T B
T=1 7=1 m=0 T=1

(26)
h h
h(h+1)(2h + 1) 132
< 3h2L2 2 t,T 2 < 3h2L2 2 t,7 c ,
= = ;:1 s¢" + 5 e < e ;:1 S’ T3
where we utilized the fact that 3" 7 < MED < B2 qpg 0 72 = MDD 12 gy

rearranging the terms, we have:

h 5
. hdn2 2dG2 d2 L2M2
(1= 3L2h22) Y st < 22 (6 VA0 + =5 + = + 602 + 2u°L?) D)

7=0

When 7. < =1, we have 1 — 3L?h?n? > 2 and the lemma’s proof is complete. N

Lemma A.5 (Bound on the Client-Side Contribution). Under Assumptions 4.1H4.3} and for a
client learning rate n. satisfying the following conditions:

1 2 N
C< i T 1L ANTT LY maT b 28
K _mm{SLh NLK? 72L} (28)

the expectation of the client-side contribution, C = V f(6L)T (071 — 0%) + L[|+ — 0Y)2, is
bounded as:

EC] < — (00)[1 + @c(ne), (29)

where ®.(n.) is an error term defined as:

6hLdG> 18hLa§) (d%%;ﬁ 13hL2u2>

vt = (Vg + INNE o

Proof. We start from the definition of C and take the expectation over all randomness up to round ¢.
The client update rule gives E¢[@."! — %] = — < E, DR D §."]. This allows us to expand
E¢[C] into two terms:

2

N h N h
Efc] = -k <Vf (6, ZjZ_j ger' > o2 E ZZ gci' G31)
écl éCQ

We proceed by bounding C; and C5 separately.

One may equivalently write the last expectation with E¢ ,,, +1; since it is the same unconditional quantity
after averaging over the step-(m-1) randomness, using s’ "+ s a safe upper bound.

17

Under review as a conference paper at ICLR 2026

Bounding the First Term (C;). Using the identity 2(a,b) = ||a? + Hb||2 — |la — b||?, we rewrite
Cll

1 N h N
R;E:E: (32)

i=1 m=1

h
01 =~ |V A8 - T ’

~t,m

where C11 £ B[+ dim 9o — V£(6))[|?]. We bound C; ; using Jensen’s inequality, the
triangle inequality, and Assumptlons B.3 and B.5:

s [zzugz:”— £(60)?

=1 m=1

S—Et legil”— GOk +fEt STIVFOLT) = VEODI*| 33

i,m

<20% 4 —]Et [Z > llesr 0§||2] .

=1 m=1

Substituting this back provides a bound on C;.

Bounding the Second Term (C5).For Cs, according to Cauchy-Schwartz inequality, we have:

el g

i N h 2
< LE, %zz@zﬁwmzm e |5 33 izt

i=1 m=1

(34)

According to the statistical properties of zeroth-order gradient estimators (Lemma [A.2), we have

Vi, (02 Z)))] = 0, since the two sums correspond to 1ndependent, zero-mean randorn vectors (one
coming from client i, the other from client io, i1 # i) and hence the expectation of their inner

product vanishes. Thus, we have:
2

N h
ZZ (Ghr =V frehm)

1=1 m=1

Co1 =E;

, (35)
QCZZ” = V2(0:7))

According to Equation Eq.[I4]and Lemma 2 in[Wang et al.| (2021)), we have:

1 T i ~t,m i tm
C21 :mz ZEt,m { 9. _vf 0 H }
i=1 m=1 36
w1 XN (36)

_N2ZZEtm ngzn]7

i=1 m=1

where (a) holds because E[||a — E[a]||?] < E[||a||?]. Now by applying the second-moment bound
from Lemma@], and substituting these result back, we have:

2

Co <n2LCo + n?LE, H Z Z Ul INE (37)

=1 m=1

18

Under review as a conference paper at ICLR 2026

where Cy ; is bounded as follows:

6L2 L ¢ tm 2 6h (12
Cor <O S S B [0 - 051 + S v o))

i=1 m=1
2dG2h N L2 2h (602 + 2u2L2)h
NB 2NB N (38)
t tm 2 t\]12
<, N;lene 0P| + SV 6]

24G2h d®L2u*h (602 + 2u2L%)h
NB 2NB N '

Combining the Bounds. Combining the bounds of C; and C5, we have:

E;[C]

6n2Lh 1.h
(2 — TV SO + (L —

b (2 + NZZHO Ak

N h
RS

i=1 m=1
(39
2n2LdG2h n2d?L3p?h (6021 + 2p2L3)n%h
chLQ 2 C c c c c
HNhL TN 9NB N
) 6772Lh nch I 2, 67}c 12
S 19 182 + (e + g Nzlmzlue -6l

202LdG2h n2d*LPu’h N (602L + 212 L3)nh

NB 2NB N '
where (a) holds if and only if n. < 57, which means the term (p’L —
2B [[| & Soir, Sok_y Vf2.(82)]1?] is non-positive.

Finally, we substitute the bound on the client model divergence from Lemma[A.4]into the expression
for E;[C]. This gives us the following inequality:

6n2Lh nc NE 2,2 4 22 LdGZh mZd*LPp*h
< e
(602L + 2u2L3)nCh
N

<3h3773||vfc(9ﬁ)|2 +

+nehL?p® +

6n2L>
+ (neL? + nCT) X (40)

dGehtnz | ELw*htyz | (Gog + 262 L*)hn;
B AB 2 '

To simplify this complex expression, we collect the coefficients for the dominant term, ||V f.(6%)||?,
and the remaining bias terms. Let us define a helper variable « to consolidate terms originating from

the client drift bound:
6nzh L h?’L3

N
By grouping terms, the bound on E;[C] can be rewritten as:

L 2L2 2,2 2 2 2L2 2
Bl < ((6]\,]1 + 3a) 72 ”;h) IV LD +a <dGC”C piiwne , (Goo+ o)”0)

a=nh3L? + 41)

B iB 2
22LAG2h | 2d?LPh | (602L + 2’ LP)nzh

L2 2
neh L+ — g 9NB N

(42)
Under sufficiently small learning rate 7., the negative term —%"(|V f.(6¢)[|? will dominate the
other terms multiplying the squared gradient norm. Specifically, by setting conditions on 7. such

I

19

Under review as a conference paper at ICLR 2026

that:

6Lh h . .
(N + 3a> n? < T (e.g., satisfied if n. < O(4%)), 43)

we can simplify the bound on the gradient term to — % |V f.(8%)]]?. After collecting all remaining
bias and variance terms, we arrive at the final simplified bound:

h 6hLdG? 18hLo? d?L?hp® 13RL2p2
ElC] < - T VDI + 2 (P + T) o (T SR

NB + N 48B 12
where the left part is defined as ®.(.). O

A.3.2 PROOF OF THEOREM [4.3]

Now, we are ready to present the proof of the main theorem with the above lemmas. We denote the
global model parameters at round ¢ as 02 = {6, 6"}, and the local model parameters at client C; as

0;1_{6tl’ (1.7}

Local Model Update. According to the local update Eq. (gi "=V f; (6. &:))) at clients and
the aggregation at Fed Server, each communication round in Eq Bl we have:

t+1 t _pth gt __ T o tm
O — 0L =00" -0 = — Z DD (45)

Proof. First, we decompose the global model’s convergence behavior into client-side and server-
side contributions. Same as the Proposition 3.4 and 3.5 in/Han et al.[(2024), under Assumptions@,
we have:

E/[f(0571)] — f(6}) < Ey[C] + Ey[S] (46)

where C = Vf(00)" (6! —00) + 500 — 6|* and S = V £(00)T (6! —00) + 5|00+ — (]|
denote the contributions from the client-side and server-side models, respectively. E;[-] denotes the
expectation on all randomness up to round ¢.

Next, we analyze the contributions from the client-side and server-side models separately. Since we
have already bounded E,[C] in Lemma[A.4] we now focus on bounding [E;[S] Under our proposed
SFL framework, we decouple the parameter updates of the client-side and server-side models during
training by introducing auxiliary networks. From the server’s point of view, the smashed data it
receives can be regarded as the smashed data in the conventional, non-decoupled scenario, but with
its inputs subject to a distributional shift (Belilovsky et al.,[2020). The distribution of the smashed
data is shifted by the client-side model updates, which can be modeled as a local parameter bias.
This shift can be expressed as:

d ;= / 1P (=) — Pry(2) |d. “7)

Essentially, by modeling this shift, we capture the local parameter bias introduced by the client’s
updates and thereby integrate the update dynamics of both the client and server models into a unified
whole. For the server-side model, we have:

L
IS = B [V1.(60: 0276041 — 00)+ 6+ — 011

= (V/:(65:6%) B[00 — 0]]) + éE (ot —62)1] (48)
(a) . Lns ?
- st(es,e nSEt Z st sw) Et Z st S’H)

81 82
where (a) holds because of the update rule (Eq. E]) of the server-side model. At this part, we follow
the same steps as in [Mu & Shen| (2025)) to bound S; and S,. So with additional Assumption [@
based on the theoretical results of the server-side model, we can derive the following bound of E,[S]:

(@) N 7s(2N — 1)

L
BIS| S Gy dh = VO + NG 49)

20

Under review as a conference paper at ICLR 2026

Whichmeanstheterm(L s AR || SN V(051

where (a) holds if and only if n, < 7,

is non-positive.

Final Bound. Combining the bounds of E;[C] and E.[S], we have:

E:[C + S]
<= My o) + @une)
- 4 c\Ve c\lle (50)
1sG2 N ns(2N — 1) L
TN Doy i m T IVEOD I + NG

: r 2 N :
With 1. < min{s77, 57z 757 } We have:

15G?2 N
2N i=1 Gt (51)

E [£(0,)] <£(80) — [V (8] + @) +

J(2N —1 L
RN g e+ Do

By rearranging the terms, we have:

s(2N —1
@) + =22)\Ist(9§)||2Sf(at)—E[f(Gt“)]+<I>c(nc)
" @ NG ()
h ns(2N
— win(™ BN 10 502 Sf(Gt)—lE[f(Ht“)] e
PO S @ NG (oY)
0t —E [F(01)] + ®. (.)+ 2 N a2t LN2 2G2
||Vf(9§)||2 S f(g) [f(g)} (77h 22]\J]V211 1 sYe,i 77 (54)
min{ %", ns()}
Taking full expectation on both sides, and summing over ¢ from 1to T, we have:
; 12
min B [|V£(8)1]
f(6) — f(6;) S GEY dL FN*IGE
mm{mh n(2N 1)}T min{m (21\7)} mm{n‘h n(2N 1)} 55
1 6hLdG? 18hLo? dzLQhM 13h L2 pu?
min{ 2k 2:CN= 1>} NB N “\ 4B 12

2

]
3Lh’ NLR2' 72L} vt € [T].

with respect to 7. < min{——

We want the convergence rate to hold at the same level for both the client-side and server-side, so
first we set) = n.h/4 = (2N — 1)n,/4, then we can rewrite the above bound as:

. 2
min E IV £(64)]1%]

=1 ",
nT n n
1[, 6hLdG? 18hLo? d’L%hy? N 13hL2p?
¢ NB N ¢ 48B 12
NZ LdG? 3Lo?
GN 1) + 96(+)

T 10 | FOEDL dhy | ENECE

(56)

180 - 1) (smg
nl

hNB hN)

1 N d’L?p? 130242
—G? d:
+ N@2N-1) ¢ Zizl (12B 3)

21

Under review as a conference paper at ICLR 2026

then we should have

|hNB |INB hB

and uy = O(dhNBT)~ 7, and we can obtain the convergence rate as:

, - d 1
minE[IVI(6)I7] <0 < hNBT) +0 <V thBT) ' (58)

Then we complete the proof. O

A.4 PROOF OF THEOREM [4.7]

In this section, we consider the convergence behavior from the perspective of the language model
fine-tuning situation. Since the loss landscape of deep learning lies in a very low-dimensional sub-
space, where the Hessian of the loss has a remarkably low effective rank, we can leverage this
property to analyze the convergence rates more effectively.

Lemma A.6 (Client-side bound with low effective-rank). Under Assumption {.IH4.3| and [4.6]
drawing u} from the uniform distribution on the unit sphere with radius \Vd, it holds the contribution
from the client side:

2L2)
E[C] < - *IIVfc(G’t)IIz T(dJr 3)3 + n3L4u2d3
de +d—2\ 1
+n°L (1 + d—i—Q) N(UQ +G?%) (59)
dr+d—2\°
312 = =
e (d+2 >

Since we hold the same assumptions as the proof of Theorem 2 inLi et al.| (2024])), we use the results
of Equation (69) in this paper with characters adapted to our notation, which is given as follows:

272
BIC) < — T (000 + S @4 8)° 4 21t
(60)
ds+d—2 ‘ 1, ., 9
+77CL< 7552 (192601 + 0+ 62).

This is achieved by applying Young’s inequality. Let us first isolate the terms dependent on the
gradient norm from the right-hand side (RHS) of Eq.

de +d—2
d+2

where C; collects all terms that are independent of ||V f.(6%)]|:

de+d—-2\ 1
d+2) !

RHS <~ [V 1.0 + 2L (1 n) IV 1000 + Cu, 61)

o +G2).

2L2
O = Ws (d+3)%+ 2L 2d3+nCL<

We use Young’s inequality, which states that for any a,b > 0 and § > 0, we have ab < 5a2 + 35 < b2
We apply this to the linear gradient term in Eq. [61] by deﬁnlng

de +d—2
=nLll4+ ——,
@ (R) >

b= ne||V fe(62)]].
This application yields the following bound:

_ 5 _ 2
e (14 22 9 enl < g [net (14 52)] g e

d+2 d+2
Sn2L2 de+d—2\> 2 o

= ¢ 1 7(/ . .

5 L + 55 IV /e(60)]

(62)

22

Under review as a conference paper at ICLR 2026

Substituting the bound Eq. [62] back into our main expression, we can group the coefficients of the
IV fe(62)|* term:

. 272 dr+d—2\?
RHS < <—"+ >||Vfc(0t)||2+0 +5’72 <1+“;+2> . (63)

To simplify the coefficient of the squared gradient norm to a more convenient form, such as —"¢,
we select a specific value for the free parameter §. By setting the new coefficient to this target, we
solve for d:

= § = 217),.
Since the learning rate n. > 0, our choice 6 > 0 is valid. With 6 = 27, the new term arising

from Young’s inequality that is independent of the gradient becomes 73 L> (1 + d”;fQ 2) . By
substituting this result into Eq.[63] we obtain the simplified upper bound for E[C]. This final form is
advantageous for convergence analysis, as the negative squared gradient term is now clearly isolated

from other terms that are of a higher order in 7. or are related to statistical variance.

A.4.1 PROOF OF THEOREM [4.7]

Following the proof strategy of Theorem 1, the analysis can be naturally divided into two parts:
client-side optimization and server-side optimization. Now we are ready to prove Theorem

Proof. Combining the bounds of E, [C] from Lemmal[A.6|and E,[S] same as Eq.[49] we have:
EC+ S| =E[C + S]

< - *||vfc(0t)||2 +(I)/ 776) (64)
15G3 N t_’ls(QN—l) 2 o L2242
+ IN i=1 c,i 4 vas(es)n + QanGs
where @, is defined as:
?L? de+d—2Y\ 1
@, =T (d+3)° + 2L 2d3+77CL< Kd+2> (@ +G2)
(65)
g (1 ded=2 2
e d+2
With the same methods in proof of Theorem 4.1, we can have
0l —E [£(6+1)] + & (.)+ L N o2t LN2 22
||Vf(9§)||2§ f(g) [f(g)} (77 2N Zz 1 s¥e,n 775 S (66)

mm{m n(2N 1)}

Taking full expectation on both sides, and summing over ¢ from 1 to 7' (with Assumption .4), we
have:
’]

inE ot
min [IIVf(6y)

N
f6) ~ 161 FGIEL A LN
,min{%W}T min{%»w} min{%,%} (67)
CI’/(TIC)
. 7:N
min{ %, w}

23

Under review as a conference paper at ICLR 2026

We want the convergence rate can hold at the same level for both the client-side and server-side, so
first we set) = n./4 = (2N — 1)n,/4, then we can rewrite the above bound as:

. t\ 112
minE INCAIR

10— 567+

e
SLN2G2 W o 16L dk+d —2
——= 4+ 16L Sy =1+ —= 2 2
n[(QN—1)2+ 6L d + =5 (M)“’ +Gé>} (68)
dk+d—2\"
264 (14 ———=
T M

2G3 N p’L? 3
- [N(2N—) o deit 5 (d+3) } .
To achieve a more informative rate, we specify the structure of the dominant terms. In many feder-
ated learning analyses, the coefficient of the leading O(7) error term scales with key system param-
eters. Let us assume the dominant part of this coefficient is characterized by the condition number
K, the number of clients NV, and the average local data size B. We can thus define the coefficient of
the primary O(n) term as being of order O(x/(N B)).

Then we should have the learning rates set by balancing the O(1/(nT)) and the dominant O(n)
terms to optimize the bound. This balance, T%T ~ 15 yields n o< \/NB/(kT). We thus set:

INB NB B
77:O< M>7 770:0<\/;>7 778:0< NK?>7 (69)

Ve :)
andy < TNT @ we can obtain the convergence rate as:
1
inE[|VAO] <O (/= O(=)+Cerrs 70
min E (V6] < (NBT+)t (70)
where the O(1/T) term arises from the n? components of the bound, and C,.. =

2 272
% Né%_) A+ 2L (d + 3)3| is a constant error floor independent of T, indicating convergence

to a neighborhood of the optimum.

Then we complete the proof. O

24

Under review as a conference paper at ICLR 2026

B PseEubpo CobDE OF HERON-SFL

Algorithm 1 Hybrid Zeroth- and First-Order Optimization SFL (HERON-SFL)

Require: Client learning rate 7., Server learning rate n,, ZO radius p, local steps h, upload period
k
1: Server Initialization:
2: Initialize global model 8) = {62, 67} and auxiliary model 6
3: Fed-Server broadcasts 82, 69 to all clients
4: procedure CLIENTUPDATE(:, 6%, 0?)

500 0L« oL, 033 ~ 0
6: form=20,1,...,h—1do > Local Training Steps
7: Sample mini- batch &; and random direction u*™
8: Compute Af; by perturbatlng Ot = {92 moeh o} With £pub™
9: Estimate ZO gradients: gl T Vfl (01;6))
10: Update local models: Ot e+l — 0" —n.g Alt i
11: if(m+1)modk =0 then > Periodic upload every k& steps
12: Generate smashed data s; bm 02:;”“ (&;) and send to Main-Server
13: return 02 ?, 0t " to Fed-Server
14: fort =0,1,...,7 —1do > Main Training Loop (Global Rounds)
15: // — Phase 1: Parallel Client Training & Concurrent Server Updates —
16: for each clienti = 1,..., N in parallel do
17: Execute CLIENTUPDATE(i, 6%, 6?)
18: > Concurrently, server receives periodic client uploads
19: Main-Server collects all received data { s} from the round
20: Main-Server sequentially updates 8% using all received smashed data: 8:7* < updated 6

21: // — Phase 2: Federated Aggregation —

22: Fed-Server receives final local models {02 7, 0. h N
1 N t,F t, I

230 O« LYY gt and ottt LN bt

24: Fed-Server broadcasts 03*1 for the next round

C EXPERIMENTAL DETAILS

C.1 DETAILS OF THE OVERHEAD EVALUATION SETUP

Communication Cost Measurement. The client—server communication load is computed by mea-
suring the total number of bits transmitted during each local update step. For smashed-data up-
loads, we follow the definition in Table [[] and calculate the communication as the tensor size of the
smashed activations (i.e., the number of elements multiplied by the batch size) times the numerical
precision used in transmission (FP16 in all our experiments). For federated aggregation, we addi-
tionally account for the upload of the client-side and auxiliary model parameters, multiplied by the
same precision. The overall communication per update step is therefore the sum of (i) smashed-data
upload bits and (ii) model-parameter upload bits.

Client-Side Peak Footprint per Local Update Step. Peak FP for client-side model update is
measured using torch.cuda.max memory_allocated () during a single local client update,
capturing the maximum GPU allocation—including model parameters, optimizer states, inter-
mediate activations, and all temporary CUDA buffers—required by the update step. For FO
baselines (SFLV1/V2, CSE-FSL, FSL-SAGE), the peak occurs during backpropagation because all
layerwise activations of both the client model and the auxiliary network must be cached. In contrast,
HERON-SFL performs only forward evaluations for its ZO update, so no activations are stored, and
the perturbation direction is generated procedurally from a seed rather than stored as a full vector.

25

Under review as a conference paper at ICLR 2026

Client-Side Peak FLOPs per Local Update Step. To measure the peak FLOPs incurred by
the client during a single model-update step, we use PyTorch’s operator-level FLOP instrumenta-
tion, which records the floating-point operations executed by all CUDA kernels involved in for-
ward or backward computations. For first-order baselines (SFLV1/V2, CSE-FSL, FSL-SAGE), we
profile the entire forward-backward pipeline of the client-side model and auxiliary network using
torch.profiler.profile (), and sum all FLOP counts across recorded events. For HERON-
SFL, we profile the two forward evaluations required by the two-point ZO estimator, without any
backward operations. The peak FLOPs of the client step are computed as the sum of FLOPs from
two forward passes. All reported numbers represent FLOPs executed within one local update step
on a single client GPU.

D ADDITIONAL EXPERIMENTS

D.1 ABLATION STUDY ON HYPER-PARAMETERS OF SFL

87
90 i |
e e Ay
M 85
S b/}//?‘\“gz v & 8 S
< ¢ < —¥— SFLVI < f
g ss g 80 —— SFLV2 280
§ S 25 —®— CSE-FSL S
Sw ¥ SELVI 2 —A— FSL-SAGE 2 s —¥— SFLVI
7 —4— SFLV2 Z 70 HERON-SFL 7 —— SFLV2
€ —8— CSE-FSL & e —8— CSE-FSL
3 —A— FSL-SAGE P 70 —A— FSL-SAGE
HERON-SFL HERON-SFL
82 .
10 10' 10° 10° 10* T 30 100) 0.4 0.6 0.8 1.0
Dirichlet Number of Clients Fraction of Participants

(a) Effect of data heterogeneity. (b) Effect of the number of clients. (c) Effect of partial participation.

Figure 5: Test accuracy of different SFL algorithms on CIFAR-10 using a ResNet-18 model. (a)
Impact of data heterogeneity under varying Dirichlet o values. (b) Client scalability under different
total numbers of clients. (c) Performance under different fractions of participating clients per round.

D.1.1 EFFECT OF DATA HETEROGENEITY (NON-IID)

The impact of data heterogeneity is evaluated on CIFAR-10 using a ResNet-18 model with ten
clients under full participation. As shown in Figure[Sa] varying the Dirichlet concentration parameter
creates a broad range of non-IID conditions, yet HERON-SFL maintains accuracy comparable to
first-order SFL baselines across all levels of heterogeneity. The zeroth-order updates do not weaken
the model’s ability to handle distributional shifts, and the perturbation-induced noise remains well
controlled. These results indicate that HERON-SFL preserves the robustness to non-IID client data
that is characteristic of first-order SFL training.

Additionally, we further test the training accuracy on o = 0.1, an extremely heterogeneous setting
where client label distributions exhibit minimal overlap. Under this regime, all SFL variants fail
to converge, which aligns with findings in prior FL studies where such severe non-IID conditions
cause strong client drift and unstable global updates. Achieving stable training at o = 0.1 typically
requires dedicated mechanisms such as data sharing (Zhu et al.} |2021), gradient regularization (Li
et al.,|2020), or distribution alignment (Mahmud & Dividino} [2024)), none of which are incorporated
in standard SFL pipelines. A full investigation of these techniques falls outside the scope of this
work, and our study therefore focuses on the heterogeneity regimes commonly examined in the SFL
work (Nair et al., 2025). We emphasize that this failure mode is not caused by the use of zeroth-
order optimization: even first-order SFL baselines collapse under such extreme non-IID conditions,
consistent with prior FL findings.

D.1.2 EFFECT OF THE NUMBER OF CLIENTS

Scalability is examined by varying the total number of clients while keeping the dataset (CIFAR-
10), model architecture (ResNet-18), and full participation unchanged under an IID configuration.
As shown in Figure [Sb] HERON-SFL sustains nearly identical accuracy as the federation expands
from ten to one hundred clients, demonstrating that our HERON-SFL remains stable at larger scales.

26

Under review as a conference paper at ICLR 2026

D.1.3 EFFECT OF PARTIAL PARTICIPATION

Training performance under partial participation is assessed on CIFAR-10 with a ResNet-18 model
and 10 IID clients. As shown in Figure[5c, HERON-SFL maintains stable accuracy over a wide range
of participation ratios, including cases where only a small fraction of clients contributes updates in
each round. Its behavior closely matches that of first-order SFL baselines, indicating that partial
participation does not impair the convergence behavior of the zeroth-order client updates. These
findings confirm that HERON-SFL remains reliable even when participation is limited, a setting
commonly encountered in practical cross-device federated learning.

D.2 ABLATION STUDY ON HYPER-PARAMETERS OF ZO

90 90
./&\._—. g5 M
IS S
85 =80
Iy z
£ s
] 5 75
53 153
Q Q
< <
7% = 70
= D &
—&- Clienti5ize 1 65 —e— Client Size 1
Client Size 2 Client Size 2
75 5
10 107 10° 10! 60— 2 4 B 16
Perturbation Step Length u Perturbation Times Per Epoch
(a) Perturbation count: 2 per epoch. (b) u=0.01.

Figure 6: Ablation study on local zeroth-order training hyper-parameters using ResNet-18 on
CIFAR-10 under an IID setting with ten clients, with all experiments using the same auxiliary model
implemented as a single linear layer. Client Size 1 denotes the first convolutional layer and one
residual block on the client, while Client Size 2 places three residual blocks on the client. (a) Test
accuracy under different perturbation step lengths . (b) Test accuracy under different perturbation
counts per epoch.

As shown in Figure [f}, HERON-SFL exhibits stable performance across a wide range of zeroth-
order hyper-parameters, demonstrating robustness to both the perturbation step size and the number
of perturbations per epoch. When an appropriate step size u is selected, using only two perturbations
per epoch is sufficient to ensure reliable convergence, indicating that HERON-SFL does not suffer
from the instability often associated with zeroth-order optimization. Across both figures, Client Size
1 consistently achieves higher accuracy than Client Size 2 (align with the ablation experiments in
Figure), reflecting the expected increase in optimization difficulty when a larger portion of the
model is placed on the client. This mild degradation is acceptable in SFL settings because resource-
constrained devices typically hold only small client sub-models, while the majority of parameters
remain on the server for first-order training. Overall, the results confirm that HERON-SFL main-
tains strong accuracy under practical ZO configurations and remains reliable even when client-side
capacity varies.

D.3 EVIDENCE FOR LOW RANK ASSUMPTION

Given the prohibitive cost of full Hessian computation for LLMs, we validated the low-effective rank
assumption using a modified ResNet-18 (He et al.,|2016) on CIFAR-10. We estimated the Hessian
eigenvalue density via the stochastic Lanczos algorithm (Golub & Welsch, [1969), following the
methodology of |Ghorbani et al.| (2019). As shown in Figure [/| the resulting distribution, heavily
concentrated at zero, suggests that the low-rank structure is an intrinsic property of the optimization
landscape rather than a strong constraint. For empirical evidence of the low-rank assumption, the
same evidence can be seen in|L1 et al.|(2024) Appendix C.3.1.

This observation extends to the regime of LLMs, particularly during the fine-tuning phase. Recent
works, such as GaLore (Zhao et al.| [2024), have provided robust evidence that while pre-training
may necessitate high-rank updates, the weight modifications required for fine-tuning naturally reside
in a low-rank subspace. This intrinsic low-dimensionality is a critical factor explaining the success of
Zeroth-Order (ZO) optimization methods in this domain. It theoretically justifies why methods like

27

Under review as a conference paper at ICLR 2026

MeZO (Malladi et al., 2023)) can achieve competitive performance with memory-efficient, gradient-
free updates, as they effectively navigate this low-rank manifold.

10

Hessian Eigenvalue Density
S

10
10°F ‘
10*6 | | | | I 1 1 I I
0 500 1000 1500 2000
Eigenvalue

Figure 7: Hessian eigenvalue distribution with training custom ResNet on CIFAR-10 dataset.

E LLM USAGE STATEMENT

We acknowledge the use of a Large Language Model as a general-purpose assist tool in preparing
this paper. The LLM was used only for language assistance, including polishing grammar, improv-
ing clarity, and refining the flow of the text.

The research ideas, experiments, analyses, and conclusions presented in this work are solely the
result of the authors’ efforts. The LLM did not contribute to the design of experiments, development
of algorithms, data analysis, or any substantive scientific content.

28

	Introduction
	Related Work
	Algorithm Design
	SFL with auxiliary network
	Zeroth-Order Gradient Estimator
	Proposed Algorithm

	Convergence and Resource Consumption Analysis
	Convergence Analysis
	Client-side Resource Cost Analysis

	Experiments
	Experiment Setting
	Training from Scratch: ResNet18 on Cifar-10
	Language Model Fine-tuning
	Ablation Study of Local Model Complexity

	Conclusion
	Theoretical Proof
	Notations
	Lemmas for Zeroth-Order Optimization
	Proof of Theorem 4.5
	Preliminary Lemmas
	Proof of Theorem 4.5

	Proof of Theorem 4.7
	Proof of Theorem 4.7

	Pseudo Code of HERON-SFL
	Experimental Details
	Details of the Overhead Evaluation Setup

	Additional Experiments
	Ablation Study on Hyper-parameters of SFL
	Effect of Data Heterogeneity (Non-IID)
	Effect of the Number of Clients
	Effect of Partial Participation

	Ablation Study on Hyper-parameters of ZO
	Evidence for Low Rank Assumption

	LLM Usage Statement

