

000 001 LEAN CLIENTS, FULL ACCURACY: HYBRID ZEROTH- 002 AND FIRST-ORDER SPLIT FEDERATED LEARNING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 Split Federated Learning (SFL) enables collaborative training between resource-
012 constrained edge devices and a compute-rich server by partitioning deep neural
013 networks. Communication overhead is a central issue in SFL and is well mitigated
014 with auxiliary networks; yet the core client-side computation challenge remains,
015 as back-propagation requires substantial memory and computation costs, severely
016 limiting the scale of models that edge devices can support. To make the client side
017 more resource-efficient, we propose HERON-SFL, a novel hybrid optimization
018 framework that integrates zeroth-order (ZO) optimization for local client training
019 while retaining first-order (FO) optimization on the server. With the assistance
020 of auxiliary networks, ZO updates enable clients to approximate local gradients
021 using perturbed forward-only evaluations per step, eliminating memory-intensive
022 activation caching and avoiding explicit gradient computation in the traditional
023 training process. Leveraging the low effective rank assumption, we theoretically
024 prove that HERON-SFL’s convergence rate is independent of model dimensionality,
025 addressing a key scalability concern common to ZO algorithms. Empirically,
026 on ResNet training and large language model (LLM) fine-tuning tasks, HERON-
027 SFL matches benchmark accuracy while reducing client peak memory by up to
028 64% and client-side compute cost by up to 33% per step, substantially expanding
029 the range of models that can be trained or adapted on resource-limited devices.
030

031 1 INTRODUCTION 032

033 Split Federated Learning (SFL) (Thapa et al., 2022; 2021) targets scenarios with resource-
034 constrained clients and compute-rich servers. Under the SFL framework, the full network is cut
035 into client-side and server-side sub-models: each client runs a forward pass up to the cut layer and
036 uploads the intermediate activations; the main server completes the forward pass, computes the loss,
037 back-propagates to the cut layer, and returns the gradients so the client can update its sub-model. In
038 parallel, the federated server (Fed Server) periodically aggregates the clients’ weight updates in a
039 federated way, enabling large-scale training that exploits cloud compute while keeping all raw data
040 on-device. However, the update lock (Belilovsky et al., 2020; 2019) imposed by back-propagation
041 means that, at every iteration, each client must idle until the server finishes its backward pass and
042 transmits the cut-layer gradients. This synchronization bottleneck both throttles overall training
043 throughput and amplifies communication overhead in SFL.

044 To mitigate this bottleneck, recent work equips each client with an auxiliary network (typically
045 a lightweight output layer) that estimates the cut-layer gradients locally (Mu & Shen, 2025; Han
046 et al., 2021; Oh et al., 2022). This design decouples the client from the server, allowing the client
047 sub-model to update immediately without waiting for the server’s backward pass, thereby drastically
048 reducing communication overhead and granting extra degrees of freedom for client-side optimization.
049 Previous works show that auxiliary-network SFL not only cuts communication volume by a
050 wide margin but also achieves higher convergence accuracy than the traditional methods (Mu &
051 Shen, 2025; Nair et al., 2025). However, as current approaches take advantage of the auxiliary
052 module as a communication shortcut, they often overlook the significant computational and storage
053 burden it imposes on edge devices. This overhead is primarily driven by the conventional first-order
(FO) optimization process, where backpropagation and gradient computation impose prohibitive
compute and memory demands on edge devices.

054 Zeroth-order (ZO) optimization provides an appealing alternative. Unlike FO methods, ZO estimates
 055 gradients through parameter perturbations and forward-only evaluations, bringing the computational
 056 and storage overhead to a level comparable to those of inference (Malladi et al., 2023). This property
 057 suggests that ZO could substantially reduce the client-side burden in SFL. However, ZO optimization
 058 is known to suffer from biased gradient estimates and slower convergence compared to FO methods
 059 (Qiu et al., 2023), thereby raising an open question:

060 *Can ZO methods be effectively integrated into SFL to reduce client-side computation and storage
 061 without sacrificing accuracy or convergence guarantees?*

062 We answer this question affirmatively by proposing HERON-SFL, a novel Hybrid zEroth- and fIRst-
 063 Order optimizatioN framework for SFL. In HERON-SFL, clients replace conventional FO gradient
 064 computation with lightweight ZO updates, applied to the local model (comprising the client-side
 065 and auxiliary networks). This design eliminates the need for backpropagation and caching, enabling
 066 edge devices to operate with markedly reduced memory and compute budgets. Importantly, clients
 067 transmit only the smashed activations required for the server-side FO training, while the server
 068 performs standard updates on its own partition of the model.

069 Our main contributions are summarized as follows:

- 070 • We propose HERON-SFL, a novel hybrid zeroth- and first-order SFL framework. Building upon
 071 an auxiliary network that enables decoupled local training, we introduce zeroth-order (ZO) op-
 072 timization on the client side. This eliminates the need for backpropagation for local updates,
 073 thereby significantly reducing on-device memory and computational costs.
- 074 • We provide the first theoretical study of hybrid ZO–FO optimization in SFL. Our analysis shows
 075 that under a low effective rank assumption, HERON-SFL achieves an $\mathcal{O}(1/\sqrt{T})$ convergence rate,
 076 which matches that of standard FO approaches. This result shows that the usual ZO slowdown
 077 can be alleviated under the proposed hybrid structure and assumptions, yielding a convergence
 078 rate comparable to FO methods.
- 079 • We conduct comprehensive experiments spanning both vision (ResNet training) and language
 080 (LLM fine-tuning) tasks. Results show that HERON-SFL consistently reduces client peak mem-
 081 ory by up to 64% and client computation per step by up to 33%, while matching the accuracy of
 082 state-of-the-art, auxiliary-network-based FO SFL methods. These gains highlight HERON-SFL’s
 083 practical potential for deploying advanced models on previously infeasible devices.

086 2 RELATED WORK

087 **Split Federated Learning.** While modern foundation models achieve state-of-the-art performance
 088 (Brown et al., 2020; Chowdhery et al., 2023), their immense computational and memory require-
 089 ments restrict them to data centers, limiting their real-world reach (Luo et al., 2024; Sani et al.,
 090 2024). To bring large language models onto edge devices, SFL was proposed by merging Feder-
 091 ated Learning (FL) (McMahan et al., 2017) with Split Learning (SL) (Vepakomma et al., 2018) to
 092 enhance data privacy and robustness (Thapa et al., 2022; Lee et al., 2024). However, SFL remains
 093 constrained by the SL training paradigm, leading to prohibitive communication overhead and a syn-
 094 chronous update lock, as clients must await gradients from the server before updating (Kairouz et al.,
 095 2021; Vepakomma et al., 2018). To mitigate these bottlenecks, recent research has primarily pursued
 096 two complementary directions: system-level optimization and algorithmic decoupling.

097 *System-level optimization* aims to adapt the SFL protocol to the constraints of edge networks. This
 098 includes methods for adaptive model splitting based on network conditions (Lin et al., 2024b), hier-
 099 archical topologies to manage client resources (Lin et al., 2025), parallel training designs optimized
 100 for wireless networks (Wu et al., 2023), and dynamic resource-based tiers to speed up FL/SFL train-
 101 ing under heterogeneous environments Mohammadabadi et al. (2024). Underpinning these practical
 102 advances, recent theoretical work has also focused on providing formal convergence guarantees for
 103 SFL, particularly under realistic conditions such as data heterogeneity (Han et al., 2024; Li & Lyu,
 104 2023).

105 *Algorithmic decoupling* aims to eliminate the synchronous lock by incorporating a client-side aux-
 106 illiary model to decouple client and server updates by generating local gradient estimates, thereby
 107 obviating the need for server-to-client gradient transmission (Han et al., 2021; Mu & Shen, 2025;

108 Oh et al., 2022; Nair et al., 2025). Inspired by decoupled training (Belilovsky et al., 2020; 2019) in
 109 centralized settings, this strategy can nearly halve communication costs. Despite their demonstrated
 110 efficacy, these auxiliary models introduce a significant trade-off: a substantial increase in the client’s
 111 computational and memory footprint, as the auxiliary network can be considerably larger than the
 112 primary client-side model itself (Nair et al., 2025). Group Knowledge Transfer (He et al., 2020)
 113 is another relevant approach that transfers logits from client-side auxiliary models to the server via
 114 knowledge distillation (Hinton et al., 2015), although it differs from SFL in formulation and training
 115 objective.

116 **Zeroth-Order Optimization for Distributed Machine Learning.** ZO optimization estimates gra-
 117 dients through function evaluations (Liu et al., 2020), making it particularly useful when explicit
 118 gradients are unavailable, such as in reinforcement learning (Nakashima & Kobayashi, 2025; Lei
 119 et al., 2022; Zhang & Ying, 2024) and privacy-sensitive scenarios (Chen et al., 2017; Liu et al.,
 120 2018; 2019). Recently, ZO has gained attention as an efficient strategy for training (Chen et al.,
 121 2024) and fine-tuning (Malladi et al., 2023), since it avoids back-propagation’s memory and com-
 122 pute overhead. In distributed machine learning, ZO has been explored as a gradient estimator in
 123 FL, demonstrating promising benefits in privacy preservation (Zhang et al., 2021; Fang et al., 2022;
 124 Ling et al., 2024) and communication reduction (Li et al., 2024). However, its adoption in the SFL
 125 framework remains limited. The main barrier is that variance reduction in ZO requires multiple
 126 perturbations, which would substantially increase intermediate activation transmissions and thus
 127 communication overhead. To address this, we *restrict ZO to the client side* with the help of auxiliary
 128 networks, enabling resource-efficient training while avoiding additional communication costs.
 129

130 3 ALGORITHM DESIGN

132 3.1 SFL WITH AUXILIARY NETWORK

134 We consider an SFL system with one server and N clients, each holding a private dataset \mathcal{D}_i , where
 135 the entire dataset is the set $\{\mathcal{D}_i\}_{i=1}^N$. The global model is split at a cut layer into client- and server-
 136 side sub-models, where we denote the collection of parameters as $\boldsymbol{\theta}_g = \{\boldsymbol{\theta}_c, \boldsymbol{\theta}_s\}$. Each client i owns
 137 a local version of the client-side model, $\boldsymbol{\theta}_{c,i}$. For a sample $\xi_{i,j} \in \mathcal{D}_i$, client i performs a forward pass
 138 up to the cut layer to produce the smashed data, $s_i = \boldsymbol{\theta}_{c,i}(\xi_{i,j})$, and uploads it to the main server.
 139 The server then completes the forward pass by processing these activations with its sub-model $\boldsymbol{\theta}_s$.
 140 The goal is to minimize the global loss function:

$$142 \min_{\boldsymbol{\theta}_c, \boldsymbol{\theta}_s} f(\boldsymbol{\theta}_g) = \frac{1}{N} \sum_{i=1}^N f_i(\boldsymbol{\theta}_g) = \frac{1}{N} \sum_{i=1}^N \mathbb{E}_{\xi_{i,j} \sim \mathcal{D}_i} [\ell(\boldsymbol{\theta}_g; \xi_{i,j})], \quad (1)$$

145 where $f_i(\boldsymbol{\theta}_g)$ and $f(\boldsymbol{\theta}_g)$ measure the expected loss on the global model over client i ’s local dataset
 146 \mathcal{D}_i and the entire dataset, respectively, computed using a task-specific loss function $\ell(\cdot)$ (e.g., cross-
 147 entropy).

148 We adopt the SFLV2 style framework: a single server-side model $\boldsymbol{\theta}_s$ resides on the main server
 149 and is trained by sequentially processing smashed data s_i from all clients, while a Fed-Server ag-
 150gregates client-side parameters into the average $\bar{\boldsymbol{\theta}}_c := \frac{1}{N} \sum_i \boldsymbol{\theta}_{c,i}$ (initial parameters for the next
 151 round). To reduce communication overhead and enable client-side local feedback, each client i at-
 152 taches an auxiliary (Aux) model $\boldsymbol{\theta}_{a,i}$ to form a local predictor $\boldsymbol{\theta}_{l,i}(\xi_{i,j}) = \boldsymbol{\theta}_{a,i}(\boldsymbol{\theta}_{c,i}(\xi_{i,j}))$, where
 153 $\boldsymbol{\theta}_{l,i} = \{\boldsymbol{\theta}_{c,i}, \boldsymbol{\theta}_{a,i}\}$ (Mu & Shen, 2025; Oh et al., 2022). Because of the Aux model, the SFL system
 154 breaks the *training lock* between $\boldsymbol{\theta}_c$ and $\boldsymbol{\theta}_s$: by leveraging $\boldsymbol{\theta}_a$, the client can perform local updates
 155 independently of server-side gradient feedback.

156 After initializing the global model $\{\boldsymbol{\theta}_c, \boldsymbol{\theta}_s\}$, the basic SFL-Aux algorithm proceeds: in each round,
 157 client i computes smashed data $s_i = \boldsymbol{\theta}_{c,i}(\xi_i)$ on local mini-batches $\xi_i = \{\xi_{i,j}\}_{j=1}^B$ and uploads them
 158 to the Main-Server, while updating $\boldsymbol{\theta}_{l,i}$ by minimizing a local loss from $\boldsymbol{\theta}_{a,i}(s_i)$, with backpropaga-
 159 tion confined to the client. The Main-Server queues smashed data from all clients and sequentially
 160 executes forward/backward passes to update $\boldsymbol{\theta}_s$. After a fixed number of local steps, the Fed-Server
 161 aggregates all participated $\boldsymbol{\theta}_{l,i}$ (e.g., via weighted averaging like FedAvg (McMahan et al., 2017))
 and broadcasts updated global model $\bar{\boldsymbol{\theta}}_l$ to all clients to initiate the next round.

162 3.2 ZEROTH-ORDER GRADIENT ESTIMATOR
163

164 Unlike prior methods that rely on full forward and backward passes through the client and its aux-
165 iliary network to compute first-order gradients $\nabla \ell(\theta_l; \xi_i)$, we adopt a mini-batch-type stochastic
166 gradient estimator with two-point evaluation. Specifically, for function $f_{l,i}$, the two-point type
167 stochastic ZO gradient estimator is defined as:

$$168 \hat{\nabla} f_{l,i}(\theta_l; \xi_i) = \frac{1}{B} \sum_{j=1}^B \frac{d\mathbf{u}}{\mu} [\ell_{l,i}(\theta_l + \mu \mathbf{u}; \xi_{i,j}) - \ell_{l,i}(\theta_l; \xi_{i,j})], \quad (2)$$

172 where \mathbf{u} is a random vector drawn from either a Gaussian or a Uniform ball distribution, μ is
173 a positive perturbation step size. This estimator approximates the smoothed objective function's
174 gradient. Formally, it can be shown that this estimator is an unbiased estimate of $\nabla f_{l,i}^\mu(\theta_l)$, where
175 $f_{l,i}^\mu$ is the Gaussian-smoothed surrogate of the original function $f_{l,i}$. The bias with respect to the
176 true gradient $\nabla f_{l,i}$ is therefore introduced by the smoothing process itself and is controlled by
177 the parameter μ . We defer the formal definition of the smoothed function and its properties to
178 Appendix A.2.

179 3.3 PROPOSED ALGORITHM
180

181 We now summarize the end-to-end training pro-
182 cess of our proposed framework, which op-
183 erates over a series of communication rounds
184 (high-level illustration depicted in Figure 1).
185 Each round, indexed by t , encompasses four
186 key stages: model initialization, local client
187 computation, server-side updates, and local
188 model aggregation in Fed Server. The entire
189 process is formalized as follows:

190 **1. Model Initialization.** At the start of the t -
191 th communication round, the Fed-Server broad-
192 casts the global model parameters θ_c^t and θ_a^t
193 that are resulted from the federated aggregation
194 at the end of last round. Upon receiving these
195 parameters, each client i initializes its local models
for the subsequent update process: $\theta_{l,i}^{t,0} = \{\theta_{c,i}^{t,0}, \theta_{a,i}^{t,0}\} = \{\theta_c^t, \theta_a^t\}$.

196 **2. Local Model Update and Smashed Data Upload.** The client then proceeds with h local model
197 updates. During this process, the update of the client-side model is decoupled from the server-side
198 model by leveraging an auxiliary network. Distinct from existing methods, our paradigm employs a
199 ZO gradient estimator (defined in Eq. 2) to approximate the gradients of a local loss function. This
200 allows the client to perform timely updates without requiring traditional back-propagation from the
201 server. After performing h local gradient descent steps, the cumulative update for the client-side
202 models can be concisely written as:

$$203 \theta_{l,i}^{t,h} = \theta_{l,i}^{t,0} - \eta_l \sum_{m=1}^h \hat{\nabla} f_{l,i}(\theta_{l,i}^{t,m}; \xi_i) \quad (3)$$

206 During the local update phase, the client uploads its smashed data to the server every k local steps
207 for the subsequent server-side training phase.

208 **3. Server Model Update.** The server receives the smashed data from each client i and performs
209 model updates sequentially using an SFLV2 (Thapa et al., 2022) training scheme. In this setting,
210 each client's smashed data is processed one-by-one, and standard first-order optimization based on
211 forward and backward propagation is used to estimate gradients and update the server-side model
212 parameters θ_s^t accordingly:

$$213 \theta_s^{t+1} = \theta_s^t - \eta_s \sum_{i=1}^N \frac{1}{|\mathcal{D}_i|} \sum_{\xi_i \in \mathcal{D}_i} \nabla \ell(\theta_s^t; \theta_{c,i}^t(\xi_i)), \quad (4)$$

215 where $\nabla_{\theta_s} \ell(\theta_s^t; \theta_{c,i}^t(\xi_i))$ is the real gradient of the server-side loss function using back propagation.

216 **4. Model Aggregation in Fed Server.** Upon completion of the h local updates, each client transmits
 217 its updated local parameters $\theta_{l,i}^{t,h}$ to the fed server for aggregation. The fed server averages these
 218 parameters across all N clients to compute the global model combined by client-side and auxiliary
 219 models for the next round:
 220

$$\theta_l^{t+1} = \bar{\theta}_l^t = \frac{1}{N} \sum_{i=1}^N \theta_{l,i}^{t,h} \quad (5)$$

222 The server-side model, θ_s^{t+1} , which was updated sequentially during the round, is already finalized
 223 and requires no aggregation. Finally, the new global model $\theta_g^{t+1} = \{\theta_c^{t+1}, \theta_s^{t+1}\}$ is assembled and
 224 prepared for distribution in the subsequent communication round.
 225

226 In essence, HERON-SFL replaces the clients' local updates in standard SFL with updates driven by
 227 a ZO gradient estimator, while retaining client-side auxiliary networks to guide local learning. This
 228 design eliminates the need for explicit backpropagation on resource-constrained devices: clients
 229 only perform a small number of forward computations and randomized probes to update parameters,
 230 substantially reducing compute and memory demands. Clients periodically upload smashed
 231 data (every h local steps) to supply the server with the activations required for its independent FO
 232 training on the server-side model. A critical concern, however, is that ZO optimization is often as-
 233 sociated with slow convergence. In the following sections, we will demonstrate both theoretically
 234 and empirically that HERON-SFL overcomes this potential challenge within the SFL framework.
 235

4 CONVERGENCE AND RESOURCE CONSUMPTION ANALYSIS

4.1 CONVERGENCE ANALYSIS

239 In this section, we provide a formal convergence analysis to establish the theoretical guarantees
 240 for the proposed FSL-HERON framework. For the sake of clarity and conciseness, the detailed
 241 mathematical proofs are deferred to Appendix A. The theoretical framework is built upon the fol-
 242 lowing standard assumptions, which are widely adopted in the analysis of distributed optimization
 243 algorithms (Karimireddy et al., 2020; Reddi et al., 2020; Mu & Shen, 2025; Fang et al., 2022).

244 **Assumption 4.1 (L-smoothness).** *The loss functions of clients and server are L -smooth. Mathe-
 245 matically, for any $\mathbf{x} \in \mathbb{R}^d$ and $\mathbf{y} \in \mathbb{R}^d$, the following holds:*
 246

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \leq L\|\mathbf{x} - \mathbf{y}\|, \quad f(\mathbf{y}) \leq f(\mathbf{x}) + \nabla f(\mathbf{x})^T(\mathbf{y} - \mathbf{x}) + \frac{L}{2}\|\mathbf{y} - \mathbf{x}\|^2, \quad (6)$$

247 where f is the loss function, and L is the Lipschitz constant.
 248

250 **Assumption 4.2 (Bounded gradients).** *The gradients of the local loss function $\ell_i(\theta_c, \theta_s)$ are
 251 bounded, i.e., there exists a constant G such that:*

$$\|\nabla_{\theta_c} \ell_i(\theta_c)\|^2 \leq G_c^2, \quad \|\nabla_{\theta_s} \ell_i(\theta_s)\|^2 \leq G_s^2. \quad (7)$$

254 **Assumption 4.3 (Bounded variance).** *The variance of the zeroth-order gradient estimator is
 255 bounded, i.e., there exists a constant σ^2 such that:*

$$\mathbb{E}[\|\hat{g}_{c,i}^{t,m} - \nabla_{\theta_c} \ell_i(\theta_c, \theta_s)\|^2] \leq \sigma^2. \quad (8)$$

258 **Assumption 4.4 (Convergence of client sub-model).** *For each client i at global round t , let
 259 $z_{c,i}^t = g_{x_{c,i}^t, h}(z)$ be the output of the i -th client-side model (with input determined by $x_{c,i}^t$ and \mathcal{D}_i),
 260 and denote by $P_{c,i}^t(z)$ its output distribution. Let $P_{c,i}^*(z)$ be the reference (time-invariant) output
 261 distribution of the i -th client-side model evaluated at x_c^* and \mathcal{D}_i . Define the distribution distance
 262*

$$d_{c,i}^t := \int_{\mathcal{Z}} |P_{c,i}^t(z) - P_{c,i}^*(z)| dz, \quad (9)$$

263 *i.e. the L_1 (total-variation) distance between $P_{c,i}^t$ and $P_{c,i}^*$. We assume that the aggregate drift
 264 across clients is uniformly bounded as follows:*

$$\frac{1}{T} \sum_{t=1}^T \sum_{i=1}^N d_{c,i}^t \leq \delta, \quad \text{and } \delta < \infty. \quad (10)$$

270 **Remark 1** Together, the Assumptions above ensure a well-behaved optimization environment.
 271 Assumption 4.1 guarantees Lipschitz-continuous gradients and provides the usual quadratic upper
 272 bound used in descent arguments; Assumption 4.2 prevents arbitrarily large client/server updates
 273 and thus promotes numerical stability; and Assumption 4.3 limits the stochastic error between
 274 the estimator and the true gradient. Assumption 4.4 is tailored to the auxiliary-network-assisted
 275 FSL setting, as also adopted in Mu & Shen (2025) and motivated by centralized synthetic-gradient
 276 frameworks (Belilovsky et al., 2020). This condition is essential for guaranteeing the stability and
 277 convergence of the SFL process under local gradient updates.

278 **Theorem 4.5 (Convergence rate of HERON-SFL in i.i.d. setting).** *Under Assumptions 4.1–4.4, if
 279 the client learning rate satisfies $\eta_c \leq \{\frac{1}{3Lh}, \frac{2}{NLh^2}, \frac{N}{72L}\}$, and is chosen as $\eta_c = \mathcal{O}(\sqrt{(NB)/(dhT)})$
 280 while the server learning rate is set to $\eta_s = \mathcal{O}(\sqrt{(hB)/(dNT)})$, and perturbation step size is set
 281 to $\mu = \mathcal{O}(1/(dhNBT)^{1/4})$. The convergence rate of the HERON-SFL algorithm can be guaranteed
 282 as:*

$$\min_{t \in [T]} \mathbb{E} [\|\nabla f(\theta_g^t)\|^2] \leq \mathcal{O} \left(\sqrt{\frac{d}{hNBT}} \right) + \mathcal{O} \left(\sqrt{\frac{1}{dhNBT}} \right). \quad (11)$$

286 **Remark 2** The derived bounds on the expected gradient norm indicate that the algorithm can
 287 achieve a favorable trade-off between the model complexity (characterized by the dimensionality d)
 288 and the training batchsize (captured by B) over the training horizon T . The bound is dominated
 289 by $\mathcal{O}(\sqrt{d/(hNBT)})$ (the second term is smaller by $1/\sqrt{d}$). Thus, larger N or B linearly reduces
 290 the required rounds; increasing local steps h improves the rate as $1/\sqrt{h}$, trading fewer communica-
 291 tion rounds for more local computation. The dependence on model size is \sqrt{d} (or d in sample
 292 complexity), which is the drawback of ZO optimization: convergence degrades with increasing di-
 293 mensionality. Below, we show that the dependency on d can be reduced under structural assumptions
 294 on an effective dimension.

295 **Assumption 4.6 (Low κ -Effective Rank).** *Let $G_t \triangleq \max_{i, \xi_i \in \mathcal{D}_i} \|\nabla_{\theta_l} l_i(\theta_{l,i}^t; \xi_i)\|$. There exists a
 296 Hessian matrix $H_l(\theta_{l,i}^t) \preceq L \cdot I_{d_l}$ such that:*

- For all θ_l such that $\|\theta_l - \theta_{l,i}^t\| \leq 2\eta_c d_l G_t$, we have $\nabla^2 l_i(\theta_l) \preceq H_l(\theta_{l,i}^t)$.
- The effective rank of $H_l(\theta_{l,i}^t)$, i.e., $\frac{\text{tr}(H_l(\theta_{l,i}^t))}{\|H_l(\theta_{l,i}^t)\|_2}$, is at most κ .

300 **Theorem 4.7 (Convergence Rate of HERON-SFL with Low Effective Rank Assumption).**
 301 Under Assumptions 4.1–4.6, if the client learning rate satisfies $\eta_c \leq \frac{1}{4L}(1 + \frac{d\kappa+d-2}{d+2})$ and
 302 $\mu \leq \frac{\sqrt{\kappa}}{\sqrt{NT}\sqrt{(d+3)^3}}$, and is chosen as $\eta_c = \mathcal{O}(\sqrt{(NB)/(NT)})$ while the server learning rate is
 303 set to $\eta_s = \mathcal{O}(\sqrt{B/(NT)})$. The convergence rate of the HERON-SFL algorithm can be guaran-
 304 teed as:

$$\min_{t \in [T]} \mathbb{E} [\|\nabla f(\theta_g^t)\|^2] \leq \mathcal{O} \left(\sqrt{\frac{\kappa}{NBT}} \right) + \mathcal{O} \left(\frac{1}{T} \right) + \frac{2}{\delta} \left[\frac{2G_s^2}{N(2N-1)} \Delta + \frac{\mu^2 L^2}{2} (d+3)^3 \right]. \quad (12)$$

309 **Remark 3** With the prescribed μ , the smoothing bias term $\propto \mu^2(d+3)^3$ is at most $\mathcal{O}(\sqrt{\kappa/(NT)})$
 310 and the drift term vanishes in the i.i.d. case ($\Delta = 0$), so the bound simplifies to $\mathcal{O}(\sqrt{\kappa/(NBT)}) +$
 311 $\mathcal{O}(1/T)$, which is independent with the model dimension d , removing the usual \sqrt{d} degradation of
 312 ZO methods and matching the $1/\sqrt{T}$ rate of FO SFL (Mu & Shen, 2025; Nair et al., 2025) up to
 313 condition number κ factors.

315 4.2 CLIENT-SIDE RESOURCE COST ANALYSIS

318 The following analysis, summarized in Table 1, compares the per-client resource consumption for a
 319 single parameter update step on a fixed-size batch of data, assuming all other hyperparameters are
 320 held constant. Let p be the data size of one local batch, q be the size of the smashed layer, and $|\theta_c|$,
 321 $|\theta_a|$ be the size of the client-side and auxiliary models, respectively.

322 **Communication Load.** The primary communication advantage of decoupled frameworks (CSE-
 323 FSL, FSL-SAGE, and HERON-SFL) over traditional SFL (SFLV1/V2) stems from the elimination
 324 of the server-to-client gradient download. While traditional SFL requires a two-way intermediate

324
325
326 Table 1: Client-Side Resource Costs per Local Update.
327
328
329
330
331

Method	Comms. per Client	Peak Memory	FLOPs
SFLV1/V2	$2pq + 2 \theta_c $	$\mathcal{O}(\theta_c)$	$3F_c$
CSE-FSL / FSL-SAGE	$pq + 2(\theta_c + \theta_a)$	$\mathcal{O}(\theta_c + \theta_a)$	$3(F_c + F_a)$
HERON-SFL	$pq + 2(\theta_c + \theta_a)$	$\mathcal{O}(1)$	$n_p(F_c + F_a)$

332
333
334 data exchange for each batch (represented by the term $2pq$), decoupled methods perform only a
335 one-way upload, halving this cost to pq . The trade-off for this gain is the added cost of exchanging
336 the auxiliary model parameters, $|\theta_a|$. Nevertheless, this parameter exchange typically represents a
337 minor communication burden relative to the transmission of smashed data.

338 **Peak Memory.** FO frameworks like SFLV1/V2 and CSE-FSL require caching intermediate activations
339 for backpropagation. This results in a peak memory footprint that scales with the size of the
340 locally trained models, i.e., $\mathcal{O}(|\theta_c|)$ and $\mathcal{O}(|\theta_c| + |\theta_a|)$ respectively. This overhead can be an order
341 of magnitude larger than that of inference (Griewank & Walther, 2008). In contrast, the ZO-based
342 HERON-SFL obviates activation caching, reducing its peak memory to $\mathcal{O}(1)$, which is equivalent
343 to that of inference (Malladi et al., 2023).

344 **Remark 4** Local ZO updates are highly memory-efficient for two primary reasons. First, they
345 eliminate the need for backpropagation, thus avoiding the high cost of caching intermediate activations.
346 Second, the perturbed parameters u generated in the calculation $\hat{\nabla} f_{l,i}(\theta_l; \xi_i)$ do not require
347 storing the full perturbation vector; instead, the vector can be procedurally generated from a single
348 random seed and applied in-place, further minimizing memory overhead.

349 **FLOPs.** Assuming a backward pass is twice as computationally expensive as a forward pass (F)
350 (Chen et al., 2016), first-order methods incur a cost of approximately $3F_c$ (for SFLV1/V2) or $3(F_c +$
351 $F_a)$ (for CSE-SFL and FSL-SAGE) per update, where F_c and F_a are the forward pass costs of the
352 client and auxiliary models, respectively. In contrast, HERON-SFL performs ZO updates directly
353 on the client, similar to the approach in MeZO (Malladi et al., 2023). In practice, a standard two-
354 point ZO estimator is typically sufficient for stable and effective parameter updates, requiring a
355 computational cost of $2(F_c + F_a)$ in HERON-SFL.

356
357

5 EXPERIMENTS

358
359

5.1 EXPERIMENT SETTING

360 In this section, we conduct experiments on both model training and fine-tuning to show the performance
361 of our proposed HERON-SFL algorithm¹. For comparison, we use the following baseline
362 methods: SFLV1/V2 (Thapa et al., 2022) or SplitLoRA (Lin et al., 2024a)², CSE-FSL (Mu & Shen,
363 2025), and FSL-SAGE (Nair et al., 2025). We conduct the experiments under two complementary
364 training paradigms, implementing all models in PyTorch and running them on NVIDIA RTX A6000
365 NVL GPU (48 GB):

366 **Full Training from Scratch.** We study the convergence of ResNet-18 (He et al., 2016) under SFL
367 on CIFAR-10 (Krizhevsky et al., 2009) with 5 clients. The model is split after the second 2-D
368 BatchNorm layer; the client holds the front part while the server holds the back part. An auxiliary
369 head consisting of a single fully connected layer is attached to the cut layer. Unless otherwise stated,
370 we adopt the hyperparameters in Thapa et al. (2022): batch size 256 and Adam optimizers on both
371 sides with a learning rate of $1e-4$.

372
373 ¹Our source code is available at <https://anonymous.4open.science/r/HERON-SFL-BB31/>.
374

375 ²While SFLV1/V2 are designed for the training-from-scratch paradigm, our focus on the distinct task of
376 language fine-tuning led to the development of SplitLoRA, which integrates LoRA with the SFLV2 frame-
377 work. We omit a comparison with an SFLV1-based approach because its need for multiple server models is
378 computationally prohibitive for large-scale models.

378 **Language Model Fine-tuning.** We fine-tune GPT2-Small and GPT2-Medium (Radford et al., 2021)
 379 on the E2E dataset Novikova et al. (2017) with 3 clients. Unless specified otherwise, for GPT2-
 380 Small, the model is split after the third transformer block, with an auxiliary network consisting of
 381 one transformer block and the unembedding layer. For GPT2-Medium, the split occurs after the sixth
 382 block, with a three-block auxiliary network plus the unembedding layer. As the auxiliary network
 383 is not pre-trained, we initialize its parameters by copying the weights from the initial blocks of the
 384 server-side model. All components are fine-tuned using Low-Rank Adaptation (LoRA) (Hu et al.,
 385 2022), where only adapters of rank 8 are updated and all other parameters are frozen.

386 The former setting evaluates whether SFL can train a model *from scratch*, a prerequisite when no
 387 reliable checkpoint exists. The latter mirrors the prevailing industrial practice of pre-training a large
 388 language model once and then adapting it with parameter- and memory-efficient techniques such
 389 as LoRA. By examining both regimes, we separately measure the contributions of data-parallel
 390 federation, model partitioning, and parameter-efficient adapters, and we show that HERON-SFL
 391 consistently outperforms strong baselines in both scenarios.

392 **5.2 TRAINING FROM SCRATCH: RESNET18 ON CIFAR-10**

394 **Convergence Behavior.** Figure 2 illustrates the test accuracy of each method versus the number of
 395 communication rounds. In the IID setting, our proposed HERON-SFL shows convergence behavior
 396 nearly identical to other auxiliary-network baselines like CSE-FSL and FSL-SAGE³, with all three
 397 performing slightly below the top-performing SFLV2. A similar trend is observed in the more chal-
 398 lenging non-IID setting, which confirms that our hybrid algorithm achieves convergence comparable
 399 to its first-order counterparts.

400 Figure 2: ResNet-18 test accuracy vs. communication
 401 rounds on CIFAR-10 for IID (left) and non-IID (right) dis-
 402 tributions.

403 Table 2: Client consumptions for
 404 ResNet-18 on CIFAR-10.

405 Algorithms	406 Comm. (GB)	407 Peak FP (MB)	408 FLOPS (G)
SFLV1	1216.00	709.93	59.51
SFLV2	390.67		
CSE-FSL	258.55	726.46	59.85
FSL-SAGE	244.24		
HERON-SFL	244.19	259.44	39.90

412 **Communication, Storage, and Computational Costs.** Table 2 provides a quantitative comparison
 413 of the resource consumption on the client side. In terms of communication load, HERON-SFL is
 414 among the most efficient methods, requiring only 244.19 GB of total communication, a volume
 415 nearly identical to FSL-SAGE (244.24 GB) and superior to all other baselines.

416 The most significant advantages of HERON-SFL are evident in its on-device resource requirements.
 417 By eliminating client-side backpropagation, it drastically reduces the peak memory footprint (Peak
 418 FP) to just 259.44 MB—a reduction of approximately 63% compared to the almost 710 MB required
 419 by SFLV1 and SFLV2. Similarly, the computational cost (FLOPs) is lowered to 39.90 G FLOPs, a
 420 reduction of over 33% compared to the ~59 G FLOPs of other methods. This substantial decrease in
 421 both storage and compute burden confirms that HERON-SFL is highly suitable for deployment in
 422 resource-constrained environments.

423 **5.3 LANGUAGE MODEL FINE-TUNING**

424 For the task of language model fine-tuning, HERON-SFL demonstrates superior communication ef-
 425 ficiency and faster convergence. As illustrated in Figure 3, its validation perplexity decreases more

426 ³We note that FSL-SAGE does not exhibit a significant advantage in our experiments, which we attribute to
 427 our design choice of using a minimal auxiliary network purely for decoupling the updates of server and clients.
 428 This contrasts with the approach in (Nair et al., 2025), where the alignment mechanism of FSL-SAGE is more
 429 impactful as the auxiliary model is intentionally designed to be even larger than the client model, thus requiring
 430 explicit alignment to ensure consistency with the server’s task.

Figure 3: GPT2 perplexity curves vs. Communication Volume on E2E for small (left) and medium (right) models.

Table 3: Client consumptions for GPT2-Medium on E2E.

Algorithms	Peak FP (GB)	FLOPS (T)
SplitLora	4.59	5.68
CSE-FSL	9.09	9.48
FSL-SAGE		
HERON-SFL	4.03	5.26

rapidly than the baselines for both GPT2-Small and GPT2-Medium. Notably, for GPT2-Small, HERON-SFL converges faster and achieves a final perplexity that is competitive with SplitLoRA while outperforming both CSE-FSL and FSL-SAGE. While all methods reach a similar performance on GPT2-Medium, HERON-SFL does so with significantly less communication costs, and even slightly surpasses CSE-FSL and FSL-SAGE on GPT2-Small. This mild performance gain is consistent with recent findings in ZO-based LLM fine-tuning, where the update landscape exhibits strong low-rank structure, making zeroth-order steps exceptionally effective. Similar behavior is reported in MeZO (Malladi et al., 2023), which shows that ZO fine-tuning can match or even surpass first-order methods under comparable settings.

Echoing the resource efficiency observed in the ResNet experiments, HERON-SFL substantially lowers the on-device computational and memory burden for clients. Table 3 provides a clear comparison of the resource consumption per local update. HERON-SFL requires a peak memory (Peak FP) of only 4.03 GB, which is less than half that of CSE-FSL (9.09 GB) and also more efficient than the SplitLoRA baseline (4.59 GB). The reduction in computational cost is even more pronounced, with HERON-SFL needing only 5.26 TFLOPS, a decrease of approximately 44% compared to CSE-FSL and FSL-SAGE. This reduction in both memory footprint and floating-point operations confirms that by eliminating client-side backpropagation, our method significantly lowers the hardware barrier, making it feasible to fine-tune large language models on resource-constrained edge devices.

5.4 ABLATION STUDY OF LOCAL MODEL COMPLEXITY

We investigate the impact of local model complexity on the GPT2-medium fine-tuning task. In this ablation study, we evaluate two primary scenarios: one where the client-side model contains the initial 3 transformer blocks, and another with 6 blocks. For each scenario, we vary the auxiliary network’s architecture from a lightweight base (LayerNorm and unembedding layers only) to progressively larger versions containing one, two, or three transformer blocks. Figure 4 plots the final training loss after a fixed number of training rounds. The results show that our proposed HERON-SFL is largely insensitive to the complexity of the auxiliary network; in both the 3-block and 6-block settings, it achieves a strong final training loss even with the simplest auxiliary model. In contrast, the performance of the first-order baseline, CSE-FSL, is highly dependent on a more powerful auxiliary model, showing a clear trend of improvement as the network becomes more complex. This suggests that for ZO-based methods, there is little justification for using a resource-intensive auxiliary network, whereas first-order methods require one to reach their full potential.

This study validates the comprehensive efficiency of HERON-SFL, which stems from two key advantages. First, its use of zeroth-order optimization reduces the peak memory footprint to the level of inference by eliminating backpropagation. Second, it attains excellent global convergence while requiring only a minimal auxiliary architecture. Crucially, these resource savings do not come at the cost of performance; our experimental results highlight the dual advantages of HERON-SFL in achieving both fast convergence and low on-device costs. This provides a superior performance-to-cost balance when compared to first-order baselines like FSL-SAGE and CSE-FSL.

Figure 4: Effect of aux-model complexity.

486

6 CONCLUSION

488 This work proposes HERON-SFL, a novel hybrid ZO-FO framework that addresses the critical com-
 489 putation and memory limitations on edge devices within SFL. It performs ZO optimization on edge
 490 devices to eliminate costly backpropagation, thereby significantly reducing on-device memory and
 491 computational requirements. Empirical and theoretical analysis demonstrate that the framework not
 492 only achieves a theoretical convergence rate of $\mathcal{O}(1/\sqrt{T})$ independent of model dimensionality un-
 493 der the low effective rank assumption, but also empirically matches the accuracy of SFL benchmarks
 494 on diverse tasks while substantially reducing client-side resource costs.

495 Future work may explore non-differentiable objectives—for example, directly optimizing evalua-
 496 tion metrics or incorporating human feedback (Ouyang et al., 2022), which align well with the gradient-
 497 free nature of client-side updates. Another promising direction is to strengthen privacy guarantees,
 498 as HERON-SFL inherits the cut-layer privacy profile of standard SL/SFL and can benefit from ad-
 499 vances in privacy-preserving techniques (Niu et al., 2024).

501

REFERENCES

503 Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale
 504 to imagenet. In *International conference on machine learning*, pp. 583–593. PMLR, 2019.

505 Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Decoupled greedy learning of cnns.
 506 In *International Conference on Machine Learning*, pp. 736–745. PMLR, 2020.

508 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 509 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 510 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

512 Aochuan Chen, Yimeng Zhang, Jinghan Jia, James Diffenderfer, Konstantinos Parasyris, Jiancheng
 513 Liu, Yihua Zhang, Zheng Zhang, Bhavya Kailkhura, and Sijia Liu. Deepzero: Scaling up zeroth-
 514 order optimization for deep model training. In *ICLR*, 2024.

515 Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order opti-
 516 mization based black-box attacks to deep neural networks without training substitute models. In
 517 *Proceedings of the 10th ACM workshop on artificial intelligence and security*, pp. 15–26, 2017.

519 Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
 520 memory cost. *arXiv preprint arXiv:1604.06174*, 2016.

522 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
 523 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
 524 Scaling language modeling with pathways. *Journal of Machine Learning Research*, 24(240):
 525 1–113, 2023.

526 Wenzhi Fang, Ziyi Yu, Yuning Jiang, Yuanming Shi, Colin N Jones, and Yong Zhou.
 527 Communication-efficient stochastic zeroth-order optimization for federated learning. *IEEE Trans-
 528 actions on Signal Processing*, 70:5058–5073, 2022.

530 Xiang Gao, Bo Jiang, and Shuzhong Zhang. On the information-adaptive variants of the admm: an
 531 iteration complexity perspective. *Journal of Scientific Computing*, 76:327–363, 2018.

532 Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
 533 via hessian eigenvalue density. In *International Conference on Machine Learning*, pp. 2232–
 534 2241. PMLR, 2019.

536 Gene H Golub and John H Welsch. Calculation of gauss quadrature rules. *Mathematics of compu-
 537 tion*, 23(106):221–230, 1969.

538 Andreas Griewank and Andrea Walther. *Evaluating derivatives: principles and techniques of algo-
 539 rithmic differentiation*. SIAM, 2008.

540 Dong-Jun Han, Hasnain Irshad Bhatti, Jungmoon Lee, and Jaekyun Moon. Accelerating federated
 541 learning with split learning on locally generated losses. In *ICML 2021 workshop on federated*
 542 *learning for user privacy and data confidentiality. ICML Board*, 2021.

543 Pengchao Han, Chao Huang, Geng Tian, Ming Tang, and Xin Liu. Convergence analysis of split
 544 federated learning on heterogeneous data. *Advances in Neural Information Processing Systems*,
 545 37:103476–103544, 2024.

546 Chaoyang He, Murali Annavaram, and Salman Avestimehr. Group knowledge transfer: Federated
 547 learning of large cnns at the edge. *Advances in neural information processing systems*, 33:14068–
 548 14080, 2020.

549 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recogni-
 550 tion. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 551 770–778, 2016.

552 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv*
 553 *preprint arXiv:1503.02531*, 2015.

554 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 555 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

556 Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
 557 Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
 558 vances and open problems in federated learning. *Foundations and trends® in machine learning*,
 559 14(1–2):1–210, 2021.

560 Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
 561 Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
 562 *International conference on machine learning*, pp. 5132–5143. PMLR, 2020.

563 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 564 *Technical Report, University of Toronto*, 2009.

565 Joohyung Lee, Mohamed Seif, Jungchan Cho, and H Vincent Poor. Exploring the privacy-energy
 566 consumption tradeoff for split federated learning. *IEEE Network*, 38(6):388–395, 2024.

567 Yuheng Lei, Jianyu Chen, Shengbo Eben Li, and Sifa Zheng. Zeroth-order actor-critic. *arXiv*
 568 *preprint arXiv:2201.12518*, 2022.

569 Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
 570 Federated optimization in heterogeneous networks. *Proceedings of Machine learning and sys-
 571 tems*, 2:429–450, 2020.

572 Yipeng Li and Xinchen Lyu. Convergence analysis of sequential federated learning on heteroge-
 573 neous data. *Advances in Neural Information Processing Systems*, 36:56700–56755, 2023.

574 Zhe Li, Bicheng Ying, Zidong Liu, Chaosheng Dong, and Haibo Yang. Achieving dimension-
 575 free communication in federated learning via zeroth-order optimization. *arXiv preprint*
 576 *arXiv:2405.15861*, 2024.

577 Zheng Lin, Xuanjie Hu, Yuxin Zhang, Zhe Chen, Zihan Fang, Xianhao Chen, Ang Li, Praneeth
 578 Vepakomma, and Yue Gao. Splitlora: A split parameter-efficient fine-tuning framework for large
 579 language models. *arXiv preprint arXiv:2407.00952*, 2024a.

580 Zheng Lin, Guanqiao Qu, Wei Wei, Xianhao Chen, and Kin K Leung. Adaptsfl: Adaptive split fed-
 581 erated learning in resource-constrained edge networks. *arXiv preprint arXiv:2403.13101*, 2024b.

582 Zheng Lin, Wei Wei, Zhe Chen, Chan-Tong Lam, Xianhao Chen, Yue Gao, and Jun Luo. Hierarchi-
 583 cal split federated learning: Convergence analysis and system optimization. *IEEE Transactions*
 584 *on Mobile Computing*, 2025.

585 Zhenqing Ling, Daoyuan Chen, Liuyi Yao, Yaliang Li, and Ying Shen. On the convergence
 586 of zeroth-order federated tuning for large language models. In *Proceedings of the 30th ACM*
 587 *SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 1827–1838, 2024.

594 Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini. Zeroth-
 595 order stochastic variance reduction for nonconvex optimization. *Advances in neural information*
 596 *processing systems*, 31, 2018.

597 Sijia Liu, Pin-Yu Chen, Xiangyi Chen, and Mingyi Hong. signsdg via zeroth-order oracle. In
 598 *International conference on learning representations*, 2019.

600 Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and Pramod K
 601 Varshney. A primer on zeroth-order optimization in signal processing and machine learning:
 602 Principals, recent advances, and applications. *IEEE Signal Processing Magazine*, 37(5):43–54,
 603 2020.

604 Wenqiang Luo, Jacky Keung, Boyang Yang, He Ye, Claire Le Goues, Tegawende F Bissyande,
 605 Haoye Tian, and Xuan Bach D Le. When fine-tuning llms meets data privacy: An empirical study
 606 of federated learning in llm-based program repair. *ACM Transactions on Software Engineering*
 607 and *Methodology*, 2024.

609 Antor Mahmud and Renata Dividino. Federated learning on knowledge graph embeddings via con-
 610 trastive alignment. In *2024 IEEE International Conference on Big Data (BigData)*, pp. 3466–
 611 3474. IEEE, 2024.

612 Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
 613 Arora. Fine-tuning language models with just forward passes. *Advances in Neural Information*
 614 *Processing Systems*, 36:53038–53075, 2023.

616 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 617 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelli-
 618 gence and statistics*, pp. 1273–1282. PMLR, 2017.

619 Seyed Mahmoud Sajjadi Mohammadabadi, Syed Zawad, Feng Yan, and Lei Yang. Speed up fed-
 620 erated learning in heterogeneous environments: a dynamic tiering approach. *IEEE Internet of*
 621 *Things Journal*, 2024.

623 Yujia Mu and Cong Shen. Federated split learning with improved communication and storage effi-
 624 ciency. *IEEE Transactions on Mobile Computing*, 2025.

625 Sri Jith Nair, Michael Lin, Peizhong Ju, Amirreza Talebi, Elizabeth Serena Bentley, and Jia Liu.
 626 Fsl-sage: Accelerating federated split learning via smashed activation gradient estimation. *arXiv*
 627 *preprint arXiv:2505.23182*, 2025.

629 So Nakashima and Tetsuya J Kobayashi. Unifying zeroth-order optimization and genetic algorithms
 630 for reinforcement learning. In *Proceedings of the Genetic and Evolutionary Computation Con-
 631 ference Companion*, pp. 311–314, 2025.

632 Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
 633 *Foundations of Computational Mathematics*, 17(2):527–566, 2017.

635 Yue Niu, Ramy E Ali, Saurav Prakash, and Salman Avestimehr. All rivers run to the sea: Private
 636 learning with asymmetric flows. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 637 and *Pattern Recognition*, pp. 12353–12362, 2024.

638 Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. The e2e dataset: New challenges for end-
 639 to-end generation. *arXiv preprint arXiv:1706.09254*, 2017.

640 Seungeun Oh, Jihong Park, Praneeth Vepakomma, Sihun Baek, Ramesh Raskar, Mehdi Bennis,
 641 and Seong-Lyun Kim. Locfedmix-sl: Localize, federate, and mix for improved scalability, con-
 642 vergence, and latency in split learning. In *Proceedings of the ACM Web Conference 2022*, pp.
 643 3347–3357, 2022.

645 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 646 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 647 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 27730–27744, 2022.

648 Yuyang Qiu, Uday Shanbhag, and Farzad Yousefian. Zeroth-order methods for nondifferentiable,
 649 nonconvex, and hierarchical federated optimization. *Advances in Neural Information Processing*
 650 *Systems*, 36:3425–3438, 2023.

651

652 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 653 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 654 models from natural language supervision. In *International conference on machine learning*, pp.
 655 8748–8763. PMLR, 2021.

656

657 Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
 658 Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. *arXiv preprint*
 659 *arXiv:2003.00295*, 2020.

660

661 Lorenzo Sani, Alex Iacob, Zeyu Cao, Bill Marino, Yan Gao, Tomas Paulik, Wanru Zhao, William F
 662 Shen, Preslav Aleksandrov, Xinchi Qiu, et al. The future of large language model pre-training is
 663 federated. *arXiv preprint arXiv:2405.10853*, 2024.

664

665 Chandra Thapa, Mahawaga Arachchige Pathum Chamikara, and Seyit A Camtepe. Advancements
 666 of federated learning towards privacy preservation: from federated learning to split learning. In
 667 *Federated Learning Systems: Towards Next-Generation AI*, pp. 79–109. Springer, 2021.

668

669 Chandra Thapa, Pathum Chamikara Mahawaga Arachchige, Seyit Camtepe, and Lichao Sun.
 670 Splitfed: When federated learning meets split learning. In *Proceedings of the AAAI conference*
 671 *on artificial intelligence*, volume 36, pp. 8485–8493, 2022.

672

673 Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learning for health:
 674 Distributed deep learning without sharing raw patient data. *arXiv preprint arXiv:1812.00564*,
 675 2018.

676

677 Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. A novel framework
 678 for the analysis and design of heterogeneous federated learning. *IEEE Transactions on Signal*
 679 *Processing*, 69:5234–5249, 2021.

680

681 Wen Wu, Moshu Li, Kaige Qu, Conghao Zhou, Xuemin Shen, Weihua Zhuang, Xu Li, and Weisen
 682 Shi. Split learning over wireless networks: Parallel design and resource management. *IEEE*
 683 *Journal on Selected Areas in Communications*, 41(4):1051–1066, 2023.

684

685 Qingsong Zhang, Bin Gu, Zhiyuan Dang, Cheng Deng, and Heng Huang. Desirable companion for
 686 vertical federated learning: New zeroth-order gradient based algorithm. In *Proceedings of the*
 687 *30th ACM international conference on information & knowledge management*, pp. 2598–2607,
 688 2021.

689

690 Qining Zhang and Lei Ying. Zeroth-order policy gradient for reinforcement learning from human
 691 feedback without reward inference. *arXiv preprint arXiv:2409.17401*, 2024.

692

693 Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
 694 Tian. Galore: Memory-efficient llm training by gradient low-rank projection. *arXiv preprint*
 695 *arXiv:2403.03507*, 2024.

696

697 Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous
 698 federated learning. In *International conference on machine learning*, pp. 12878–12889. PMLR,
 699 2021.

700

701

702 **A THEORETICAL PROOF**
703704 **A.1 NOTATIONS**
705706 Table 4: Notation and unified conventions used in this paper.
707

708 Symbol	709 Meaning
System & Data	
711 N	712 Number of clients
712 \mathcal{D}_i	713 Local dataset of client i
713 $\xi_i = \{\xi_{i,j}\}_{j=1}^B$	714 Mini-batch sampled from \mathcal{D}_i
714 B	715 Batch size
Model Parameters	
716 $\theta_g = \{\theta_c, \theta_s\}$	717 Global model split into client/server parameters
717 θ_s	718 Server-side parameters
718 $\theta_{c,i}$	719 Client-side parameters owned by client i
719 $\theta_{a,i}$	720 Auxiliary model parameters at client i
720 $\theta_{l,i} = (\theta_{c,i}, \theta_a)$	721 Local predictor on client i
721 d_c, d_a	722 Dimensions of θ_c and θ_a
Objective Functions	
723 $\ell(\cdot; \xi_{i,j})$	724 Task loss on sample $\xi_{i,j} \in \mathcal{D}_i$
724 $f_i(\theta_g)$	725 Expected loss for global model over client i 's local dataset \mathcal{D}_i
725 $f(\theta_g)$	726 Expected loss for global model over the entire dataset $\sum_{i=1}^N \mathcal{D}_i$
726 $f_{l,i}(\theta_l)$	727 Expected loss for local model θ_l over client i 's local dataset
Optimization & Algorithm	
728 t, m	729 Global round index t ; local step index m
729 h	730 Local steps per round before optional upload
730 η_c, η_s	731 Client / server learning rates
731 $s_i = \theta_{c,i}(\xi_{i,j})$	732 Smashed data produced by client i
732 $u_{t,m}$	733 Random direction for ZO estimator
733 $\mu > 0$	734 Smoothing/perturbation radius in ZO estimator
734 $\hat{g}_{l,i}^{t,m}$	735 ZO gradient estimates for local parameters
735 $g_{s,i}^t$	736 Server-side gradient on smashed data from client i
736 θ_s^{t+1}	737 Server parameters after sequential updates
737 $\theta_c^{t+1}, \theta_a^{t+1}$	738 Aggregated client/aux parameters after Fed-Server
Theoretical Analysis	
739 L	740 Smoothness constant (Lipschitz gradient)
740 G_c, G_s	741 Bounds on client/server gradient norms
741 σ^2	742 Variance bound of ZO estimator
742 $d_{c,i}^t$	743 Distributional drift of the output from client i 's model at round t
743 δ	744 Upper bound for the average distributional drift
744 κ	745 Upper bound on the effective rank of the local loss Hessian

746 **A.2 LEMMAS FOR ZEROTH-ORDER OPTIMIZATION**
747748 Before presenting the proofs of our main theorems, we recall several classical lemmas on zeroth-
749 order optimization, which serve as the basis for the subsequent analysis. For the analysis of zeroth-
750 order optimization algorithms, it is standard to introduce a smoothed approximation of the objective
751 function. We formalize this by first defining the smoothed function and then stating its key properties
752 in a lemma.
753

756 **Definition A.1 (Gaussian Smoothed Function with Unit-Sphere Normalization).** A function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is said to be (Gaussian-derived) spherically smoothed with smoothing radius $\mu > 0$ if for 757 any $\mathbf{x} \in \mathbb{R}^d$,

$$759 \quad f^\mu(\mathbf{x}) = \mathbb{E}_{\mathbf{z} \sim \mathcal{N}(0, I_d)} \left[f\left(\mathbf{x} + \mu \frac{\mathbf{z}}{\|\mathbf{z}\|}\right) \right], \\ 760$$

761 where we define $\mathbf{u} := \mathbf{z}/\|\mathbf{z}\|$ so that $\|\mathbf{u}\| = 1$ almost surely and $\mathbf{u} \sim \text{Unif}(\mathbb{S}^{d-1})$.

762 **Lemma A.2 (Gradient and Smoothness for Gaussian Smoothed Functions** (Nesterov & 763 Spokoiny, 2017)). Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be differentiable with an L -Lipschitz gradient (i.e., f is L - 764 smooth). Then, for any $\mu > 0$, the spherically smoothed function f^μ defined in Definition A.1 is 765 continuously differentiable and its gradient is \bar{L}_μ -Lipschitz continuous with $\bar{L}_\mu \leq L$. Moreover, the 766 gradient of f^μ can be expressed as:

$$767 \quad \nabla f^\mu(\mathbf{x}) = \mathbb{E}_{\mathbf{u}} \left[\frac{f(\mathbf{x} + \mu \mathbf{u}) - f(\mathbf{x})}{\mu} d\mathbf{u} \right]. \quad (13) \\ 768 \\ 769$$

770 The result from Lemma A.2 provides the theoretical foundation for the zeroth-order gradient 771 estimator used in our work. We recall our estimator from Eq. 2 in the main text. The lemma establishes 772 that this estimator is an unbiased estimate of the gradient of the corresponding smoothed function, 773 $f_{l,i}^\mu(\boldsymbol{\theta}_l)$. Formally, taking the expectation of the estimator over the random direction \mathbf{u} yields the 774 exact gradient of the smoothed function:

$$775 \quad \mathbb{E}_{\mathbf{u} \sim \mathcal{N}(0, I)} \left[\hat{\nabla} f_{l,i}(\boldsymbol{\theta}_l; \xi_i) \right] = \nabla f_{l,i}^\mu(\boldsymbol{\theta}_l; \xi_i). \quad (14) \\ 776$$

777 The bias of this estimator with respect to the true gradient $\nabla f_{l,i}$ arises from the difference between 778 the smoothed function $f_{l,i}^\mu$ and the original function $f_{l,i}$, not from the sampling process itself. This 779 distinction is crucial for the subsequent convergence analysis.

781 A.3 PROOF OF THEOREM 4.5

782 A.3.1 PRELIMINARY LEMMAS

783 To begin the convergence analysis, we start with a few lemmas that will be useful in the subsequent 784 proofs.

785 **Lemma A.3 (Bound on the Second Moment of the ZO Estimator⁴).** Under Assumptions 4.1–4.3, 786 the second moment of the zeroth-order gradient estimator $\hat{\mathbf{g}}_{c,i}^{t,m}$ is bounded as follows:

$$787 \quad \mathbb{E}_{t,m} \left[\|\hat{\mathbf{g}}_{c,i}^{t,m}\|^2 \right] \leq \frac{2dG_c^2}{B} + \frac{d^2L^2\mu^2}{2B} + 2\mu^2L^2 + 6\sigma_c^2 \\ 788 \quad + 6\|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2 + 6L^2\mathbb{E}_{t,m-1} \left[\|\boldsymbol{\theta}_c^t - \boldsymbol{\theta}_{c,i}^{t,m}\|^2 \right]. \quad (15) \\ 789 \\ 790$$

791 *Proof.* The proof proceeds by decomposing the second moment of the estimator into several terms 792 and bounding each one. First, we apply the law of total expectation and the law of total variance, 793 which states $\mathbb{E}[\|\mathbf{a}\|^2] = \text{Var}(\mathbf{a}) + \|\mathbb{E}[\mathbf{a}]\|^2$. We recognize that $\hat{\mathbf{g}}_{c,i}^{t,m}$ is the average of estimators over 794 the mini-batch ξ_i . As established in Lemma A.2, its expectation over the random direction \mathbf{u} is the 795 gradient of the smoothed function, $\nabla f_{c,i}^\mu(\boldsymbol{\theta}_{c,i}^{t,m})$.

$$796 \quad \mathbb{E}_{t,m} \left[\|\hat{\mathbf{g}}_{c,i}^{t,m}\|^2 \right] = \mathbb{E}_{t,m-1} \left[\mathbb{E}_t^m \left[\|\hat{\mathbf{g}}_{c,i}^{t,m}\|^2 \right] \right] \\ 797 \quad = \mathbb{E}_{t,m-1} \left[\text{Var}_t^m(\hat{\mathbf{g}}_{c,i}^{t,m}) + \|\mathbb{E}_t^m[\hat{\mathbf{g}}_{c,i}^{t,m}]\|^2 \right] \\ 798 \quad = \mathbb{E}_{t,m-1} \left[\text{Var}_t^m(\hat{\mathbf{g}}_{c,i}^{t,m}) \right] + \mathbb{E}_{t,m-1} \left[\|\nabla f_{c,i}^\mu(\boldsymbol{\theta}_{c,i}^{t,m})\|^2 \right]. \quad (16) \\ 799 \\ 800$$

801 ⁴This bound decomposes the second moment of the estimator into several distinct sources of error and 802 variance. The terms scaled by the mini-batch size, such as $2dG_c^2/B$ and $d^2L^2\mu^2/2B$, represent the intrinsic 803 variance of the ZO estimator, which is dependent on the model dimension d . The terms $2\mu^2L^2$ and $6\sigma_c^2$ capture 804 the bias introduced by the Gaussian smoothing and the variance from client data heterogeneity, respectively. 805 The term $6\|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2$ relates the analysis back to the global gradient norm at the start of the round. Crucially, 806 the final term, $6L^2\mathbb{E}_{t,m-1}[\|\boldsymbol{\theta}_c^t - \boldsymbol{\theta}_{c,i}^{t,m}\|^2]$, quantifies the **client model divergence** that arises from performing 807 multiple local updates. This divergence term is a key challenge in federated learning and is explicitly bounded 808 in subsequent analysis.

810 Since the estimators for each sample $\xi_{i,j}$ in the mini-batch are i.i.d., the variance of their average
 811 is the variance of a single-point estimator divided by the batch size. Using the property $\text{Var}(X) \leq$
 812 $\mathbb{E}[\|X\|^2]$, we have:

$$\begin{aligned} 813 \text{Var}_t^m(\hat{\mathbf{g}}_{c,i}^{t,m}) &= \frac{1}{B} \text{Var}_t^m(\hat{\mathbf{g}}_{c,i}^{t,m}(\boldsymbol{\theta}_l; \xi_{i,1})) \\ 814 &\leq \frac{1}{B} \mathbb{E}_t^m \left[\left\| \hat{\mathbf{g}}_{c,i}^{t,m}(\boldsymbol{\theta}_l; \xi_{i,1}) \right\|^2 \right]. \end{aligned} \quad (17)$$

817 Substituting this back, we arrive at the decomposition as follows:

$$\begin{aligned} 818 \mathbb{E}_{t,m} \left[\left\| \hat{\mathbf{g}}_{c,i}^{t,m} \right\|^2 \right] &\leq \frac{1}{B} \mathbb{E}_{t,m} \left[\left\| \hat{\mathbf{g}}_{c,i}^{t,m}(\boldsymbol{\theta}_l; \xi_{i,1}) \right\|^2 \right] + \mathbb{E}_{t,m-1} \left[\left\| \nabla f_{c,i}^{\mu}(\boldsymbol{\theta}_{c,i}^{t,m}) \right\|^2 \right]. \end{aligned} \quad (18)$$

820 We now bound the two terms separately. For the first term, we use the bound for two-point estimators
 821 (Lemma 4.1 in Gao et al. (2018)) and Assumption 4.2:

$$\begin{aligned} 822 \mathbb{E}_{t,m} \left[\left\| \hat{\mathbf{g}}_{c,i}^{t,m}(\boldsymbol{\theta}_l; \xi_{i,1}) \right\|^2 \right] &\leq 2d \mathbb{E}_{t,m} \left[\left\| \nabla \ell_{c,i}(\boldsymbol{\theta}_{c,i}^{t,m}; \xi_{i,1}) \right\|^2 \right] + \frac{1}{2} d^2 L^2 \mu^2 \leq 2dG_c^2 + \frac{1}{2} d^2 L^2 \mu^2. \end{aligned} \quad (19)$$

824 For the second term, we use the triangle inequality and $\|a + b\|^2 \leq 2\|a\|^2 + 2\|b\|^2$:

$$\begin{aligned} 826 \mathbb{E}_{t,m-1} \left[\left\| \nabla f_{c,i}^{\mu}(\boldsymbol{\theta}_{c,i}^{t,m}) \right\|^2 \right] \\ 827 &\leq 2 \mathbb{E}_{t,m-1} \left[\left\| \nabla f_{c,i}^{\mu}(\boldsymbol{\theta}_{c,i}^{t,m}) - \nabla f_{c,i}(\boldsymbol{\theta}_{c,i}^{t,m}) \right\|^2 \right] + 2 \mathbb{E}_{t,m-1} \left[\left\| \nabla f_{c,i}(\boldsymbol{\theta}_{c,i}^{t,m}) \right\|^2 \right] \\ 828 &\leq 2\mu^2 L^2 + 2 \mathbb{E}_{t,m-1} \left[\left\| \nabla f_{c,i}(\boldsymbol{\theta}_{c,i}^{t,m}) \right\|^2 \right]. \end{aligned} \quad (20)$$

831 Finally, we bound the remaining term by relating it to the global model state $\boldsymbol{\theta}_c^t$. Using inequality
 832 $\|a + b + c\|^2 \leq 3\|a\|^2 + 3\|b\|^2 + 3\|c\|^2$, we have:

$$\begin{aligned} 833 \mathbb{E}_{t,m-1} \left[\left\| \nabla f_{c,i}(\boldsymbol{\theta}_{c,i}^{t,m}) \right\|^2 \right] \\ 834 &= \mathbb{E}_{t,m-1} \left[\left\| (\nabla f_{c,i}(\boldsymbol{\theta}_{c,i}^{t,m}) - \nabla f_{c,i}(\boldsymbol{\theta}_c^t)) + (\nabla f_{c,i}(\boldsymbol{\theta}_c^t) - \nabla f_c(\boldsymbol{\theta}_c^t)) + \nabla f_c(\boldsymbol{\theta}_c^t) \right\|^2 \right] \\ 835 &\leq 3 \mathbb{E}_{t,m-1} \left[\left\| \nabla f_{c,i}(\boldsymbol{\theta}_{c,i}^{t,m}) - \nabla f_{c,i}(\boldsymbol{\theta}_c^t) \right\|^2 \right] + 3 \left\| \nabla f_{c,i}(\boldsymbol{\theta}_c^t) - \nabla f_c(\boldsymbol{\theta}_c^t) \right\|^2 + 3 \left\| \nabla f_c(\boldsymbol{\theta}_c^t) \right\|^2 \\ 836 &\leq 3L^2 \mathbb{E}_{t,m-1} \left[\left\| \boldsymbol{\theta}_{c,i}^{t,m} - \boldsymbol{\theta}_c^t \right\|^2 \right] + 3\sigma_c^2 + 3 \left\| \nabla f_c(\boldsymbol{\theta}_c^t) \right\|^2, \end{aligned} \quad (21)$$

841 where the final inequality follows from Assumptions 4.1 and 4.3. Combining all these bounds yields
 842 the result stated in the lemma. \square

843 **Lemma A.4 (Bound on Client Model Divergence).** *For $\eta_c \leq \frac{1}{3Lh}$, we have:*

$$\begin{aligned} 844 \mathbb{E}_t \left[\frac{1}{N} \sum_{i=1}^N \sum_{m=1}^h \left\| \boldsymbol{\theta}_{c,i}^{t,m} - \boldsymbol{\theta}_c^t \right\|^2 \right] &\leq 3h^3 \eta_c^2 \left\| \nabla f_c(\boldsymbol{\theta}_c^t) \right\|^2 + \frac{dG_c^2 h^3 \eta_c^2}{B} \\ 845 &\quad + \frac{d^2 L^2 \mu^2 h^3 \eta_c^2}{4B} + \frac{(6\sigma_c^2 + 2\mu^2 L^2)h^3 \eta_c^2}{2}. \end{aligned} \quad (22)$$

849 *Proof.* For simplicity, define

$$851 s_c^{t,m} \triangleq \frac{1}{N} \sum_{i=1}^N \mathbb{E}_{t,m} \left[\left\| \boldsymbol{\theta}_{c,i}^{t,m} - \boldsymbol{\theta}_c^t \right\|^2 \right].$$

854 For the τ -th local update, unrolling the client recursion gives

$$855 \boldsymbol{\theta}_{c,i}^{t,\tau} - \boldsymbol{\theta}_c^t = -\eta_c \sum_{m=0}^{\tau-1} \mathbf{g}_{c,i}^{t,m}.$$

858 By Cauchy–Schwarz,

$$\begin{aligned} 859 s_c^{t,\tau} &= \frac{1}{N} \sum_{i=1}^N \mathbb{E}_{t,\tau} \left[\left\| -\eta_c \sum_{m=0}^{\tau-1} \mathbf{g}_{c,i}^{t,m} \right\|^2 \right] \leq \tau \eta_c^2 \cdot \frac{1}{N} \sum_{i=1}^N \sum_{m=0}^{\tau-1} \mathbb{E}_{t,\tau} \left[\left\| \mathbf{g}_{c,i}^{t,m} \right\|^2 \right] \\ 860 &\stackrel{(\text{tower})}{=} \tau \eta_c^2 \cdot \frac{1}{N} \sum_{i=1}^N \sum_{m=0}^{\tau-1} \mathbb{E}_{t,m} \left[\left\| \mathbf{g}_{c,i}^{t,m} \right\|^2 \right]. \end{aligned} \quad (23)$$

We now invoke the second-moment bound (Lemma A.3): for every m ,

$$\frac{1}{N} \sum_{i=1}^N \mathbb{E}_{t,m} \left[\left\| \hat{\mathbf{g}}_{c,i}^{t,m} \right\|^2 \right] \leq 6L^2 s_c^{t,m+1} + \underbrace{\left(6\|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2 + \frac{2dG_c^2}{B} + \frac{d^2L^2\mu^2}{2B} + 6\sigma_c^2 + 2\mu^2L^2 \right)}_{\triangleq \beta}, \quad (24)$$

by definition of $s_c^{t,\cdot}$, the term $\frac{1}{N} \sum_i \mathbb{E}_{t,m} [\|\boldsymbol{\theta}_c^t - \boldsymbol{\theta}_{c,i}^{t,m+1}\|^2]$ is identified with $s_c^{t,m+1}$.⁵ Combining Eq. 23 and Eq. 24 yields, for each τ ,

$$s_c^{t,\tau} \leq 6L^2 \tau \eta_c^2 \sum_{m=0}^{\tau-1} s_c^{t,m+1} + \tau^2 \eta_c^2 \beta. \quad (25)$$

By taking the sum over $\tau = 1, \dots, h$, we have

$$\begin{aligned} \sum_{\tau=1}^h s_c^{t,\tau} &\leq 6L^2 \eta_c^2 \sum_{\tau=1}^h \tau \sum_{m=0}^{\tau-1} s_c^{t,m+1} + \eta_c^2 \beta \sum_{\tau=1}^h \tau^2 \\ &\leq 3h^2 L^2 \eta_c^2 \sum_{\tau=1}^h s_c^{t,\tau} + \frac{h(h+1)(2h+1)}{6} \eta_c^2 \beta \leq 3h^2 L^2 \eta_c^2 \sum_{\tau=1}^h s_c^{t,\tau} + \frac{h^3 \eta_c^2 \beta}{3}, \end{aligned} \quad (26)$$

where we utilized the fact that $\sum_{\tau=1}^h \tau \leq \frac{h(h+1)}{2} \leq \frac{h^2}{2}$ and $\sum_{\tau=1}^h \tau^2 = \frac{h(h+1)(2h+1)}{6} \leq \frac{h^3}{3}$. By rearranging the terms, we have:

$$(1 - 3L^2 h^2 \eta_c^2) \sum_{\tau=0}^h s_c^{t,\tau} \leq \frac{h^3 \eta_c^2}{3} \left(6\|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2 + \frac{2dG_c^2}{B} + \frac{d^2L^2\mu^2}{2B} + 6\sigma_c^2 + 2\mu^2L^2 \right) \quad (27)$$

When $\eta_c \leq \frac{1}{3Lh}$, we have $1 - 3L^2 h^2 \eta_c^2 \geq \frac{2}{3}$ and the lemma's proof is complete. \square

Lemma A.5 (Bound on the Client-Side Contribution). *Under Assumptions 4.1–4.3, and for a client learning rate η_c satisfying the following conditions:*

$$\eta_c \leq \min \left\{ \frac{1}{3Lh}, \frac{2}{NLh^2}, \frac{N}{72L} \right\}, \quad (28)$$

the expectation of the client-side contribution, $\mathcal{C} = \nabla f(\boldsymbol{\theta}_c^t)^T (\boldsymbol{\theta}_c^{t+1} - \boldsymbol{\theta}_c^t) + \frac{L}{2} \|\boldsymbol{\theta}_c^{t+1} - \boldsymbol{\theta}_c^t\|^2$, is bounded as:

$$\mathbb{E}_t[\mathcal{C}] \leq -\frac{\eta_c h}{4} \|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2 + \Phi_c(\eta_c), \quad (29)$$

where $\Phi_c(\eta_c)$ is an error term defined as:

$$\Phi_c(\eta_c) := \eta_c^2 \left(\frac{6hLdG_c^2}{N|\xi_i|} + \frac{18hL\sigma_c^2}{N} \right) + \eta_c \left(\frac{d^2L^2h\mu^2}{48|\xi_i|} + \frac{13hL^2\mu^2}{12} \right). \quad (30)$$

Proof. We start from the definition of \mathcal{C} and take the expectation over all randomness up to round t . The client update rule gives $\mathbb{E}_t[\boldsymbol{\theta}_c^{t+1} - \boldsymbol{\theta}_c^t] = -\frac{\eta_c}{N} \mathbb{E}_t[\sum_{i=1}^N \sum_{m=1}^h \hat{\mathbf{g}}_{c,i}^{t,m}]$. This allows us to expand $\mathbb{E}_t[\mathcal{C}]$ into two terms:

$$\mathbb{E}_t[\mathcal{C}] = \underbrace{-\frac{\eta_c}{N} \left\langle \nabla f(\boldsymbol{\theta}_c^t), \mathbb{E}_t \left[\sum_{i=1}^N \sum_{m=1}^h \hat{\mathbf{g}}_{c,i}^{t,m} \right] \right\rangle}_{\triangleq \mathcal{C}_1} + \underbrace{\frac{\eta_c^2 L}{2N^2} \mathbb{E}_t \left[\left\| \sum_{i=1}^N \sum_{m=1}^h \hat{\mathbf{g}}_{c,i}^{t,m} \right\|^2 \right]}_{\triangleq \mathcal{C}_2}. \quad (31)$$

We proceed by bounding \mathcal{C}_1 and \mathcal{C}_2 separately.

⁵One may equivalently write the last expectation with $\mathbb{E}_{t,m+1}$; since it is the same unconditional quantity after averaging over the step- $(m+1)$ randomness, using $s_c^{t,m+1}$ is a safe upper bound.

918 **Bounding the First Term (\mathcal{C}_1).** Using the identity $2\langle a, b \rangle = \|a\|^2 + \|b\|^2 - \|a - b\|^2$, we rewrite
919 \mathcal{C}_1 :

$$920 \quad \mathcal{C}_1 = -\frac{\eta_c h}{2} \|\nabla f(\boldsymbol{\theta}_c^t)\|^2 - \frac{\eta_c h}{2} \mathbb{E}_t \left[\left\| \frac{1}{Nh} \sum_{i=1}^N \sum_{m=1}^h \hat{\mathbf{g}}_{c,i}^{t,m} \right\|^2 \right] + \frac{\eta_c h}{2} \mathcal{C}_{1,1}, \quad (32)$$

921 where $\mathcal{C}_{1,1} \triangleq \mathbb{E}_t \left[\left\| \frac{1}{Nh} \sum_{i,m} (\hat{\mathbf{g}}_{c,i}^{t,m} - \nabla f(\boldsymbol{\theta}_c^t)) \right\|^2 \right]$. We bound $\mathcal{C}_{1,1}$ using Jensen's inequality, the
922 triangle inequality, and Assumptions B.3 and B.5:

$$923 \quad \mathcal{C}_{1,1} \leq \frac{1}{Nh} \mathbb{E}_t \left[\sum_{i=1}^N \sum_{m=1}^h \|\hat{\mathbf{g}}_{c,i}^{t,m} - \nabla f(\boldsymbol{\theta}_c^t)\|^2 \right] \\ 924 \quad \leq \frac{2}{Nh} \mathbb{E}_t \left[\sum_{i,m} \|\hat{\mathbf{g}}_{c,i}^{t,m} - \nabla f(\boldsymbol{\theta}_{c,i}^{t,m})\|^2 \right] + \frac{2}{Nh} \mathbb{E}_t \left[\sum_{i,m} \|\nabla f(\boldsymbol{\theta}_{c,i}^{t,m}) - \nabla f(\boldsymbol{\theta}_c^t)\|^2 \right] \quad (33) \\ 925 \quad \leq 2\sigma^2 + \frac{2L^2}{Nh} \mathbb{E}_t \left[\sum_{i=1}^N \sum_{m=1}^h \|\boldsymbol{\theta}_{c,i}^{t,m} - \boldsymbol{\theta}_c^t\|^2 \right].$$

926 Substituting this back provides a bound on \mathcal{C}_1 .

927 **Bounding the Second Term (\mathcal{C}_2).** For \mathcal{C}_2 , according to Cauchy-Schwartz inequality, we have:

$$928 \quad \mathcal{C}_2 = \frac{\eta_c^2 L}{2} \mathbb{E}_t \left[\left\| -\frac{1}{N} \sum_{i=1}^N \sum_{m=1}^h \hat{\mathbf{g}}_{c,i}^{t,m} \right\|^2 \right] \\ 929 \quad \leq \eta_c^2 L \mathbb{E}_t \underbrace{\left[\left\| \frac{1}{N} \sum_{i=1}^N \sum_{m=1}^h (\hat{\mathbf{g}}_{c,i}^{t,m} - \nabla f_{c,i}^\mu(\boldsymbol{\theta}_{c,i}^{t,m})) \right\|^2 \right]}_{\mathcal{C}_{2,1}} + \eta_c^2 L \mathbb{E}_t \left[\left\| \frac{1}{N} \sum_{i=1}^N \sum_{m=1}^h \nabla f_{c,i}^\mu(\boldsymbol{\theta}_{c,i}^{t,m}) \right\|^2 \right]. \quad (34)$$

930 According to the statistical properties of zeroth-order gradient estimators (Lemma A.2), we have
931 $\mathbb{E}_t \left[\sum_{m=1}^h (\hat{\mathbf{g}}_{c,i}^{t,m} - \nabla f_{c,i}^\mu(\boldsymbol{\theta}_{c,i}^{t,m})) \right] = 0$. And we have $\mathbb{E} \left[\langle \sum_{m=1}^h (\hat{\mathbf{g}}_{c,i_1}^{t,m} - \nabla f_{c,i_1}^\mu(\boldsymbol{\theta}_{c,i_1}^{t,m})), \sum_{m=1}^h (\hat{\mathbf{g}}_{c,i_2}^{t,m} - \nabla f_{c,i_2}^\mu(\boldsymbol{\theta}_{c,i_2}^{t,m})) \rangle \right] = 0$, since the two sums correspond to independent, zero-mean random vectors (one
932 coming from client i_1 , the other from client i_2 , $i_1 \neq i_2$) and hence the expectation of their inner
933 product vanishes. Thus, we have:

$$934 \quad \mathcal{C}_{2,1} = \mathbb{E}_t \left[\left\| \frac{1}{N} \sum_{i=1}^N \sum_{m=1}^h (\hat{\mathbf{g}}_{c,i}^{t,m} - \nabla f_{c,i}^\mu(\boldsymbol{\theta}_{c,i}^{t,m})) \right\|^2 \right] \\ 935 \quad = \frac{1}{N^2} \sum_{i=1}^N \mathbb{E}_t \left[\left\| \sum_{m=1}^h (\hat{\mathbf{g}}_{c,i}^{t,m} - \nabla f_{c,i}^\mu(\boldsymbol{\theta}_{c,i}^{t,m})) \right\|^2 \right]. \quad (35)$$

936 According to Equation Eq. 14 and Lemma 2 in Wang et al. (2021), we have:

$$937 \quad \mathcal{C}_{2,1} = \frac{1}{N^2} \sum_{i=1}^N \sum_{m=1}^h \mathbb{E}_{t,m} \left[\|\hat{\mathbf{g}}_{c,i}^{t,m} - \nabla f_{c,i}^\mu(\boldsymbol{\theta}_{c,i}^{t,m})\|^2 \right] \\ 938 \quad \stackrel{(a)}{\leq} \frac{1}{N^2} \sum_{i=1}^N \sum_{m=1}^h \mathbb{E}_{t,m} [\|\hat{\mathbf{g}}_{c,i}^{t,m}\|^2], \quad (36)$$

939 where (a) holds because $\mathbb{E}[\|a - \mathbb{E}[a]\|^2] \leq \mathbb{E}[\|a\|^2]$. Now by applying the second-moment bound
940 from Lemma A.3, and substituting these result back, we have:

$$941 \quad \mathcal{C}_2 \leq \eta_c^2 L \mathcal{C}_{2,1} + \eta_c^2 L \mathbb{E}_t \left[\left\| \frac{1}{N} \sum_{i=1}^N \sum_{m=1}^h \nabla f_{c,i}^\mu(\boldsymbol{\theta}_{c,i}^{t,m}) \right\|^2 \right], \quad (37)$$

972 where $\mathcal{C}_{2,1}$ is bounded as follows:
 973

$$\begin{aligned}
 974 \quad \mathcal{C}_{2,1} &\leq \frac{6L^2}{N^2} \sum_{i=1}^N \sum_{m=1}^h \mathbb{E}_{t,m-1} [\|\boldsymbol{\theta}_c^t - \boldsymbol{\theta}_{c,i}^{t,m}\|^2] + \frac{6h}{N} \|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2 \\
 975 &\quad + \frac{2dG_c^2h}{NB} + \frac{d^2L^2\mu^2h}{2NB} + \frac{(6\sigma_c^2 + 2\mu^2L^2)h}{N} \\
 976 &\leq \frac{6L^2}{N} \mathbb{E}_t \left[\frac{1}{N} \sum_{i=1}^N \sum_{m=1}^h \|\boldsymbol{\theta}_c^t - \boldsymbol{\theta}_{c,i}^{t,m}\|^2 \right] + \frac{6h}{N} \|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2 \\
 977 &\quad + \frac{2dG_c^2h}{NB} + \frac{d^2L^2\mu^2h}{2NB} + \frac{(6\sigma_c^2 + 2\mu^2L^2)h}{N}.
 \end{aligned} \tag{38}$$

984 **Combining the Bounds.** Combining the bounds of \mathcal{C}_1 and \mathcal{C}_2 , we have:
 985

$$\begin{aligned}
 986 \quad \mathbb{E}_t[\mathcal{C}] &\leq \left(\frac{6\eta_c^2Lh}{N} - \frac{\eta_c h}{2} \right) \|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2 + \left(\eta^2L - \frac{\eta_c}{2h} \right) \mathbb{E}_t \left[\left\| \frac{1}{N} \sum_{i=1}^N \sum_{m=1}^h \nabla f_{c,i}^\mu(\boldsymbol{\theta}_{c,i}^{t,m}) \right\|^2 \right] \\
 987 &\quad + \left(\eta_c L^2 + \frac{6\eta_c^2L^3}{N} \right) \mathbb{E}_t \left[\frac{1}{N} \sum_{i=1}^N \sum_{m=1}^h \|\boldsymbol{\theta}_{c,i}^{t,m} - \boldsymbol{\theta}_c^t\|^2 \right] \\
 988 &\quad + \eta_c h L^2 \mu^2 + \frac{2\eta_c^2 L d G_c^2 h}{NB} + \frac{\eta_c^2 d^2 L^3 \mu^2 h}{2NB} + \frac{(6\sigma_c^2 L + 2\mu^2 L^3) \eta_c^2 h}{N} \\
 989 &\stackrel{(a)}{\leq} \left(\frac{6\eta_c^2Lh}{N} - \frac{\eta_c h}{2} \right) \|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2 + \left(\eta_c L^2 + \frac{6\eta_c^2L^3}{N^2} \right) \mathbb{E}_t \left[\frac{1}{N} \sum_{i=1}^N \sum_{m=1}^h \|\boldsymbol{\theta}_{c,i}^{t,m} - \boldsymbol{\theta}_c^t\|^2 \right] \\
 990 &\quad + \eta_c h L^2 \mu^2 + \frac{2\eta_c^2 L d G_c^2 h}{NB} + \frac{\eta_c^2 d^2 L^3 \mu^2 h}{2NB} + \frac{(6\sigma_c^2 L + 2\mu^2 L^3) \eta_c^2 h}{N}.
 \end{aligned} \tag{39}$$

1001 where (a) holds if and only if $\eta_c \leq \frac{1}{2hL}$, which means the term $(\eta^2L - \eta_c h) \mathbb{E}_t[\|\frac{1}{N} \sum_{i=1}^N \sum_{m=1}^h \nabla f_{c,i}^\mu(\boldsymbol{\theta}_{c,i}^{t,m})\|^2]$ is non-positive.
 1002
 1003

1004 Finally, we substitute the bound on the client model divergence from Lemma A.4 into the expression
 1005 for $\mathbb{E}_t[\mathcal{C}]$. This gives us the following inequality:

$$\begin{aligned}
 1006 \quad \mathbb{E}_t[\mathcal{C}] &\leq \left(\frac{6\eta_c^2Lh}{N} - \frac{\eta_c h}{2} \right) \|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2 + \eta_c h L^2 \mu^2 + \frac{2\eta_c^2 L d G_c^2 h}{NB} + \frac{\eta_c^2 d^2 L^3 \mu^2 h}{2NB} \\
 1007 &\quad + \frac{(6\sigma_c^2 L + 2\mu^2 L^3) \eta_c^2 h}{N} + \left(\eta_c L^2 + \frac{6\eta_c^2 L^3}{N} \right) \times \\
 1008 &\quad \left(3h^3 \eta_c^2 \|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2 + \frac{d G_c^2 h^3 \eta_c^2}{B} + \frac{d^2 L^2 \mu^2 h^3 \eta_c^2}{4B} + \frac{(6\sigma_c^2 + 2\mu^2 L^2) h^3 \eta_c^2}{2} \right).
 \end{aligned} \tag{40}$$

1013 To simplify this complex expression, we collect the coefficients for the dominant term, $\|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2$,
 1014 and the remaining bias terms. Let us define a helper variable α to consolidate terms originating from
 1015 the client drift bound:

$$\alpha \triangleq \eta_c h^3 L^2 + \frac{6\eta_c^2 h^3 L^3}{N}. \tag{41}$$

1018 By grouping terms, the bound on $\mathbb{E}_t[\mathcal{C}]$ can be rewritten as:
 1019

$$\begin{aligned}
 1020 \quad \mathbb{E}_t[\mathcal{C}] &\leq \left(\left(\frac{6Lh}{N} + 3\alpha \right) \eta_c^2 - \frac{\eta_c h}{2} \right) \|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2 + \alpha \left(\frac{d G_c^2 \eta_c^2}{B} + \frac{d^2 L^2 \mu^2 \eta_c^2}{4B} + \frac{(6\sigma_c^2 + 2\mu^2 L^2) \eta_c^2}{2} \right) \\
 1021 &\quad + \eta_c h L^2 \mu^2 + \frac{2\eta_c^2 L d G_c^2 h}{NB} + \frac{\eta_c^2 d^2 L^3 \mu^2 h}{2NB} + \frac{(6\sigma_c^2 L + 2\mu^2 L^3) \eta_c^2 h}{N}.
 \end{aligned} \tag{42}$$

1024 Under sufficiently small learning rate η_c , the negative term $-\frac{\eta_c h}{2} \|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2$ will dominate the
 1025 other terms multiplying the squared gradient norm. Specifically, by setting conditions on η_c such

1026 that:

$$\left(\frac{6Lh}{N} + 3\alpha \right) \eta_c^2 \leq \frac{\eta_c h}{4}, \quad (\text{e.g., satisfied if } \eta_c \leq \mathcal{O}(\frac{N}{Lh^2})), \quad (43)$$

1029 we can simplify the bound on the gradient term to $-\frac{\eta_c h}{4} \|\nabla f_c(\theta_c^t)\|^2$. After collecting all remaining
1030 bias and variance terms, we arrive at the final simplified bound:
1031

$$\mathbb{E}_t[\mathcal{C}] \leq -\frac{\eta_c h}{4} \|\nabla f_c(\theta_c^t)\|^2 + \eta_c^2 \left(\frac{6hLdG_c^2}{NB} + \frac{18hL\sigma_c^2}{N} \right) + \eta_c \left(\frac{d^2L^2h\mu^2}{48B} + \frac{13hL^2\mu^2}{12} \right). \quad (44)$$

1034 where the left part is defined as $\Phi_c(\eta_c)$. \square
1035

1036 A.3.2 PROOF OF THEOREM 4.5

1038 Now, we are ready to present the proof of the main theorem with the above lemmas. We denote the
1039 global model parameters at round t as $\theta_g^t = \{\theta_c^t, \theta_s^t\}$, and the local model parameters at client \mathcal{C}_i as
1040 $\theta_{l,i}^t = \{\theta_{c,i}^t, \theta_{a,i}^t\}$.

1041 **Local Model Update.** According to the local update Eq. 3 ($\hat{g}_{c,i}^{t,m} = \hat{\nabla} f_{c,i}^{t,m}(\theta_c; \xi_i)$) at clients and
1042 the aggregation at Fed Server, each communication round in Eq. 5, we have:
1043

$$\theta_c^{t+1} - \theta_c^t = \theta_c^{t,h} - \theta_c^t = -\frac{\eta_c}{N} \sum_{i=1}^N \sum_{m=1}^h \hat{g}_{c,i}^{t,m}, \quad (45)$$

1046 *Proof.* First, we decompose the global model's convergence behavior into client-side and server-
1047 side contributions. Same as the Proposition 3.4 and 3.5 in Han et al. (2024), under Assumptions 4.1,
1048 we have:

$$\mathbb{E}_t[f(\theta_g^{t+1})] - f(\theta_g^t) \leq \mathbb{E}_t[\mathcal{C}] + \mathbb{E}_t[\mathcal{S}] \quad (46)$$

1050 where $\mathcal{C} = \nabla f(\theta_g^t)^T(\theta_c^{t+1} - \theta_c^t) + \frac{L}{2} \|\theta_c^{t+1} - \theta_c^t\|^2$ and $\mathcal{S} = \nabla f(\theta_s^t)^T(\theta_s^{t+1} - \theta_s^t) + \frac{L}{2} \|\theta_s^{t+1} - \theta_s^t\|^2$
1051 denote the contributions from the client-side and server-side models, respectively. $\mathbb{E}_t[\cdot]$ denotes the
1052 expectation on all randomness up to round t .
1053

1054 Next, we analyze the contributions from the client-side and server-side models separately. Since we
1055 have already bounded $\mathbb{E}_t[\mathcal{C}]$ in Lemma A.4, we now focus on bounding $\mathbb{E}_t[\mathcal{S}]$. Under our proposed
1056 SFL framework, we decouple the parameter updates of the client-side and server-side models during
1057 training by introducing auxiliary networks. From the server's point of view, the smashed data it
1058 receives can be regarded as the smashed data in the conventional, non-decoupled scenario, but with
1059 its inputs subject to a distributional shift (Belilovsky et al., 2020). The distribution of the smashed
1060 data is shifted by the client-side model updates, which can be modeled as a local parameter bias.
1061 This shift can be expressed as:

$$d_{c,i}^t = \int \|P_{c,i}^t(\mathbf{z}) - P_{c,i}^*(\mathbf{z})\| d\mathbf{z}. \quad (47)$$

1064 Essentially, by modeling this shift, we capture the local parameter bias introduced by the client's
1065 updates and thereby integrate the update dynamics of both the client and server models into a unified
1066 whole. For the server-side model, we have:

$$\begin{aligned} \mathbb{E}_t[\mathcal{S}] &= \mathbb{E}_t \left[\nabla f_s(\theta_s^t; \theta_{c,:}^*)^T (\theta_s^{t+1} - \theta_s^t) + \frac{L}{2} \|\theta_s^{t+1} - \theta_s^t\|^2 \right] \\ &= \langle \nabla f_s(\theta_s^t; \theta_{c,:}^*), \mathbb{E}_t[\theta_s^{t+1} - \theta_s^t] \rangle + \frac{L}{2} \mathbb{E}_t [\|\theta_s^{t+1} - \theta_s^t\|^2] \\ &\stackrel{(a)}{=} \underbrace{\left\langle \nabla f_s(\theta_s^t; \theta_{c,:}^*), -\eta_s \mathbb{E}_t \left[\sum_{i=1}^N \nabla f_s(\theta_{s,i}^t; \theta_{c,:}^*) \right] \right\rangle}_{\mathcal{S}_1} + \underbrace{\frac{L\eta_s^2}{2} \mathbb{E}_t \left[\left\| \sum_{i=1}^N \nabla f_s(\theta_{s,i}^t; \theta_{c,:}^*) \right\|^2 \right]}_{\mathcal{S}_2} \end{aligned} \quad (48)$$

1076 where (a) holds because of the update rule (Eq. 4) of the server-side model. At this part, we follow
1077 the same steps as in Mu & Shen (2025) to bound \mathcal{S}_1 and \mathcal{S}_2 . So with additional Assumption 4.4,
1078 based on the theoretical results of the server-side model, we can derive the following bound of $\mathbb{E}_t[\mathcal{S}]$:

$$\mathbb{E}_t[\mathcal{S}] \stackrel{(a)}{\leq} \eta_s G_s^2 \sum_{i=1}^N d_{c,i}^t - \frac{\eta_s(2N-1)}{4} \|\nabla f_s(\theta_s^t)\|^2 + \frac{L}{2} N^2 \eta_s^2 G_s^2 \quad (49)$$

1080 where (a) holds if and only if $\eta_s \leq \frac{1}{NL}$, which means the term $(\frac{L\eta_s^2}{2} - \frac{\eta_s}{2N})\mathbb{E}_t[\|\sum_{i=1}^N \nabla f_s(\theta_{s,i}^t)\|^2]$
1081 is non-positive.
1082

1083 **Final Bound.** Combining the bounds of $\mathbb{E}_t[\mathcal{C}]$ and $\mathbb{E}_t[\mathcal{S}]$, we have:
1084

$$\begin{aligned} \mathbb{E}_t[\mathcal{C} + \mathcal{S}] \\ \leq -\frac{\eta_c h}{4} \|\nabla f_c(\theta_c^t)\|^2 + \Phi_c(\eta_c) \\ + \frac{\eta_s G_s^2}{2N} \sum_{i=1}^N d_{c,i}^t - \frac{\eta_s(2N-1)}{4} \|\nabla f_s(\theta_s^t)\|^2 + \frac{L}{2} N^2 \eta_s^2 G_s^2 \end{aligned} \quad (50)$$

1090 With $\eta_c \leq \min\{\frac{1}{3Lh}, \frac{2}{NLh^2}, \frac{N}{72L}\}$ we have:
1091

$$\begin{aligned} \mathbb{E}[f(\theta_g^{t+1})] \leq f(\theta_g^t) - \frac{\eta_c h}{4} \|\nabla f_c(\theta_c^t)\|^2 + \Phi_c(\eta_c) + \frac{\eta_s G_s^2}{2N} \sum_{i=1}^N d_{c,i}^t \\ - \frac{\eta_s(2N-1)}{4} \|\nabla f_s(\theta_s^t)\|^2 + \frac{L}{2} N^2 \eta_s^2 G_s^2 \end{aligned} \quad (51)$$

1096 By rearranging the terms, we have:
1097

$$\begin{aligned} \frac{\eta_c h}{4} \|\nabla f_c(\theta_c^t)\|^2 + \frac{\eta_s(2N-1)}{4} \|\nabla f_s(\theta_s^t)\|^2 \leq f(\theta_g^t) - \mathbb{E}[f(\theta_g^{t+1})] + \Phi_c(\eta_c) \\ + \frac{\eta_s}{2N} \sum_{i=1}^N G_s^2 d_{c,i}^t + \frac{L}{2} N^2 \eta_s^2 G_s^2 \end{aligned} \quad (52)$$

$$\begin{aligned} \Rightarrow \min\{\frac{\eta_c h}{4}, \frac{\eta_s(2N-1)}{4}\} \|\nabla f(\theta_g^t)\|^2 \leq f(\theta_g^t) - \mathbb{E}[f(\theta_g^{t+1})] + \Phi_c(\eta_c) \\ + \frac{\eta_s}{2N} \sum_{i=1}^N G_s^2 d_{c,i}^t + \frac{L}{2} N^2 \eta_s^2 G_s^2 \end{aligned} \quad (53)$$

$$\|\nabla f(\theta_g^t)\|^2 \leq \frac{f(\theta_g^t) - \mathbb{E}[f(\theta_g^{t+1})] + \Phi_c(\eta_c) + \frac{\eta_s}{2N} \sum_{i=1}^N G_s^2 d_{c,i}^t + \frac{L}{2} N^2 \eta_s^2 G_s^2}{\min\{\frac{\eta_c h}{4}, \frac{\eta_s(2N-1)}{4}\}} \quad (54)$$

1110 Taking full expectation on both sides, and summing over t from 1 to T , we have:
1111

$$\begin{aligned} \min_{t \in [T]} \mathbb{E}[\|\nabla f(\theta_g^t)\|^2] \\ \leq \frac{f(\theta_g^t) - f(\theta_g^*)}{\min\{\frac{\eta_c h}{4}, \frac{\eta_s(2N-1)}{4}\} T} + \frac{\frac{\eta_s}{2N} G_s^2 \sum_{i=1}^N d_{c,i}^t}{\min\{\frac{\eta_c h}{4}, \frac{\eta_s(2N-1)}{4}\}} + \frac{\frac{L}{2} N^2 \eta_s^2 G_s^2}{\min\{\frac{\eta_c h}{4}, \frac{\eta_s(2N-1)}{4}\}} \\ + \frac{1}{\min\{\frac{\eta_c h}{4}, \frac{\eta_s(2N-1)}{4}\}} \left[\eta_c^2 \left(\frac{6hLdG_c^2}{NB} + \frac{18hL\sigma_c^2}{N} \right) + \eta_c \left(\frac{d^2 L^2 h \mu^2}{48B} + \frac{13hL^2 \mu^2}{12} \right) \right] \end{aligned} \quad (55)$$

1119 with respect to $\eta_c \leq \min\{\frac{1}{3Lh}, \frac{2}{NLh^2}, \frac{N}{72L}\}$, $\forall t \in [T]$.
1120

1121 We want the convergence rate to hold at the same level for both the client-side and server-side, so
1122 first we set $\eta = \eta_c h / 4 = (2N-1)\eta_s / 4$, then we can rewrite the above bound as:
1123

$$\begin{aligned} \min_{t \in [T]} \mathbb{E}[\|\nabla f(\theta_g^t)\|^2] \\ \leq \frac{f(\theta_g^t) - f(\theta_g^*)}{\eta T} + \frac{\frac{\eta_s}{2N} G_s^2 \sum_{i=1}^N d_{c,i}^t}{\eta} + \frac{\frac{L}{2} N^2 \eta_s^2 G_s^2}{\eta} \\ + \frac{1}{\eta} \left[\eta_c^2 \left(\frac{6hLdG_c^2}{NB} + \frac{18hL\sigma_c^2}{N} \right) + \eta_c \left(\frac{d^2 L^2 h \mu^2}{48B} + \frac{13hL^2 \mu^2}{12} \right) \right] \\ = \frac{f(\theta_g^t) - f(\theta_g^*)}{\eta T} + \left(8LG_s^2 \frac{N^2}{(2N-1)^2} + 96 \left(\frac{LdG_c^2}{hNB} + \frac{3L\sigma_c^2}{hN} \right) \right) \eta \\ + \frac{1}{N(2N-1)} G_s^2 \sum_{i=1}^N d_{c,i}^t + \left(\frac{d^2 L^2 \mu^2}{12B} + \frac{13L^2 \mu^2}{3} \right) \end{aligned} \quad (56)$$

1134 then we should have

$$1135 \quad \eta = \mathcal{O}\left(\sqrt{\frac{hNB}{dT}}\right), \eta_c = \mathcal{O}\left(\sqrt{\frac{NB}{dhT}}\right), \eta_s = \mathcal{O}\left(\sqrt{\frac{hB}{dNT}}\right), \quad (57)$$

1136 and $\mu = \mathcal{O}(dhNBT)^{-\frac{1}{4}}$, and we can obtain the convergence rate as:

$$1137 \quad \min_{t \in [T]} \mathbb{E} [\|\nabla f(\boldsymbol{\theta}_g^t)\|^2] \leq \mathcal{O}\left(\sqrt{\frac{d}{hNBT}}\right) + \mathcal{O}\left(\sqrt{\frac{1}{dhNBT}}\right). \quad (58)$$

1138 Then we complete the proof. \square

1139 A.4 PROOF OF THEOREM 4.7

1140 In this section, we consider the convergence behavior from the perspective of the language model
1141 fine-tuning situation. Since the loss landscape of deep learning lies in a very low-dimensional sub-
1142 space, where the Hessian of the loss has a remarkably low effective rank, we can leverage this
1143 property to analyze the convergence rates more effectively.

1144 **Lemma A.6 (Client-side bound with low effective-rank).** *Under Assumption 4.1–4.3, and 4.6,
1145 drawing \boldsymbol{u}_i^t from the uniform distribution on the unit sphere with radius \sqrt{d} , it holds the contribution
1146 from the client side:*

$$1147 \quad \mathbb{E}[\mathcal{C}] \leq -\frac{\eta_c}{4} \|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2 + \frac{\eta_c \mu^2 L^2}{8} (d+3)^3 + \eta_c^2 L^4 \mu^2 d^3 \\ 1148 \quad + \eta_c^2 L \left(1 + \frac{d\kappa + d - 2}{d+2}\right) \frac{1}{N} (\sigma^2 + G_s^2) \\ 1149 \quad + \eta_c^3 L^2 \left(1 + \frac{d\kappa + d - 2}{d+2}\right)^2. \quad (59)$$

1150 Since we hold the same assumptions as the proof of Theorem 2 in Li et al. (2024), we use the results
1151 of Equation (69) in this paper with characters adapted to our notation, which is given as follows:

$$1152 \quad \mathbb{E}[\mathcal{C}] \leq -\frac{\eta_c}{2} \|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2 + \frac{\eta_c \mu^2 L^2}{8} (d+3)^3 + \eta_c^2 L^4 \mu^2 d^3 \\ 1153 \quad + \eta_c^2 L \left(1 + \frac{d\kappa + d - 2}{d+2}\right) \left(\|\nabla f_c(\boldsymbol{\theta}_c^t)\| + \frac{1}{N} (\sigma^2 + G_s^2)\right). \quad (60)$$

1154 This is achieved by applying Young’s inequality. Let us first isolate the terms dependent on the
1155 gradient norm from the right-hand side (RHS) of Eq. 60:

$$1156 \quad \text{RHS} \leq -\frac{\eta_c}{2} \|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2 + \eta_c^2 L \left(1 + \frac{d\kappa + d - 2}{d+2}\right) \|\nabla f_c(\boldsymbol{\theta}_c^t)\| + C_1, \quad (61)$$

1157 where C_1 collects all terms that are independent of $\|\nabla f_c(\boldsymbol{\theta}_c^t)\|$:

$$1158 \quad C_1 = \frac{\eta_c \mu^2 L^2}{8} (d+3)^3 + \eta_c^2 L^4 \mu^2 d^3 + \eta_c^2 L \left(1 + \frac{d\kappa + d - 2}{d+2}\right) \frac{1}{N} (\sigma^2 + G_s^2).$$

1159 We use Young’s inequality, which states that for any $a, b \geq 0$ and $\delta > 0$, we have $ab \leq \frac{\delta}{2}a^2 + \frac{1}{2\delta}b^2$.
1160 We apply this to the linear gradient term in Eq. 61 by defining:

$$1161 \quad a := \eta_c L \left(1 + \frac{d\kappa + d - 2}{d+2}\right), \\ 1162 \quad b := \eta_c \|\nabla f_c(\boldsymbol{\theta}_c^t)\|.$$

1163 This application yields the following bound:

$$1164 \quad \eta_c^2 L \left(1 + \frac{d\kappa + d - 2}{d+2}\right) \|\nabla f_c(\boldsymbol{\theta}_c^t)\| \leq \frac{\delta}{2} \left[\eta_c L \left(1 + \frac{d\kappa + d - 2}{d+2}\right)\right]^2 + \frac{1}{2\delta} [\eta_c \|\nabla f_c(\boldsymbol{\theta}_c^t)\|]^2 \\ 1165 \quad = \frac{\delta \eta_c^2 L^2}{2} \left(1 + \frac{d\kappa + d - 2}{d+2}\right)^2 + \frac{\eta_c^2}{2\delta} \|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2. \quad (62)$$

1188 Substituting the bound Eq. 62 back into our main expression, we can group the coefficients of the
 1189 $\|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2$ term:
 1190

$$1191 \text{RHS} \leq \left(-\frac{\eta_c}{2} + \frac{\eta_c^2}{2\delta} \right) \|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2 + C_1 + \frac{\delta\eta_c^2 L^2}{2} \left(1 + \frac{d\kappa + d - 2}{d+2} \right)^2. \quad (63)$$

1194 To simplify the coefficient of the squared gradient norm to a more convenient form, such as $-\frac{\eta_c}{4}$,
 1195 we select a specific value for the free parameter δ . By setting the new coefficient to this target, we
 1196 solve for δ :

$$\begin{aligned} 1197 \quad & -\frac{\eta_c}{2} + \frac{\eta_c^2}{2\delta} = -\frac{\eta_c}{4} \\ 1198 \quad & \implies \frac{\eta_c^2}{2\delta} = \frac{\eta_c}{2} - \frac{\eta_c}{4} = \frac{\eta_c}{4} \\ 1199 \quad & \implies \delta = 2\eta_c. \end{aligned}$$

1203 Since the learning rate $\eta_c > 0$, our choice $\delta > 0$ is valid. With $\delta = 2\eta_c$, the new term arising
 1204 from Young's inequality that is independent of the gradient becomes $\eta_c^3 L^2 \left(1 + \frac{d\kappa + d - 2}{d+2} \right)^2$. By
 1205 substituting this result into Eq. 63, we obtain the simplified upper bound for $\mathbb{E}[\mathcal{C}]$. This final form is
 1206 advantageous for convergence analysis, as the negative squared gradient term is now clearly isolated
 1207 from other terms that are of a higher order in η_c or are related to statistical variance.
 1208

1209 A.4.1 PROOF OF THEOREM 4.7

1212 Following the proof strategy of Theorem 1, the analysis can be naturally divided into two parts:
 1213 client-side optimization and server-side optimization. Now we are ready to prove Theorem 4.7.

1215 *Proof.* Combining the bounds of $\mathbb{E}_t[\mathcal{C}]$ from Lemma A.6 and $\mathbb{E}_t[\mathcal{S}]$ same as Eq. 49, we have:

$$\begin{aligned} 1217 \quad & \mathbb{E}_t[\mathcal{C} + \mathcal{S}] = \mathbb{E}[\mathcal{C} + \mathcal{S}] \\ 1218 \quad & \leq -\frac{\eta_c}{4} \|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2 + \Phi'_c(\eta_c) \\ 1219 \quad & \quad + \frac{\eta_s G_s^2}{2N} \sum_{i=1}^N d_{c,i}^t - \frac{\eta_s(2N-1)}{4} \|\nabla f_s(\boldsymbol{\theta}_s^t)\|^2 + \frac{L}{2} N^2 \eta_s^2 G_s^2 \end{aligned} \quad (64)$$

1222 where Φ'_c is defined as:

$$\begin{aligned} 1224 \quad & \Phi'_c = \frac{\eta_c \mu^2 L^2}{8} (d+3)^3 + \eta_c^2 L^4 \mu^2 d^3 + \eta_c^2 L \left(1 + \frac{d\kappa + d - 2}{d+2} \right) \frac{1}{N} (\sigma^2 + G_s^2) \\ 1225 \quad & \quad + \eta_c^3 L^2 \left(1 + \frac{d\kappa + d - 2}{d+2} \right)^2. \end{aligned} \quad (65)$$

1229 With the same methods in proof of Theorem 4.1, we can have

$$1231 \quad \|\nabla f(\boldsymbol{\theta}_g^t)\|^2 \leq \frac{f(\boldsymbol{\theta}_g^t) - \mathbb{E}[f(\boldsymbol{\theta}_g^{t+1})] + \Phi'_c(\eta_c) + \frac{\eta_s}{2N} \sum_{i=1}^N G_s^2 d_{c,i}^t + \frac{L}{2} N^2 \eta_s^2 G_s^2}{\min\{\frac{\eta_c}{4}, \frac{\eta_s(2N-1)}{4}\}} \quad (66)$$

1234 Taking full expectation on both sides, and summing over t from 1 to T (with Assumption 4.4), we
 1235 have:

$$\begin{aligned} 1236 \quad & \min_{t \in [T]} \mathbb{E} [\|\nabla f(\boldsymbol{\theta}_g^t)\|^2] \\ 1237 \quad & \leq \frac{f(\boldsymbol{\theta}_g^1) - f(\boldsymbol{\theta}_g^{T+1})}{\min\{\frac{\eta_c}{4}, \frac{\eta_s(2N-1)}{4}\} T} + \frac{\frac{\eta_s}{2N} G_s^2 \sum_{i=1}^N d_{c,i}^t}{\min\{\frac{\eta_c}{4}, \frac{\eta_s(2N-1)}{4}\}} + \frac{\frac{L}{2} N^2 \eta_s^2 G_s^2}{\min\{\frac{\eta_c}{4}, \frac{\eta_s(2N-1)}{4}\}} \\ 1238 \quad & \quad + \frac{\Phi'_c(\eta_c)}{\min\{\frac{\eta_c}{4}, \frac{\eta_s(2N-1)}{4}\}}. \end{aligned} \quad (67)$$

1242 We want the convergence rate can hold at the same level for both the client-side and server-side, so
 1243 first we set $\eta = \eta_c/4 = (2N-1)\eta_s/4$, then we can rewrite the above bound as:
 1244

$$\begin{aligned}
 1245 \min_{t \in [T]} \mathbb{E} [\|\nabla f(\boldsymbol{\theta}_g^t)\|^2] \\
 1246 \leq & \frac{f(\boldsymbol{\theta}_g^1) - f(\boldsymbol{\theta}_g^{T+1})}{\eta T} \\
 1247 & + \eta \left[\frac{8LN^2G_s^2}{(2N-1)^2} + 16L^4\mu^2d^3 + \frac{16L}{N} \left(1 + \frac{d\kappa + d - 2}{d+2} \right) (\sigma^2 + G_s^2) \right] \\
 1248 & + \eta^2 \left[64L^2 \left(1 + \frac{d\kappa + d - 2}{d+2} \right)^2 \right] \\
 1249 & + \left[\frac{2G_s^2}{N(2N-1)} \sum_{i=1}^N d_{c,i}^t + \frac{\mu^2L^2}{2} (d+3)^3 \right]. \\
 1250 \\
 1251 \\
 1252 \\
 1253 \\
 1254 \\
 1255 \\
 1256
 \end{aligned} \tag{68}$$

1257 To achieve a more informative rate, we specify the structure of the dominant terms. In many federated
 1258 learning analyses, the coefficient of the leading $O(\eta)$ error term scales with key system parameters.
 1259 Let us assume the dominant part of this coefficient is characterized by the condition number
 1260 κ , the number of clients N , and the average local data size B . We can thus define the coefficient of
 1261 the primary $O(\eta)$ term as being of order $\mathcal{O}(\kappa/(NB))$.

1262 Then we should have the learning rates set by balancing the $O(1/(\eta T))$ and the dominant $O(\eta)$
 1263 terms to optimize the bound. This balance, $\frac{1}{\eta T} \approx \eta \frac{\kappa}{NB}$, yields $\eta \propto \sqrt{NB/(\kappa T)}$. We thus set:
 1264

$$\eta = \mathcal{O} \left(\sqrt{\frac{NB}{\kappa T}} \right), \quad \eta_c = \mathcal{O} \left(\sqrt{\frac{NB}{\kappa T}} \right), \quad \eta_s = \mathcal{O} \left(\sqrt{\frac{B}{N\kappa T}} \right), \tag{69}$$

1265 and $\mu \leq \frac{\sqrt[4]{\kappa}}{\sqrt[4]{NT} \sqrt[4]{(d+3)^3}}$, we can obtain the convergence rate as:
 1266

$$\min_{t \in [T]} \mathbb{E} [\|\nabla f(\boldsymbol{\theta}_g^t)\|^2] \leq \mathcal{O} \left(\sqrt{\frac{\kappa}{NBT}} \right) + \mathcal{O} \left(\frac{1}{T} \right) + C_{err}, \tag{70}$$

1267 where the $O(1/T)$ term arises from the η^2 components of the bound, and $C_{err} =$
 1268 $\frac{2}{\delta} \left[\frac{2G_s^2}{N(2N-1)} \Delta + \frac{\mu^2L^2}{2} (d+3)^3 \right]$ is a constant error floor independent of T , indicating convergence
 1269 to a neighborhood of the optimum.

1270 Then we complete the proof. □
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296 **B PSEUDO CODE OF HERON-SFL**
1297

1298

1299 **Algorithm 1** Hybrid Zeroth- and First-Order Optimization SFL (HERON-SFL)

1300 **Require:** Client learning rate η_c , Server learning rate η_s , ZO radius μ , local steps h , upload period
1301 k

1302 1: **Server Initialization:**

1303 2: Initialize global model $\theta_g^0 = \{\theta_c^0, \theta_s^0\}$ and auxiliary model θ_a^0

1304 3: Fed-Server broadcasts θ_c^0, θ_a^0 to all clients

1305 4: **procedure** CLIENTUPDATE($i, \theta_c^t, \theta_a^t$)

1306 5: $\theta_{c,i}^{t,0} \leftarrow \theta_c^t, \theta_{a,i}^{t,0} \leftarrow \theta_a^t$

1307 6: **for** $m = 0, 1, \dots, h - 1$ **do** ▷ Local Training Steps

1308 7: Sample mini-batch ξ_i and random direction $u^{t,m}$

1309 8: Compute $\Delta\ell_i$ by perturbing $\theta_{l,i}^{t,m} = \{\theta_{c,i}^{t,m}, \theta_{a,i}^{t,m}\}$ with $\pm\mu u^{t,m}$

1310 9: Estimate ZO gradients: $\hat{g}_{l,i}^{t,m} \leftarrow \hat{\nabla} f_{l,i}(\theta_l; \xi_i)$

1311 10: Update local models: $\theta_{l,i}^{t,m+1} \leftarrow \theta_{l,i}^{t,m} - \eta_c \hat{g}_{l,i}^{t,m}$

1312 11: **if** $(m + 1) \bmod k = 0$ **then** ▷ Periodic upload every k steps

1313 12: Generate smashed data $s_i^{t,m} \leftarrow \theta_{c,i}^{t,m+1}(\xi_i)$ and send to Main-Server

1314 13: **return** $\theta_{c,i}^{t,h}, \theta_{a,i}^{t,h}$ to Fed-Server

1315

1316

1317 14: **for** $t = 0, 1, \dots, T - 1$ **do** ▷ Main Training Loop (Global Rounds)

1318 15: //—Phase 1: Parallel Client Training & Concurrent Server Updates—

1319 16: **for** each client $i = 1, \dots, N$ **in parallel do**

1320 17: Execute CLIENTUPDATE($i, \theta_c^t, \theta_a^t$)

1321 18: ▷ Concurrently, server receives periodic client uploads

1322 19: Main-Server collects all received data $\{s_i^{t,m}\}$ from the round

1323 20: Main-Server sequentially updates θ_s^t using all received smashed data: $\theta_s^{t+1} \leftarrow$ updated θ_s^t

1324

1325 21: //—Phase 2: Federated Aggregation—

1326 22: Fed-Server receives final local models $\{\theta_{c,i}^{t,h}, \theta_{a,i}^{t,h}\}_{i=1}^N$

1327 23: $\theta_c^{t+1} \leftarrow \frac{1}{N} \sum_{i=1}^N \theta_{c,i}^{t,h}$ and $\theta_a^{t+1} \leftarrow \frac{1}{N} \sum_{i=1}^N \theta_{a,i}^{t,h}$

1328 24: Fed-Server broadcasts $\theta_c^{t+1}, \theta_a^{t+1}$ for the next round

1329

1330

1331 **C EXPERIMENTAL DETAILS**
13321333 **C.1 DETAILS OF THE OVERHEAD EVALUATION SETUP**
1334

1335 **Communication Cost Measurement.** The client–server communication load is computed by
1336 measuring the total number of bits transmitted during each local update step. For smashed-data up-
1337 loads, we follow the definition in Table 1 and calculate the communication as the tensor size of the
1338 smashed activations (i.e., the number of elements multiplied by the batch size) times the numerical
1339 precision used in transmission (FP16 in all our experiments). For federated aggregation, we addi-
1340 tionally account for the upload of the client-side and auxiliary model parameters, multiplied by the
1341 same precision. The overall communication per update step is therefore the sum of (i) smashed-data
1342 upload bits and (ii) model parameter upload bits.

1343 **Client-Side Peak Footprint per Local Update Step.** Peak FP for client-side model update is
1344 measured using `torch.cuda.max_memory_allocated()` during a single local client update,
1345 capturing the maximum GPU allocation—including **model parameters**, **optimizer states**, **inter-**
1346 **mediate activations**, and all **temporary CUDA buffers**—required by the update step. For FO
1347 baselines (SFLV1/V2, CSE-FSL, FSL-SAGE), the peak occurs during backpropagation because all
1348 layerwise activations of both the client model and the auxiliary network must be cached. In contrast,
1349 HERON-SFL performs only forward evaluations for its ZO update, so no activations are stored, and
the perturbation direction is generated procedurally from a seed rather than stored as a full vector.

1350
 1351 **Client-Side Peak FLOPs per Local Update Step.** To measure the peak FLOPs incurred by
 1352 the client during a single model-update step, we use PyTorch’s operator-level FLOP instrumen-
 1353 tation, which records the floating-point operations executed by all CUDA kernels involved in for-
 1354 ward or backward computations. For first-order baselines (SFLV1/V2, CSE-FSL, FSL-SAGE), we
 1355 profile the entire forward-backward pipeline of the client-side model and auxiliary network using
 1356 `torch.profiler.profile()`, and sum all FLOP counts across recorded events. For HERON-
 1357 SFL, we profile the two forward evaluations required by the two-point ZO estimator, without any
 1358 backward operations. The peak FLOPs of the client step are computed as the sum of FLOPs from
 1359 two forward passes. All reported numbers represent FLOPs executed within one local update step
 1360 on a single client GPU.
 1361

D ADDITIONAL EXPERIMENTS

D.1 ABLATION STUDY ON HYPER-PARAMETERS OF SFL

1365
 1366 Figure 5: Test accuracy of different SFL algorithms on CIFAR-10 using a ResNet-18 model. (a)
 1367 Impact of data heterogeneity under varying Dirichlet α values. (b) Client scalability under different
 1368 total numbers of clients. (c) Performance under different fractions of participating clients per round.
 1369

D.1.1 EFFECT OF DATA HETEROGENEITY (NON-IID)

1370 The impact of data heterogeneity is evaluated on CIFAR-10 using a ResNet-18 model with ten
 1371 clients under full participation. As shown in Figure 5a, varying the Dirichlet concentration parameter
 1372 creates a broad range of non-IID conditions, yet HERON-SFL maintains accuracy comparable to
 1373 first-order SFL baselines across all levels of heterogeneity. The zeroth-order updates do not weaken
 1374 the model’s ability to handle distributional shifts, and the perturbation-induced noise remains well
 1375 controlled. These results indicate that HERON-SFL preserves the robustness to non-IID client data
 1376 that is characteristic of first-order SFL training.
 1377

1378 Additionally, we further test the training accuracy on $\alpha = 0.1$, an extremely heterogeneous setting
 1379 where client label distributions exhibit minimal overlap. Under this regime, all SFL variants fail
 1380 to converge, which aligns with findings in prior FL studies where such severe non-IID conditions
 1381 cause strong client drift and unstable global updates. Achieving stable training at $\alpha = 0.1$ typically
 1382 requires dedicated mechanisms such as data sharing (Zhu et al., 2021), gradient regularization (Li
 1383 et al., 2020), or distribution alignment (Mahmud & Dividino, 2024), none of which are incorporated
 1384 in standard SFL pipelines. A full investigation of these techniques falls outside the scope of this
 1385 work, and our study therefore focuses on the heterogeneity regimes commonly examined in the SFL
 1386 work (Nair et al., 2025). We emphasize that this failure mode is not caused by the use of zeroth-
 1387 order optimization: even first-order SFL baselines collapse under such extreme non-IID conditions,
 1388 consistent with prior FL findings.
 1389

D.1.2 EFFECT OF THE NUMBER OF CLIENTS

1390 Scalability is examined by varying the total number of clients while keeping the dataset (CIFAR-
 1391 10), model architecture (ResNet-18), and full participation unchanged under an IID configuration.
 1392 As shown in Figure 5b, HERON-SFL sustains nearly identical accuracy as the federation expands
 1393 from ten to one hundred clients, demonstrating that our HERON-SFL remains stable at larger scales.
 1394

1404
1405 D.1.3 EFFECT OF PARTIAL PARTICIPATION

1406 Training performance under partial participation is assessed on CIFAR-10 with a ResNet-18 model
 1407 and 10 IID clients. As shown in Figure 5c, HERON-SFL maintains stable accuracy over a wide range
 1408 of participation ratios, including cases where only a small fraction of clients contributes updates in
 1409 each round. Its behavior closely matches that of first-order SFL baselines, indicating that partial
 1410 participation does not impair the convergence behavior of the zeroth-order client updates. These
 1411 findings confirm that HERON-SFL remains reliable even when participation is limited, a setting
 1412 commonly encountered in practical cross-device federated learning.

1413
1414 D.2 ABLATION STUDY ON HYPER-PARAMETERS OF ZO

1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425 Figure 6: Ablation study on local zeroth-order training hyper-parameters using ResNet-18 on
 1426 CIFAR-10 under an IID setting with ten clients, with all experiments using the same auxiliary model
 1427 implemented as a single linear layer. Client Size 1 denotes the first convolutional layer and one
 1428 residual block on the client, while Client Size 2 places three residual blocks on the client. (a) Test
 1429 accuracy under different perturbation step lengths μ . (b) Test accuracy under different perturbation
 1430 counts per epoch.

1431
1432 As shown in Figure 6, HERON-SFL exhibits stable performance across a wide range of zeroth-
 1433 order hyper-parameters, demonstrating robustness to both the perturbation step size and the number
 1434 of perturbations per epoch. When an appropriate step size μ is selected, using only two perturbations
 1435 per epoch is sufficient to ensure reliable convergence, indicating that HERON-SFL does not suffer
 1436 from the instability often associated with zeroth-order optimization. Across both figures, Client Size
 1437 1 consistently achieves higher accuracy than Client Size 2 (align with the ablation experiments in
 1438 Figure 4), reflecting the expected increase in optimization difficulty when a larger portion of the
 1439 model is placed on the client. This mild degradation is acceptable in SFL settings because resource-
 1440 constrained devices typically hold only small client sub-models, while the majority of parameters
 1441 remain on the server for first-order training. Overall, the results confirm that HERON-SFL main-
 1442 tains strong accuracy under practical ZO configurations and remains reliable even when client-side
 1443 capacity varies.

1444
1445 D.3 EVIDENCE FOR LOW RANK ASSUMPTION

1446
1447 Given the prohibitive cost of full Hessian computation for LLMs, we validated the low-effective rank
 1448 assumption using a modified ResNet-18 (He et al., 2016) on CIFAR-10. We estimated the Hessian
 1449 eigenvalue density via the stochastic Lanczos algorithm (Golub & Welsch, 1969), following the
 1450 methodology of Ghorbani et al. (2019). As shown in Figure 7, the resulting distribution, heavily
 1451 concentrated at zero, suggests that the low-rank structure is an intrinsic property of the optimization
 1452 landscape rather than a strong constraint. For empirical evidence of the low-rank assumption, the
 1453 same evidence can be seen in Li et al. (2024) Appendix C.3.1.

1454
1455 This observation extends to the regime of LLMs, particularly during the fine-tuning phase. Recent
 1456 works, such as GaLore (Zhao et al., 2024), have provided robust evidence that while pre-training
 1457 may necessitate high-rank updates, the weight modifications required for fine-tuning naturally reside
 1458 in a low-rank subspace. This intrinsic low-dimensionality is a critical factor explaining the success of
 1459 Zeroth-Order (ZO) optimization methods in this domain. It theoretically justifies why methods like

1458 MeZO (Malladi et al., 2023) can achieve competitive performance with memory-efficient, gradient-
 1459 free updates, as they effectively navigate this low-rank manifold.
 1460

1474 Figure 7: Hessian eigenvalue distribution with training custom ResNet on CIFAR-10 dataset.
 1475

1477 E LLM USAGE STATEMENT

1479 We acknowledge the use of a Large Language Model as a general-purpose assist tool in preparing
 1480 this paper. The LLM was used only for language assistance, including polishing grammar, improv-
 1481 ing clarity, and refining the flow of the text.
 1482

1483 The research ideas, experiments, analyses, and conclusions presented in this work are solely the
 1484 result of the authors' efforts. The LLM did not contribute to the design of experiments, development
 1485 of algorithms, data analysis, or any substantive scientific content.
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511