LEAN CLIENTS, FULL ACCURACY: HYBRID ZEROTH-AND FIRST-ORDER SPLIT FEDERATED LEARNING

Anonymous authors

000

001

002003004

010 011

012

013

014

016

017

018

019

021

024

025

026

027

028

031

033

035

037

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Split Federated Learning (SFL) enables collaborative training between resourceconstrained edge devices and a compute-rich server by partitioning deep neural networks. Communication overhead is a central issue in SFL and is well mitigated with auxiliary networks; yet the core client-side computation challenge remains, as back-propagation requires substantial memory and computation costs, severely limiting the scale of models that edge devices can support. To make the client side more resource-efficient, we propose HERON-SFL, a novel hybrid optimization framework that integrates zeroth-order (ZO) optimization for local client training while retaining first-order (FO) optimization on the server. With the assistance of auxiliary networks, ZO updates enable clients to approximate local gradients using perturbed forward-only evaluations per step, eliminating memory-intensive activation caching and avoiding explicit gradient computation in the traditional training process. Leveraging the low effective rank assumption, we theoretically prove that HERON-SFL's convergence rate is independent of model dimensionality, addressing a key scalability concern common to ZO algorithms. Empirically, on ResNet training and large language model (LLM) fine-tuning tasks, HERON-SFL matches benchmark accuracy while reducing client peak memory by up to 64% and client-side compute cost by up to 65% per step, substantially expanding the range of models that can be trained or adapted on resource-limited devices.

1 Introduction

Split Federated Learning (SFL) (Thapa et al., 2022; 2021) targets scenarios with resource-constrained clients and compute-rich servers. Under the SFL framework, the full network is cut into client-side and server-side sub-models: each client runs a forward pass up to the cut layer and uploads the intermediate activations; the main server completes the forward pass, computes the loss, back-propagates to the cut layer, and returns the gradients so the client can update its sub-model. In parallel, the federated server (Fed Server) periodically aggregates the clients' weight updates in a federated way, enabling large-scale training that exploits cloud compute while keeping all raw data on-device. However, the update lock (Belilovsky et al., 2020; 2019) imposed by back-propagation means that, at every iteration, each client must idle until the server finishes its backward pass and transmits the cut-layer gradients. This synchronization bottleneck both throttles overall training throughput and amplifies communication overhead in SFL.

To mitigate this bottleneck, recent work equips each client with an auxiliary network (typically a lightweight output layer) that estimates the cut-layer gradients locally (Mu & Shen, 2025; Han et al., 2021; Oh et al., 2022). This design decouples the client from the server, allowing the client sub-model to update immediately without waiting for the server's backward pass, thereby drastically reducing communication overhead and granting extra degrees of freedom for client-side optimization. Previous works show that auxiliary-network SFL not only cuts communication volume by a wide margin but also achieves higher convergence accuracy than the traditional methods (Mu & Shen, 2025; Nair et al., 2025). However, as current approaches take advantage of the auxiliary module as a communication shortcut, they often overlook the significant computational and storage burden it imposes on edge devices. This overhead is primarily driven by the conventional first-order (FO) optimization process, where backpropagation and gradient computation impose prohibitive compute and memory demands on edge devices.

Zeroth-order (ZO) optimization provides an appealing alternative. Unlike FO methods, ZO estimates gradients through parameter perturbations and forward-only evaluations, bringing the computational and storage overhead to a level comparable to those of inference (Malladi et al., 2023). This property suggests that ZO could substantially reduce the client-side burden in SFL. However, ZO optimization is known to suffer from biased gradient estimates and slower convergence compared to FO methods (Qiu et al., 2023), thereby raising an open question:

Can ZO methods be effectively integrated into SFL to reduce client-side computation and storage without sacrificing accuracy or convergence guarantees?

We answer this question affirmatively by proposing HERON-SFL, a novel Hybrid zEroth- and fiRst-Order optimizatioN framework for SFL. In HERON-SFL, clients replace conventional FO gradient computation with lightweight ZO updates, applied to the local model (comprising the client-side and auxiliary networks). This design eliminates the need for backpropagation and caching, enabling edge devices to operate with markedly reduced memory and compute budgets. Importantly, clients transmit only direction information, while the server performs precise FO refinement, ensuring training accuracy is preserved.

Our main contributions are summarized as follows:

- We propose HERON-SFL, a novel hybrid zeroth- and first-order SFL framework. Building upon an auxiliary network that enables decoupled local training, we introduce zeroth-order (ZO) optimization on the client side. This eliminates the need for backpropagation for local updates, thereby significantly reducing on-device memory and computational costs.
- We provide the first theoretical study of hybrid ZO–FO optimization in SFL. Our analysis shows that under a low effective rank assumption, HERON-SFL achieves an $\mathcal{O}(1/\sqrt{T})$ convergence rate, which matches that of standard FO approaches. This result demonstrates that the typical drawback of ZO, i.e., slower convergence due to biased gradients, can be overcome when combined with server-side FO refinement.
- We conduct comprehensive experiments spanning both vision (ResNet training) and language (LLM fine-tuning) tasks. Results show that HERON-SFL consistently reduces client peak memory by up to 64% and client computation per step by up to 65%, while matching the accuracy of state-of-the-art, auxiliary-network-based FO SFL methods. These gains highlight HERON-SFL's practical potential for deploying advanced models on previously infeasible devices.

2 RELATED WORK

Split Federated Learning. While modern foundation models achieve state-of-the-art performance (Brown et al., 2020; Chowdhery et al., 2023), their immense computational and memory requirements restrict them to data centers, limiting their real-world reach (Luo et al., 2024; Sani et al., 2024). To bring large language models onto edge devices, SFL was proposed by merging Federated Learning (FL) (McMahan et al., 2017) with Split Learning (SL) (Vepakomma et al., 2018) to enhance data privacy and robustness (Thapa et al., 2022; Lee et al., 2024). However, SFL remains constrained by the SL training paradigm, leading to prohibitive communication overhead and a synchronous update lock, as clients must await gradients from the server before updating (Kairouz et al., 2021; Vepakomma et al., 2018). To mitigate these bottlenecks, recent research has primarily pursued two complementary directions: system-level optimization and algorithmic decoupling.

System-level optimization aims to adapt the SFL protocol to the constraints of edge networks. This includes methods for adaptive model splitting based on network conditions (Lin et al., 2024b), hierarchical topologies to manage client resources (Lin et al., 2025), and parallel training designs optimized for wireless networks (Wu et al., 2023). Underpinning these practical advances, recent theoretical work has also focused on providing formal convergence guarantees for SFL, particularly under realistic conditions such as data heterogeneity (Han et al., 2024; Li & Lyu, 2023).

Algorithmic decoupling aims to eliminate the synchronous lock by incorporating a client-side auxiliary model to decouple client and server updates by generating local gradient estimates, thereby obviating the need for server-to-client gradient transmission (Han et al., 2021; Mu & Shen, 2025; Oh et al., 2022; Nair et al., 2025). Inspired by decoupled training (Belilovsky et al., 2020; 2019) in centralized settings, this strategy can nearly halve communication costs. Despite their demonstrated

efficacy, these auxiliary models introduce a significant trade-off: a substantial increase in the client's computational and memory footprint, as the auxiliary network can be considerably larger than the primary client-side model itself (Nair et al., 2025).

Zeroth-Order Optimization for Distributed Machine Learning. ZO optimization estimates gradients through function evaluations (Liu et al., 2020), making it particularly useful when explicit gradients are unavailable, such as in reinforcement learning (Nakashima & Kobayashi, 2025; Lei et al., 2022; Zhang & Ying, 2024) and privacy-sensitive scenarios (Chen et al., 2017; Liu et al., 2018; 2019). Recently, ZO has gained attention as an efficient strategy for training (Chen et al., 2024) and fine-tuning (Malladi et al., 2023), since it avoids back-propagation's memory and compute overhead. In distributed machine learning, ZO has been explored as a gradient estimator in FL, demonstrating promising benefits in privacy preservation (Zhang et al., 2021; Fang et al., 2022; Ling et al., 2024) and communication reduction (Li et al., 2024). However, its adoption in the SFL framework remains limited. The main barrier is that variance reduction in ZO requires multiple perturbations, which would substantially increase intermediate activation transmissions and thus communication overhead. To address this, we *restrict ZO to the client side* with the help of auxiliary networks, enabling resource-efficient training while avoiding additional communication costs.

3 ALGORITHM DESIGN

3.1 SFL WITH AUXILIARY NETWORK

We consider an SFL system with one server and N clients, each holding a private dataset \mathcal{D}_i , where the entire dataset is the set $\{\mathcal{D}_i\}_{i=1}^N$. The global model is split at a cut layer into client- and server-side sub-models, where we denote the collection of parameters as $\theta_g = \{\theta_c, \theta_s\}$. Each client i owns a local version of the client-side model, $\theta_{c,i}$. For a sample $\xi_{i,j} \in \mathcal{D}_i$, client i performs a forward pass up to the cut layer to produce the smashed data, $s_i = \theta_{c,i}(\xi_{i,j})$, and uploads it to the main server. The server then completes the forward pass by processing these activations with its sub-model θ_s . The goal is to minimize the global loss function:

$$\min_{\boldsymbol{\theta}_{o},\boldsymbol{\theta}_{s}} f(\boldsymbol{\theta}_{g}) = \frac{1}{N} \sum_{i=1}^{N} f_{i}(\boldsymbol{\theta}_{g}) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{\xi_{i,j} \sim \mathcal{D}_{i}} [\ell(\boldsymbol{\theta}_{g}; \xi_{i,j})],$$
(1)

where $f_i(\theta_g)$ and $f(\theta_g)$ measure the expected loss on the global model over client i's local dataset \mathcal{D}_i and the entire dataset, respectively, computed using a task-specific loss function $\ell(\cdot)$ (e.g., cross-entropy).

We adopt the SFLV2 style framework: a single server-side model θ_s resides on the main server and is trained by sequentially processing smashed data s_i from all clients, while a Fed-Server aggregates client-side parameters into the average $\bar{\theta}_c := \frac{1}{N} \sum_i \theta_{c,i}$ (initial parameters for the next round). To reduce communication overhead and enable client-side local feedback, each client i attaches an auxiliary (Aux) model $\theta_{a,i}$ to form a local predictor $\theta_{l,i}(\xi_{i,j}) = \theta_{a,i}(\theta_{c,i}(\xi_{i,j}))$, where $\theta_{l,i} = \{\theta_{c,i}, \theta_{a,i}\}$ (Mu & Shen, 2025; Oh et al., 2022). Because of the Aux model, the SFL system breaks the *training lock* between θ_c and θ_s : by leveraging θ_a , the client can perform local updates independently of server-side gradient feedback.

After initializing the global model $\{\theta_c, \theta_s\}$, the basic SFL-Aux algorithm proceeds: in each round, client i computes smashed data $\mathcal{S}_i = \theta_{c,i}(\xi_i)$ on local mini-batches $\xi_i = \{\xi_{i,j}\}_{j=1}^B$ and uploads them to the Main-Server, while updating $\theta_{l,i}$ by minimizing a local loss from $\theta_{a,i}(\mathcal{S}_i)$, with backpropagation confined to the client. The Main-Server queues smashed data from all clients and sequentially executes forward/backward passes to update θ_s . After a fixed number of local steps, the Fed-Server aggregates all participated $\theta_{l,i}$ (e.g., via weighted averaging like FedAvg (McMahan et al., 2017)) and broadcasts updated global model $\bar{\theta}_l$ to all clients to initiate the next round.

3.2 Zeroth-Order Gradient Estimator

Unlike prior methods that rely on full forward and backward passes through the client and its auxiliary network to compute first-order gradients $\nabla \ell(\theta_l; \xi_i)$, we adopt a mini-batch-type stochastic gradient estimator with two-point evaluation. Specifically, for function $f_{l,i}$, the two-point type

stochastic ZO gradient estimator is defined as:

$$\hat{\nabla} f_{l,i}(\boldsymbol{\theta}_l; \boldsymbol{\xi}_i)) = \frac{1}{B} \sum_{j=1}^{B} \frac{d\boldsymbol{u}}{\mu} [\ell_{l,i}(\boldsymbol{\theta}_l + \mu \boldsymbol{u}; \boldsymbol{\xi}_{i,j}) - \ell_{l,i}(\boldsymbol{\theta}_l; \boldsymbol{\xi}_{i,j})], \tag{2}$$

where u is a random vector drawn from either a Gaussian or a Uniform ball distribution, μ is a positive perturbation step size. This estimator approximates the smoothed objective function's gradient. Formally, it can be shown that this estimator is an unbiased estimate of $\nabla f_{l,i}^{\mu}(\theta_l)$, where $f_{l,i}^{\mu}$ is the Gaussian-smoothed surrogate of the original function $f_{l,i}$. The bias with respect to the true gradient $\nabla f_{l,i}$ is therefore introduced by the smoothing process itself and is controlled by the parameter μ . We defer the formal definition of the smoothed function and its properties to Appendix A.2.

3.3 PROPOSED ALGORITHM

We now summarize the end-to-end training process of our proposed framework, which operates over a series of communication rounds (high-level illustration depicted in Figure 1). Each round, indexed by t, encompasses four key stages: model initialization, local client computation, server-side updates, and local model aggregation in Fed Server. The entire process is formalized as follows:

1. Model Initialization. At the start of the t-th communication round, the Fed-Server broadcasts the global model parameters θ_c^t and θ_a^t that are resulted from the federated aggregation

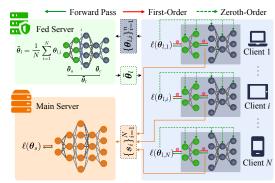


Figure 1: The proposed HERON-SFL algorithm.

at the end of last round. Upon receiving these parameters, each client i initializes its local models for the subsequent update process: $\boldsymbol{\theta}_{l,i}^{t,0} = \{\boldsymbol{\theta}_{c,i}^{t,0}, \boldsymbol{\theta}_{a,i}^{t,0}\} = \{\boldsymbol{\theta}_{c}^{t}, \boldsymbol{\theta}_{a}^{t}\}.$

2. Local Model Update and Smashed Data Upload. The client then proceeds with h local model updates. During this process, the update of the client-side model is decoupled from the server-side model by leveraging an auxiliary network. Distinct from existing methods, our paradigm employs a ZO gradient estimator (defined in Eq. 2) to approximate the gradients of a local loss function. This allows the client to perform timely updates without requiring traditional back-propagation from the server. After performing h local gradient descent steps, the cumulative update for the client-side models can be concisely written as:

$$\boldsymbol{\theta}_{l,i}^{t,h} = \boldsymbol{\theta}_{l,i}^{t,0} - \eta_l \sum_{m=1}^{h} \hat{\nabla} f_{l,i}(\boldsymbol{\theta}_{l,i}^{t,m}; \xi_i))$$
(3)

During the local update phase, the client uploads its smashed data to the server every k local steps for the subsequent server-side training phase.

3. Server Model Update. The server receives the smashed data from each client i and performs model updates sequentially using an SFLV2 (Thapa et al., 2022) training scheme. In this setting, each client's smashed data is processed one-by-one, and standard first-order optimization based on forward and backward propagation is used to estimate gradients and update the server-side model parameters θ_s^t accordingly:

$$\boldsymbol{\theta}_s^{t+1} = \boldsymbol{\theta}_s^t - \eta_s \sum_{i=1}^N \frac{1}{|\mathcal{D}_i|} \sum_{\xi_i \in \mathcal{D}_i} \nabla \ell(\boldsymbol{\theta}_s^t; \boldsymbol{\theta}_{c,i}^t(\xi_i)), \tag{4}$$

where $\nabla_{\theta_s} l(\theta_s^t; \theta_{c,i}^t(\xi_i))$ is the real gradient of the server-side loss function using back propagation.

4. Model Aggregation in Fed Server. Upon completion of the h local updates, each client transmits its updated local parameters $\theta_{l,i}^{t,h}$ to the fed server for aggregation. The fed server averages these parameters across all N clients to compute the global model combined by client-side and auxiliary models for the next round:

$$\theta_l^{t+1} = \bar{\theta}_l^t = \frac{1}{N} \sum_{i=1}^N \theta_{l,i}^{t,h}$$
 (5)

The server-side model, $\boldsymbol{\theta}_s^{t+1}$, which was updated sequentially during the round, is already finalized and requires no aggregation. Finally, the new global model $\boldsymbol{\theta}_g^{t+1} = \{\boldsymbol{\theta}_c^{t+1}, \boldsymbol{\theta}_s^{t+1}\}$ is assembled and prepared for distribution in the subsequent communication round.

In essence, HERON-SFL replaces the clients' local updates in standard SFL with updates driven by a ZO gradient estimator, while retaining client-side auxiliary networks to guide local learning. This design eliminates the need for explicit backpropagation on resource-constrained devices: clients only perform a small number of forward computations and randomized probes to update parameters, substantially reducing compute and memory demands. Clients upload smashed data to the server periodically (every h local steps) to enable global refinement. A critical concern, however, is that ZO optimization is often associated with slow convergence. In the following sections, we will demonstrate both theoretically and empirically that HERON-SFL overcomes this potential challenge within the SFL framework.

4 Convergence and Resource Consumption Analysis

4.1 Convergence Analysis

In this section, we provide a formal convergence analysis to establish the theoretical guarantees for the proposed FSL-HERON framework. For the sake of clarity and conciseness, the detailed mathematical proofs are deferred to Appendix A. The theoretical framework is built upon the following standard assumptions, which are widely adopted in the analysis of distributed optimization algorithms (Karimireddy et al., 2020; Reddi et al., 2020; Mu & Shen, 2025; Fang et al., 2022).

Assumption 4.1 (**L-smoothness**). The loss functions of clients and server are L-smooth. Mathematically, for any $x \in \mathbb{R}^d$ and $y \in \mathbb{R}^d$, the following holds:

$$\|\nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y})\| \le L\|\boldsymbol{x} - \boldsymbol{y}\|, \quad f(\boldsymbol{y}) \le f(\boldsymbol{x}) + \nabla f(\boldsymbol{x})^T(\boldsymbol{y} - \boldsymbol{x}) + \frac{L}{2}\|\boldsymbol{y} - \boldsymbol{x}\|^2, \quad (6)$$

where f is the loss function, and L is the Lipschitz constant.

Assumption 4.2 (Bounded gradients). The gradients of the local loss function $\ell_i(\theta_c, \theta_s)$ are bounded, i.e., there exists a constant G such that:

$$\|\nabla_{\boldsymbol{\theta}_c} \ell_i(\boldsymbol{\theta}_c)\|^2 \le G_c^2, \|\nabla_{\boldsymbol{\theta}_s} \ell_i(\boldsymbol{\theta}_s)\|^2 \le G_s^2. \tag{7}$$

Assumption 4.3 (Bounded variance). The variance of the zeroth-order gradient estimator is bounded, i.e., there exists a constant σ^2 such that:

$$\mathbb{E}[\|\hat{\boldsymbol{g}}_{c,i}^{t,m} - \nabla_{\boldsymbol{\theta}_c} f_i(\boldsymbol{\theta}_c, \boldsymbol{\theta}_s)\|^2] \le \sigma^2.$$
(8)

Assumption 4.4 (Convergence of client sub-model). For each client i at global round t, let $z_{c,i}^t = g_{x_{c,i}^t,h}(z)$ be the output of the i-th client-side model (with input determined by $x_{c,i}^t$ and \mathcal{D}_i), and denote by $P_{c,i}^t(z)$ its output distribution. Let $P_{c,i}^*(z)$ be the reference (time-invariant) output distribution of the i-th client-side model evaluated at x_c^* and \mathcal{D}_i . Define the distribution distance

$$d_{c,i}^{t} := \int_{\mathcal{Z}} |P_{c,i}^{t}(z) - P_{c,i}^{*}(z)| dz, \tag{9}$$

i.e. the L_1 (total-variation) distance between $P_{c,i}^t$ and $P_{c,i}^*$. We assume that the aggregate drift across clients is uniformly bounded as follows:

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N} d_{c,i}^{t} \le \delta, \text{ and } \delta < \infty.$$
 (10)

Remark 1 Together, the Assumptions above ensure a well-behaved optimization environment. Assumption 4.1 guarantees Lipschitz-continuous gradients and provides the usual quadratic upper bound used in descent arguments; Assumption 4.2 prevents arbitrarily large client/server updates and thus promotes numerical stability; and Assumption 4.3 limits the stochastic error between the estimator and the true gradient. Assumption 4.4 is tailored to the auxiliary-network-assisted FSL setting, as also adopted in Mu & Shen (2025) and motivated by centralized synthetic-gradient frameworks (Belilovsky et al., 2020). This condition is essential for guaranteeing the stability and convergence of the SFL process under local gradient updates.

Theorem 4.5 (Convergence rate of HERON-SFL in i.i.d. setting). Under Assumptions 4.1–4.4, if the client learning rate satisfies $\eta_c \leq \{\frac{1}{3Lh}, \frac{2}{NLh^2}, \frac{N}{72L}\}$, and is chosen as $\eta_c = \mathcal{O}(\sqrt{(NB)/(dhT)})$ while the server learning rate is set to $\eta_s = \mathcal{O}(\sqrt{(hB)/(dNT)})$, and perturbation step size is set to $\mu = \mathcal{O}(1/(dhNBT)^{1/4})$. The convergence rate of the HERON-SFl algorithm can be guaranteed as:

 $\min_{t \in [T]} \mathbb{E}\left[\|\nabla f(\boldsymbol{\theta}_g^t)\|^2 \right] \le \mathcal{O}\left(\sqrt{\frac{d}{hNBT}}\right) + \mathcal{O}\left(\sqrt{\frac{1}{dhNBT}}\right). \tag{11}$

Remark 2 The derived bounds on the expected gradient norm indicate that the algorithm can achieve a favorable trade-off between the model complexity (characterized by the dimensionality d) and the training batchsize (captured by B) over the training horizon T. The bound is dominated by $\mathcal{O}(\sqrt{d/(hNBT)})$ (the second term is smaller by $1/\sqrt{d}$). Thus, larger N or B linearly reduces the required rounds; increasing local steps h improves the rate as $1/\sqrt{h}$, trading fewer communication rounds for more local computation. The dependence on model size is \sqrt{d} (or d in sample complexity), which is the drawback of ZO optimization: convergence degrades with increasing dimensionality. Below, we show that the dependency on d can be reduced under structural assumptions on an effective dimension.

Assumption 4.6 (Low κ -Effective Rank). Let $G_t \triangleq \max_{i,\xi_i \subset \mathcal{D}_i} \|\nabla_{\boldsymbol{\theta}_l} l_l(\boldsymbol{\theta}_{l,i}^t; \xi_i)\|$. There exists a Hessian matrix $H_l(\boldsymbol{\theta}_{l,i}^t) \leq L \cdot I_{d_l}$ such that:

- For all θ_l such that $\|\theta_l \theta_{l,i}^t\| \le 2\eta_c d_l G_t$, we have $\nabla^2 l_l(\theta_l) \le H_l(\theta_{l,i}^t)$.
- The effective rank of $H_l(\boldsymbol{\theta}_{l,i}^t)$, i.e., $\frac{tr(H_l(\boldsymbol{\theta}_{l,i}^t))}{\|H_l(\boldsymbol{\theta}_{l,i}^t)\|_2}$, is at most κ .

Theorem 4.7 (Convergence Rate of HERON-SFL with Low Effective Rank Assumption). Under Assumptions 4.1–4.6 ,if the client learning rate satisfies $\eta_c \leq \frac{1}{4L}(1+\frac{d\kappa+d-2}{d+2})$ and $\mu \leq \frac{\sqrt[4]{\kappa}}{\sqrt[4]{NT}\sqrt{(d+3)^3}}$, and is chosen as $\eta_c = \mathcal{O}(\sqrt{(NB)/(\kappa T)})$ while the server learning rate is set to $\eta_s = \mathcal{O}(\sqrt{B/(\kappa NT)})$. The convergence rate of the HERON-SFL algorithm can be guaranteed as:

$$\min_{t \in [T]} \mathbb{E}\left[\|\nabla f(\boldsymbol{\theta}_g^t)\|^2\right] \leq \mathcal{O}\left(\sqrt{\frac{\kappa}{NBT}}\right) + \mathcal{O}\left(\frac{1}{T}\right) + \frac{2}{\delta}\left[\frac{2G_s^2}{N(2N-1)}\Delta + \frac{\mu^2L^2}{2}(d+3)^3\right]. \tag{12}$$

Remark 3 With the prescribed μ , the smoothing bias term $\propto \mu^2(d+3)^3$ is at most $\mathcal{O}\left(\sqrt{\kappa/(NT)}\right)$ and the drift term vanishes in the i.i.d. case $(\Delta=0)$, so the bound simplifies to $\mathcal{O}\left(\sqrt{\kappa/(NBT)}\right)+\mathcal{O}(1/T)$, which is independent with the model dimension d, removing the usual \sqrt{d} degradation of ZO methods and matching the $1/\sqrt{T}$ rate of FO SFL (Mu & Shen, 2025; Nair et al., 2025) up to condition number κ factors.

4.2 CLIENT-SIDE RESOURCE COST ANALYSIS

The following analysis, summarized in Table 1, compares the per-client resource consumption for a single parameter update step on a fixed-size batch of data, assuming all other hyperparameters are held constant. Let p be the data size of one local batch, q be the size of the smashed layer, and $|\theta_c|$, $|\theta_a|$ be the size of the client-side and auxiliary models, respectively.

Table 1: Client-Side Resource Costs per Local Update.

Method	Comms. per Client	Peak Memory	FLOPs
SFLV1/V2	$2pq + 2 \boldsymbol{\theta}_c $	$\mathcal{O}(oldsymbol{ heta}_c)$	$3F_c$
CSE-FSL / FSL-SAGE	$pq + 2(\boldsymbol{\theta}_c + \boldsymbol{\theta}_a)$	$\mathcal{O}(oldsymbol{ heta}_c + oldsymbol{ heta}_a)$	$3(F_c + F_a)$
HERON-SFL	$pq + 2(\boldsymbol{\theta}_c + \boldsymbol{\theta}_a)$	$\mathcal{O}(1)$	$n_p(F_c + F_a)$

Communication Load. The primary communication advantage of decoupled frameworks (CSE-FSL, FSL-SAGE, and HERON-SFL) over traditional SFL (SFLV1/V2) stems from the elimination

of the server-to-client gradient download. While traditional SFL requires a two-way intermediate data exchange for each batch (represented by the term 2pq), decoupled methods perform only a one-way upload, halving this cost to pq. The trade-off for this gain is the added cost of exchanging the auxiliary model parameters, $|\theta_a|$. Nevertheless, this parameter exchange typically represents a minor communication burden relative to the transmission of smashed data.

Peak Memory. FO frameworks like SFLV1/V2 and CSE-FSL require caching intermediate activations for backpropagation. This results in a peak memory footprint that scales with the size of the locally trained models, i.e., $\mathcal{O}(|\theta_c|)$ and $\mathcal{O}(|\theta_c|+|\theta_a|)$ respectively. This overhead can be an order of magnitude larger than that of inference (Griewank & Walther, 2008). In contrast, the ZO-based HERON-SFL obviates activation caching, reducing its peak memory to $\mathcal{O}(1)$, which is equivalent to that of inference (Malladi et al., 2023).

Remark 4 Local ZO updates are highly memory-efficient for two primary reasons. First, they eliminate the need for backpropagation, thus avoiding the high cost of caching intermediate activations. Second, the perturbed parameters u generated in the calculation $\hat{\nabla} f_{l,i}(\theta_l; \xi_i)$ do not require storing the full perturbation vector; instead, the vector can be procedurally generated from a single random seed and applied in-place, further minimizing memory overhead.

FLOPs. Assuming a backward pass is twice as computationally expensive as a forward pass (F) (Chen et al., 2016), first-order methods incur a cost of approximately $3F_c$ (for SFLV1/V2) or $3(F_c+F_a)$ (for CSE-SFL and FSL-SAGE) per update, where F_c and F_a are the forward pass costs of the client and auxiliary models, respectively. In contrast, HERON-SFL performs ZO updates directly on the client, similar to the approach in MeZO (Malladi et al., 2023). In practice, a standard two-point ZO estimator is typically sufficient for stable and effective parameter updates, requiring a computational cost of $2(F_c+F_a)$ in HERON-SFL.

5 EXPERIMENTS

5.1 Experiment Setting

In this section, we conduct experiments on both model training and fine-tuning to show the performance of our proposed HERON-SFL algorithm¹. For comparison, we use the following baseline methods: SFLV1/V2 (Thapa et al., 2022) or SplitLoRA (Lin et al., 2024a)², CSE-FSL (Mu & Shen, 2025), and FSL-SAGE (Nair et al., 2025). We conduct the experiments under two complementary training paradigms, implementing all models in PyTorch and running them on NVIDIA RTX A6000 NVL GPU (48 GB):

Full Training from Scratch. We study the convergence of ResNet-18 (He et al., 2016) under SFL on CIFAR-10 (Krizhevsky et al., 2009) with 5 clients. The model is split after the second 2-D BatchNorm layer; the client holds the front part while the server holds the back part. An auxiliary head consisting of a single fully connected layer is attached to the cut layer. Unless otherwise stated, we adopt the hyperparameters in Thapa et al. (2022): batch size 256 and Adam optimizers on both sides with a learning rate of 1e-4.

Language Model Fine-tuning. We fine-tune GPT2-Small and GPT2-Medium (Radford et al., 2021) on the E2E dataset Novikova et al. (2017) with 3 clients. Unless specified otherwise, for GPT2-Small, the model is split after the third transformer block, with an auxiliary network consisting of one transformer block and the unembedding layer. For GPT2-Medium, the split occurs after the sixth block, with a three-block auxiliary network plus the unembedding layer. As the auxiliary network is not pre-trained, we initialize its parameters by copying the weights from the initial blocks of the server-side model. All components are fine-tuned using Low-Rank Adaptation (LoRA) (Hu et al., 2022), where only adapters of rank 8 are updated and all other parameters are frozen.

Our source code is available at https://anonymous.4open.science/r/HERON-SFL-BB31/.

²While SFLV1/V2 are designed for the training-from-scratch paradigm, our focus on the distinct task of language fine-tuning led to the development of SplitLoRA, which integrates LoRA with the SFLV2 framework. We omit a comparison with an SFLV1-based approach because its need for multiple server models is computationally prohibitive for large-scale models.

The former setting evaluates whether SFL can train a model *from scratch*, a prerequisite when no reliable checkpoint exists. The latter mirrors the prevailing industrial practice of pre-training a large language model once and then adapting it with parameter- and memory-efficient techniques such as LoRA. By examining both regimes, we separately measure the contributions of data-parallel federation, model partitioning, and parameter-efficient adapters, and we show that HERON-SFL consistently outperforms strong baselines in both scenarios.

5.2 Training from Scratch: ResNet18 on Cifar-10

Convergence Behavior. Figure 2 illustrates the test accuracy of each method versus the number of communication rounds. In the IID setting, our proposed HERON-SFL shows convergence behavior nearly identical to other auxiliary-network baselines like CSE-FSL and FSL-SAGE³, with all three performing slightly below the top-performing SFLV2. A similar trend is observed in the more challenging non-IID setting, which confirms that our hybrid algorithm achieves convergence comparable to its first-order counterparts.

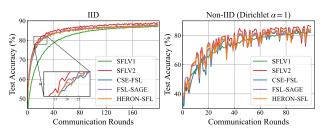


Table 2: Client consumptions for ResNet-18 on CIFAR-10.

Algorithms	Comm.	Peak FP	FLOPS
Aigorithins	(GB)	(MB)	(G)
SFLV1	1216.00	709.93	<u>59.51</u>
SFLV2	390.67	109.93	
CSE-FSL	258.55	726.46	59.85
FSL-SAGE	244.24	720.40	39.63
HERON-SFL	244.19	259.44	19.95

Figure 2: ResNet-18 test accuracy vs. communication rounds on CIFAR-10 for IID (left) and non-IID (right) distributions.

Communication, Storage, and Computational Costs. Table 2 provides a quantitative comparison of the resource consumption on the client side. In terms of communication load, HERON-SFL is among the most efficient methods, requiring only 244.19 GB of total communication, a volume nearly identical to FSL-SAGE (244.24 GB) and superior to all other baselines.

The most significant advantages of HERON-SFL are evident in its on-device resource requirements. By eliminating client-side backpropagation, it drastically reduces the peak memory footprint (Peak FP) to just 259.44 MB—a reduction of approximately 63% compared to the almost 710 MB required by SFLV1 and SFLV2. Similarly, the computational cost (FLOPs) is lowered to 19.95 GFLOPs, a reduction of over 65% compared to the ~59 GFLOPs of other methods. This substantial decrease in both storage and compute burden confirms that HERON-SFL is highly suitable for deployment in resource-constrained environments.

5.3 Language Model Fine-tuning

For the task of language model fine-tuning, HERON-SFL demonstrates superior communication efficiency and faster convergence. As illustrated in Figure 3, its validation perplexity decreases more rapidly than the baselines for both GPT2-Small and GPT2-Medium. Notably, for GPT2-Small, HERON-SFL converges faster and achieves a final perplexity that is competitive with SplitLoRA while outperforming both CSE-FSL and FSL-SAGE. While all methods reach a similar performance on GPT2-Medium, HERON-SFL does so with significantly less communication costs.

Echoing the resource efficiency observed in the ResNet experiments, HERON-SFL substantially lowers the on-device computational and memory burden for clients. Table 3 provides a clear comparison of the resource consumption per local update. HERON-SFL requires a peak memory (Peak FP) of only 4.03 GB, which is less than half that of CSE-FSL (9.09 GB) and also more efficient than the

³We note that FSL-SAGE does not exhibit a significant advantage in our experiments, which we attribute to our design choice of using a minimal auxiliary network purely for decoupling the updates of server and clients. This contrasts with the approach in (Nair et al., 2025), where the alignment mechanism of FSL-SAGE is more impactful as the auxiliary model is intentionally designed to be even larger than the client model, thus requiring explicit alignment to ensure consistency with the server's task.

433

434

435 436 437

438

439

440

441 442

443

444

445

446 447

448 449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472 473

474 475

476

477

478

479

480

481

482

483

484

485

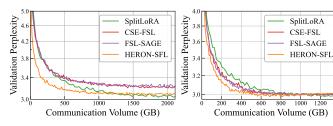


Table 3: Client consumptions for GPT2-Medium on E2E.

Algorithms	Peak FP	FLOPS	
Aigoriums	(GB)	(T)	
SplitLora	4.59	5.68	
CSE-FSL	9.09	9.48	
FSL-SAGE	7.07	7.40	
HERON-SFL	4.03	5.26	

Figure 3: GPT2 perplexity curves vs. Communication Volume on E2E for small (left) and medium (right) models.

SplitLoRA baseline (4.59 GB). The reduction in computational cost is even more pronounced, with HERON-SFL needing only 5.26 TFLOPS, a decrease of approximately 44% compared to CSE-FSL and FSL-SAGE. This reduction in both memory footprint and floating-point operations confirms that by eliminating client-side backpropagation, our method significantly lowers the hardware barrier, making it feasible to fine-tune large language models on resource-constrained edge devices.

ABLATION STUDY OF LOCAL MODEL COMPLEXITY

We investigate the impact of local model complexity on the GPT2-medium fine-tuning task. In this ablation study, we evaluate two primary scenarios: one where the client-side model contains the initial 3 transformer blocks, and another with 6 blocks. For each scenario, we vary the auxiliary network's architecture from a lightweight base (LayerNorm and unembedding layers only) to progressively larger versions containing one, two, or three transformer blocks. Figure 4 plots the final training loss after a fixed number of training rounds. The results show that our proposed HERON-SFL is largely insensitive to the complexity of the auxiliary network; in both the 3block and 6-block settings, it achieves a strong final training loss even with the simplest auxiliary model. In contrast, the

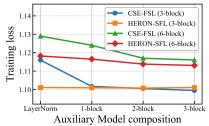


Figure 4: Effect of aux-model complexity.

performance of the first-order baseline, CSE-FSL, is highly dependent on a more powerful auxiliary model, showing a clear trend of improvement as the network becomes more complex. This suggests that for ZO-based methods, there is little justification for using a resource-intensive auxiliary network, whereas first-order methods require one to reach their full potential.

This study validates the comprehensive efficiency of HERON-SFL, which stems from two key advantages. First, its use of zeroth-order optimization reduces the peak memory footprint to the level of inference by eliminating backpropagation. Second, it attains excellent global convergence while requiring only a minimal auxiliary architecture. Crucially, these resource savings do not come at the cost of performance; our experimental results highlight the dual advantages of HERON-SFL in achieving both fast convergence and low on-device costs. This provides a superior performance-tocost balance when compared to first-order baselines like FSL-SAGE and CSE-FSL.

CONCLUSION

This work proposes HERON-SFL, a novel hybrid ZO-FO framework that addresses the critical computation and memory limitations on edge devices within SFL. It performs ZO optimization on edge devices to eliminate costly backpropagation, thereby significantly reducing on-device memory and computational requirements. Empirical and theoretical analysis demonstrate that the framework not only achieves a theoretical convergence rate of $\mathcal{O}(1/\sqrt{T})$ independent of model dimensionality under the low effective rank assumption, but also empirically matches the accuracy of SFL benchmarks on diverse tasks while substantially reducing client-side resource costs.

Future work could explore the application of HERON-SFL to non-differentiable objectives, such as directly optimizing evaluation metrics or learning from human feedback (Ouyang et al., 2022), leveraging the gradient-free nature of its client-side updates.

REFERENCES

- Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale to imagenet. In *International conference on machine learning*, pp. 583–593. PMLR, 2019.
- Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Decoupled greedy learning of cnns. In *International Conference on Machine Learning*, pp. 736–745. PMLR, 2020.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
- Aochuan Chen, Yimeng Zhang, Jinghan Jia, James Diffenderfer, Konstantinos Parasyris, Jiancheng Liu, Yihua Zhang, Zheng Zhang, Bhavya Kailkhura, and Sijia Liu. Deepzero: Scaling up zerothorder optimization for deep model training. In *ICLR*, 2024.
- Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models. In *Proceedings of the 10th ACM workshop on artificial intelligence and security*, pp. 15–26, 2017.
- Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear memory cost. arXiv preprint arXiv:1604.06174, 2016.
- Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling with pathways. *Journal of Machine Learning Research*, 24(240): 1–113, 2023.
- Wenzhi Fang, Ziyi Yu, Yuning Jiang, Yuanming Shi, Colin N Jones, and Yong Zhou. Communication-efficient stochastic zeroth-order optimization for federated learning. *IEEE Transactions on Signal Processing*, 70:5058–5073, 2022.
- Xiang Gao, Bo Jiang, and Shuzhong Zhang. On the information-adaptive variants of the admm: an iteration complexity perspective. *Journal of Scientific Computing*, 76:327–363, 2018.
- Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM, 2008.
- Dong-Jun Han, Hasnain Irshad Bhatti, Jungmoon Lee, and Jaekyun Moon. Accelerating federated learning with split learning on locally generated losses. In *ICML 2021 workshop on federated learning for user privacy and data confidentiality. ICML Board*, 2021.
- Pengchao Han, Chao Huang, Geng Tian, Ming Tang, and Xin Liu. Convergence analysis of split federated learning on heterogeneous data. *Advances in Neural Information Processing Systems*, 37:103476–103544, 2024.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016.
- Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.
- Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open problems in federated learning. *Foundations and trends® in machine learning*, 14(1–2):1–210, 2021.
- Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In *International conference on machine learning*, pp. 5132–5143. PMLR, 2020.
- Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. *Technical Report, University of Toronto*, 2009.

- Joohyung Lee, Mohamed Seif, Jungchan Cho, and H Vincent Poor. Exploring the privacy-energy consumption tradeoff for split federated learning. *IEEE Network*, 38(6):388–395, 2024.
- Yuheng Lei, Jianyu Chen, Shengbo Eben Li, and Sifa Zheng. Zeroth-order actor-critic. *arXiv* preprint arXiv:2201.12518, 2022.
 - Yipeng Li and Xinchen Lyu. Convergence analysis of sequential federated learning on heterogeneous data. *Advances in Neural Information Processing Systems*, 36:56700–56755, 2023.
- Zhe Li, Bicheng Ying, Zidong Liu, Chaosheng Dong, and Haibo Yang. Achieving dimensionfree communication in federated learning via zeroth-order optimization. *arXiv* preprint *arXiv*:2405.15861, 2024.
 - Zheng Lin, Xuanjie Hu, Yuxin Zhang, Zhe Chen, Zihan Fang, Xianhao Chen, Ang Li, Praneeth Vepakomma, and Yue Gao. Splitlora: A split parameter-efficient fine-tuning framework for large language models. *arXiv preprint arXiv:2407.00952*, 2024a.
 - Zheng Lin, Guanqiao Qu, Wei Wei, Xianhao Chen, and Kin K Leung. Adaptsfl: Adaptive split federated learning in resource-constrained edge networks. *arXiv preprint arXiv:2403.13101*, 2024b.
 - Zheng Lin, Wei Wei, Zhe Chen, Chan-Tong Lam, Xianhao Chen, Yue Gao, and Jun Luo. Hierarchical split federated learning: Convergence analysis and system optimization. *IEEE Transactions on Mobile Computing*, 2025.
 - Zhenqing Ling, Daoyuan Chen, Liuyi Yao, Yaliang Li, and Ying Shen. On the convergence of zeroth-order federated tuning for large language models. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 1827–1838, 2024.
 - Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini. Zeroth-order stochastic variance reduction for nonconvex optimization. *Advances in neural information processing systems*, 31, 2018.
 - Sijia Liu, Pin-Yu Chen, Xiangyi Chen, and Mingyi Hong. signsgd via zeroth-order oracle. In *International conference on learning representations*, 2019.
 - Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and Pramod K Varshney. A primer on zeroth-order optimization in signal processing and machine learning: Principals, recent advances, and applications. *IEEE Signal Processing Magazine*, 37(5):43–54, 2020.
 - Wenqiang Luo, Jacky Keung, Boyang Yang, He Ye, Claire Le Goues, Tegawende F Bissyande, Haoye Tian, and Xuan Bach D Le. When fine-tuning llms meets data privacy: An empirical study of federated learning in llm-based program repair. *ACM Transactions on Software Engineering and Methodology*, 2024.
 - Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev Arora. Fine-tuning language models with just forward passes. Advances in Neural Information Processing Systems, 36:53038–53075, 2023.
 - Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence and statistics*, pp. 1273–1282. PMLR, 2017.
 - Yujia Mu and Cong Shen. Federated split learning with improved communication and storage efficiency. *IEEE Transactions on Mobile Computing*, 2025.
 - Srijith Nair, Michael Lin, Peizhong Ju, Amirreza Talebi, Elizabeth Serena Bentley, and Jia Liu. Fsl-sage: Accelerating federated split learning via smashed activation gradient estimation. *arXiv* preprint arXiv:2505.23182, 2025.
 - So Nakashima and Tetsuya J Kobayashi. Unifying zeroth-order optimization and genetic algorithms for reinforcement learning. In *Proceedings of the Genetic and Evolutionary Computation Conference Companion*, pp. 311–314, 2025.

- Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
 Foundations of Computational Mathematics, 17(2):527–566, 2017.
 - Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. The e2e dataset: New challenges for end-to-end generation. *arXiv preprint arXiv:1706.09254*, 2017.
 - Seungeun Oh, Jihong Park, Praneeth Vepakomma, Sihun Baek, Ramesh Raskar, Mehdi Bennis, and Seong-Lyun Kim. Locfedmix-sl: Localize, federate, and mix for improved scalability, convergence, and latency in split learning. In *Proceedings of the ACM Web Conference 2022*, pp. 3347–3357, 2022.
 - Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. Advances in neural information processing systems, 35: 27730–27744, 2022.
 - Yuyang Qiu, Uday Shanbhag, and Farzad Yousefian. Zeroth-order methods for nondifferentiable, nonconvex, and hierarchical federated optimization. *Advances in Neural Information Processing Systems*, 36:3425–3438, 2023.
 - Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pp. 8748–8763. PmLR, 2021.
 - Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný, Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. *arXiv preprint arXiv:2003.00295*, 2020.
 - Lorenzo Sani, Alex Iacob, Zeyu Cao, Bill Marino, Yan Gao, Tomas Paulik, Wanru Zhao, William F Shen, Preslav Aleksandrov, Xinchi Qiu, et al. The future of large language model pre-training is federated. *arXiv preprint arXiv:2405.10853*, 2024.
 - Chandra Thapa, Mahawaga Arachchige Pathum Chamikara, and Seyit A Camtepe. Advancements of federated learning towards privacy preservation: from federated learning to split learning. In *Federated Learning Systems: Towards Next-Generation AI*, pp. 79–109. Springer, 2021.
 - Chandra Thapa, Pathum Chamikara Mahawaga Arachchige, Seyit Camtepe, and Lichao Sun. Splitfed: When federated learning meets split learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 36, pp. 8485–8493, 2022.
 - Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learning for health: Distributed deep learning without sharing raw patient data. *arXiv preprint arXiv:1812.00564*, 2018.
 - Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. A novel framework for the analysis and design of heterogeneous federated learning. *IEEE Transactions on Signal Processing*, 69:5234–5249, 2021.
 - Wen Wu, Mushu Li, Kaige Qu, Conghao Zhou, Xuemin Shen, Weihua Zhuang, Xu Li, and Weisen Shi. Split learning over wireless networks: Parallel design and resource management. *IEEE Journal on Selected Areas in Communications*, 41(4):1051–1066, 2023.
 - Qingsong Zhang, Bin Gu, Zhiyuan Dang, Cheng Deng, and Heng Huang. Desirable companion for vertical federated learning: New zeroth-order gradient based algorithm. In *Proceedings of the 30th ACM international conference on information & knowledge management*, pp. 2598–2607, 2021.
 - Qining Zhang and Lei Ying. Zeroth-order policy gradient for reinforcement learning from human feedback without reward inference. *arXiv* preprint arXiv:2409.17401, 2024.

A THEORETICAL PROOF

A.1 NOTATIONS

Table 4: Notation and unified conventions used in this paper.

Symbol	Meaning		
System & Data			
N	Number of clients		
\mathcal{D}_i	Local dataset of client i		
$\xi_i = \{\xi_{i,j}\}_{j=1}^B$	Mini-batch sampled from \mathcal{D}_i		
B	Batch size		
Model Parameter	rs		
$oldsymbol{ heta}_g = \{oldsymbol{ heta}_c, oldsymbol{ heta}_s\}$	Global model split into client/server parameters		
$oldsymbol{ heta}_s$	Server-side parameters		
$oldsymbol{ heta}_{c,i}$	Client-side parameters owned by client i		
$oldsymbol{ heta}_{a,i}$	Auxiliary model parameters at client i		
$oldsymbol{ heta}_{l,i} = (oldsymbol{ heta}_{c,i}, oldsymbol{ heta}_a)$	Local predictor on client i		
d_c, d_a	Dimensions of θ_c and θ_a		
Objective Function	ons		
$\ell(\cdot; \xi_{i,j})$	Task loss on sample $\xi_{i,j} \in \mathcal{D}_i$		
$f_i(oldsymbol{ heta}_g)$	Expected loss for global model over client i 's local dataset \mathcal{D}_i		
$f(oldsymbol{ heta}_g)$	Expected loss for global model over the entire dataset $\sum_{i=1}^{N} \mathcal{D}_i$		
$f_{l,i}(oldsymbol{ heta}_l)$	Expected loss for local model θ_l over client <i>i</i> 's local dataset		
Optimization & A	Algorithm		
t, m	Global round index t ; local step index m		
h	Local steps per round before optional upload		
η_c,η_s	Client / server learning rates		
$oldsymbol{s}_i = oldsymbol{ heta}_{c,i}(\xi_{i,j})$	Smashed data produced by client i		
$oldsymbol{u}_{t,m}$	Random direction for ZO estimator		
$\mu > 0$	Smoothing/perturbation radius in ZO estimator		
$\hat{oldsymbol{g}}_{l,i}^{t,m}$	ZO gradient estimates for local parameters		
$egin{array}{c} oldsymbol{g}_{l,i} \ oldsymbol{g}_{s,i}^t \ oldsymbol{ heta}_s^{t+1} \ oldsymbol{o}_{s+1}^t \ oldsymbol{o}_{s+1}^t \end{array}$	Server-side gradient on smashed data from client i		
$oldsymbol{ heta_s^{t+1}}$	Server parameters after sequential updates		
$oldsymbol{ heta}_c^{t+1}, oldsymbol{ heta}_a^{t+1}$	Aggregated client/aux parameters after Fed-Server		
Theoretical Anal	Theoretical Analysis		
L	Smoothness constant (Lipschitz gradient)		
G_c, G_s	Bounds on client/server gradient norms		
σ^2	Variance bound of ZO estimator		
$d_{c,i}^{t}$	Distributional drift of the output from client i 's model at round t		
δ	Upper bound for the average distributional drift		
κ	Upper bound on the effective rank of the local loss Hessian		

A.2 Lemmas for Zeroth-Order Optimization

Before presenting the proofs of our main theorems, we recall several classical lemmas on zerothorder optimization, which serve as the basis for the subsequent analysis. For the analysis of zerothorder optimization algorithms, it is standard to introduce a smoothed approximation of the objective function. We formalize this by first defining the smoothed function and then stating its key properties in a lemma.

Definition A.1 (Gaussian Smoothed Function with Unit-Sphere Normalization). A function $f: \mathbb{R}^d \to \mathbb{R}$ is said to be (Gaussian-derived) spherically smoothed with smoothing radius $\mu > 0$ if for any $\mathbf{x} \in \mathbb{R}^d$,

$$f^{\mu}(\boldsymbol{x}) = \mathbb{E}_{\boldsymbol{z} \sim \mathcal{N}(0, I_d)} \left[f(\boldsymbol{x} + \mu \frac{\boldsymbol{z}}{\|\boldsymbol{z}\|}) \right],$$

where we define $u := z/\|z\|$ so that $\|u\| = 1$ almost surely and $u \sim \mathrm{Unif}(\mathbb{S}^{d-1})$.

Lemma A.2 (Gradient and Smoothness for Gaussian Smoothed Functions (Nesterov & Spokoiny, 2017)). Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable with an L-Lipschitz gradient (i.e., f is L-smooth). Then, for any $\mu > 0$, the spherically smoothed function f^{μ} defined in Definition A.1 is continuously differentiable and its gradient is L_{μ} -Lipschitz continuous with $L_{\mu} \leq L$. Moreover, the gradient of f^{μ} can be expressed as:

$$\nabla f^{\mu}(\mathbf{x}) = \mathbb{E}_{\mathbf{u}} \left[\frac{f(\mathbf{x} + \mu \mathbf{u}) - f(\mathbf{x})}{\mu} d\mathbf{u} \right]. \tag{13}$$

The result from Lemma A.2 provides the theoretical foundation for the zeroth-order gradient estimator used in our work. We recall our estimator from Eq. 2 in the main text. The lemma establishes that this estimator is an unbiased estimate of the gradient of the corresponding smoothed function, $f_{l,i}^{\mu}(\theta_l)$. Formally, taking the expectation of the estimator over the random direction u yields the exact gradient of the smoothed function:

$$\mathbb{E}_{\boldsymbol{u} \sim \mathcal{N}(0,I)} \left[\hat{\nabla} f_{l,i}(\boldsymbol{\theta}_l; \xi_i) \right] = \nabla f_{l,i}^{\mu}(\boldsymbol{\theta}_l; \xi_i). \tag{14}$$

The bias of this estimator with respect to the true gradient $\nabla f_{l,i}$ arises from the difference between the smoothed function $f_{l,i}^{\mu}$ and the original function $f_{l,i}$, not from the sampling process itself. This distinction is crucial for the subsequent convergence analysis.

A.3 PROOF OF THEOREM 4.5

A.3.1 PRELIMINARY LEMMAS

To begin the convergence analysis, we start with a few lemmas that will be useful in the subsequent proofs.

Lemma A.3 (Bound on the Second Moment of the ZO Estimator ⁴). Under Assumptions 4.1–4.3, the second moment of the zeroth-order gradient estimator $\hat{g}_{c,i}^{t,m}$ is bounded as follows:

$$\mathbb{E}_{t,m} \left[\| \hat{\boldsymbol{g}}_{c,i}^{t,m} \|^{2} \right] \leq \frac{2dG_{c}^{2}}{B} + \frac{d^{2}L^{2}\mu^{2}}{2B} + 2\mu^{2}L^{2} + 6\sigma_{c}^{2} + 6\|\nabla f_{c}(\boldsymbol{\theta}_{c}^{t})\|^{2} + 6L^{2}\mathbb{E}_{t,m-1} \left[\|\boldsymbol{\theta}_{c}^{t} - \boldsymbol{\theta}_{c,i}^{t,m}\|^{2} \right].$$
(15)

Proof. The proof proceeds by decomposing the second moment of the estimator into several terms and bounding each one. First, we apply the law of total expectation and the law of total variance, which states $\mathbb{E}[\|\boldsymbol{a}\|^2] = \operatorname{Var}(\boldsymbol{a}) + \|\mathbb{E}[\boldsymbol{a}]\|^2$. We recognize that $\hat{\boldsymbol{g}}_{c,i}^{t,m}$ is the average of estimators over the mini-batch ξ_i . As established in Lemma A.2, its expectation over the random direction \boldsymbol{u} is the gradient of the smoothed function, $\nabla f_{c,i}^{\mu}(\boldsymbol{\theta}_{c,i}^{t,m})$.

$$\mathbb{E}_{t,m} \left[\| \hat{\boldsymbol{g}}_{c,i}^{t,m} \|^{2} \right] = \mathbb{E}_{t,m-1} \left[\mathbb{E}_{t}^{m} \left[\| \hat{\boldsymbol{g}}_{c,i}^{t,m} \|^{2} \right] \right]$$

$$= \mathbb{E}_{t,m-1} \left[\operatorname{Var}_{t}^{m} (\hat{\boldsymbol{g}}_{c,i}^{t,m}) + \| \mathbb{E}_{t}^{m} [\hat{\boldsymbol{g}}_{c,i}^{t,m}] \|^{2} \right]$$

$$= \mathbb{E}_{t,m-1} \left[\operatorname{Var}_{t}^{m} (\hat{\boldsymbol{g}}_{c,i}^{t,m}) \right] + \mathbb{E}_{t,m-1} \left[\| \nabla f_{c,i}^{\mu} (\boldsymbol{\theta}_{c,i}^{t,m}) \|^{2} \right].$$
(16)

⁴This bound decomposes the second moment of the estimator into several distinct sources of error and variance. The terms scaled by the mini-batch size, such as $2dG_c^2/B$ and $d^2L^2\mu^2/2B$, represent the intrinsic variance of the ZO estimator, which is dependent on the model dimension d. The terms $2\mu^2L^2$ and $6\sigma_c^2$ capture the bias introduced by the Gaussian smoothing and the variance from client data heterogeneity, respectively. The term $6\|\nabla f_c(\theta_c^t)\|^2$ relates the analysis back to the global gradient norm at the start of the round. Crucially, the final term, $6L^2\mathbb{E}_{t,m-1}[\|\theta_c^t-\theta_{c,i}^{t,m}\|^2]$, quantifies the **client model divergence** that arises from performing multiple local updates. This divergence term is a key challenge in federated learning and is explicitly bounded in subsequent analysis.

Since the estimators for each sample $\xi_{i,j}$ in the mini-batch are i.i.d., the variance of their average is the variance of a single-point estimator divided by the batch size. Using the property $Var(X) \leq \mathbb{E}[\|X\|^2]$, we have:

$$\operatorname{Var}_{t}^{m}(\hat{\boldsymbol{g}}_{c,i}^{t,m}) = \frac{1}{B} \operatorname{Var}_{t}^{m} \left(\hat{\boldsymbol{g}}_{c,i}^{t,m}(\boldsymbol{\theta}_{l}; \xi_{i,1}) \right)$$

$$\leq \frac{1}{B} \mathbb{E}_{t}^{m} \left[\left\| \hat{\boldsymbol{g}}_{c,i}^{t,m}(\boldsymbol{\theta}_{l}; \xi_{i,1}) \right\|^{2} \right].$$
(17)

Substituting this back, we arrive at the decomposition as follows:

$$\mathbb{E}_{t,m} \left[\| \hat{\boldsymbol{g}}_{c,i}^{t,m} \|^2 \right] \le \frac{1}{R} \mathbb{E}_{t,m} \left[\left\| \hat{\boldsymbol{g}}_{c,i}^{t,m} (\boldsymbol{\theta}_l; \xi_{i,1}) \right\|^2 \right] + \mathbb{E}_{t,m-1} \left[\left\| \nabla f_{c,i}^{\mu} (\boldsymbol{\theta}_{c,i}^{t,m}) \right\|^2 \right]. \tag{18}$$

We now bound the two terms separately. For the first term, we use the bound for two-point estimators (Lemma 4.1 in Gao et al. (2018)) and Assumption 4.2:

$$\mathbb{E}_{t,m}\left[\left\|\hat{\boldsymbol{g}}_{c,i}^{t,m}(\boldsymbol{\theta}_{l};\xi_{i,1})\right\|^{2}\right] \leq 2d\mathbb{E}_{t,m}\left[\left\|\nabla \ell_{c,i}(\boldsymbol{\theta}_{c,i}^{t,m};\xi_{i,1})\right\|^{2}\right] + \frac{1}{2}d^{2}L^{2}\mu^{2} \leq 2dG_{c}^{2} + \frac{1}{2}d^{2}L^{2}\mu^{2}.$$
(19)

For the second term, we use the triangle inequality and $||a+b||^2 \le 2||a||^2 + 2||b||^2$:

$$\mathbb{E}_{t,m-1} \left[\left\| \nabla f_{c,i}^{\mu}(\boldsymbol{\theta}_{c,i}^{t,m}) \right\|^{2} \right] \\
\leq 2\mathbb{E}_{t,m-1} \left[\left\| \nabla f_{c,i}^{\mu}(\boldsymbol{\theta}_{c,i}^{t,m}) - \nabla f_{c,i}(\boldsymbol{\theta}_{c,i}^{t,m}) \right\|^{2} \right] + 2\mathbb{E}_{t,m-1} \left[\left\| \nabla f_{c,i}(\boldsymbol{\theta}_{c,i}^{t,m}) \right\|^{2} \right] \\
\leq 2\mu^{2} L^{2} + 2\mathbb{E}_{t,m-1} \left[\left\| \nabla f_{c,i}(\boldsymbol{\theta}_{c,i}^{t,m}) \right\|^{2} \right]. \tag{20}$$

Finally, we bound the remaining term by relating it to the global model state θ_c^t . Using inequality $||a+b+c||^2 \le 3||a||^2 + 3||b||^2 + 3||c||^2$, we have:

$$\mathbb{E}_{t,m-1} \left[\left\| \nabla f_{c,i}(\boldsymbol{\theta}_{c,i}^{t,m}) \right\|^{2} \right] \\
= \mathbb{E}_{t,m-1} \left[\left\| \left(\nabla f_{c,i}(\boldsymbol{\theta}_{c,i}^{t,m}) - \nabla f_{c,i}(\boldsymbol{\theta}_{c}^{t}) \right) + \left(\nabla f_{c,i}(\boldsymbol{\theta}_{c}^{t}) - \nabla f_{c}(\boldsymbol{\theta}_{c}^{t}) \right) + \nabla f_{c}(\boldsymbol{\theta}_{c}^{t}) \right\|^{2} \right] \\
\leq 3 \mathbb{E}_{t,m-1} \left[\left\| \nabla f_{c,i}(\boldsymbol{\theta}_{c,i}^{t,m}) - \nabla f_{c,i}(\boldsymbol{\theta}_{c}^{t}) \right\|^{2} \right] + 3 \|\nabla f_{c,i}(\boldsymbol{\theta}_{c}^{t}) - \nabla f_{c}(\boldsymbol{\theta}_{c}^{t}) \|^{2} + 3 \|\nabla f_{c}(\boldsymbol{\theta}_{c}^{t}) \|^{2} \\
\leq 3 L^{2} \mathbb{E}_{t,m-1} \left[\left\| \boldsymbol{\theta}_{c,i}^{t,m} - \boldsymbol{\theta}_{c}^{t} \right\|^{2} \right] + 3 \sigma_{c}^{2} + 3 \|\nabla f_{c}(\boldsymbol{\theta}_{c}^{t}) \|^{2}, \tag{21}$$

where the final inequality follows from Assumptions 4.1 and 4.3. Combining all these bounds yields the result stated in the lemma. \Box

Lemma A.4 (Bound on Client Model Divergence). For $\eta_c \leq \frac{1}{3Lh}$, we have:

$$\mathbb{E}_{t} \left[\frac{1}{N} \sum_{i=1}^{N} \sum_{m=1}^{h} \|\boldsymbol{\theta}_{c,i}^{t,m} - \boldsymbol{\theta}_{c}^{t}\|^{2} \right] \leq 3h^{3} \eta_{c}^{2} \|\nabla f_{c}(\boldsymbol{\theta}_{c}^{t})\|^{2} + \frac{dG_{c}^{2} h^{3} \eta_{c}^{2}}{B} + \frac{d^{2} L^{2} \mu^{2} h^{3} \eta_{c}^{2}}{4B} + \frac{(6\sigma_{c}^{2} + 2\mu^{2} L^{2})h^{3} \eta_{c}^{2}}{2}. \tag{22}$$

Proof. For simplicity, define

$$s_c^{t,m} \triangleq \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{t,m} \left[\left\| \boldsymbol{\theta}_{c,i}^{t,m} - \boldsymbol{\theta}_c^t \right\|^2 \right].$$

For the τ -th local update, unrolling the client recursion gives

$$oldsymbol{ heta}_{c,i}^{t, au} - oldsymbol{ heta}_c^t = - \eta_c \sum_{m=0}^{ au-1} oldsymbol{g}_{c,i}^{t,m}.$$

By Cauchy-Schwarz,

$$s_{c}^{t,\tau} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{t,\tau} \left[\left\| -\eta_{c} \sum_{m=0}^{\tau-1} \boldsymbol{g}_{c,i}^{t,m} \right\|^{2} \right] \leq \tau \, \eta_{c}^{2} \cdot \frac{1}{N} \sum_{i=1}^{N} \sum_{m=0}^{\tau-1} \mathbb{E}_{t,\tau} \left[\left\| \boldsymbol{g}_{c,i}^{t,m} \right\|^{2} \right]$$

$$\stackrel{\text{(tower)}}{=} \tau \, \eta_{c}^{2} \cdot \frac{1}{N} \sum_{i=1}^{N} \sum_{m=0}^{\tau-1} \mathbb{E}_{t,m} \left[\left\| \boldsymbol{g}_{c,i}^{t,m} \right\|^{2} \right].$$

$$(23)$$

We now invoke the second-moment bound (Lemma A.3): for every m,

$$\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{t,m} \left[\| \hat{\boldsymbol{g}}_{c,i}^{t,m} \|^{2} \right] \leq 6L^{2} s_{c}^{t,m+1} + \underbrace{\left(6 \| \nabla f_{c}(\boldsymbol{\theta}_{c}^{t}) \|^{2} + \frac{2dG_{c}^{2}}{B} + \frac{d^{2}L^{2}\mu^{2}}{2B} + 6\sigma_{c}^{2} + 2\mu^{2}L^{2} \right)}_{\triangleq \beta},$$

by definition of $s_c^{t,\cdot}$, the term $\frac{1}{N}\sum_i \mathbb{E}_{t,m}[\|\boldsymbol{\theta}_c^t - \boldsymbol{\theta}_{c,i}^{t,m+1}\|^2]$ is identified with $s_c^{t,m+1}$.⁵ Combining Eq. 23 and Eq. 24 yields, for each τ ,

$$s_c^{t,\tau} \le 6L^2 \tau \eta_c^2 \sum_{m=0}^{\tau-1} s_c^{t,m+1} + \tau^2 \eta_c^2 \beta.$$
 (25)

By taking the sum over $\tau = 1, ..., h$, we have

$$\sum_{\tau=1}^{h} s_{c}^{t,\tau} \leq 6L^{2} \eta_{c}^{2} \sum_{\tau=1}^{h} \tau \sum_{m=0}^{\tau-1} s_{c}^{t,m+1} + \eta_{c}^{2} \beta \sum_{\tau=1}^{h} \tau^{2}$$

$$\leq 3h^{2} L^{2} \eta_{c}^{2} \sum_{\tau=1}^{h} s_{c}^{t,\tau} + \frac{h(h+1)(2h+1)}{6} \eta_{c}^{2} \beta \leq 3h^{2} L^{2} \eta_{c}^{2} \sum_{\tau=1}^{h} s_{c}^{t,\tau} + \frac{h^{3} \eta_{c}^{2} \beta}{3}, \tag{26}$$

where we utilized the fact that $\sum_{\tau=1}^h \tau \le \frac{h(h+1)}{2} \le \frac{h^2}{2}$ and $\sum_{\tau=1}^h \tau^2 = \frac{h(h+1)(2h+1)}{6} \le \frac{h^3}{3}$. By rearranging the terms, we have:

$$(1 - 3L^2h^2\eta_c^2) \sum_{\tau=0}^h s_c^{t,\tau} \le \frac{h^3\eta_c^2}{3} \Big(6\|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2 + \frac{2dG_c^2}{B} + \frac{d^2L^2\mu^2}{2B} + 6\sigma_c^2 + 2\mu^2L^2 \Big)$$
 (27)

When
$$\eta_c \leq \frac{1}{3Lh}$$
, we have $1 - 3L^2h^2\eta_c^2 \geq \frac{2}{3}$ and the lemma's proof is complete.

Lemma A.5 (Bound on the Client-Side Contribution). Under Assumptions 4.1–4.3, and for a client learning rate η_c satisfying the following conditions:

$$\eta_c \le \min\left\{\frac{1}{3Lh}, \frac{2}{NLh^2}, \frac{N}{72L}\right\},\tag{28}$$

the expectation of the client-side contribution, $C = \nabla f(\boldsymbol{\theta}_c^t)^T (\boldsymbol{\theta}_c^{t+1} - \boldsymbol{\theta}_c^t) + \frac{L}{2} \|\boldsymbol{\theta}_c^{t+1} - \boldsymbol{\theta}_c^t\|^2$, is bounded as:

$$\mathbb{E}_t[\mathcal{C}] \le -\frac{\eta_c h}{4} \|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2 + \Phi_c(\eta_c),\tag{29}$$

where $\Phi_c(\eta_c)$ is an error term defined as:

$$\Phi_c(\eta_c) := \eta_c^2 \left(\frac{6hLdG_c^2}{N|\xi_i|} + \frac{18hL\sigma_c^2}{N} \right) + \eta_c \left(\frac{d^2L^2h\mu^2}{48|\xi_i|} + \frac{13hL^2\mu^2}{12} \right). \tag{30}$$

Proof. We start from the definition of \mathcal{C} and take the expectation over all randomness up to round t. The client update rule gives $\mathbb{E}_t[\boldsymbol{\theta}_c^{t+1} - \boldsymbol{\theta}_c^t] = -\frac{\eta_c}{N} \mathbb{E}_t[\sum_{i=1}^N \sum_{m=1}^h \hat{\boldsymbol{g}}_{c,i}^{t,m}]$. This allows us to expand $\mathbb{E}_t[\mathcal{C}]$ into two terms:

$$\mathbb{E}_{t}[\mathcal{C}] = \underbrace{-\frac{\eta_{c}}{N} \left\langle \nabla f(\boldsymbol{\theta}_{c}^{t}), \mathbb{E}_{t} \left[\sum_{i=1}^{N} \sum_{m=1}^{h} \hat{\boldsymbol{g}}_{c,i}^{t,m} \right] \right\rangle}_{\triangleq \mathcal{C}_{1}} + \underbrace{\frac{\eta_{c}^{2} L}{2N^{2}} \mathbb{E}_{t} \left[\left\| \sum_{i=1}^{N} \sum_{m=1}^{h} \hat{\boldsymbol{g}}_{c,i}^{t,m} \right\|^{2} \right]}_{\triangleq \mathcal{C}_{2}}.$$
 (31)

We proceed by bounding C_1 and C_2 separately.

⁵One may equivalently write the last expectation with $\mathbb{E}_{t,m+1}$; since it is the same unconditional quantity after averaging over the step-(m+1) randomness, using $s_c^{t,m+1}$ is a safe upper bound.

Bounding the First Term (C_1). Using the identity $2\langle a,b\rangle = ||a||^2 + ||b||^2 - ||a-b||^2$, we rewrite C_1 :

$$C_{1} = -\frac{\eta_{c}h}{2} \|\nabla f(\boldsymbol{\theta}_{c}^{t})\|^{2} - \frac{\eta_{c}h}{2} \mathbb{E}_{t} \left[\left\| \frac{1}{Nh} \sum_{i=1}^{N} \sum_{m=1}^{h} \hat{\boldsymbol{g}}_{c,i}^{t,m} \right\|^{2} \right] + \frac{\eta_{c}h}{2} C_{1,1},$$
(32)

where $C_{1,1} \triangleq \mathbb{E}_t[\|\frac{1}{Nh}\sum_{i,m}(\hat{\boldsymbol{g}}_{c,i}^{t,m} - \nabla f(\boldsymbol{\theta}_c^t))\|^2]$. We bound $C_{1,1}$ using Jensen's inequality, the triangle inequality, and Assumptions B.3 and B.5:

$$\mathcal{C}_{1,1} \leq \frac{1}{Nh} \mathbb{E}_{t} \left[\sum_{i=1}^{N} \sum_{m=1}^{h} \| \hat{\boldsymbol{g}}_{c,i}^{t,m} - \nabla f(\boldsymbol{\theta}_{c}^{t}) \|^{2} \right] \\
\leq \frac{2}{Nh} \mathbb{E}_{t} \left[\sum_{i,m} \| \hat{\boldsymbol{g}}_{c,i}^{t,m} - \nabla f(\boldsymbol{\theta}_{c,i}^{t,m}) \|^{2} \right] + \frac{2}{Nh} \mathbb{E}_{t} \left[\sum_{i,m} \| \nabla f(\boldsymbol{\theta}_{c,i}^{t,m}) - \nabla f(\boldsymbol{\theta}_{c}^{t}) \|^{2} \right] \\
\leq 2\sigma^{2} + \frac{2L^{2}}{Nh} \mathbb{E}_{t} \left[\sum_{i=1}^{N} \sum_{m=1}^{h} \| \boldsymbol{\theta}_{c,i}^{t,m} - \boldsymbol{\theta}_{c}^{t} \|^{2} \right]. \tag{33}$$

Substituting this back provides a bound on C_1 .

Bounding the Second Term (C_2). For C_2 , according to Cauchy-Schwartz inequality, we have:

$$C_{2} = \frac{\eta_{c}^{2}L}{2}\mathbb{E}_{t} \left[\left\| -\frac{1}{N} \sum_{i=1}^{N} \sum_{m=1}^{h} \hat{\boldsymbol{g}}_{c,i}^{t,m} \right\|^{2} \right]$$

$$\leq \eta_{c}^{2}L \underbrace{\mathbb{E}_{t} \left[\left\| \frac{1}{N} \sum_{i=1}^{N} \sum_{m=1}^{h} (\hat{\boldsymbol{g}}_{c,i}^{t,m} - \nabla f_{c,i}^{\mu}(\boldsymbol{\theta}_{c,i}^{t,m})) \right\|^{2} \right]}_{C_{2,1}} + \eta_{c}^{2}L\mathbb{E}_{t} \left[\left\| \frac{1}{N} \sum_{i=1}^{N} \sum_{m=1}^{h} \nabla f_{c,i}^{\mu}(\boldsymbol{\theta}_{c,i}^{t,m}) \right\|^{2} \right].$$

$$(34)$$

According to the statistical properties of zeroth-order gradient estimators (Lemma A.2), we have $\mathbb{E}_t[\sum_{m=1}^h (\hat{\boldsymbol{g}}_{c,i}^{t,m} - \nabla f_{c,i}^{\mu}(\boldsymbol{\theta}_{c,i}^{t,m}))] = 0$. And we have $\mathbb{E}[\langle \sum_{m=1}^h (\hat{\boldsymbol{g}}_{c,i_1}^{t,m} - \nabla f_{c,i_1}^{\mu}(\boldsymbol{\theta}_{c,i_1}^{t,m})), \sum_{m=1}^h (\hat{\boldsymbol{g}}_{c,i_2}^{t,m} - \nabla f_{c,i_2}^{\mu}(\boldsymbol{\theta}_{c,i_2}^{t,m}))\rangle] = 0$, since the two sums correspond to independent, zero-mean random vectors (one coming from client i_1 , the other from client i_2 , $i_1 \neq i_2$) and hence the expectation of their inner product vanishes. Thus, we have:

$$C_{2,1} = \mathbb{E}_{t} \left[\left\| \frac{1}{N} \sum_{i=1}^{N} \sum_{m=1}^{h} (\hat{\boldsymbol{g}}_{c,i}^{t,m} - \nabla f_{c,i}^{\mu}(\boldsymbol{\theta}_{c,i}^{t,m})) \right\|^{2} \right]$$

$$= \frac{1}{N^{2}} \sum_{i=1}^{N} \mathbb{E}_{t} \left[\left\| \sum_{m=1}^{h} (\hat{\boldsymbol{g}}_{c,i}^{t,m} - \nabla f_{c,i}^{\mu}(\boldsymbol{\theta}_{c,i}^{t,m})) \right\|^{2} \right].$$
(35)

According to Equation Eq. 14 and Lemma 2 in Wang et al. (2021), we have:

$$C_{2,1} = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{m=1}^{h} \mathbb{E}_{t,m} \left[\left\| \hat{\boldsymbol{g}}_{c,i}^{t,m} - \nabla f_{c,i}^{\mu}(\boldsymbol{\theta}_{c,i}^{t,m}) \right\|^2 \right]$$

$$\stackrel{(a)}{\leq} \frac{1}{N^2} \sum_{i=1}^{N} \sum_{m=1}^{h} \mathbb{E}_{t,m} \left[\left\| \hat{\boldsymbol{g}}_{c,i}^{t,m} \right\|^2 \right],$$
(36)

where (a) holds because $\mathbb{E}[\|\boldsymbol{a} - \mathbb{E}[\boldsymbol{a}]\|^2] \leq \mathbb{E}[\|\boldsymbol{a}\|^2]$. Now by applying the second-moment bound from Lemma A.3, and substituting these result back, we have:

$$C_{2} \leq \eta_{c}^{2} L C_{2,1} + \eta_{c}^{2} L \mathbb{E}_{t} \left[\left\| \frac{1}{N} \sum_{i=1}^{N} \sum_{m=1}^{h} \nabla f_{c,i}^{\mu}(\boldsymbol{\theta}_{c,i}^{t,m}) \right\|^{2} \right], \tag{37}$$

where $C_{2,1}$ is bounded as follows:

$$\mathcal{C}_{2,1} \leq \frac{6L^{2}}{N^{2}} \sum_{i=1}^{N} \sum_{m=1}^{h} \mathbb{E}_{t,m-1} \left[\|\boldsymbol{\theta}_{c}^{t} - \boldsymbol{\theta}_{c,i}^{t,m}\|^{2} \right] + \frac{6h}{N} \|\nabla f_{c}(\boldsymbol{\theta}_{c}^{t})\|^{2} \\
+ \frac{2dG_{c}^{2}h}{NB} + \frac{d^{2}L^{2}\mu^{2}h}{2NB} + \frac{(6\sigma_{c}^{2} + 2\mu^{2}L^{2})h}{N} \\
\leq \frac{6L^{2}}{N} \mathbb{E}_{t} \left[\frac{1}{N} \sum_{i=1}^{N} \sum_{m=1}^{h} \|\boldsymbol{\theta}_{c}^{t} - \boldsymbol{\theta}_{c,i}^{t,m}\|^{2} \right] + \frac{6h}{N} \|\nabla f_{c}(\boldsymbol{\theta}_{c}^{t})\|^{2} \\
+ \frac{2dG_{c}^{2}h}{NB} + \frac{d^{2}L^{2}\mu^{2}h}{2NB} + \frac{(6\sigma_{c}^{2} + 2\mu^{2}L^{2})h}{N}. \tag{38}$$

Combining the Bounds. Combining the bounds of C_1 and C_2 , we have:

 $\mathbb{E}_{t}[\mathcal{C}$

$$\leq \left(\frac{6\eta_{c}^{2}Lh}{N} - \frac{\eta_{c}h}{2}\right) \|\nabla f_{c}(\boldsymbol{\theta}_{c}^{t})\|^{2} + \left(\eta^{2}L - \frac{\eta_{c}}{2h}\right) \mathbb{E}_{t} \left[\left\| \frac{1}{N} \sum_{i=1}^{N} \sum_{m=1}^{h} \nabla f_{c,i}^{\mu}(\boldsymbol{\theta}_{c,i}^{t,m}) \right\|^{2} \right] \\
+ \left(\eta_{c}L^{2} + \frac{6\eta_{c}^{2}L^{3}}{N}\right) \mathbb{E}_{t} \left[\frac{1}{N} \sum_{i=1}^{N} \sum_{m=1}^{h} \|\boldsymbol{\theta}_{c,i}^{t,m} - \boldsymbol{\theta}_{c}^{t}\|^{2} \right] \\
+ \eta_{c}hL^{2}\mu^{2} + \frac{2\eta_{c}^{2}LdG_{c}^{2}h}{NB} + \frac{\eta_{c}^{2}d^{2}L^{3}\mu^{2}h}{2NB} + \frac{(6\sigma_{c}^{2}L + 2\mu^{2}L^{3})\eta_{c}^{2}h}{N} \\
\leq \left(\frac{6\eta_{c}^{2}Lh}{N} - \frac{\eta_{c}h}{2} \right) \|\nabla f_{c}(\boldsymbol{\theta}_{c}^{t})\|^{2} + \left(\eta_{c}L^{2} + \frac{6\eta_{c}^{2}L^{3}}{N^{2}}\right) \mathbb{E}_{t} \left[\frac{1}{N} \sum_{i=1}^{N} \sum_{m=1}^{h} \|\boldsymbol{\theta}_{c,i}^{t,m} - \boldsymbol{\theta}_{c}^{t}\|^{2} \right] \\
+ \eta_{c}hL^{2}\mu^{2} + \frac{2\eta_{c}^{2}LdG_{c}^{2}h}{NB} + \frac{\eta_{c}^{2}d^{2}L^{3}\mu^{2}h}{2NB} + \frac{(6\sigma_{c}^{2}L + 2\mu^{2}L^{3})\eta_{c}^{2}h}{N}. \tag{39}$$

where (a) holds if and only if $\eta_c \leq \frac{1}{2hL}$, which means the term $(\eta^2 L - \frac{\eta_c}{2h})\mathbb{E}_t[\|\frac{1}{N}\sum_{i=1}^N\sum_{m=1}^h\nabla f^{\mu}_{c,i}(\boldsymbol{\theta}^{t,m}_{c,i})\|^2]$ is non-positive.

Finally, we substitute the bound on the client model divergence from Lemma A.4 into the expression for $\mathbb{E}_t[\mathcal{C}]$. This gives us the following inequality:

$$\mathbb{E}_{t}[\mathcal{C}] \leq \left(\frac{6\eta_{c}^{2}Lh}{N} - \frac{\eta_{c}h}{2}\right) \|\nabla f_{c}(\boldsymbol{\theta}_{c}^{t})\|^{2} + \eta_{c}hL^{2}\mu^{2} + \frac{2\eta_{c}^{2}LdG_{c}^{2}h}{NB} + \frac{\eta_{c}^{2}d^{2}L^{3}\mu^{2}h}{2NB} + \frac{(6\sigma_{c}^{2}L + 2\mu^{2}L^{3})\eta_{c}^{2}h}{N} + (\eta_{c}L^{2} + \frac{6\eta_{c}^{2}L^{3}}{N}) \times \left(3h^{3}\eta_{c}^{2}\|\nabla f_{c}(\boldsymbol{\theta}_{c}^{t})\|^{2} + \frac{dG_{c}^{2}h^{3}\eta_{c}^{2}}{B} + \frac{d^{2}L^{2}\mu^{2}h^{3}\eta_{c}^{2}}{4B} + \frac{(6\sigma_{c}^{2} + 2\mu^{2}L^{2})h^{3}\eta_{c}^{2}}{2}\right).$$
(40)

To simplify this complex expression, we collect the coefficients for the dominant term, $\|\nabla f_c(\theta_c^t)\|^2$, and the remaining bias terms. Let us define a helper variable α to consolidate terms originating from the client drift bound:

$$\alpha \triangleq \eta_c h^3 L^2 + \frac{6\eta_c^2 h^3 L^3}{N}.\tag{41}$$

By grouping terms, the bound on $\mathbb{E}_t[\mathcal{C}]$ can be rewritten as:

$$\mathbb{E}_{t}[\mathcal{C}] \leq \left(\left(\frac{6Lh}{N} + 3\alpha \right) \eta_{c}^{2} - \frac{\eta_{c}h}{2} \right) \|\nabla f_{c}(\boldsymbol{\theta}_{c}^{t})\|^{2} + \alpha \left(\frac{dG_{c}^{2}\eta_{c}^{2}}{B} + \frac{d^{2}L^{2}\mu^{2}\eta_{c}^{2}}{4B} + \frac{(6\sigma_{c}^{2} + 2\mu^{2}L^{2})\eta_{c}^{2}}{2} \right) + \eta_{c}hL^{2}\mu^{2} + \frac{2\eta_{c}^{2}LdG_{c}^{2}h}{NB} + \frac{\eta_{c}^{2}d^{2}L^{3}\mu^{2}h}{2NB} + \frac{(6\sigma_{c}^{2}L + 2\mu^{2}L^{3})\eta_{c}^{2}h}{N}.$$
(42)

Under sufficiently small learning rate η_c , the negative term $-\frac{\eta_c h}{2} \|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2$ will dominate the other terms multiplying the squared gradient norm. Specifically, by setting conditions on η_c such

that:

$$\left(\frac{6Lh}{N} + 3\alpha\right)\eta_c^2 \le \frac{\eta_c h}{4}, \quad \text{(e.g., satisfied if } \eta_c \le \mathcal{O}(\frac{N}{Lh^2})), \tag{43}$$

we can simplify the bound on the gradient term to $-\frac{\eta_c h}{4} \|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2$. After collecting all remaining bias and variance terms, we arrive at the final simplified bound:

$$\mathbb{E}_t[\mathcal{C}] \le -\frac{\eta_c h}{4} \|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2 + \eta_c^2 \left(\frac{6hLdG_c^2}{NB} + \frac{18hL\sigma_c^2}{N}\right) + \eta_c \left(\frac{d^2L^2h\mu^2}{48B} + \frac{13hL^2\mu^2}{12}\right). \tag{44}$$

where the left part is defined as $\Phi_c(\eta_c)$.

A.3.2 PROOF OF THEOREM 4.5

Now, we are ready to present the proof of the main theorem with the above lemmas. We denote the global model parameters at round t as $\boldsymbol{\theta}_g^t = \{\boldsymbol{\theta}_c^t, \boldsymbol{\theta}_s^t\}$, and the local model parameters at client \mathcal{C}_i as $\boldsymbol{\theta}_{l,i}^t = \{\boldsymbol{\theta}_{c,i}^t, \boldsymbol{\theta}_{a,i}^t\}$.

Local Model Update. According to the local update Eq. 3 $(\hat{g}_{c,i}^{t,m} = \hat{\nabla} f_{c,i}^{t,m}(\theta_c; \xi_i)))$ at clients and the aggregation at Fed Server, each communication round in Eq. 5, we have:

$$\boldsymbol{\theta}_{c}^{t+1} - \boldsymbol{\theta}_{c}^{t} = \boldsymbol{\theta}_{c}^{t,h} - \boldsymbol{\theta}_{c}^{t} = -\frac{\eta_{c}}{N} \sum_{i=1}^{N} \sum_{m=1}^{h} \hat{\boldsymbol{g}}_{c,i}^{t,m}, \tag{45}$$

Proof. First, we decompose the global model's convergence behavior into client-side and server-side contributions. Same as the Proposition 3.4 and 3.5 in Han et al. (2024), under Assumptions 4.1, we have:

$$\mathbb{E}_t[f(\boldsymbol{\theta}_q^{t+1})] - f(\boldsymbol{\theta}_q^t) \le \mathbb{E}_t[\mathcal{C}] + \mathbb{E}_t[\mathcal{S}]$$
(46)

where $\mathcal{C} = \nabla f(\boldsymbol{\theta}_{\mathrm{c}}^t)^T (\boldsymbol{\theta}_{\mathrm{c}}^{t+1} - \boldsymbol{\theta}_{\mathrm{c}}^t) + \frac{L}{2} \|\boldsymbol{\theta}_{\mathrm{c}}^{t+1} - \boldsymbol{\theta}_{\mathrm{c}}^t\|^2$ and $\mathcal{S} = \nabla f(\boldsymbol{\theta}_{\mathrm{s}}^t)^T (\boldsymbol{\theta}_{\mathrm{s}}^{t+1} - \boldsymbol{\theta}_{\mathrm{s}}^t) + \frac{L}{2} \|\boldsymbol{\theta}_{\mathrm{s}}^{t+1} - \boldsymbol{\theta}_{\mathrm{s}}^t\|^2$ denote the contributions from the client-side and server-side models, respectively. $\mathbb{E}_t[\cdot]$ denotes the expectation on all randomness up to round t.

Next, we analyze the contributions from the client-side and server-side models separately. Since we have already bounded $\mathbb{E}_t[\mathcal{C}]$ in Lemma A.4, we now focus on bounding $\mathbb{E}_t[\mathcal{S}]$ Under our proposed SFL framework, we decouple the parameter updates of the client-side and server-side models during training by introducing auxiliary networks. From the server's point of view, the smashed data it receives can be regarded as the smashed data in the conventional, non-decoupled scenario, but with its inputs subject to a distributional shift (Belilovsky et al., 2020). The distribution of the smashed data is shifted by the client-side model updates, which can be modeled as a local parameter bias. This shift can be expressed as:

$$d_{c,i}^{t} = \int \|P_{c,i}^{t}(z) - P_{c,i}^{*}(z)\|dz.$$
(47)

Essentially, by modeling this shift, we capture the local parameter bias introduced by the client's updates and thereby integrate the update dynamics of both the client and server models into a unified whole. For the server-side model, we have:

$$\mathbb{E}_{t}[\mathcal{S}] = \mathbb{E}_{t} \left[\nabla f_{s}(\boldsymbol{\theta}_{s}^{t}; \boldsymbol{\theta}_{c,:}^{*})^{T} (\boldsymbol{\theta}_{s}^{t+1} - \boldsymbol{\theta}_{s}^{t}) + \frac{L}{2} \|\boldsymbol{\theta}_{s}^{t+1} - \boldsymbol{\theta}_{s}^{t}\|^{2} \right] \\
= \left\langle \nabla f_{s}(\boldsymbol{\theta}_{s}^{t}; \boldsymbol{\theta}_{c,:}^{*}), \mathbb{E}_{t}[\boldsymbol{\theta}_{s}^{t+1} - \boldsymbol{\theta}_{s}^{t}] \right\rangle + \frac{L}{2} \mathbb{E}_{t} \left[\|\boldsymbol{\theta}_{s}^{t+1} - \boldsymbol{\theta}_{s}^{t}\|^{2} \right] \\
\stackrel{(a)}{=} \left\langle \nabla f_{s}(\boldsymbol{\theta}_{s}^{t}; \boldsymbol{\theta}_{c,:}^{*}), -\eta_{s} \mathbb{E}_{t} \left[\sum_{i=1}^{N} \nabla f_{s}(\boldsymbol{\theta}_{s,i}^{t}; \boldsymbol{\theta}_{c,:}^{t}) \right] \right\rangle + \frac{L\eta_{s}^{2}}{2} \mathbb{E}_{t} \left[\left\| \sum_{i=1}^{N} \nabla f_{s}(\boldsymbol{\theta}_{s,i}^{t}; \boldsymbol{\theta}_{c,:}^{t}) \right\|^{2} \right] \\
\stackrel{\mathcal{S}_{1}}{=} \sum_{i=1}^{N} \nabla f_{s}(\boldsymbol{\theta}_{s,i}^{t}; \boldsymbol{\theta}_{c,:}^{t}) + \frac{L\eta_{s}^{2}}{2} \mathbb{E}_{t} \left[\left\| \sum_{i=1}^{N} \nabla f_{s}(\boldsymbol{\theta}_{s,i}^{t}; \boldsymbol{\theta}_{c,:}^{t}) \right\|^{2} \right] \\
\stackrel{\mathcal{S}_{1}}{=} \sum_{i=1}^{N} \nabla f_{s}(\boldsymbol{\theta}_{s,i}^{t}; \boldsymbol{\theta}_{c,:}^{t}) + \frac{L\eta_{s}^{2}}{2} \mathbb{E}_{t} \left[\left\| \sum_{i=1}^{N} \nabla f_{s}(\boldsymbol{\theta}_{s,i}^{t}; \boldsymbol{\theta}_{c,:}^{t}) \right\|^{2} \right] \\
\stackrel{\mathcal{S}_{1}}{=} \sum_{i=1}^{N} \nabla f_{s}(\boldsymbol{\theta}_{s,i}^{t}; \boldsymbol{\theta}_{c,:}^{t}) + \frac{L\eta_{s}^{2}}{2} \mathbb{E}_{t} \left[\left\| \sum_{i=1}^{N} \nabla f_{s}(\boldsymbol{\theta}_{s,i}^{t}; \boldsymbol{\theta}_{c,:}^{t}) \right\|^{2} \right] \\
\stackrel{\mathcal{S}_{1}}{=} \sum_{i=1}^{N} \nabla f_{s}(\boldsymbol{\theta}_{s,i}^{t}; \boldsymbol{\theta}_{c,:}^{t}) + \frac{L\eta_{s}^{2}}{2} \mathbb{E}_{t} \left[\left\| \sum_{i=1}^{N} \nabla f_{s}(\boldsymbol{\theta}_{s,i}^{t}; \boldsymbol{\theta}_{c,:}^{t}) \right\|^{2} \right] \\
\stackrel{\mathcal{S}_{1}}{=} \sum_{i=1}^{N} \nabla f_{s}(\boldsymbol{\theta}_{s,i}^{t}; \boldsymbol{\theta}_{c,:}^{t}) + \frac{L\eta_{s}^{2}}{2} \mathbb{E}_{t} \left[\left\| \sum_{i=1}^{N} \nabla f_{s}(\boldsymbol{\theta}_{s,i}^{t}; \boldsymbol{\theta}_{c,:}^{t}) \right\|^{2} \right] \\
\stackrel{\mathcal{S}_{1}}{=} \sum_{i=1}^{N} \nabla f_{s}(\boldsymbol{\theta}_{s,i}^{t}; \boldsymbol{\theta}_{c,:}^{t}) + \frac{L\eta_{s}^{2}}{2} \mathbb{E}_{t} \left[\left\| \sum_{i=1}^{N} \nabla f_{s}(\boldsymbol{\theta}_{s,i}^{t}; \boldsymbol{\theta}_{c,:}^{t}) \right\|^{2} \right] \\
\stackrel{\mathcal{S}_{2}}{=} \sum_{i=1}^{N} \nabla f_{s}(\boldsymbol{\theta}_{s,i}^{t}; \boldsymbol{\theta}_{c,:}^{t}) + \frac{L\eta_{s}^{2}}{2} \mathbb{E}_{t} \left[\left\| \sum_{i=1}^{N} \nabla f_{s}(\boldsymbol{\theta}_{s,i}^{t}; \boldsymbol{\theta}_{c,:}^{t}) \right\|^{2} \right] \\
\stackrel{\mathcal{S}_{2}}{=} \sum_{i=1}^{N} \nabla f_{s}(\boldsymbol{\theta}_{s,i}^{t}; \boldsymbol{\theta}_{c,:}^{t}) + \frac{L\eta_{s}^{2}}{2} \mathbb{E}_{t} \left[\left\| \sum_{i=1}^{N} \nabla f_{s}(\boldsymbol{\theta}_{s,i}^{t}; \boldsymbol{\theta}_{c,:}^{t}) \right\|^{2} \right] \\
\stackrel{\mathcal{S}_{3}}{=} \sum_{i=1}^{N} \nabla f_{s}(\boldsymbol{\theta}_{s,i}^{t}; \boldsymbol{\theta}_{c,:}^{t}) + \frac{L\eta_{s}^{2}}{2} \mathbb{E}_{t} \left[\left\| \sum_{i=1}^{N} \nabla f_{s}(\boldsymbol{\theta}_{s,i}^{t}; \boldsymbol{\theta}_{c,:}^{t}) \right\|^{2} \right] \\
\stackrel{\mathcal{S}_{3}}{=} \sum_{i=1}^{N}$$

where (a) holds because of the update rule (Eq. 4) of the server-side model. At this part, we follow the same steps as in Mu & Shen (2025) to bound S_1 and S_2 . So with additional Assumption 4.4, based on the theoretical results of the server-side model, we can derive the following bound of $\mathbb{E}_t[S]$:

$$\mathbb{E}_{t}[S] \stackrel{(a)}{\leq} \eta_{s} G_{s}^{2} \sum_{i=1}^{N} d_{c,i}^{t} - \frac{\eta_{s}(2N-1)}{4} \|\nabla f_{s}(\boldsymbol{\theta}_{s}^{t})\|^{2} + \frac{L}{2} N^{2} \eta_{s}^{2} G_{s}^{2}$$

$$\tag{49}$$

where (a) holds if and only if $\eta_s \leq \frac{1}{NL}$, which means the term $(\frac{L\eta_s^2}{2} - \frac{\eta_s}{2N})\mathbb{E}_t[\|\sum_{i=1}^N \nabla f_s(\boldsymbol{\theta}_{s,i}^t)\|^2]$ is non-positive.

Final Bound. Combining the bounds of $\mathbb{E}_t[\mathcal{C}]$ and $\mathbb{E}_t[\mathcal{S}]$, we have:

$$\mathbb{E}_{t}[C + S] \\
\leq -\frac{\eta_{c}h}{4} \|\nabla f_{c}(\boldsymbol{\theta}_{c}^{t})\|^{2} + \Phi_{c}(\eta_{c}) \\
+ \frac{\eta_{s}G_{s}^{2}}{2N} \sum_{i=1}^{N} d_{c,i}^{t} - \frac{\eta_{s}(2N-1)}{4} \|\nabla f_{s}(\boldsymbol{\theta}_{s}^{t})\|^{2} + \frac{L}{2} N^{2} \eta_{s}^{2} G_{s}^{2}$$
(50)

With $\eta_c \leq \min\{\frac{1}{3Lh}, \frac{2}{NLh^2}, \frac{N}{72L}\}$ we have:

$$\mathbb{E}\left[f(\boldsymbol{\theta}_{g}^{t+1})\right] \leq f(\boldsymbol{\theta}_{g}^{t}) - \frac{\eta_{c}h}{4} \|\nabla f_{c}(\boldsymbol{\theta}_{c}^{t})\|^{2} + \Phi_{c}(\eta_{c}) + \frac{\eta_{s}G_{s}^{2}}{2N} \sum_{i=1}^{N} d_{c,i}^{t} - \frac{\eta_{s}(2N-1)}{4} \|\nabla f_{s}(\boldsymbol{\theta}_{s}^{t})\|^{2} + \frac{L}{2}N^{2}\eta_{s}^{2}G_{s}^{2}$$
(51)

By rearranging the terms, we have:

$$\frac{\eta_{c}h}{4} \|\nabla f_{c}(\boldsymbol{\theta}_{c}^{t})\|^{2} + \frac{\eta_{s}(2N-1)}{4} \|\nabla f_{s}(\boldsymbol{\theta}_{s}^{t})\|^{2} \leq f(\boldsymbol{\theta}_{g}^{t}) - \mathbb{E}\left[f(\boldsymbol{\theta}_{g}^{t+1})\right] + \Phi_{c}(\eta_{c}) \\
+ \frac{\eta_{s}}{2N} \sum_{i=1}^{N} G_{s}^{2} d_{c,i}^{t} + \frac{L}{2} N^{2} \eta_{s}^{2} G_{s}^{2} \qquad (52)$$

$$\Rightarrow \min\left\{\frac{\eta_{c}h}{4}, \frac{\eta_{s}(2N-1)}{4}\right\} \|\nabla f(\boldsymbol{\theta}_{g}^{t})\|^{2} \leq f(\boldsymbol{\theta}_{g}^{t}) - \mathbb{E}\left[f(\boldsymbol{\theta}_{g}^{t+1})\right] + \Phi_{c}(\eta_{c}) \\
+ \frac{\eta_{s}}{2N} \sum_{i=1}^{N} G_{s}^{2} d_{c,i}^{t} + \frac{L}{2} N^{2} \eta_{s}^{2} G_{s}^{2} \qquad (53)$$

$$\|\nabla f(\boldsymbol{\theta}_{g}^{t})\|^{2} \leq \frac{f(\boldsymbol{\theta}_{g}^{t}) - \mathbb{E}\left[f(\boldsymbol{\theta}_{g}^{t+1})\right] + \Phi_{c}(\eta_{c}) + \frac{\eta_{s}}{2N} \sum_{i=1}^{N} G_{s}^{2} d_{c,i}^{t} + \frac{L}{2} N^{2} \eta_{s}^{2} G_{s}^{2}}{\min\left\{\frac{\eta_{c}h}{4}, \frac{\eta_{s}(2N-1)}{4}\right\}}$$
(54)

Taking full expectation on both sides, and summing over t from 1 to T, we have:

$$\min_{t \in [T]} \mathbb{E}\left[\|\nabla f(\boldsymbol{\theta}_{\mathrm{g}}^t)\|^2\right]$$

$$\leq \frac{f(\boldsymbol{\theta}_{g}^{t}) - f(\boldsymbol{\theta}_{g}^{*})}{\min\{\frac{\eta_{c}h}{4}, \frac{\eta_{s}(2N-1)}{4}\}T} + \frac{\frac{\eta_{s}}{2N}G_{s}^{2}\sum_{i=1}^{N}d_{c,i}^{t}}{\min\{\frac{\eta_{c}h}{4}, \frac{\eta_{s}(2N-1)}{4}\}} + \frac{\frac{L}{2}N^{2}\eta_{s}^{2}G_{s}^{2}}{\min\{\frac{\eta_{c}h}{4}, \frac{\eta_{s}(2N-1)}{4}\}} + \frac{1}{\min\{\frac{\eta_{c}h}{4}, \frac{\eta_{s}(2N-1)}{4}\}} \left[\eta_{c}^{2} \left(\frac{6hLdG_{c}^{2}}{NB} + \frac{18hL\sigma_{c}^{2}}{N} \right) + \eta_{c} \left(\frac{d^{2}L^{2}h\mu^{2}}{48B} + \frac{13hL^{2}\mu^{2}}{12} \right) \right]$$

$$(55)$$

with respect to $\eta_c \leq \min\{\frac{1}{3Lh}, \frac{2}{NLh^2}, \frac{N}{72L}\}, \forall t \in [T].$

We want the convergence rate to hold at the same level for both the client-side and server-side, so first we set $\eta = \eta_c h/4 = (2N-1)\eta_s/4$, then we can rewrite the above bound as:

$$\min_{t \in [T]} \mathbb{E} \left[\|\nabla f(\boldsymbol{\theta}_{g}^{t})\|^{2} \right] \\
\leq \frac{f(\boldsymbol{\theta}_{g}^{t}) - f(\boldsymbol{\theta}_{g}^{*})}{\eta T} + \frac{\frac{\eta_{s}}{2N} G_{s}^{2} \sum_{i=1}^{N} d_{c,i}^{t}}{\eta} + \frac{\frac{L}{2} N^{2} \eta_{s}^{2} G_{s}^{2}}{\eta} \\
+ \frac{1}{\eta} \left[\eta_{c}^{2} \left(\frac{6hLdG_{c}^{2}}{NB} + \frac{18hL\sigma_{c}^{2}}{N} \right) + \eta_{c} \left(\frac{d^{2}L^{2}h\mu^{2}}{48B} + \frac{13hL^{2}\mu^{2}}{12} \right) \right] \\
= \frac{f(\boldsymbol{\theta}_{g}^{t}) - f(\boldsymbol{\theta}_{g}^{*})}{\eta T} + \left(8LG_{s}^{2} \frac{N^{2}}{(2N-1)^{2}} + 96\left(\frac{LdG_{c}^{2}}{hNB} + \frac{3L\sigma_{c}^{2}}{hN} \right) \right) \eta \\
+ \frac{1}{N(2N-1)} G_{s}^{2} \sum_{i=1}^{N} d_{c,i}^{t} + \left(\frac{d^{2}L^{2}\mu^{2}}{12B} + \frac{13L^{2}\mu^{2}}{3} \right)$$
(56)

then we should have

$$\eta = \mathcal{O}\left(\sqrt{\frac{hNB}{dT}}\right), \eta_c = \mathcal{O}\left(\sqrt{\frac{NB}{dhT}}\right), \eta_s = \mathcal{O}\left(\sqrt{\frac{hB}{dNT}}\right),$$
(57)

and $\mu = \mathcal{O}(dhNBT)^{-\frac{1}{4}}$, and we can obtain the convergence rate as:

$$\min_{t \in [T]} \mathbb{E}\left[\|\nabla f(\boldsymbol{\theta}_{g}^{t})\|^{2} \right] \leq \mathcal{O}\left(\sqrt{\frac{d}{hNBT}}\right) + \mathcal{O}\left(\sqrt{\frac{1}{dhNBT}}\right). \tag{58}$$

Then we complete the proof.

A.4 PROOF OF THEOREM 4.7

In this section, we consider the convergence behavior from the perspective of the language model fine-tuning situation. Since the loss landscape of deep learning lies in a very low-dimensional subspace, where the Hessian of the loss has a remarkably low effective rank, we can leverage this property to analyze the convergence rates more effectively.

Lemma A.6 (Client-side bound with low effective-rank). Under Assumption 4.1–4.3, and 4.6, drawing \mathbf{u}_i^t from the uniform distribution on the unit sphere with radius \sqrt{d} , it holds the contribution from the client side:

$$\mathbb{E}[\mathcal{C}] \leq -\frac{\eta_c}{4} \|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2 + \frac{\eta_c \mu^2 L^2}{8} (d+3)^3 + \eta_c^2 L^4 \mu^2 d^3 + \eta_c^2 L \left(1 + \frac{d\kappa + d - 2}{d+2}\right) \frac{1}{N} (\sigma^2 + G_s^2) + \eta_c^3 L^2 \left(1 + \frac{d\kappa + d - 2}{d+2}\right)^2.$$
(59)

Since we hold the same assumptions as the proof of Theorem 2 in Li et al. (2024), we use the results of Equation (69) in this paper with characters adapted to our notation, which is given as follows:

$$\mathbb{E}[\mathcal{C}] \le -\frac{\eta_c}{2} \|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2 + \frac{\eta_c \mu^2 L^2}{8} (d+3)^3 + \eta_c^2 L^4 \mu^2 d^3 + \eta_c^2 L \left(1 + \frac{d\kappa + d - 2}{d+2}\right) \left(\|\nabla f_c(\boldsymbol{\theta}_c^t)\| + \frac{1}{N} (\sigma^2 + G_s^2)\right).$$
(60)

This is achieved by applying Young's inequality. Let us first isolate the terms dependent on the gradient norm from the right-hand side (RHS) of Eq. 60:

$$RHS \le -\frac{\eta_c}{2} \|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2 + \eta_c^2 L \left(1 + \frac{d\kappa + d - 2}{d + 2}\right) \|\nabla f_c(\boldsymbol{\theta}_c^t)\| + C_1, \tag{61}$$

where C_1 collects all terms that are independent of $\|\nabla f_c(\boldsymbol{\theta}_c^t)\|$:

$$C_1 = \frac{\eta_c \mu^2 L^2}{8} (d+3)^3 + \eta_c^2 L^4 \mu^2 d^3 + \eta_c^2 L \left(1 + \frac{d\kappa + d - 2}{d+2}\right) \frac{1}{N} (\sigma^2 + G_s^2).$$

We use Young's inequality, which states that for any $a, b \ge 0$ and $\delta > 0$, we have $ab \le \frac{\delta}{2}a^2 + \frac{1}{2\delta}b^2$. We apply this to the linear gradient term in Eq. 61 by defining:

$$a := \eta_c L \left(1 + \frac{d\kappa + d - 2}{d + 2} \right),$$

$$b := \eta_c \|\nabla f_c(\boldsymbol{\theta}_c^t)\|.$$

This application yields the following bound:

$$\eta_c^2 L \left(1 + \frac{d\kappa + d - 2}{d + 2} \right) \|\nabla f_c(\boldsymbol{\theta}_c^t)\| \le \frac{\delta}{2} \left[\eta_c L \left(1 + \frac{d\kappa + d - 2}{d + 2} \right) \right]^2 + \frac{1}{2\delta} \left[\eta_c \|\nabla f_c(\boldsymbol{\theta}_c^t)\| \right]^2 \\
= \frac{\delta \eta_c^2 L^2}{2} \left(1 + \frac{d\kappa + d - 2}{d + 2} \right)^2 + \frac{\eta_c^2}{2\delta} \|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2. \tag{62}$$

Substituting the bound Eq. 62 back into our main expression, we can group the coefficients of the $\|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2$ term:

RHS
$$\leq \left(-\frac{\eta_c}{2} + \frac{\eta_c^2}{2\delta}\right) \|\nabla f_c(\boldsymbol{\theta}_c^t)\|^2 + C_1 + \frac{\delta \eta_c^2 L^2}{2} \left(1 + \frac{d\kappa + d - 2}{d + 2}\right)^2.$$
 (63)

To simplify the coefficient of the squared gradient norm to a more convenient form, such as $-\frac{\eta_c}{4}$, we select a specific value for the free parameter δ . By setting the new coefficient to this target, we solve for δ :

$$-\frac{\eta_c}{2} + \frac{\eta_c^2}{2\delta} = -\frac{\eta_c}{4}$$

$$\implies \frac{\eta_c^2}{2\delta} = \frac{\eta_c}{2} - \frac{\eta_c}{4} = \frac{\eta_c}{4}$$

$$\implies \delta = 2\eta_c.$$

Since the learning rate $\eta_c>0$, our choice $\delta>0$ is valid. With $\delta=2\eta_c$, the new term arising from Young's inequality that is independent of the gradient becomes $\eta_c^3L^2\left(1+\frac{d\kappa+d-2}{d+2}\right)^2$. By substituting this result into Eq. 63, we obtain the simplified upper bound for $\mathbb{E}[\mathcal{C}]$. This final form is advantageous for convergence analysis, as the negative squared gradient term is now clearly isolated from other terms that are of a higher order in η_c or are related to statistical variance.

A.4.1 PROOF OF THEOREM 4.7

Following the proof strategy of Theorem 1, the analysis can be naturally divided into two parts: client-side optimization and server-side optimization. Now we are ready to prove Theorem 4.7.

Proof. Combining the bounds of $\mathbb{E}_t[\mathcal{C}]$ from Lemma A.6 and $\mathbb{E}_t[\mathcal{S}]$ same as Eq. 49, we have:

$$\mathbb{E}_{t}[C + S] = \mathbb{E}[C + S]
\leq -\frac{\eta_{c}}{4} \|\nabla f_{c}(\boldsymbol{\theta}_{c}^{t})\|^{2} + \Phi'_{c}(\eta_{c})
+ \frac{\eta_{s}G_{s}^{2}}{2N} \sum_{i=1}^{N} d_{c,i}^{t} - \frac{\eta_{s}(2N-1)}{4} \|\nabla f_{s}(\boldsymbol{\theta}_{s}^{t})\|^{2} + \frac{L}{2} N^{2} \eta_{s}^{2} G_{s}^{2}$$
(64)

where Φ'_c is defined as:

$$\begin{split} \Phi_c' &= \frac{\eta_c \mu^2 L^2}{8} (d+3)^3 + \eta_c^2 L^4 \mu^2 d^3 + \eta_c^2 L \left(1 + \frac{d\kappa + d - 2}{d+2} \right) \frac{1}{N} (\sigma^2 + G_s^2) \\ &+ \eta_c^3 L^2 \left(1 + \frac{d\kappa + d - 2}{d+2} \right)^2. \end{split} \tag{65}$$

With the same methods in proof of Theorem 4.1, we can have

$$\|\nabla f(\boldsymbol{\theta}_{g}^{t})\|^{2} \leq \frac{f(\boldsymbol{\theta}_{g}^{t}) - \mathbb{E}\left[f(\boldsymbol{\theta}_{g}^{t+1})\right] + \Phi_{c}'(\eta_{c}) + \frac{\eta_{s}}{2N} \sum_{i=1}^{N} G_{s}^{2} d_{c,i}^{t} + \frac{L}{2} N^{2} \eta_{s}^{2} G_{s}^{2}}{\min\left\{\frac{\eta_{c}}{4}, \frac{\eta_{s}(2N-1)}{4}\right\}}$$
(66)

Taking full expectation on both sides, and summing over t from 1 to T (with Assumption 4.4), we have:

$$\min_{t \in [T]} \mathbb{E} \left[\|\nabla f(\boldsymbol{\theta}_{g}^{t})\|^{2} \right] \\
\leq \frac{f(\boldsymbol{\theta}_{g}^{1}) - f(\boldsymbol{\theta}_{g}^{T+1})}{\min\left\{\frac{\eta_{c}}{4}, \frac{\eta_{s}(2N-1)}{4}\right\}T} + \frac{\frac{\eta_{s}}{2N}G_{s}^{2} \sum_{i=1}^{N} d_{c,i}^{t}}{\min\left\{\frac{\eta_{c}}{4}, \frac{\eta_{s}(2N-1)}{4}\right\}} + \frac{\frac{L}{2}N^{2}\eta_{s}^{2}G_{s}^{2}}{\min\left\{\frac{\eta_{c}}{4}, \frac{\eta_{s}(2N-1)}{4}\right\}} \\
+ \frac{\Phi'_{c}(\eta_{c})}{\min\left\{\frac{\eta_{c}}{4}, \frac{\eta_{s}(2N-1)}{4}\right\}}.$$
(67)

 We want the convergence rate can hold at the same level for both the client-side and server-side, so first we set $\eta = \eta_c/4 = (2N-1)\eta_s/4$, then we can rewrite the above bound as:

$$\min_{t \in [T]} \mathbb{E} \left[\|\nabla f(\boldsymbol{\theta}_{g}^{t})\|^{2} \right] \\
\leq \frac{f(\boldsymbol{\theta}_{g}^{1}) - f(\boldsymbol{\theta}_{g}^{T+1})}{\eta T} \\
+ \eta \left[\frac{8LN^{2}G_{s}^{2}}{(2N-1)^{2}} + 16L^{4}\mu^{2}d^{3} + \frac{16L}{N} \left(1 + \frac{d\kappa + d - 2}{d+2} \right) (\sigma^{2} + G_{s}^{2}) \right] \\
+ \eta^{2} \left[64L^{2} \left(1 + \frac{d\kappa + d - 2}{d+2} \right)^{2} \right] \\
+ \left[\frac{2G_{s}^{2}}{N(2N-1)} \sum_{i=1}^{N} d_{c,i}^{t} + \frac{\mu^{2}L^{2}}{2} (d+3)^{3} \right]. \tag{68}$$

To achieve a more informative rate, we specify the structure of the dominant terms. In many federated learning analyses, the coefficient of the leading $O(\eta)$ error term scales with key system parameters. Let us assume the dominant part of this coefficient is characterized by the condition number κ , the number of clients N, and the average local data size B. We can thus define the coefficient of the primary $O(\eta)$ term as being of order $\mathcal{O}(\kappa/(NB))$.

Then we should have the learning rates set by balancing the $O(1/(\eta T))$ and the dominant $O(\eta)$ terms to optimize the bound. This balance, $\frac{1}{\eta T} \approx \eta \frac{\kappa}{NB}$, yields $\eta \propto \sqrt{NB/(\kappa T)}$. We thus set:

$$\eta = \mathcal{O}\left(\sqrt{\frac{NB}{\kappa T}}\right), \quad \eta_c = \mathcal{O}\left(\sqrt{\frac{NB}{\kappa T}}\right), \quad \eta_s = \mathcal{O}\left(\sqrt{\frac{B}{N\kappa T}}\right), \tag{69}$$

and $\mu \leq \frac{\sqrt[4]{\kappa}}{\sqrt[4]{NT}\sqrt{(d+3)^3}}$, we can obtain the convergence rate as:

$$\min_{t \in [T]} \mathbb{E}\left[\|\nabla f(\boldsymbol{\theta}_{g}^{t})\|^{2} \right] \leq \mathcal{O}\left(\sqrt{\frac{\kappa}{NBT}}\right) + \mathcal{O}\left(\frac{1}{T}\right) + C_{err},\tag{70}$$

where the O(1/T) term arises from the η^2 components of the bound, and $C_{err}=\frac{2}{\delta}\left[\frac{2G_s^2}{N(2N-1)}\Delta+\frac{\mu^2L^2}{2}(d+3)^3\right]$ is a constant error floor independent of T, indicating convergence to a neighborhood of the optimum.

Then we complete the proof. \Box

B PSEUDO CODE OF HERON-SFL

1242

1243

127512761277

1278 1279

1280

1281 1282

1283

1284

1285 1286

1291

1293 1294 1295

```
1244
              Algorithm 1 Hybrid Zeroth- and First-Order Optimization SFL (HERON-SFL)
1245
1246
              Require: Client learning rate \eta_c, Server learning rate \eta_s, ZO radius \mu, local steps h, upload period
1247
                1: Server Initialization:
1248
                2: Initialize global model \theta_a^0 = \{\theta_c^0, \theta_s^0\} and auxiliary model \theta_a^0
1249
                3: Fed-Server broadcasts \theta_c^0, \theta_a^0 to all clients
1250
                4: procedure CLIENTUPDATE(i, \boldsymbol{\theta}_c^t, \boldsymbol{\theta}_a^t)
1251
                           oldsymbol{	heta}_{c,i}^{t,0} \leftarrow oldsymbol{	heta}_{c}^{t}, oldsymbol{	heta}_{a,i}^{t,0} \leftarrow oldsymbol{	heta}_{a}^{t}
1252
                           for m = 0, 1, ..., h-1 do
                6:
                                                                                                                                                1253
                                  Sample mini-batch \xi_i and random direction u^{t,m}
                7:
1254
                                  Compute \Delta \ell_i by perturbating \boldsymbol{\theta}_{l,i}^{t,m} = \{\boldsymbol{\theta}_{c,i}^{t,m}, \boldsymbol{\theta}_{a,i}^{t,m}\} with \pm \mu \boldsymbol{u}^{t,m}
                8:
1255
                                 Estimate ZO gradients: \hat{\boldsymbol{g}}_{l,i}^{t,m} \leftarrow \hat{\nabla} f_{l,i}(\boldsymbol{\theta}_{l}; \xi_{i}))
Update local models: \boldsymbol{\theta}_{l,i}^{t,m+1} \leftarrow \boldsymbol{\theta}_{l,i}^{t,m} - \eta_{c} \hat{\boldsymbol{g}}_{l,i}^{t,m}
1256
                9:
1257
              10:
1258
                                  if (m+1) \bmod k = 0 then
                                                                                                                                 \triangleright Periodic upload every k steps
              11:
1259
                                        Generate smashed data s_i^{t,m} \leftarrow \boldsymbol{\theta}_{c,i}^{t,m+1}(\xi_i) and send to Main-Server
              12:
1260
                           return \theta_{c,i}^{t,h}, \theta_{a,i}^{t,h} to Fed-Server
              13:
1261
1262
              14: for t = 0, 1, \dots, T - 1 do
                                                                                                                   ▶ Main Training Loop (Global Rounds)
1263
                           // — Phase 1: Parallel Client Training & Concurrent Server Updates —
              15:
1264
              16:
                           for each client i = 1, ..., N in parallel do
1265
              17:
                                  Execute CLIENTUPDATE(i, \theta_c^t, \theta_a^t)
1266
              18:
                                                                                          > Concurrently, server receives periodic client uploads
1267
                           Main-Server collects all received data \{s_i^{t,m}\} from the round
              19:
1268
                           Main-Server sequentially updates m{	heta}_s^t using all received smashed data: m{	heta}_s^{t+1} \leftarrow updated m{	heta}_s^t
              20:
1269
1270
                           // — Phase 2: Federated Aggregation —
              21:
1271
                           Fed-Server receives final local models \{\boldsymbol{\theta}_{c,i}^{t,h}, \boldsymbol{\theta}_{a,i}^{t,h}\}_{i=1}^{N} \boldsymbol{\theta}_{c}^{t+1} \leftarrow \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{\theta}_{c,i}^{t,h} and \boldsymbol{\theta}_{a}^{t+1} \leftarrow \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{\theta}_{a,i}^{t,h} Fed-Server broadcasts \boldsymbol{\theta}_{c}^{t+1}, \boldsymbol{\theta}_{a}^{t+1} for the next round
              22:
1272
              23:
1273
              24:
1274
```

C LLM USAGE STATEMENT

We acknowledge the use of a Large Language Model as a general-purpose assist tool in preparing this paper. The LLM was used only for language assistance, including polishing grammar, improving clarity, and refining the flow of the text.

The research ideas, experiments, analyses, and conclusions presented in this work are solely the result of the authors' efforts. The LLM did not contribute to the design of experiments, development of algorithms, data analysis, or any substantive scientific content.