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ABSTRACT

Split Federated Learning (SFL) enables collaborative training between resource-
constrained edge devices and a compute-rich server by partitioning deep neural
networks. Communication overhead is a central issue in SFL and is well mitigated
with auxiliary networks; yet the core client-side computation challenge remains,
as back-propagation requires substantial memory and computation costs, severely
limiting the scale of models that edge devices can support. To make the client side
more resource-efficient, we propose HERON-SFL, a novel hybrid optimization
framework that integrates zeroth-order (ZO) optimization for local client training
while retaining first-order (FO) optimization on the server. With the assistance
of auxiliary networks, ZO updates enable clients to approximate local gradients
using perturbed forward-only evaluations per step, eliminating memory-intensive
activation caching and avoiding explicit gradient computation in the traditional
training process. Leveraging the low effective rank assumption, we theoretically
prove that HERON-SFL’s convergence rate is independent of model dimensional-
ity, addressing a key scalability concern common to ZO algorithms. Empirically,
on ResNet training and large language model (LLM) fine-tuning tasks, HERON-
SFL matches benchmark accuracy while reducing client peak memory by up to
64% and client-side compute cost by up to 65% per step, substantially expanding
the range of models that can be trained or adapted on resource-limited devices.

1 INTRODUCTION

Split Federated Learning (SFL) (Thapa et al., 2022; 2021) targets scenarios with resource-
constrained clients and compute-rich servers. Under the SFL framework, the full network is cut
into client-side and server-side sub-models: each client runs a forward pass up to the cut layer and
uploads the intermediate activations; the main server completes the forward pass, computes the loss,
back-propagates to the cut layer, and returns the gradients so the client can update its sub-model. In
parallel, the federated server (Fed Server) periodically aggregates the clients’ weight updates in a
federated way, enabling large-scale training that exploits cloud compute while keeping all raw data
on-device. However, the update lock (Belilovsky et al., 2020; 2019) imposed by back-propagation
means that, at every iteration, each client must idle until the server finishes its backward pass and
transmits the cut-layer gradients. This synchronization bottleneck both throttles overall training
throughput and amplifies communication overhead in SFL.

To mitigate this bottleneck, recent work equips each client with an auxiliary network (typically
a lightweight output layer) that estimates the cut-layer gradients locally (Mu & Shen, 2025; Han
et al., 2021; Oh et al., 2022). This design decouples the client from the server, allowing the client
sub-model to update immediately without waiting for the server’s backward pass, thereby drastically
reducing communication overhead and granting extra degrees of freedom for client-side optimiza-
tion. Previous works show that auxiliary-network SFL not only cuts communication volume by a
wide margin but also achieves higher convergence accuracy than the traditional methods (Mu &
Shen, 2025; Nair et al., 2025). However, as current approaches take advantage of the auxiliary
module as a communication shortcut, they often overlook the significant computational and storage
burden it imposes on edge devices. This overhead is primarily driven by the conventional first-order
(FO) optimization process, where backpropagation and gradient computation impose prohibitive
compute and memory demands on edge devices.
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Zeroth-order (ZO) optimization provides an appealing alternative. Unlike FO methods, ZO estimates
gradients through parameter perturbations and forward-only evaluations, bringing the computational
and storage overhead to a level comparable to those of inference (Malladi et al., 2023). This property
suggests that ZO could substantially reduce the client-side burden in SFL. However, ZO optimization
is known to suffer from biased gradient estimates and slower convergence compared to FO methods
(Qiu et al., 2023), thereby raising an open question:

Can ZO methods be effectively integrated into SFL to reduce client-side computation and storage
without sacrificing accuracy or convergence guarantees?

We answer this question affirmatively by proposing HERON-SFL, a novel Hybrid zEroth- and fiRst-
Order optimizatioN framework for SFL. In HERON-SFL, clients replace conventional FO gradient
computation with lightweight ZO updates, applied to the local model (comprising the client-side
and auxiliary networks). This design eliminates the need for backpropagation and caching, enabling
edge devices to operate with markedly reduced memory and compute budgets. Importantly, clients
transmit only direction information, while the server performs precise FO refinement, ensuring train-
ing accuracy is preserved.

Our main contributions are summarized as follows:

• We propose HERON-SFL, a novel hybrid zeroth- and first-order SFL framework. Building upon
an auxiliary network that enables decoupled local training, we introduce zeroth-order (ZO) op-
timization on the client side. This eliminates the need for backpropagation for local updates,
thereby significantly reducing on-device memory and computational costs.

• We provide the first theoretical study of hybrid ZO–FO optimization in SFL. Our analysis shows
that under a low effective rank assumption, HERON-SFL achieves anO(1/

√
T ) convergence rate,

which matches that of standard FO approaches. This result demonstrates that the typical drawback
of ZO, i.e., slower convergence due to biased gradients, can be overcome when combined with
server-side FO refinement.

• We conduct comprehensive experiments spanning both vision (ResNet training) and language
(LLM fine-tuning) tasks. Results show that HERON-SFL consistently reduces client peak mem-
ory by up to 64% and client computation per step by up to 65%, while matching the accuracy of
state-of-the-art, auxiliary-network-based FO SFL methods. These gains highlight HERON-SFL’s
practical potential for deploying advanced models on previously infeasible devices.

2 RELATED WORK

Split Federated Learning. While modern foundation models achieve state-of-the-art performance
(Brown et al., 2020; Chowdhery et al., 2023), their immense computational and memory require-
ments restrict them to data centers, limiting their real-world reach (Luo et al., 2024; Sani et al.,
2024). To bring large language models onto edge devices, SFL was proposed by merging Feder-
ated Learning (FL) (McMahan et al., 2017) with Split Learning (SL) (Vepakomma et al., 2018) to
enhance data privacy and robustness (Thapa et al., 2022; Lee et al., 2024). However, SFL remains
constrained by the SL training paradigm, leading to prohibitive communication overhead and a syn-
chronous update lock, as clients must await gradients from the server before updating (Kairouz et al.,
2021; Vepakomma et al., 2018). To mitigate these bottlenecks, recent research has primarily pursued
two complementary directions: system-level optimization and algorithmic decoupling.

System-level optimization aims to adapt the SFL protocol to the constraints of edge networks. This
includes methods for adaptive model splitting based on network conditions (Lin et al., 2024b), hi-
erarchical topologies to manage client resources (Lin et al., 2025), and parallel training designs
optimized for wireless networks (Wu et al., 2023). Underpinning these practical advances, recent
theoretical work has also focused on providing formal convergence guarantees for SFL, particularly
under realistic conditions such as data heterogeneity (Han et al., 2024; Li & Lyu, 2023).

Algorithmic decoupling aims to eliminate the synchronous lock by incorporating a client-side aux-
iliary model to decouple client and server updates by generating local gradient estimates, thereby
obviating the need for server-to-client gradient transmission (Han et al., 2021; Mu & Shen, 2025;
Oh et al., 2022; Nair et al., 2025). Inspired by decoupled training (Belilovsky et al., 2020; 2019) in
centralized settings, this strategy can nearly halve communication costs. Despite their demonstrated
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efficacy, these auxiliary models introduce a significant trade-off: a substantial increase in the client’s
computational and memory footprint, as the auxiliary network can be considerably larger than the
primary client-side model itself (Nair et al., 2025).

Zeroth-Order Optimization for Distributed Machine Learning. ZO optimization estimates gra-
dients through function evaluations (Liu et al., 2020), making it particularly useful when explicit
gradients are unavailable, such as in reinforcement learning (Nakashima & Kobayashi, 2025; Lei
et al., 2022; Zhang & Ying, 2024) and privacy-sensitive scenarios (Chen et al., 2017; Liu et al.,
2018; 2019). Recently, ZO has gained attention as an efficient strategy for training (Chen et al.,
2024) and fine-tuning (Malladi et al., 2023), since it avoids back-propagation’s memory and com-
pute overhead. In distributed machine learning, ZO has been explored as a gradient estimator in
FL, demonstrating promising benefits in privacy preservation (Zhang et al., 2021; Fang et al., 2022;
Ling et al., 2024) and communication reduction (Li et al., 2024). However, its adoption in the SFL
framework remains limited. The main barrier is that variance reduction in ZO requires multiple
perturbations, which would substantially increase intermediate activation transmissions and thus
communication overhead. To address this, we restrict ZO to the client side with the help of auxiliary
networks, enabling resource-efficient training while avoiding additional communication costs.

3 ALGORITHM DESIGN

3.1 SFL WITH AUXILIARY NETWORK

We consider an SFL system with one server and N clients, each holding a private dataset Di, where
the entire dataset is the set {Di}Ni=1. The global model is split at a cut layer into client- and server-
side sub-models, where we denote the collection of parameters as θg = {θc,θs}. Each client i owns
a local version of the client-side model, θc,i. For a sample ξi,j ∈ Di, client i performs a forward pass
up to the cut layer to produce the smashed data, si = θc,i(ξi,j), and uploads it to the main server.
The server then completes the forward pass by processing these activations with its sub-model θs.
The goal is to minimize the global loss function:

min
θc,θs

f(θg) =
1

N

∑N

i=1
fi(θg) =

1

N

∑N

i=1
Eξi,j∼Di

[ℓ(θg; ξi,j)] , (1)

where fi(θg) and f(θg) measure the expected loss on the global model over client i’s local dataset
Di and the entire dataset, respectively, computed using a task-specific loss function ℓ(·) (e.g., cross-
entropy).

We adopt the SFLV2 style framework: a single server-side model θs resides on the main server
and is trained by sequentially processing smashed data si from all clients, while a Fed-Server ag-
gregates client-side parameters into the average θ̄c := 1

N

∑
i θc,i (initial parameters for the next

round). To reduce communication overhead and enable client-side local feedback, each client i at-
taches an auxiliary (Aux) model θa,i to form a local predictor θl,i(ξi,j) = θa,i(θc,i(ξi,j)), where
θl,i = {θc,i,θa,i} (Mu & Shen, 2025; Oh et al., 2022). Because of the Aux model, the SFL system
breaks the training lock between θc and θs: by leveraging θa, the client can perform local updates
independently of server-side gradient feedback.

After initializing the global model {θc,θs}, the basic SFL-Aux algorithm proceeds: in each round,
client i computes smashed data Si = θc,i(ξi) on local mini-batches ξi = {ξi,j}Bj=1 and uploads them
to the Main-Server, while updating θl,i by minimizing a local loss from θa,i(Si), with backpropaga-
tion confined to the client. The Main-Server queues smashed data from all clients and sequentially
executes forward/backward passes to update θs. After a fixed number of local steps, the Fed-Server
aggregates all participated θl,i (e.g., via weighted averaging like FedAvg (McMahan et al., 2017))
and broadcasts updated global model θ̄l to all clients to initiate the next round.

3.2 ZEROTH-ORDER GRADIENT ESTIMATOR

Unlike prior methods that rely on full forward and backward passes through the client and its aux-
iliary network to compute first-order gradients ∇ℓ(θl; ξi), we adopt a mini-batch-type stochastic
gradient estimator with two-point evaluation. Specifically, for function fl,i, the two-point type
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stochastic ZO gradient estimator is defined as:

∇̂fl,i(θl; ξi)) =
1

B

B∑
j=1

du

µ
[ℓl,i(θl + µu; ξi,j)− ℓl,i(θl; ξi,j)], (2)

where u is a random vector drawn from either a Gaussian or a Uniform ball distribution, µ is
a positive perturbation step size. This estimator approximates the smoothed objective function’s
gradient. Formally, it can be shown that this estimator is an unbiased estimate of ∇fµ

l,i(θl), where
fµ
l,i is the Gaussian-smoothed surrogate of the original function fl,i. The bias with respect to the

true gradient ∇fl,i is therefore introduced by the smoothing process itself and is controlled by
the parameter µ. We defer the formal definition of the smoothed function and its properties to
Appendix A.2.

3.3 PROPOSED ALGORITHM

First-Order  Zeroth-OrderForward Pass

Main Server

Fed Server

Client N

Client i

Client 1

Figure 1: The proposed HERON-SFL algorithm.

We now summarize the end-to-end training pro-
cess of our proposed framework, which op-
erates over a series of communication rounds
(high-level illustration depicted in Figure 1).
Each round, indexed by t, encompasses four
key stages: model initialization, local client
computation, server-side updates, and local
model aggregation in Fed Server. The entire
process is formalized as follows:

1. Model Initialization. At the start of the t-
th communication round, the Fed-Server broad-
casts the global model parameters θt

c and θt
a

that are resulted from the federated aggregation
at the end of last round. Upon receiving these parameters, each client i initializes its local models
for the subsequent update process: θt,0

l,i = {θt,0
c,i ,θ

t,0
a,i} = {θt

c,θ
t
a}.

2. Local Model Update and Smashed Data Upload. The client then proceeds with h local model
updates. During this process, the update of the client-side model is decoupled from the server-side
model by leveraging an auxiliary network. Distinct from existing methods, our paradigm employs a
ZO gradient estimator (defined in Eq. 2) to approximate the gradients of a local loss function. This
allows the client to perform timely updates without requiring traditional back-propagation from the
server. After performing h local gradient descent steps, the cumulative update for the client-side
models can be concisely written as:

θt,h
l,i = θt,0

l,i − ηl
∑h

m=1
∇̂fl,i(θt,m

l,i ; ξi)) (3)

During the local update phase, the client uploads its smashed data to the server every k local steps
for the subsequent server-side training phase.

3. Server Model Update. The server receives the smashed data from each client i and performs
model updates sequentially using an SFLV2 (Thapa et al., 2022) training scheme. In this setting,
each client’s smashed data is processed one-by-one, and standard first-order optimization based on
forward and backward propagation is used to estimate gradients and update the server-side model
parameters θt

s accordingly:

θt+1
s = θt

s − ηs
∑N

i=1

1
|Di|

∑
ξi∈Di

∇ℓ(θt
s;θ

t
c,i(ξi)), (4)

where∇θs
l(θt

s;θ
t
c,i(ξi)) is the real gradient of the server-side loss function using back propagation.

4. Model Aggregation in Fed Server. Upon completion of the h local updates, each client transmits
its updated local parameters θt,h

l,i to the fed server for aggregation. The fed server averages these
parameters across all N clients to compute the global model combined by client-side and auxiliary
models for the next round:

θt+1
l = θ̄t

l =
1
N

∑N

i=1
θt,h
l,i (5)
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The server-side model, θt+1
s , which was updated sequentially during the round, is already finalized

and requires no aggregation. Finally, the new global model θt+1
g = {θt+1

c ,θt+1
s } is assembled and

prepared for distribution in the subsequent communication round.

In essence, HERON-SFL replaces the clients’ local updates in standard SFL with updates driven by
a ZO gradient estimator, while retaining client-side auxiliary networks to guide local learning. This
design eliminates the need for explicit backpropagation on resource-constrained devices: clients
only perform a small number of forward computations and randomized probes to update parameters,
substantially reducing compute and memory demands. Clients upload smashed data to the server
periodically (every h local steps) to enable global refinement. A critical concern, however, is that
ZO optimization is often associated with slow convergence. In the following sections, we will
demonstrate both theoretically and empirically that HERON-SFL overcomes this potential challenge
within the SFL framework.

4 CONVERGENCE AND RESOURCE CONSUMPTION ANALYSIS

4.1 CONVERGENCE ANALYSIS

In this section, we provide a formal convergence analysis to establish the theoretical guarantees
for the proposed FSL-HERON framework. For the sake of clarity and conciseness, the detailed
mathematical proofs are deferred to Appendix A. The theoretical framework is built upon the fol-
lowing standard assumptions, which are widely adopted in the analysis of distributed optimization
algorithms (Karimireddy et al., 2020; Reddi et al., 2020; Mu & Shen, 2025; Fang et al., 2022).
Assumption 4.1 (L-smoothness). The loss functions of clients and server are L-smooth. Mathe-
matically, for any x ∈ Rd and y ∈ Rd, the following holds:

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, f(y) ≤ f(x) +∇f(x)T (y − x) + L
2 ∥y − x∥2, (6)

where f is the loss function, and L is the Lipschitz constant.
Assumption 4.2 (Bounded gradients). The gradients of the local loss function ℓi(θc,θs) are
bounded, i.e., there exists a constant G such that:

∥∇θc
ℓi(θc)∥2 ≤ G2

c , ∥∇θs
ℓi(θs)∥2 ≤ G2

s. (7)

Assumption 4.3 (Bounded variance). The variance of the zeroth-order gradient estimator is
bounded, i.e., there exists a constant σ2 such that:

E[∥ĝt,m
c,i −∇θc

fi(θc,θs)∥2] ≤ σ2. (8)

Assumption 4.4 (Convergence of client sub-model). For each client i at global round t, let
ztc,i = gxt

c,i,h
(z) be the output of the i-th client-side model (with input determined by xt

c,i and Di),
and denote by P t

c,i(z) its output distribution. Let P ∗
c,i(z) be the reference (time-invariant) output

distribution of the i-th client-side model evaluated at x∗
c and Di. Define the distribution distance

dtc,i :=

∫
Z

∣∣P t
c,i(z)− P ∗

c,i(z)
∣∣ dz, (9)

i.e. the L1 (total-variation) distance between P t
c,i and P ∗

c,i. We assume that the aggregate drift
across clients is uniformly bounded as follows:

1

T

T∑
t=1

N∑
i=1

dtc,i ≤ δ, and δ <∞. (10)

Remark 1 Together, the Assumptions above ensure a well-behaved optimization environment.
Assumption 4.1 guarantees Lipschitz-continuous gradients and provides the usual quadratic upper
bound used in descent arguments; Assumption 4.2 prevents arbitrarily large client/server updates
and thus promotes numerical stability; and Assumption 4.3 limits the stochastic error between
the estimator and the true gradient. Assumption 4.4 is tailored to the auxiliary-network-assisted
FSL setting, as also adopted in Mu & Shen (2025) and motivated by centralized synthetic-gradient
frameworks (Belilovsky et al., 2020). This condition is essential for guaranteeing the stability and
convergence of the SFL process under local gradient updates.
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Theorem 4.5 (Convergence rate of HERON-SFL in i.i.d. setting). Under Assumptions 4.1–4.4 , if
the client learning rate satisfies ηc ≤ { 1

3Lh ,
2

NLh2 ,
N
72L}, and is chosen as ηc = O(

√
(NB)/(dhT ))

while the server learning rate is set to ηs = O(
√

(hB)/(dNT )), and perturbation step size is set
to µ = O(1/(dhNBT )1/4). The convergence rate of the HERON-SFl algorithm can be guaranteed
as:

min
t∈[T ]

E
[
∥∇f(θt

g)∥2
]
≤O

(√
d

hNBT

)
+O

(√
1

dhNBT

)
. (11)

Remark 2 The derived bounds on the expected gradient norm indicate that the algorithm can
achieve a favorable trade-off between the model complexity (characterized by the dimensionality d)
and the training batchsize (captured by B) over the training horizon T . The bound is dominated
by O(

√
d/(hNBT )) (the second term is smaller by 1/

√
d). Thus, larger N or B linearly reduces

the required rounds; increasing local steps h improves the rate as 1/
√
h, trading fewer communi-

cation rounds for more local computation. The dependence on model size is
√
d (or d in sample

complexity), which is the drawback of ZO optimization: convergence degrades with increasing di-
mensionality. Below, we show that the dependency on d can be reduced under structural assumptions
on an effective dimension.
Assumption 4.6 (Low κ-Effective Rank). Let Gt ≜ maxi,ξi⊂Di

∥∇θl
ll(θ

t
l,i; ξi)∥. There exists a

Hessian matrix Hl(θ
t
l,i) ⪯ L · Idl

such that:

• For all θl such that ∥θl − θtl,i∥ ≤ 2ηcdlGt, we have∇2ll(θl) ⪯ Hl(θ
t
l,i).

• The effective rank of Hl(θ
t
l,i), i.e.,

tr(Hl(θ
t
l,i))

∥Hl(θt
l,i)∥2

, is at most κ.

Theorem 4.7 (Convergence Rate of HERON-SFL with Low Effective Rank Assumption).
Under Assumptions 4.1–4.6 ,if the client learning rate satisfies ηc ≤ 1

4L (1 + dκ+d−2
d+2 ) and

µ ≤
4
√
κ

4√
NT
√

(d+3)3
, and is chosen as ηc = O(

√
(NB)/(κT )) while the server learning rate is

set to ηs = O(
√

B/(κNT )). The convergence rate of the HERON-SFL algorithm can be guaran-
teed as:

min
t∈[T ]

E
[
∥∇f(θt

g)∥2
]
≤ O

(√
κ

NBT

)
+O

(
1

T

)
+

2

δ

[
2G2

s

N(2N − 1)
∆ +

µ2L2

2
(d+ 3)3

]
. (12)

Remark 3 With the prescribed µ, the smoothing bias term∝ µ2(d+3)3 is at mostO
(√

κ/(NT )
)

and the drift term vanishes in the i.i.d. case (∆ = 0), so the bound simplifies to O
(√

κ/(NBT )
)
+

O(1/T ), which is independent with the model dimension d, removing the usual
√
d degradation of

ZO methods and matching the 1/
√
T rate of FO SFL (Mu & Shen, 2025; Nair et al., 2025) up to

condition number κ factors.

4.2 CLIENT-SIDE RESOURCE COST ANALYSIS

The following analysis, summarized in Table 1, compares the per-client resource consumption for a
single parameter update step on a fixed-size batch of data, assuming all other hyperparameters are
held constant. Let p be the data size of one local batch, q be the size of the smashed layer, and |θc|,
|θa| be the size of the client-side and auxiliary models, respectively.

Table 1: Client-Side Resource Costs per Local Update.

Method Comms. per Client Peak Memory FLOPs

SFLV1/V2 2pq + 2|θc| O(|θc|) 3Fc

CSE-FSL / FSL-SAGE pq + 2(|θc|+ |θa|) O(|θc|+ |θa|) 3(Fc + Fa)

HERON-SFL pq + 2(|θc|+ |θa|) O(1) np(Fc + Fa)

Communication Load. The primary communication advantage of decoupled frameworks (CSE-
FSL, FSL-SAGE, and HERON-SFL) over traditional SFL (SFLV1/V2) stems from the elimination

6
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of the server-to-client gradient download. While traditional SFL requires a two-way intermediate
data exchange for each batch (represented by the term 2pq), decoupled methods perform only a
one-way upload, halving this cost to pq. The trade-off for this gain is the added cost of exchanging
the auxiliary model parameters, |θa|. Nevertheless, this parameter exchange typically represents a
minor communication burden relative to the transmission of smashed data.

Peak Memory. FO frameworks like SFLV1/V2 and CSE-FSL require caching intermediate activa-
tions for backpropagation. This results in a peak memory footprint that scales with the size of the
locally trained models, i.e., O(|θc|) and O(|θc|+ |θa|) respectively. This overhead can be an order
of magnitude larger than that of inference (Griewank & Walther, 2008). In contrast, the ZO-based
HERON-SFL obviates activation caching, reducing its peak memory to O(1), which is equivalent
to that of inference (Malladi et al., 2023).
Remark 4 Local ZO updates are highly memory-efficient for two primary reasons. First, they
eliminate the need for backpropagation, thus avoiding the high cost of caching intermediate activa-
tions. Second, the perturbed parameters u generated in the calculation ∇̂fl,i(θl; ξi)) do not require
storing the full perturbation vector; instead, the vector can be procedurally generated from a single
random seed and applied in-place, further minimizing memory overhead.

FLOPs. Assuming a backward pass is twice as computationally expensive as a forward pass (F )
(Chen et al., 2016), first-order methods incur a cost of approximately 3Fc (for SFLV1/V2) or 3(Fc+
Fa) (for CSE-SFL and FSL-SAGE) per update, where Fc and Fa are the forward pass costs of the
client and auxiliary models, respectively. In contrast, HERON-SFL performs ZO updates directly
on the client, similar to the approach in MeZO (Malladi et al., 2023). In practice, a standard two-
point ZO estimator is typically sufficient for stable and effective parameter updates, requiring a
computational cost of 2(Fc + Fa) in HERON-SFL.

5 EXPERIMENTS

5.1 EXPERIMENT SETTING

In this section, we conduct experiments on both model training and fine-tuning to show the perfor-
mance of our proposed HERON-SFL algorithm1. For comparison, we use the following baseline
methods: SFLV1/V2 (Thapa et al., 2022) or SplitLoRA (Lin et al., 2024a)2, CSE-FSL (Mu & Shen,
2025), and FSL-SAGE (Nair et al., 2025). We conduct the experiments under two complementary
training paradigms, implementing all models in PyTorch and running them on NVIDIA RTX A6000
NVL GPU (48 GB):

Full Training from Scratch. We study the convergence of ResNet-18 (He et al., 2016) under SFL
on CIFAR-10 (Krizhevsky et al., 2009) with 5 clients. The model is split after the second 2-D
BatchNorm layer; the client holds the front part while the server holds the back part. An auxiliary
head consisting of a single fully connected layer is attached to the cut layer. Unless otherwise stated,
we adopt the hyperparameters in Thapa et al. (2022): batch size 256 and Adam optimizers on both
sides with a learning rate of 1e−4.

Language Model Fine-tuning. We fine-tune GPT2-Small and GPT2-Medium (Radford et al., 2021)
on the E2E dataset Novikova et al. (2017) with 3 clients. Unless specified otherwise, for GPT2-
Small, the model is split after the third transformer block, with an auxiliary network consisting of
one transformer block and the unembedding layer. For GPT2-Medium, the split occurs after the sixth
block, with a three-block auxiliary network plus the unembedding layer. As the auxiliary network
is not pre-trained, we initialize its parameters by copying the weights from the initial blocks of the
server-side model. All components are fine-tuned using Low-Rank Adaptation (LoRA) (Hu et al.,
2022), where only adapters of rank 8 are updated and all other parameters are frozen.

1Our source code is available at https://anonymous.4open.science/r/HERON-SFL-BB31/.
2While SFLV1/V2 are designed for the training-from-scratch paradigm, our focus on the distinct task of

language fine-tuning led to the development of SplitLoRA, which integrates LoRA with the SFLV2 frame-
work. We omit a comparison with an SFLV1-based approach because its need for multiple server models is
computationally prohibitive for large-scale models.

7

https://anonymous.4open.science/r/HERON-SFL-BB31/


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

The former setting evaluates whether SFL can train a model from scratch, a prerequisite when no
reliable checkpoint exists. The latter mirrors the prevailing industrial practice of pre-training a large
language model once and then adapting it with parameter- and memory-efficient techniques such
as LoRA. By examining both regimes, we separately measure the contributions of data-parallel
federation, model partitioning, and parameter-efficient adapters, and we show that HERON-SFL
consistently outperforms strong baselines in both scenarios.

5.2 TRAINING FROM SCRATCH: RESNET18 ON CIFAR-10

Convergence Behavior. Figure 2 illustrates the test accuracy of each method versus the number of
communication rounds. In the IID setting, our proposed HERON-SFL shows convergence behavior
nearly identical to other auxiliary-network baselines like CSE-FSL and FSL-SAGE3, with all three
performing slightly below the top-performing SFLV2. A similar trend is observed in the more chal-
lenging non-IID setting, which confirms that our hybrid algorithm achieves convergence comparable
to its first-order counterparts.
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Figure 2: ResNet-18 test accuracy vs. communication
rounds on CIFAR-10 for IID (left) and non-IID (right) dis-
tributions.

Table 2: Client consumptions for
ResNet-18 on CIFAR-10.

Algorithms Comm. Peak FP FLOPS
(GB) (MB) (G)

SFLV1 1216.00
709.93 59.51

SFLV2 390.67
CSE-FSL 258.55

726.46 59.85
FSL-SAGE 244.24

HERON-SFL 244.19 259.44 19.95

Communication, Storage, and Computational Costs. Table 2 provides a quantitative comparison
of the resource consumption on the client side. In terms of communication load, HERON-SFL is
among the most efficient methods, requiring only 244.19 GB of total communication, a volume
nearly identical to FSL-SAGE (244.24 GB) and superior to all other baselines.

The most significant advantages of HERON-SFL are evident in its on-device resource requirements.
By eliminating client-side backpropagation, it drastically reduces the peak memory footprint (Peak
FP) to just 259.44 MB—a reduction of approximately 63% compared to the almost 710 MB required
by SFLV1 and SFLV2. Similarly, the computational cost (FLOPs) is lowered to 19.95 GFLOPs, a
reduction of over 65% compared to the ˜59 GFLOPs of other methods. This substantial decrease in
both storage and compute burden confirms that HERON-SFL is highly suitable for deployment in
resource-constrained environments.

5.3 LANGUAGE MODEL FINE-TUNING

For the task of language model fine-tuning, HERON-SFL demonstrates superior communication
efficiency and faster convergence. As illustrated in Figure 3, its validation perplexity decreases
more rapidly than the baselines for both GPT2-Small and GPT2-Medium. Notably, for GPT2-Small,
HERON-SFL converges faster and achieves a final perplexity that is competitive with SplitLoRA
while outperforming both CSE-FSL and FSL-SAGE. While all methods reach a similar performance
on GPT2-Medium, HERON-SFL does so with significantly less communication costs.

Echoing the resource efficiency observed in the ResNet experiments, HERON-SFL substantially
lowers the on-device computational and memory burden for clients. Table 3 provides a clear compar-
ison of the resource consumption per local update. HERON-SFL requires a peak memory (Peak FP)
of only 4.03 GB, which is less than half that of CSE-FSL (9.09 GB) and also more efficient than the

3We note that FSL-SAGE does not exhibit a significant advantage in our experiments, which we attribute to
our design choice of using a minimal auxiliary network purely for decoupling the updates of server and clients.
This contrasts with the approach in (Nair et al., 2025), where the alignment mechanism of FSL-SAGE is more
impactful as the auxiliary model is intentionally designed to be even larger than the client model, thus requiring
explicit alignment to ensure consistency with the server’s task.
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Figure 3: GPT2 perplexity curves vs. Communication Volume on
E2E for small (left) and medium (right) models.

Table 3: Client consumptions
for GPT2-Medium on E2E.

Algorithms Peak FP FLOPS
(GB) (T)

SplitLora 4.59 5.68
CSE-FSL

9.09 9.48
FSL-SAGE

HERON-SFL 4.03 5.26

SplitLoRA baseline (4.59 GB). The reduction in computational cost is even more pronounced, with
HERON-SFL needing only 5.26 TFLOPS, a decrease of approximately 44% compared to CSE-FSL
and FSL-SAGE. This reduction in both memory footprint and floating-point operations confirms
that by eliminating client-side backpropagation, our method significantly lowers the hardware bar-
rier, making it feasible to fine-tune large language models on resource-constrained edge devices.

5.4 ABLATION STUDY OF LOCAL MODEL COMPLEXITY

We investigate the impact of local model complexity on the GPT2-medium fine-tuning task.
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Figure 4: Effect of aux-model com-
plexity.

In this ablation study, we evaluate two primary scenarios:
one where the client-side model contains the initial 3 trans-
former blocks, and another with 6 blocks. For each sce-
nario, we vary the auxiliary network’s architecture from
a lightweight base (LayerNorm and unembedding layers
only) to progressively larger versions containing one, two,
or three transformer blocks. Figure 4 plots the final train-
ing loss after a fixed number of training rounds. The results
show that our proposed HERON-SFL is largely insensitive
to the complexity of the auxiliary network; in both the 3-
block and 6-block settings, it achieves a strong final training
loss even with the simplest auxiliary model. In contrast, the
performance of the first-order baseline, CSE-FSL, is highly dependent on a more powerful auxiliary
model, showing a clear trend of improvement as the network becomes more complex. This sug-
gests that for ZO-based methods, there is little justification for using a resource-intensive auxiliary
network, whereas first-order methods require one to reach their full potential.

This study validates the comprehensive efficiency of HERON-SFL, which stems from two key ad-
vantages. First, its use of zeroth-order optimization reduces the peak memory footprint to the level
of inference by eliminating backpropagation. Second, it attains excellent global convergence while
requiring only a minimal auxiliary architecture. Crucially, these resource savings do not come at
the cost of performance; our experimental results highlight the dual advantages of HERON-SFL in
achieving both fast convergence and low on-device costs. This provides a superior performance-to-
cost balance when compared to first-order baselines like FSL-SAGE and CSE-FSL.

6 CONCLUSION

This work proposes HERON-SFL, a novel hybrid ZO-FO framework that addresses the critical com-
putation and memory limitations on edge devices within SFL. It performs ZO optimization on edge
devices to eliminate costly backpropagation, thereby significantly reducing on-device memory and
computational requirements. Empirical and theoretical analysis demonstrate that the framework not
only achieves a theoretical convergence rate of O(1/

√
T ) independent of model dimensionality un-

der the low effective rank assumption, but also empirically matches the accuracy of SFL benchmarks
on diverse tasks while substantially reducing client-side resource costs.

Future work could explore the application of HERON-SFL to non-differentiable objectives, such
as directly optimizing evaluation metrics or learning from human feedback (Ouyang et al., 2022),
leveraging the gradient-free nature of its client-side updates.
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Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and trends® in machine learning,
14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132–5143. PMLR, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical Report, University of Toronto, 2009.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Joohyung Lee, Mohamed Seif, Jungchan Cho, and H Vincent Poor. Exploring the privacy-energy
consumption tradeoff for split federated learning. IEEE Network, 38(6):388–395, 2024.

Yuheng Lei, Jianyu Chen, Shengbo Eben Li, and Sifa Zheng. Zeroth-order actor-critic. arXiv
preprint arXiv:2201.12518, 2022.

Yipeng Li and Xinchen Lyu. Convergence analysis of sequential federated learning on heteroge-
neous data. Advances in Neural Information Processing Systems, 36:56700–56755, 2023.

Zhe Li, Bicheng Ying, Zidong Liu, Chaosheng Dong, and Haibo Yang. Achieving dimension-
free communication in federated learning via zeroth-order optimization. arXiv preprint
arXiv:2405.15861, 2024.

Zheng Lin, Xuanjie Hu, Yuxin Zhang, Zhe Chen, Zihan Fang, Xianhao Chen, Ang Li, Praneeth
Vepakomma, and Yue Gao. Splitlora: A split parameter-efficient fine-tuning framework for large
language models. arXiv preprint arXiv:2407.00952, 2024a.

Zheng Lin, Guanqiao Qu, Wei Wei, Xianhao Chen, and Kin K Leung. Adaptsfl: Adaptive split fed-
erated learning in resource-constrained edge networks. arXiv preprint arXiv:2403.13101, 2024b.

Zheng Lin, Wei Wei, Zhe Chen, Chan-Tong Lam, Xianhao Chen, Yue Gao, and Jun Luo. Hierarchi-
cal split federated learning: Convergence analysis and system optimization. IEEE Transactions
on Mobile Computing, 2025.

Zhenqing Ling, Daoyuan Chen, Liuyi Yao, Yaliang Li, and Ying Shen. On the convergence
of zeroth-order federated tuning for large language models. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1827–1838, 2024.

Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini. Zeroth-
order stochastic variance reduction for nonconvex optimization. Advances in neural information
processing systems, 31, 2018.

Sijia Liu, Pin-Yu Chen, Xiangyi Chen, and Mingyi Hong. signsgd via zeroth-order oracle. In
International conference on learning representations, 2019.

Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and Pramod K
Varshney. A primer on zeroth-order optimization in signal processing and machine learning:
Principals, recent advances, and applications. IEEE Signal Processing Magazine, 37(5):43–54,
2020.

Wenqiang Luo, Jacky Keung, Boyang Yang, He Ye, Claire Le Goues, Tegawende F Bissyande,
Haoye Tian, and Xuan Bach D Le. When fine-tuning llms meets data privacy: An empirical study
of federated learning in llm-based program repair. ACM Transactions on Software Engineering
and Methodology, 2024.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Yujia Mu and Cong Shen. Federated split learning with improved communication and storage effi-
ciency. IEEE Transactions on Mobile Computing, 2025.

Srijith Nair, Michael Lin, Peizhong Ju, Amirreza Talebi, Elizabeth Serena Bentley, and Jia Liu.
Fsl-sage: Accelerating federated split learning via smashed activation gradient estimation. arXiv
preprint arXiv:2505.23182, 2025.

So Nakashima and Tetsuya J Kobayashi. Unifying zeroth-order optimization and genetic algorithms
for reinforcement learning. In Proceedings of the Genetic and Evolutionary Computation Con-
ference Companion, pp. 311–314, 2025.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.
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A THEORETICAL PROOF

A.1 NOTATIONS

Table 4: Notation and unified conventions used in this paper.

Symbol Meaning

System & Data
N Number of clients
Di Local dataset of client i
ξi = {ξi,j}Bj=1 Mini-batch sampled from Di

B Batch size

Model Parameters
θg = {θc,θs} Global model split into client/server parameters
θs Server-side parameters
θc,i Client-side parameters owned by client i
θa,i Auxiliary model parameters at client i
θl,i = (θc,i,θa) Local predictor on client i
dc, da Dimensions of θc and θa

Objective Functions
ℓ(·; ξi,j) Task loss on sample ξi,j ∈ Di

fi(θg) Expected loss for global model over client i’s local dataset Di

f(θg) Expected loss for global model over the entire dataset
∑N

i=1Di

fl,i(θl) Expected loss for local model θl over client i’s local dataset

Optimization & Algorithm
t,m Global round index t; local step index m

h Local steps per round before optional upload
ηc, ηs Client / server learning rates
si = θc,i(ξi,j) Smashed data produced by client i
ut,m Random direction for ZO estimator
µ > 0 Smoothing/perturbation radius in ZO estimator
ĝt,m
l,i ZO gradient estimates for local parameters

g t
s,i Server-side gradient on smashed data from client i

θt+1
s Server parameters after sequential updates

θt+1
c ,θt+1

a Aggregated client/aux parameters after Fed-Server

Theoretical Analysis
L Smoothness constant (Lipschitz gradient)
Gc, Gs Bounds on client/server gradient norms
σ2 Variance bound of ZO estimator
d t
c,i Distributional drift of the output from client i’s model at round t

δ Upper bound for the average distributional drift
κ Upper bound on the effective rank of the local loss Hessian

A.2 LEMMAS FOR ZEROTH-ORDER OPTIMIZATION

Before presenting the proofs of our main theorems, we recall several classical lemmas on zeroth-
order optimization, which serve as the basis for the subsequent analysis. For the analysis of zeroth-
order optimization algorithms, it is standard to introduce a smoothed approximation of the objective
function. We formalize this by first defining the smoothed function and then stating its key properties
in a lemma.
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Definition A.1 (Gaussian Smoothed Function with Unit-Sphere Normalization). A function f :
Rd → R is said to be (Gaussian-derived) spherically smoothed with smoothing radius µ > 0 if for
any x ∈ Rd,

fµ(x) = Ez∼N (0,Id)

[
f
(
x+ µ z

∥z∥
)]
,

where we define u := z/∥z∥ so that ∥u∥ = 1 almost surely and u ∼ Unif(Sd−1).
Lemma A.2 (Gradient and Smoothness for Gaussian Smoothed Functions (Nesterov &
Spokoiny, 2017)). Let f : Rd → R be differentiable with an L-Lipschitz gradient (i.e., f is L-
smooth). Then, for any µ > 0, the spherically smoothed function fµ defined in Definition A.1 is
continuously differentiable and its gradient is Lµ-Lipschitz continuous with Lµ ≤ L. Moreover, the
gradient of fµ can be expressed as:

∇fµ(x) = Eu

[
f(x+ µu)− f(x)

µ
du

]
. (13)

The result from Lemma A.2 provides the theoretical foundation for the zeroth-order gradient esti-
mator used in our work. We recall our estimator from Eq. 2 in the main text. The lemma establishes
that this estimator is an unbiased estimate of the gradient of the corresponding smoothed function,
fµ
l,i(θl). Formally, taking the expectation of the estimator over the random direction u yields the

exact gradient of the smoothed function:

Eu∼N (0,I)

[
∇̂fl,i(θl; ξi)

]
= ∇fµ

l,i(θl; ξi). (14)

The bias of this estimator with respect to the true gradient ∇fl,i arises from the difference between
the smoothed function fµ

l,i and the original function fl,i, not from the sampling process itself. This
distinction is crucial for the subsequent convergence analysis.

A.3 PROOF OF THEOREM 4.5

A.3.1 PRELIMINARY LEMMAS

To begin the convergence analysis, we start with a few lemmas that will be useful in the subsequent
proofs.
Lemma A.3 (Bound on the Second Moment of the ZO Estimator 4). Under Assumptions 4.1–4.3,
the second moment of the zeroth-order gradient estimator ĝt,m

c,i is bounded as follows:

Et,m

[
∥ĝt,m

c,i ∥
2
]
≤2dG2

c

B
+

d2L2µ2

2B
+ 2µ2L2 + 6σ2

c

+ 6∥∇fc(θt
c)∥2 + 6L2Et,m−1

[∥∥θt
c − θt,m

c,i

∥∥2] . (15)

Proof. The proof proceeds by decomposing the second moment of the estimator into several terms
and bounding each one. First, we apply the law of total expectation and the law of total variance,
which states E[∥a∥2] = Var(a)+∥E[a]∥2. We recognize that ĝt,m

c,i is the average of estimators over
the mini-batch ξi. As established in Lemma A.2, its expectation over the random direction u is the
gradient of the smoothed function,∇fµ

c,i(θ
t,m
c,i ).

Et,m

[
∥ĝt,m

c,i ∥
2
]
=Et,m−1

[
Em
t

[
∥ĝt,m

c,i ∥
2
]]

=Et,m−1

[
Varmt (ĝt,m

c,i ) + ∥Em
t [ĝt,m

c,i ]∥2
]

=Et,m−1

[
Varmt (ĝt,m

c,i )
]
+ Et,m−1

[
∥∇fµ

c,i(θ
t,m
c,i )∥2

]
.

(16)

4This bound decomposes the second moment of the estimator into several distinct sources of error and
variance. The terms scaled by the mini-batch size, such as 2dG2

c/B and d2L2µ2/2B, represent the intrinsic
variance of the ZO estimator, which is dependent on the model dimension d. The terms 2µ2L2 and 6σ2

c capture
the bias introduced by the Gaussian smoothing and the variance from client data heterogeneity, respectively.
The term 6∥∇fc(θ

t
c)∥2 relates the analysis back to the global gradient norm at the start of the round. Crucially,

the final term, 6L2Et,m−1[∥θt
c − θt,m

c,i ∥2], quantifies the client model divergence that arises from performing
multiple local updates. This divergence term is a key challenge in federated learning and is explicitly bounded
in subsequent analysis.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Since the estimators for each sample ξi,j in the mini-batch are i.i.d., the variance of their average
is the variance of a single-point estimator divided by the batch size. Using the property Var(X) ≤
E[∥X∥2], we have:

Varmt (ĝt,m
c,i ) =

1

B
Varmt

(
ĝt,m
c,i (θl; ξi,1)

)
≤ 1

B
Em
t

[∥∥ĝt,m
c,i (θl; ξi,1)

∥∥2] . (17)

Substituting this back, we arrive at the decomposition as follows:

Et,m

[
∥ĝt,m

c,i ∥
2
]
≤ 1

B
Et,m

[∥∥ĝt,m
c,i (θl; ξi,1)

∥∥2]+ Et,m−1

[∥∥∇fµ
c,i(θ

t,m
c,i )

∥∥2] . (18)

We now bound the two terms separately. For the first term, we use the bound for two-point estimators
(Lemma 4.1 in Gao et al. (2018)) and Assumption 4.2:

Et,m

[∥∥ĝt,m
c,i (θl; ξi,1)

∥∥2] ≤ 2dEt,m

[
∥∇ℓc,i(θt,m

c,i ; ξi,1)∥2
]
+
1

2
d2L2µ2 ≤ 2dG2

c+
1

2
d2L2µ2. (19)

For the second term, we use the triangle inequality and ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2:

Et,m−1

[∥∥∇fµ
c,i(θ

t,m
c,i )

∥∥2]
≤2Et,m−1

[∥∥∇fµ
c,i(θ

t,m
c,i )−∇fc,i(θt,m

c,i )
∥∥2]+ 2Et,m−1

[∥∥∇fc,i(θt,m
c,i )

∥∥2]
≤2µ2L2 + 2Et,m−1

[∥∥∇fc,i(θt,m
c,i )

∥∥2] .
(20)

Finally, we bound the remaining term by relating it to the global model state θt
c. Using inequality

||a+ b+ c||2 ≤ 3||a||2 + 3||b||2 + 3||c||2, we have:

Et,m−1

[∥∥∇fc,i(θt,m
c,i )

∥∥2]
=Et,m−1

[∥∥(∇fc,i(θt,m
c,i )−∇fc,i(θt

c)) + (∇fc,i(θt
c)−∇fc(θt

c)) +∇fc(θt
c)
∥∥2]

≤3Et,m−1

[∥∥∇fc,i(θt,m
c,i )−∇fc,i(θt

c)
∥∥2]+ 3∥∇fc,i(θt

c)−∇fc(θt
c)∥2 + 3∥∇fc(θt

c)∥2

≤3L2Et,m−1

[∥∥θt,m
c,i − θt

c

∥∥2]+ 3σ2
c + 3∥∇fc(θt

c)∥2,

(21)

where the final inequality follows from Assumptions 4.1 and 4.3. Combining all these bounds yields
the result stated in the lemma.

Lemma A.4 (Bound on Client Model Divergence). For ηc ≤ 1
3Lh , we have:

Et

[
1

N

∑N

i=1

∑h

m=1
∥θt,m

c,i − θt
c∥2
]
≤3h3η2c∥∇fc(θt

c)∥2 +
dG2

ch
3η2c

B

+
d2L2µ2h3η2c

4B
+

(6σ2
c + 2µ2L2)h3η2c

2
.

(22)

Proof. For simplicity, define

st,mc ≜
1

N

N∑
i=1

Et,m

[∥∥θt,m
c,i − θt

c

∥∥2] .
For the τ -th local update, unrolling the client recursion gives

θt,τ
c,i − θt

c = − ηc

τ−1∑
m=0

gt,m
c,i .

By Cauchy–Schwarz,

st,τc =
1

N

N∑
i=1

Et,τ

[∥∥∥− ηc

τ−1∑
m=0

gt,m
c,i

∥∥∥2] ≤ τ η2c ·
1

N

N∑
i=1

τ−1∑
m=0

Et,τ

[∥∥gt,m
c,i

∥∥2]
(tower)
= τ η2c ·

1

N

N∑
i=1

τ−1∑
m=0

Et,m

[∥∥gt,m
c,i

∥∥2] . (23)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We now invoke the second-moment bound (Lemma A.3): for every m,

1

N

N∑
i=1

Et,m

[∥∥ĝt,m
c,i

∥∥2] ≤ 6L2 st,m+1
c +

(
6∥∇fc(θt

c)∥2 +
2dG2

c

B + d2L2µ2

2B + 6σ2
c + 2µ2L2

)
︸ ︷︷ ︸

≜ β

,

(24)
by definition of st,·c , the term 1

N

∑
i Et,m

[
∥θt

c − θt,m+1
c,i ∥2

]
is identified with st,m+1

c .5 Combining
Eq. 23 and Eq. 24 yields, for each τ ,

st,τc ≤ 6L2 τ η2c

τ−1∑
m=0

st,m+1
c + τ2η2cβ. (25)

By taking the sum over τ = 1, . . . , h, we have

h∑
τ=1

st,τc ≤ 6L2 η2c

h∑
τ=1

τ

τ−1∑
m=0

st,m+1
c + η2cβ

h∑
τ=1

τ2

≤ 3h2L2 η2c

h∑
τ=1

st,τc +
h(h+ 1)(2h+ 1)

6
η2cβ ≤ 3h2L2 η2c

h∑
τ=1

st,τc +
h3η2cβ

3
,

(26)

where we utilized the fact that
∑h

τ=1 τ ≤
h(h+1)

2 ≤ h2

2 and
∑h

τ=1 τ
2 = h(h+1)(2h+1)

6 ≤ h3

3 . By
rearranging the terms, we have:

(1− 3L2h2η2c )

h∑
τ=0

st,τc ≤
h3η2c
3

(
6∥∇fc(θt

c)∥2 +
2dG2

c

B
+

d2L2µ2

2B
+ 6σ2

c + 2µ2L2
)

(27)

When ηc ≤ 1
3Lh , we have 1− 3L2h2η2c ≥ 2

3 and the lemma’s proof is complete.

Lemma A.5 (Bound on the Client-Side Contribution). Under Assumptions 4.1–4.3, and for a
client learning rate ηc satisfying the following conditions:

ηc ≤ min

{
1

3Lh
,

2

NLh2
,
N

72L

}
, (28)

the expectation of the client-side contribution, C = ∇f(θt
c)

T (θt+1
c − θt

c) +
L
2 ∥θ

t+1
c − θt

c∥2, is
bounded as:

Et[C] ≤ −
ηch

4
∥∇fc(θt

c)∥2 +Φc(ηc), (29)

where Φc(ηc) is an error term defined as:

Φc(ηc) := η2c

(
6hLdG2

c

N |ξi|
+

18hLσ2
c

N

)
+ ηc

(
d2L2hµ2

48|ξi|
+

13hL2µ2

12

)
. (30)

Proof. We start from the definition of C and take the expectation over all randomness up to round t.
The client update rule gives Et[θ

t+1
c − θt

c] = −
ηc

N Et[
∑N

i=1

∑h
m=1 ĝ

t,m
c,i ]. This allows us to expand

Et[C] into two terms:

Et[C] = −
ηc
N

〈
∇f(θt

c),Et

[
N∑
i=1

h∑
m=1

ĝt,m
c,i

]〉
︸ ︷︷ ︸

≜C1

+
η2cL

2N2
Et

∥∥∥∥∥
N∑
i=1

h∑
m=1

ĝt,m
c,i

∥∥∥∥∥
2


︸ ︷︷ ︸
≜C2

. (31)

We proceed by bounding C1 and C2 separately.

5One may equivalently write the last expectation with Et,m+1; since it is the same unconditional quantity
after averaging over the step-(m+1) randomness, using st,m+1

c is a safe upper bound.
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Bounding the First Term (C1). Using the identity 2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a − b∥2, we rewrite
C1:

C1 = −ηch

2
∥∇f(θt

c)∥2 −
ηch

2
Et

∥∥∥∥∥ 1

Nh

N∑
i=1

h∑
m=1

ĝt,m
c,i

∥∥∥∥∥
2
+

ηch

2
C1,1, (32)

where C1,1 ≜ Et[∥ 1
Nh

∑
i,m(ĝt,m

c,i − ∇f(θt
c))∥2]. We bound C1,1 using Jensen’s inequality, the

triangle inequality, and Assumptions B.3 and B.5:

C1,1 ≤
1

Nh
Et

[
N∑
i=1

h∑
m=1

∥ĝt,m
c,i −∇f(θ

t
c)∥2

]

≤ 2

Nh
Et

∑
i,m

∥ĝt,m
c,i −∇f(θ

t,m
c,i )∥2

+
2

Nh
Et

∑
i,m

∥∇f(θt,m
c,i )−∇f(θt

c)∥2


≤ 2σ2 +
2L2

Nh
Et

[
N∑
i=1

h∑
m=1

∥θt,m
c,i − θt

c∥2
]
.

(33)

Substituting this back provides a bound on C1.

Bounding the Second Term (C2).For C2, according to Cauchy-Schwartz inequality, we have:

C2 =
η2cL

2
Et

∥∥∥∥∥− 1

N

N∑
i=1

h∑
m=1

ĝt,m
c,i

∥∥∥∥∥
2


≤ η2cLEt

∥∥∥∥∥ 1

N

N∑
i=1

h∑
m=1

(ĝt,m
c,i −∇f

µ
c,i(θ

t,m
c,i ))

∥∥∥∥∥
2


︸ ︷︷ ︸
C2,1

+η2cLEt

∥∥∥∥∥ 1

N

N∑
i=1

h∑
m=1

∇fµ
c,i(θ

t,m
c,i )

∥∥∥∥∥
2
.
(34)

According to the statistical properties of zeroth-order gradient estimators (Lemma A.2), we have
Et[
∑h

m=1(ĝ
t,m
c,i −∇f

µ
c,i(θ

t,m
c,i ))] = 0. And we have E[⟨

∑h
m=1(ĝ

t,m
c,i1
−∇fµ

c,i1
(θt,m

c,i1
)),
∑h

m=1(ĝ
t,m
c,i2
−

∇fµ
c,i2

(θt,m
c,i2

))⟩] = 0, since the two sums correspond to independent, zero-mean random vectors (one
coming from client i1, the other from client i2, i1 ̸= i2) and hence the expectation of their inner
product vanishes. Thus, we have:

C2,1 = Et

∥∥∥∥∥ 1

N

N∑
i=1

h∑
m=1

(ĝt,m
c,i −∇f

µ
c,i(θ

t,m
c,i ))

∥∥∥∥∥
2


=
1

N2

N∑
i=1

Et

∥∥∥∥∥
h∑

m=1

(ĝt,m
c,i −∇f

µ
c,i(θ

t,m
c,i ))

∥∥∥∥∥
2
 .

(35)

According to Equation Eq. 14 and Lemma 2 in Wang et al. (2021), we have:

C2,1 =
1

N2

N∑
i=1

h∑
m=1

Et,m

[∥∥ĝt,m
c,i −∇f

µ
c,i(θ

t,m
c,i )

∥∥2]
(a)

≤ 1

N2

N∑
i=1

h∑
m=1

Et,m

[
∥ĝt,m

c,i ∥
2
]
,

(36)

where (a) holds because E[∥a − E[a]∥2] ≤ E[∥a∥2]. Now by applying the second-moment bound
from Lemma A.3, and substituting these result back, we have:

C2 ≤η2cLC2,1 + η2cLEt

∥∥∥∥∥ 1

N

N∑
i=1

h∑
m=1

∇fµ
c,i(θ

t,m
c,i )

∥∥∥∥∥
2
, (37)
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where C2,1 is bounded as follows:

C2,1 ≤
6L2

N2

N∑
i=1

h∑
m=1

Et,m−1

[
∥θt

c − θt,m
c,i ∥

2
]
+

6h

N
∥∇fc(θt

c)∥2

+
2dG2

ch

NB
+

d2L2µ2h

2NB
+

(6σ2
c + 2µ2L2)h

N

≤6L2

N
Et

[
1

N

N∑
i=1

h∑
m=1

∥θt
c − θt,m

c,i ∥
2

]
+

6h

N
∥∇fc(θt

c)∥2

+
2dG2

ch

NB
+

d2L2µ2h

2NB
+

(6σ2
c + 2µ2L2)h

N
.

(38)

Combining the Bounds. Combining the bounds of C1 and C2, we have:

Et[C]

≤(6η
2
cLh

N
− ηch

2
)∥∇fc(θt

c)∥2 + (η2L− ηc
2h

)Et

∥∥∥∥∥ 1

N

N∑
i=1

h∑
m=1

∇fµ
c,i(θ

t,m
c,i )

∥∥∥∥∥
2


+ (ηcL
2 +

6η2cL
3

N
)Et

[
1

N

N∑
i=1

h∑
m=1

∥θt,m
c,i − θt

c∥2
]

+ ηchL
2µ2 +

2η2cLdG
2
ch

NB
+

η2cd
2L3µ2h

2NB
+

(6σ2
cL+ 2µ2L3)η2ch

N

(a)

≤ (
6η2cLh

N
− ηch

2
)∥∇fc(θt

c)∥2 + (ηcL
2 +

6η2cL
3

N2
)Et

[
1

N

N∑
i=1

h∑
m=1

∥θt,m
c,i − θt

c∥2
]

+ ηchL
2µ2 +

2η2cLdG
2
ch

NB
+

η2cd
2L3µ2h

2NB
+

(6σ2
cL+ 2µ2L3)η2ch

N
.

(39)

where (a) holds if and only if ηc ≤ 1
2hL , which means the term (η2L −

ηc

2h )Et[∥ 1
N

∑N
i=1

∑h
m=1∇f

µ
c,i(θ

t,m
c,i )∥2] is non-positive.

Finally, we substitute the bound on the client model divergence from Lemma A.4 into the expression
for Et[C]. This gives us the following inequality:

Et[C] ≤
(
6η2cLh

N
− ηch

2

)
∥∇fc(θt

c)∥2 + ηchL
2µ2 +

2η2cLdG
2
ch

NB
+

η2cd
2L3µ2h

2NB

+
(6σ2

cL+ 2µ2L3)η2ch

N
+ (ηcL

2 +
6η2cL

3

N
)×(

3h3η2c∥∇fc(θt
c)∥2 +

dG2
ch

3η2c
B

+
d2L2µ2h3η2c

4B
+

(6σ2
c + 2µ2L2)h3η2c

2

)
.

(40)

To simplify this complex expression, we collect the coefficients for the dominant term, ∥∇fc(θt
c)∥2,

and the remaining bias terms. Let us define a helper variable α to consolidate terms originating from
the client drift bound:

α ≜ ηch
3L2 +

6η2ch
3L3

N
. (41)

By grouping terms, the bound on Et[C] can be rewritten as:

Et[C] ≤
((

6Lh

N
+ 3α

)
η2c −

ηch

2

)
∥∇fc(θt

c)∥2 + α

(
dG2

cη
2
c

B
+

d2L2µ2η2c
4B

+
(6σ2

c + 2µ2L2)η2c
2

)
+ ηchL

2µ2 +
2η2cLdG

2
ch

NB
+

η2cd
2L3µ2h

2NB
+

(6σ2
cL+ 2µ2L3)η2ch

N
.

(42)
Under sufficiently small learning rate ηc, the negative term −ηch

2 ∥∇fc(θ
t
c)∥2 will dominate the

other terms multiplying the squared gradient norm. Specifically, by setting conditions on ηc such

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

that: (
6Lh

N
+ 3α

)
η2c ≤

ηch

4
, (e.g., satisfied if ηc ≤ O( N

Lh2 )), (43)

we can simplify the bound on the gradient term to −ηch
4 ∥∇fc(θ

t
c)∥2. After collecting all remaining

bias and variance terms, we arrive at the final simplified bound:

Et[C] ≤ −
ηch

4
∥∇fc(θt

c)∥2 + η2c

(
6hLdG2

c

NB
+

18hLσ2
c

N

)
+ ηc

(
d2L2hµ2

48B
+

13hL2µ2

12

)
. (44)

where the left part is defined as Φc(ηc).

A.3.2 PROOF OF THEOREM 4.5

Now, we are ready to present the proof of the main theorem with the above lemmas. We denote the
global model parameters at round t as θt

g = {θt
c,θ

t
s}, and the local model parameters at client Ci as

θt
l,i = {θt

c,i,θ
t
a,i}.

Local Model Update. According to the local update Eq. 3 (ĝt,m
c,i = ∇̂f t,m

c,i (θc; ξi))) at clients and
the aggregation at Fed Server, each communication round in Eq. 5, we have:

θt+1
c − θt

c = θt,h
c − θt

c = −
ηc
N

∑N

i=1

∑h

m=1
ĝt,m
c,i , (45)

Proof. First, we decompose the global model’s convergence behavior into client-side and server-
side contributions. Same as the Proposition 3.4 and 3.5 in Han et al. (2024), under Assumptions 4.1,
we have:

Et[f(θ
t+1
g )]− f(θt

g) ≤ Et[C] + Et[S] (46)

where C = ∇f(θt
c)

T (θt+1
c −θt

c)+
L
2 ∥θ

t+1
c −θt

c∥2 and S = ∇f(θt
s)

T (θt+1
s −θt

s)+
L
2 ∥θ

t+1
s −θt

s∥2
denote the contributions from the client-side and server-side models, respectively. Et[·] denotes the
expectation on all randomness up to round t.

Next, we analyze the contributions from the client-side and server-side models separately. Since we
have already bounded Et[C] in Lemma A.4, we now focus on bounding Et[S] Under our proposed
SFL framework, we decouple the parameter updates of the client-side and server-side models during
training by introducing auxiliary networks. From the server’s point of view, the smashed data it
receives can be regarded as the smashed data in the conventional, non-decoupled scenario, but with
its inputs subject to a distributional shift (Belilovsky et al., 2020). The distribution of the smashed
data is shifted by the client-side model updates, which can be modeled as a local parameter bias.
This shift can be expressed as:

dtc,i =

∫
∥P t

c,i(z)− P ∗
c,i(z)∥dz. (47)

Essentially, by modeling this shift, we capture the local parameter bias introduced by the client’s
updates and thereby integrate the update dynamics of both the client and server models into a unified
whole. For the server-side model, we have:

Et[S] = Et

[
∇fs(θt

s ;θ
∗
c,:)

T (θt+1
s − θt

s) +
L

2
∥θt+1

s − θt
s∥2
]

=
〈
∇fs(θt

s ;θ
∗
c,:),Et[θ

t+1
s − θt

s ]
〉
+

L

2
Et

[
∥θt+1

s − θt
s∥2
]

(48)

(a)
=

〈
∇fs(θt

s ;θ
∗
c,:),−ηsEt

[∑N

i=1
∇fs(θt

s,i;θ
t
c,:)

]〉
︸ ︷︷ ︸

S1

+
Lη2s
2

Et

[∥∥∥∥∑N

i=1
∇fs(θt

s,i;θ
t
c,:)

∥∥∥∥2
]

︸ ︷︷ ︸
S2

where (a) holds because of the update rule ( Eq. 4) of the server-side model. At this part, we follow
the same steps as in Mu & Shen (2025) to bound S1 and S2. So with additional Assumption 4.4,
based on the theoretical results of the server-side model, we can derive the following bound of Et[S]:

Et[S]
(a)

≤ ηsG
2
s

∑N

i=1
dtc,i −

ηs(2N − 1)

4
∥∇fs(θt

s)∥2 +
L

2
N2η2sG

2
s

(49)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where (a) holds if and only if ηs ≤ 1
NL , which means the term (

Lη2
s

2 −
ηs

2N )Et[∥
∑N

i=1∇fs(θt
s,i)∥2]

is non-positive.

Final Bound. Combining the bounds of Et[C] and Et[S], we have:

Et[C + S]

≤− ηch

4
∥∇fc(θt

c)∥2 +Φc(ηc)

+
ηsG

2
s

2N

∑N

i=1
dtc,i −

ηs(2N − 1)

4
∥∇fs(θt

s)∥2 +
L

2
N2η2sG

2
s

(50)

With ηc ≤ min{ 1
3Lh ,

2
NLh2 ,

N
72L} we have:

E
[
f(θt+1

g )
]
≤f(θt

g)−
ηch

4
∥∇fc(θt

c)∥2 +Φc(ηc) +
ηsG

2
s

2N

∑N

i=1
dtc,i

− ηs(2N − 1)

4
∥∇fs(θt

s)∥2 +
L

2
N2η2sG

2
s

(51)

By rearranging the terms, we have:

ηch

4
∥∇fc(θt

c)∥2 +
ηs(2N − 1)

4
∥∇fs(θt

s)∥2 ≤f(θt
g)− E

[
f(θt+1

g )
]
+Φc(ηc)

+
ηs
2N

∑N

i=1
G2

sd
t
c,i +

L

2
N2η2sG

2
s (52)

=⇒ min{ηch
4

,
ηs(2N − 1)

4
}∥∇f(θt

g)∥2 ≤f(θt
g)− E

[
f(θt+1

g )
]
+Φc(ηc)

+
ηs
2N

∑N

i=1
G2

sd
t
c,i +

L

2
N2η2sG

2
s (53)

∥∇f(θt
g)∥2 ≤

f(θt
g)− E

[
f(θt+1

g )
]
+Φc(ηc) +

ηs

2N

∑N
i=1 G

2
sd

t
c,i +

L
2N

2η2sG
2
s

min{ηch
4 , ηs(2N−1)

4 }
(54)

Taking full expectation on both sides, and summing over t from 1 to T , we have:

min
t∈[T ]

E
[
∥∇f(θt

g)∥2
]

≤
f(θt

g)− f(θ∗
g )

min{ηch
4 , ηs(2N−1)

4 }T
+

ηs

2NG2
s

∑N
i=1 d

t
c,i

min{ηch
4 , ηs(2N−1)

4 }
+

L
2N

2η2sG
2
s

min{ηch
4 , ηs(2N−1)

4 }

+
1

min{ηch
4 , ηs(2N−1)

4 }

[
η2c

(
6hLdG2

c

NB
+

18hLσ2
c

N

)
+ ηc

(
d2L2hµ2

48B
+

13hL2µ2

12

)]
with respect to ηc ≤ min{ 1

3Lh
,

2

NLh2
,
N

72L
},∀t ∈ [T ].

(55)

We want the convergence rate to hold at the same level for both the client-side and server-side, so
first we set η = ηch/4 = (2N − 1)ηs/4, then we can rewrite the above bound as:

min
t∈[T ]

E
[
∥∇f(θt

g)∥2
]

≤
f(θt

g)− f(θ∗
g )

ηT
+

ηs

2NG2
s

∑N
i=1 d

t
c,i

η
+

L
2N

2η2sG
2
s

η

+
1

η

[
η2c

(
6hLdG2

c

NB
+

18hLσ2
c

N

)
+ ηc

(
d2L2hµ2

48B
+

13hL2µ2

12

)]
=
f(θt

g)− f(θ∗
g )

ηT
+

(
8LG2

s

N2

(2N − 1)2
+ 96(

LdG2
c

hNB
+

3Lσ2
c

hN
)

)
η

+
1

N(2N − 1)
G2

s

∑N

i=1
dtc,i +

(
d2L2µ2

12B
+

13L2µ2

3

)
(56)
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then we should have

η = O

(√
hNB

dT

)
, ηc = O

(√
NB

dhT

)
, ηs = O

(√
hB

dNT

)
, (57)

and µ = O(dhNBT )−
1
4 , and we can obtain the convergence rate as:

min
t∈[T ]

E
[
∥∇f(θt

g)∥2
]
≤O

(√
d

hNBT

)
+O

(√
1

dhNBT

)
. (58)

Then we complete the proof.

A.4 PROOF OF THEOREM 4.7

In this section, we consider the convergence behavior from the perspective of the language model
fine-tuning situation. Since the loss landscape of deep learning lies in a very low-dimensional sub-
space, where the Hessian of the loss has a remarkably low effective rank, we can leverage this
property to analyze the convergence rates more effectively.
Lemma A.6 (Client-side bound with low effective-rank). Under Assumption 4.1–4.3, and 4.6,
drawing ut

i from the uniform distribution on the unit sphere with radius
√
d, it holds the contribution

from the client side:

E[C] ≤− ηc
4
∥∇fc(θt

c)∥2 +
ηcµ

2L2

8
(d+ 3)3 + η2cL

4µ2d3

+ η2cL

(
1 +

dκ+ d− 2

d+ 2

)
1

N
(σ2 +G2

s)

+ η3cL
2

(
1 +

dκ+ d− 2

d+ 2

)2

.

(59)

Since we hold the same assumptions as the proof of Theorem 2 in Li et al. (2024), we use the results
of Equation (69) in this paper with characters adapted to our notation, which is given as follows:

E[C] ≤− ηc
2
∥∇fc(θt

c)∥2 +
ηcµ

2L2

8
(d+ 3)3 + η2cL

4µ2d3

+ η2cL

(
1 +

dκ+ d− 2

d+ 2

)(
∥∇fc(θt

c)∥+
1

N
(σ2 +G2

s)

)
.

(60)

This is achieved by applying Young’s inequality. Let us first isolate the terms dependent on the
gradient norm from the right-hand side (RHS) of Eq. 60:

RHS ≤ −ηc
2
∥∇fc(θt

c)∥2 + η2cL

(
1 +

dκ+ d− 2

d+ 2

)
∥∇fc(θt

c)∥+ C1, (61)

where C1 collects all terms that are independent of ∥∇fc(θt
c)∥:

C1 =
ηcµ

2L2

8
(d+ 3)3 + η2cL

4µ2d3 + η2cL

(
1 +

dκ+ d− 2

d+ 2

)
1

N
(σ2 +G2

s).

We use Young’s inequality, which states that for any a, b ≥ 0 and δ > 0, we have ab ≤ δ
2a

2 + 1
2δ b

2.
We apply this to the linear gradient term in Eq. 61 by defining:

a := ηcL

(
1 +

dκ+ d− 2

d+ 2

)
,

b := ηc∥∇fc(θt
c)∥.

This application yields the following bound:

η2cL

(
1 +

dκ+ d− 2

d+ 2

)
∥∇fc(θt

c)∥ ≤
δ

2

[
ηcL

(
1 +

dκ+ d− 2

d+ 2

)]2
+

1

2δ

[
ηc∥∇fc(θt

c)∥
]2

=
δη2cL

2

2

(
1 +

dκ+ d− 2

d+ 2

)2

+
η2c
2δ
∥∇fc(θt

c)∥2.

(62)
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Substituting the bound Eq. 62 back into our main expression, we can group the coefficients of the
∥∇fc(θt

c)∥2 term:

RHS ≤
(
−ηc

2
+

η2c
2δ

)
∥∇fc(θt

c)∥2 + C1 +
δη2cL

2

2

(
1 +

dκ+ d− 2

d+ 2

)2

. (63)

To simplify the coefficient of the squared gradient norm to a more convenient form, such as −ηc

4 ,
we select a specific value for the free parameter δ. By setting the new coefficient to this target, we
solve for δ:

−ηc
2

+
η2c
2δ

= −ηc
4

=⇒ η2c
2δ

=
ηc
2
− ηc

4
=

ηc
4

=⇒ δ = 2ηc.

Since the learning rate ηc > 0, our choice δ > 0 is valid. With δ = 2ηc, the new term arising

from Young’s inequality that is independent of the gradient becomes η3cL
2
(
1 + dκ+d−2

d+2

)2
. By

substituting this result into Eq. 63, we obtain the simplified upper bound for E[C]. This final form is
advantageous for convergence analysis, as the negative squared gradient term is now clearly isolated
from other terms that are of a higher order in ηc or are related to statistical variance.

A.4.1 PROOF OF THEOREM 4.7

Following the proof strategy of Theorem 1, the analysis can be naturally divided into two parts:
client-side optimization and server-side optimization. Now we are ready to prove Theorem 4.7.

Proof. Combining the bounds of Et[C] from Lemma A.6 and Et[S] same as Eq. 49, we have:

Et[C + S] = E[C + S]

≤− ηc
4
∥∇fc(θt

c)∥2 +Φ′
c(ηc)

+
ηsG

2
s

2N

∑N

i=1
dtc,i −

ηs(2N − 1)

4
∥∇fs(θt

s)∥2 +
L

2
N2η2sG

2
s

(64)

where Φ′
c is defined as:

Φ′
c =

ηcµ
2L2

8
(d+ 3)3 + η2cL

4µ2d3 + η2cL

(
1 +

dκ+ d− 2

d+ 2

)
1

N
(σ2 +G2

s)

+ η3cL
2

(
1 +

dκ+ d− 2

d+ 2

)2

.

(65)

With the same methods in proof of Theorem 4.1, we can have

∥∇f(θt
g)∥2 ≤

f(θt
g)− E

[
f(θt+1

g )
]
+Φ′

c(ηc) +
ηs

2N

∑N
i=1 G

2
sd

t
c,i +

L
2N

2η2sG
2
s

min{ηc

4 , ηs(2N−1)
4 }

(66)

Taking full expectation on both sides, and summing over t from 1 to T (with Assumption 4.4), we
have:

min
t∈[T ]

E
[
∥∇f(θt

g)∥2
]

≤
f(θ1

g )− f(θT+1
g )

min{ηc

4 , ηs(2N−1)
4 }T

+
ηs

2NG2
s

∑N
i=1 d

t
c,i

min{ηc

4 , ηs(2N−1)
4 }

+
L
2N

2η2sG
2
s

min{ηc

4 , ηs(2N−1)
4 }

+
Φ′

c(ηc)

min{ηc

4 , ηs(2N−1)
4 }

.

(67)
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We want the convergence rate can hold at the same level for both the client-side and server-side, so
first we set η = ηc/4 = (2N − 1)ηs/4, then we can rewrite the above bound as:

min
t∈[T ]

E
[
∥∇f(θt

g)∥2
]

≤
f(θ1

g )− f(θT+1
g )

ηT

+ η

[
8LN2G2

s

(2N − 1)2
+ 16L4µ2d3 +

16L

N

(
1 +

dκ+ d− 2

d+ 2

)
(σ2 +G2

s)

]
+ η2

[
64L2

(
1 +

dκ+ d− 2

d+ 2

)2
]

+

[
2G2

s

N(2N − 1)

∑N

i=1
dtc,i +

µ2L2

2
(d+ 3)3

]
.

(68)

To achieve a more informative rate, we specify the structure of the dominant terms. In many feder-
ated learning analyses, the coefficient of the leading O(η) error term scales with key system param-
eters. Let us assume the dominant part of this coefficient is characterized by the condition number
κ, the number of clients N , and the average local data size B. We can thus define the coefficient of
the primary O(η) term as being of order O(κ/(NB)).

Then we should have the learning rates set by balancing the O(1/(ηT )) and the dominant O(η)

terms to optimize the bound. This balance, 1
ηT ≈ η κ

NB , yields η ∝
√
NB/(κT ). We thus set:

η = O

(√
NB

κT

)
, ηc = O

(√
NB

κT

)
, ηs = O

(√
B

NκT

)
, (69)

andµ ≤
4
√
κ

4√
NT
√

(d+3)3
, we can obtain the convergence rate as:

min
t∈[T ]

E
[
∥∇f(θt

g)∥2
]
≤ O

(√
κ

NBT

)
+O

(
1

T

)
+ Cerr, (70)

where the O(1/T ) term arises from the η2 components of the bound, and Cerr =
2
δ

[
2G2

s

N(2N−1)∆+ µ2L2

2 (d+ 3)3
]

is a constant error floor independent of T , indicating convergence
to a neighborhood of the optimum.

Then we complete the proof.
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B PSEUDO CODE OF HERON-SFL

Algorithm 1 Hybrid Zeroth- and First-Order Optimization SFL (HERON-SFL)

Require: Client learning rate ηc, Server learning rate ηs, ZO radius µ, local steps h, upload period
k

1: Server Initialization:
2: Initialize global model θ0

g = {θ0
c ,θ

0
s} and auxiliary model θ0

a

3: Fed-Server broadcasts θ0
c ,θ

0
a to all clients

4: procedure CLIENTUPDATE(i,θt
c,θ

t
a)

5: θt,0
c,i ← θt

c, θt,0
a,i ← θt

a

6: for m = 0, 1, . . . , h− 1 do ▷ Local Training Steps
7: Sample mini-batch ξi and random direction ut,m

8: Compute ∆ℓi by perturbating θt,m
l,i = {θt,m

c,i ,θt,m
a,i } with ±µut,m

9: Estimate ZO gradients: ĝt,m
l,i ← ∇̂fl,i(θl; ξi))

10: Update local models: θt,m+1
l,i ← θt,m

l,i − ηcĝ
t,m
l,i

11: if (m+ 1) mod k = 0 then ▷ Periodic upload every k steps
12: Generate smashed data st,mi ← θt,m+1

c,i (ξi) and send to Main-Server

13: return θt,h
c,i ,θ

t,h
a,i to Fed-Server

14: for t = 0, 1, . . . , T − 1 do ▷ Main Training Loop (Global Rounds)
15: // — Phase 1: Parallel Client Training & Concurrent Server Updates —
16: for each client i = 1, . . . , N in parallel do
17: Execute CLIENTUPDATE(i,θt

c,θ
t
a)

18: ▷ Concurrently, server receives periodic client uploads
19: Main-Server collects all received data {st,mi } from the round
20: Main-Server sequentially updates θt

s using all received smashed data: θt+1
s ← updated θt

s

21: // — Phase 2: Federated Aggregation —
22: Fed-Server receives final local models {θt,h

c,i ,θ
t,h
a,i}Ni=1

23: θt+1
c ← 1

N

∑N
i=1 θ

t,h
c,i and θt+1

a ← 1
N

∑N
i=1 θ

t,h
a,i

24: Fed-Server broadcasts θt+1
c ,θt+1

a for the next round

C LLM USAGE STATEMENT

We acknowledge the use of a Large Language Model as a general-purpose assist tool in preparing
this paper. The LLM was used only for language assistance, including polishing grammar, improv-
ing clarity, and refining the flow of the text.

The research ideas, experiments, analyses, and conclusions presented in this work are solely the
result of the authors’ efforts. The LLM did not contribute to the design of experiments, development
of algorithms, data analysis, or any substantive scientific content.

24


	Introduction
	Related Work
	Algorithm Design
	SFL with auxiliary network
	Zeroth-Order Gradient Estimator
	Proposed Algorithm

	Convergence and Resource Consumption Analysis
	Convergence Analysis
	Client-side Resource Cost Analysis

	Experiments
	Experiment Setting
	Training from Scratch: ResNet18 on Cifar-10
	Language Model Fine-tuning
	Ablation Study of Local Model Complexity

	Conclusion
	Theoretical Proof
	Notations
	Lemmas for Zeroth-Order Optimization
	Proof of Theorem 4.5
	Preliminary Lemmas
	Proof of Theorem 4.5

	Proof of Theorem 4.7
	Proof of Theorem 4.7


	Pseudo Code of HERON-SFL
	LLM Usage Statement

