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ABSTRACT

Spiking neural networks (SNNs), next generation of artificial neural networks
(ANNs) with the benefit of energy efficiency, have achieved the accuracy close
to its ANN counterparts, on benchmark datasets such as CIFAR10/100 and Im-
ageNet. However, comparing with frame-based input (e.g., images), event-
based inputs from e.g., Dynamic Vision Sensor (DVS) can make a better use of
SNNs thanks to the SNNs’ asynchronous working mechanism. In this paper, we
strengthen the marriage between SNNs and event-based inputs with a proposal
to consider anytime optimal inference SNNs, or AOI-SNNs, which can terminate
anytime during the inference to achieve optimal inference result. Two novel op-
timisation techniques are presented to achieve AOI-SNNs: a regularisation and
a cutoff. The regularisation enables the training and construction of SNNs with
optimised performance, and the cutoff technique optimises the inference of SNNs
on event-driven inputs. We conduct an extensive set of experiments on multi-
ple benchmark event-based datasets, including CIFAR10-DVS, N-Caltech101 and
DVS128 Gesture. The experimental results demonstrate that our techniques are
superior to the state-of-the-art with respect to the accuracy and latency.

1 INTRODUCTION

SNNs have recently attracted significant research and industrial interests thanks to its energy ef-
ficiency and low latency Pfeiffer & Pfeil (2018), and there are neuromorphic chips such as Loihi
Davies et al. (2018) and TrueNorth Akopyan et al. (2015) on which SNNs can be deployed. Mech-
anistically, SNNs mimic biological neurons, and the neurons process and forward spikes indepen-
dently. With such an asynchronous working mechanism, only a (small) subset of neurons will be
activated during inference. That is, energy efficiency is inherent to SNNs.

The asynchronous mechanism also suggests that event-based input may make a better use of SNNs.
Actually, neuromorphic sensors such as Dynamic Vision Sensor Lichtsteiner et al. (2008); Delbrück
et al. (2010); Gallego et al. (2020) and Dynamic Audio Sensor (DAS) Anumula et al. (2018) have
been developed to generate binary “events”, which are ideal inputs to SNN. For example, unlike
conventional frame-based cameras which measure the “absolute” brightness at a constant rate, DVS
cameras are bio-inspired sensors that asynchronously measure per-pixel brightness changes (called
“events”), and output a stream of events that encode the time, location and sign of the brightness
changes Gallego et al. (2022). DVS reveals the sparsity and asychronicity in recognition systems for
computational efficiency Amir et al. (2017); Messikommer et al. (2020); Kim et al. (2021). To deal
with event-based input, we propose to consider anytime optimal inference SNNs, or AOI-SNNs,
which allow the termination at any time during the inference on a spike train (i.e., an input) and
return the best possible inference result. Such SNNs enable the cutoff during the inference without
(significantly) compromising the performance, and thus can achieve the best in terms of accuracy
and latency.

Regarding the training of SNNs, a mainstream approach is through ANN-to-SNN conversion, which
adopts the mature training regime of ANNs to first train a high-accuracy ANN, and then convert it
into SNN. Such conversions via ANNs have resulted in research to focus on achieving the near-
zero conversion loss. However, existing conversion methods Deng & Gu (2021); Bu et al. (2022);
Han et al. (2020) mostly conduct empirical experiments on frame-based benchmark datasets such
as ImageNet Deng et al. (2009) and CIFAR10/100 Krizhevsky & Hinton (2009). In this paper, we
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Figure 1: An illustrative diagram showing the regularisation for improving SNN latency and the
cutoff mechanism for reducing latency on Cifar10-DVS dataset. Cutoff is triggered when Sgap is
greater than β, a value dynamically determined by a confidence rate as introduced in Section 4.3.

will focus on event-based input, and therefore the AOI-SNNs, and explore effective training and
inference methods to improve accuracy and latency together.

When considering ANN-to-SNN conversions to deal with DVS inputs, there are two possible ways.
The first one aggregates the sparse events in the DVS stream into a frame-based input, on which the
SNN processes as a whole. This resembles the ANN processing a static input (such as an image). As
explained in Section 3.1, the frame-based input will base on the average spike rate, neglecting the
spike timing information. The second is to directly work with the event-based input, by considering
e.g., AOI-SNNs. An obvious benefit is that SNNs can exploit sparse events in the DVS input,
enabling energy-efficient operation and reduced latency. In addition, unlike frame-based input, the
event-based input does not need an encoder at or before the first layer, which allows SNNs to operate
asynchronously and achieve extra low-latency (further explained in Section 3.1).

This paper makes two key technical contributions. Firstly, we propose a regularisation technique to
influence the activation distribution during ANN training, which results in an SNN that can classify
with less input information. As will be discussed in Related Work (Section 2), with our proposed
regulariser, we can train an ANN without clipping and do not need to apply any quantisation-aware
technique. Experiments in Section 5.1 show that we can achieve better accuracy than the state-of-
the-art methods on both direct training and ANN-to-SNN conversion. Clipping (and quantisation-
aware) techniques have been the status quo in this area due to the recent progress Li et al. (2021);
Bu et al. (2022); Deng & Gu (2021); Wu et al. (2022) and our result suggests that there is an alter-
native, and probably better, way to get an improved SNN. Instead of simulating non-differentiable
SNN activations during ANN training, our regulariser enables the attainment of a better distribution
of SNN current by actively regularising the activations of the possible misclassifications. The reg-
ulariser is based on a new theoretical result (Section 4.1) that a smaller ratio of threshold voltages
to average accumulated current can result in an SNN that can achieve optimised performance at any
time during the inference.

The second contribution is that, instead of setting the inference length to always be Ttotal, we can
explore an early cutoff mechanism that enables the SNN model to automatically achieve optimal
latency and energy efficiency. As shown in Figure 1, the SNN model will run a monitoring mecha-
nism to determine when it is sufficiently confident to make a decision. Once such a decision is made
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at time t < Ttotal, a cutoff action is triggered so that the SNN will not take future inputs until the
time Ttotal. Therefore, not only will this lead to lower latency (because decision is made at time t
rather than Ttotal), but it will be also more energy-efficient (because no spike will be generated after
time t).

2 RELATED WORK

Table 1: Technical ingredients of different conversion methods. OE and QA denote Outlier Elimina-
tion and Quantisation-aware technique respectively. COE: Clipping for Outlier Elimination; ROE:
Regularisation for Outlier Elimination.

Training Inference
OE through Apply QA Soft-reset Additive Noise Cutoff

Rueckauer et al. (2017) - -
√

- -
Deng & Gu (2021) clipping (COE) -

√
- -

Wu et al. (2022) clipping (COE) -
√ √

-
Li et al. (2021) clipping (COE)

√ √
- -

Bu et al. (2022) clipping (COE)
√ √ √

-
Ours regularisation (ROE) -

√ √ √

The application of SNNs to a data source can be separated into two phases: training and inference.
Broadly speaking, the training algorithms for SNNs can be categorised into direct training (DT) and
ANN-to-SNN conversion. Recently, Spike-based Error Backpropagation Wu et al. (2018; 2019);
Fang et al. (2021b); Deng et al. (2022); Yao et al. (2021) direct train a neural network to process the
temporal information of input spikes. However, either direct training or conversion algorithm Kugele
et al. (2020); Wu et al. (2022) needs to collapse the input spikes into frames for the training. More
specifically, the first layer in former SNN needs to wait for the full spike train within one frame
to generate one spike, while the latter can respond very fast as long as the SNN receives spikes.
Normally, the number of frames in direct training is kept small to reduce training complexity and
determines the latency of SNN in inference. In contrast, ANN-to-SNN conversion can incorporate
the maximum number of spikes during training to consider the SNN with optimal latency.

For the ANN-to-SNN conversion, early studies Rueckauer et al. (2017); Diehl et al. (2015) use the
maximum value of activation to normalise the weights from ANN, and Sengupta et al. (2019) proves
that the normalisation can also be achieved by greedily searching for the optimal threshold using the
input spike train. A unified conversion framework is studied in Wu et al. (2022). Besides, there
are hybrid methods Rathi et al. (2020); Rathi & Roy (2021) that combine conversion and direct
training. Tandem Learning Wu et al. (2021) leverages the gradient from ANN to update SNN during
training. The first two columns of Table 1 present the technical ingredients of different conversion
methods for the training phase. Recent work Deng & Gu (2021); Wu et al. (2022) shows that, outlier
elimination (OE) in ANN activations can be implemented by applying clipping operation after the
Rectified Linear Unit (ReLU). Based on this, Li et al. (2021); Bu et al. (2022) further minimise
the quantisation error by Quantisation-aware (QA) training. Different from the above methods,
we develop a new regulariser to achieve the better performance without clipping, and moreover,
noticeably, we are free from applying QA training.

For the inference phase, as indicated in the last two columns of Table 1, the soft-reset mechanism
Rueckauer et al. (2017) and the additive white noise to membrane potential Deng & Gu (2021); Wu
et al. (2022); Bu et al. (2022) can significantly increase the conversion efficiency. To the best of
our knowledge, there is no existing work on cutoff in the inference phase, and our confidence-based
method is the first of its kind.

3 PRELIMINARY

In this section, we discuss the event-based input in spiking neuron and introduce the ANN-to-SNN
conversion. To facilitate the analysis, we use bold symbol to represent vector, l to denote the layer
index, and i to denote the index of elements. For example, al is a vector and ali is the i-th element
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in al. Inference time t represents the time length of input. Ttotal denotes the maximum time length
of input and it can be various depending on dataset. W l is weight matrix at the l-th layer.

3.1 INTEGRATED-AND-FIRE MODEL

Figure 2: Inference in integrate-and-fire (IF) neuron with reset by subtraction mechanism.

Conversion-based SNN uses integrate-and-fire (IF) neuron as the basic computing unit to approxi-
mate ReLU in ANN Wu et al. (2022). Figure 2 illustrates the inference process in IF neurons. The
input spike train Xi(t) charges the membrane potential Vi(t) with weighted current. The weighted
current and bias current are translated from the weight W l and bias bl in ANN. When Vi(t) reaches
the threshold Vthr, the neuron will generate a spike and then reset the Vi(t) by subtracting Vthr. The
reset by subtraction mechanism was firstly suggested in Rueckauer et al. (2017) to reduce informa-
tion loss during inference. The dynamics of IF neuron can be described as

V l(t) =

{
V l(t− 1) +Zl(t)− θl(t)V l

thr l > 1
Z1(t) l = 1

(1)

where θl(t) is a step function i.e., θli(t) = 1 if V l
i (t − 1) + Zl

i(t) ≥ V l
thr and θli(t) = 0 otherwise.

Zl(t) is the input current such that

Zl(t) = W lθl−1(t) + bl when l > 1. (2)

For the event-based inputs (e.g., from a DVS sensor) , Zl(t) at the first layer, i.e., Z1(t), can be
initialised as

Z1(t) = W 1X(t) + b1 (3)

where X(t) is the time-dependent spike train, i.e., the input may change the charging current with
time during the inference. To consider the temporal information, we split the spike train into F
frames and duration of each frame is equal to T = Ttotal/F , where F ∈ Z+. We write X̄f to
represent the average spiking rate of f -th frame, i.e., X̄f = 1/Nmax

∑T ·f
t=T ·(f−1) X(t) such that

Nmax is the maximum spikes of all training frames in dataset D. The spiking resolution of X(t) can
be roughly computed as Sr = Nmax/T . For event-based input, SNN can manifest faster inference
due to immediate response after receiving the first spike, and it completes the inference whenever the
spike train ends, i.e., at Ttotal. The event-based benchmarks are further introduced in AppendixA.4.
This characteristic makes it possible that the inference time is dynamic for different inputs. In this
paper, with the cutoff technique as in Section 4.3, we will show that the average latency of the
inference in SNN can be further reduced (to some t ≤ Ttotal).

3.2 TEMPORAL TRAINING

Regarding the direct training of SNN in Fang et al. (2021b); Deng et al. (2022), the resulted SNN
can make decision by averaging output spikes of consecutive frames. Assuming that the inference
of each frames is independent, such process can be approximated in ANN training by letting the loss
function be

LTT =
1

F

F∑
f=1

LCE(Yf , Ŷ ) (4)
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where Yf is output of X̄f after softmax, Ŷ is the ground truth and LCE is cross-entropy loss.
Temporal training loss (LTT ) was suggested in Deng et al. (2022) that achieves better generalisation.
To simplify the theoretical analysis, we let F = 1 in section 3.3 & 4. The further explanation of
temporal training is given in appendix A.5, including the impact of F on ANN training and extension
of theories to F > 1. To ensure the independence between frames, the membrane potential of hidden
layer is reset after each frame, while that of output layer is reset after the last frame, which is feasible
in hardware implementation Frenkel & Indiveri (2022); Khodamoradi et al. (2021).

3.3 ANN-TO-SNN CONVERSION

The conversion method is mainly based on integrated-and-fire (IF) neuron, which generates spikes
depending on positive accumulated current, corresponding to ReLU activation in ANN. An existing
conversion method Wu et al. (2022) uses current normalisation methods by letting

1

T · Sr

T∑
t=0

Z1(t) = a1 (5)

where a1 is the output of ReLU activation at the first layer of ANN. The spiking rate of each SNN
neuron at layer l is defined as rl(t) = N l(t)/t, where N l(t) is the number of spikes received up
to time t by neuron at layer l. The relationship between spiking rate in SNN and activation in ANN
has been theoretically proved in Wu et al. (2022), which gives

rl(t) = 1
V l
thr

(
W lrl−1(t) + bl

)
−∆l(t) (6)

where ∆l(t) ≜ V l(t)/(tSrV
l
thr) represents the residual spiking rate. The spiking rate at the first

layer can be initialised as r1(t) = a1/V 1
thr−∆1(t). Note that, we use tSr to represent the timestep

in Wu et al. (2022). Then, the current normalisation can be achieved by

W̃ l ←W l, b̃l ← 1

λl−1
bl, V l

thr ←
λl

λl−1
(7)

where λl be the maximum value of the activation at layer l. For temporal training, the temporal
input frames share the same λl.

4 METHODS

We introduce two novel techniques: one is for the training and the other for the inference. Section 4.1
presents the theoretical underpinning of the regulariser, which in turn is introduced in Section 4.2.
This is followed by the introduction of cutoff mechanism in Section 4.3 for the inference.

4.1 ANYTIME OPTIMAL INFERENCE SNNS

Figure 3: Graphic illustration of the
desired spiking rate rld and spiking
rate rl(t)

The regulariser is based on an investigation into the design
of AOI-SNNs. An AOI-SNN is able to perform optimally
under different settings on the inference time for processing
an input. When t is large enough to make ∆l(t) negligible,
we define the desired spiking rate as follows:

rld = al/V 1
thr (8)

We start from establishing a theoretical underpinning between
spiking rate rl(t) and its desired value rld. Let ϕl denote the
angle between rld and rl(t). Then, we follow Banner et al.
(2018) to use cosine similarity between rld and rl(t), i.e.,
cos(ϕl), for the measurement of the performance of SNN by
t. Actually, Banner et al. (2018) shows that the cosine similarity between full precision and quan-
tised neural network has a high correlation with the final accuracy of the quantised neural network.
Similarly, we expect that higher cosine similarity between rl(t) and rld can result in less accuracy
drop by t.
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The following theorem states that, for any t, the performance of the SNN is of negative correlation
with threshold V l

thr, and positive correlation with L2 norm over al, as stated in the below theorem.

Theorem 4.1 For any inference time, assuming that the residual spiking rate ∆l(t) is independent
from rld, the cosine similarity between rld and rl(t) is inversely proportional to the ratio of threshold
to average accumulated current,

cos(ϕl) ∝
(√

nl
V l
thr

∥al∥2

)−1

where nl is the dimension of al and ∥al∥2/
√
nl denotes the average accumulated current.

We give a proof sketch of the theorem. Because ∆l(t) is independent from rld, the angle between
these two vectors tends to be π/2 at high dimension. Then, by rl(t) = rld −∆l(t), we get a right
angle triangle with rld and ∆l(t) as the legs, and rl(t) as the hypotenuse, as illustrated in Figure 3.
Moreover, we have

cos(ϕl) =
∥rld∥2
∥rl(t)∥2

≥ ∥rld∥2
∥rld∥2 + ∥∆l(t)∥2

(9)

We are interested in increasing the lower bound of Equation 9, so that we have greater cos(ϕl) for
different t. Combining with Equations (6) and (8), we have

cos(ϕl) ≥ ∥al/V l
thr∥2

∥al/V l
thr∥2 + ∥V l(t)/(tSrV l

thr)∥2
=

∥al∥2
∥al∥2 + ∥V l(t)/(tSr)∥2

(10)

Assuming that elements in V l(t) satisfy uniform distribution over the time t and they are in [0, Vthr],
we can derive E(∥V (t)/(tSr)∥2) ≤

√
nlVthr/(

√
3tSr) (proof in Appendix A.2). Moreover, at

high dimensions, the relative error made as considering E(∥V (t)/(tSr)∥2) instead of the random
variable ∥V (t)/(tSr)∥2 becomes asymptotically negligible Biau & Mason (2015); Banner et al.
(2018). Therefore, Equation 10 can be computed with the following lower bound

cos(ϕl) ≥ ∥al∥2
∥al∥2 +

√
nlV l

thr/(
√
3tSr)

=

√
3tSr√

3tSr +
√
nlV l

thr/∥al∥2
(11)

which explicitly explains that (1) the increase of t to t ≫
√
nlV l

thr/∥al∥2 can increase the lower
bound and (2) it is possible to minimise term

√
nlV l

thr/∥al∥2 for developing an SNN with optimised
performance at any time during the inference. In other words, an AOI-SNN expects a good (small)
ratio of threshold voltage V l

thr to average accumulated current, i.e., ∥al∥2/
√
nl, while not degrading

SNN classification performance. The point (2) corresponds with the theorem.

4.2 REGULARISER FOR OUTLIER ELIMINATION (ROE)

This section shows how to design a regulariser based on Theorem 4.1. Recall from Equation (7)
that V l

thr is determined by λl and λl−1, where λl is the maximum value of activation in the l-th
layer. To simplify the complexity of optimisation, the impact of 1/λl−1 is omitted and the ratio
of threshold to expected current approximately becomes proportional to λl/∥al∥2. Therefore, we
design a regulariser to minimise term λl/∥al∥2 to develop an AOI-SNN. Firstly, we use matrix
Al to represent a batch of al during training. Secondly, we simply use maximum value in Al to
approximate λl, i.e., λl ≈ ∥Al∥max. Then, we write ∥Al∥2,q = (

∑
j(
∑

i A
2
ij)

q/2)1/q to denotes
the L2,p over Al, where Al

ij presents j-th al
i in the batch and q ∈ Z. Finally, we can let the penalty

term be the ratio between ∥Al∥max and ∥Al∥2,q with scale constant
√
nl, i.e.,

R(Al) =
√
nl
∥Al∥max

∥(Al)∥2,q
(12)

We let q be −∞ so that the penalty term can focus on the inputs with relatively small accumulated
current in the batch. The final training objective is
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LTT + α
∑
l

ln (R(Al)) (13)

where α is a hyper-parameter to balance two loss terms. Logarithm is applied to reduce the impact
from extremely large value. The regularisation-based training is to train an ANN based on X̄f

resulting in an SNN, then SNN operates with the event-based input (Equation 3). A small R(A)l

implies that it is less possible for λl to be an outlier and ∥al∥2 is generally large.

4.3 CUTOFF MECHANISM TO REDUCE INFERENCE TIME
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Figure 4: Evaluation of confidence on Cifar10-DVS

Thanks to the asynchronous working mechanism, event-driven SNNs can predict when only part
of the spike train is processed. Nevertheless, a naive cutoff on the length of spike train (or the
sampling time of event sensor) can easily result in accuracy loss. In this section, we suggest a
principled method to determine the inference time. Technically, a new metric, called confidence rate
and denoted as C(t̂, D{Sgap > β}), is defined based on the statistical characteristics of processing
a set D of inputs with respect to the discrete inference time t̂ and Sgap. Sgap > β operates as a
condition to identify the samples in D that are suitable for cutoff. Actually, we are able to plot a
curve of confidence rate C(t̂, D{Sgap > β}) with respect to the time t̂ and β, respectively. During
the processing of an individual input X , we will monitor another variable Sgap, and once it is able to
ensure the confidence rate can reach certain degree, an early cutoff signal can be sent (see Figure 1).
The following provides the details.

We write X[t̂] =
∑t̂

t=0 X(t) to denote the accumulation of X(t) from 0 up to t̂. Then, we let
f(X[t̂]) return the prediction of f based on the partial input X[t̂]. Based on this, we define a
function

g(X) = argmin
t̂
{∀t̂1 > t̂ : 1(f(X[t̂1]) = y)} (14)

to express the earliest time from which the model f is able to confidently and correctly classify
according to the partial input. 1(·) is the indicator function, i.e., 1(x1 = x2) = 1 and 1(x1 ̸= x2) =
0. 1(f(X[t̂1]) = y) suggests that f(X[t̂]) is the same as the ground truth y. Then, recall that
NL(t) is the number of spikes received by t by the output layer L. We write Topk(N

L(t)) as the
top k spikes that occur in some neuron of layer L. Then, we let

Sgap = Top1(N
L(t))− Top2(N

L(t)) (15)

be a variable denoting the gap of top-1 and top-2 number of spikes. A large Sgap implies little
possibility of switching the prediction results during inference. Then, we let D{·} denote the inputs
in subset of D that satisfy a certain condition. Now, we can define the confidence rate as follows:

Confidence rate: C(t̂, D{Sgap > β}) = 1

|D{Sgap > β}|
∑

X∈D{Sgap>β}

(g(X) ≤ t̂) (16)

which intuitively computes the percentage of inputs in D that can achieve the prediction success on
or before a prespecified time t̂, i.e., g(X) ≤ t̂. |D{Sgap > β}| denotes the number of samples in
D satisfying the condition. It is not hard to see that, when t̂ = 0, C(t̂, D{Sgap > β) is also 0, and
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with the increase of time t̂, C(t̂, D{Sgap > β) will also increase until reaching 1. Our algorithm
searches for a minimum β ∈ Z+ at a specific t̂, as expressed in the following optimisation objective:

argmin
β

C(t̂, D{Sgap > β}) ≥ 1− ϵ (17)

where ϵ is a pre-specified constant such that 1 − ϵ represents an acceptable level of confidence for
activating cut-off, and a set of β is extracted under different t̂ using training samples.

Equation 16 is visualised in Figure 4 that shows the impact of inference time and β on confidence.
Time ratio denotes the normalised inference time. We characterise the confidence metric with train-
ing samples and eventually use testing samples for evaluation. Note that, on Cifar10-DVS, all model
achieves 100% for training accuracy, however, they perform differently on confidence. With regu-
larisation, SNN-ROE can further improve the confidence than SNN-QA, e.g., it is 0.01 higher at
0.125Ttotal and 0.07 higher at 0.25Ttotal. Therefore, SNN-ROE can have a better performance at
any time during the inference, as there are more inputs join the early cutoff. Figure 4b presents
that the input with large Sgap has more consistent prediction over time, which supports the use of
Sgap > β as the cutoff condition.

5 EXPERIMENT

We implement the ROE and conduct an extensive set of experiments to validate it. We consider
its comparison with the state-of-the-art CNN-to-SNN conversion methods. In this section, ‘SNN-
QA’ denotes the method in Bu et al. (2022), which includes both COE and QA during training,
and outperforms the other methods on image input. In contrast, ‘SNN-COE’ denotes the SNN with
only COE. Our proposed method is denoted by ‘SNN-ROE’. To reduce the accuracy loss during
inference, we followed Wu et al. (2022); Bu et al. (2022) to add extra current V l

thr/2 to each neuron.

Our method is validated against three event-based datasets, e.g., Cifar10-DVS Li et al. (2017), N-
Caltech101 Orchard et al. (2015) and DVS128 Gesture Amir et al. (2017). We train the neural
network using Tensorflow with Keras API and convert it into SNN by SpKeras Wu et al. (2022).
As Bu et al. (2022) did not cover the event-based input, we replicate their work as our baseline for
comparison and set the quantisation length of SNN-QA to 16 for all datasets, which yields optimal
performance. Note that, we use original input from DVS camera without any pre-processing for the
inference so that SNN can remain asynchronous to the input events. The details of training setting
are described in Appendix A.3.

5.1 EXPERIMENTAL RESULTS

This section presents a comparison between SNN-ROE, SNN-QA and SNN-COE on accuracy w.r.t
time ratio and performance improvement after cutoff. The inference time t = Time Ratio × Ttotal,
where Ttotal is equal to 1.3s, 0.3s and 1.2s for Cifar10-DVS, N-Caltech101 and DVS128 Gesture
respectively.

It is not hard to see, with cutoff, the performance of all models is improved in Figure 5(a, b, c). For
example, the accuracy curve moves above its original curve, which means that same accuracy can
have less inference time for same model. Thanks to the increase of confidence (recall the results in
Figure 4a), SNN-ROE can have general higher accuracy before the time point (red dash line) and
it shows consistent results in different datasets. The confidence evaluation for N-Caltech101 and
DVS128 Gesture is provided in Figure A-3. It has been argued in Yao et al. (2021) that the temporal
information in Cifar10-DVS is not the dominant information, which is similar in N-Caltech101.
Unlike N-Caltech101 and Cifar10-DVS, the correlation between the temporal events in DVS128
Gesture is high. This phenomenon can also be observed from the Figure A-1. Therefore, we set
F = 1 on N-Caltech101 and Cifar10-DVS for efficient training and F = 4 on DVS128 Gesture
to incorporate temporal information. Moreover, the result in Figure 5c shows that cutoff also can
improve SNN trained with F > 1. Figure 5d presents that the time ratio becomes adaptive after
applying cutoff and regulariser can generally increase the cutoff performance with more accurate
predictions at early inference time.

We collect the results around the time point in Table 2, which has similar inference time, to show
the performance of each model on cutoff. SNN-ROE achieves the superior performance on accuracy
and latency. Spiking resolution Sr is calculated to estimate maximum average spikes per second.
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(a) Accuracy w.r.t time ratio on Cifar10-DVS
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(c) Accuracy w.r.t time ratio on DVS128 Gesture
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Figure 5: Comparison of SNN using ROE, QA and COE on different datasets. (a,b,c) Accuracy for
full-length input is shown in bracket and cutoff is based on ϵ = {0.05, 0.04.0.03, 0.02, 0.01, 0.00}.
The results around red dash line are summarised in Table 2. (d) The statistic data is extracted from
testing samples with total number of right predictions in bracket.

Table 2: Comparison between the SNN-COE, SNN-QA and SNN-ROE with cutoff for similar in-
ference t. The comparison with the state-of-the-art methods on event-based datasets. DT and CV
represents direct training and ANN-to-SNN conversion.

Dataset Models Methods Acc. Ave. t

Cifar10-DVS
(Sr=85.38,
F=1)

Fang et al. (2021a) DT 74.40% 1.3s
Fang et al. (2021b) DT 74.80% 1.3s
Kugele et al. (2020) CV 66.40% -

SNN-COE (w/ cutoff) CV 78.60% 0.5s
SNN-QA (w/ cutoff) CV 79.90% 0.5s

SNN-ROE (w/ cutoff) CV 81.20% 0.5s

N-Caltech101
(Sr=5230,
F=1)

She et al. (2022) DT 71.20% -
Messikommer et al. (2020) DT 74.50% 0.3s

SNN-COE (w/ cutoff) CV 74.72% 0.1s
SNN-QA (w/ cutoff) CV 78.00% 0.1s

SNN-ROE (w/ cutoff) CV 78.00% 0.1s

DVS128
Gesture
(Sr=506.67,
F=4)

Fang et al. (2021a) DT 97.92% 6.0s
Fang et al. (2021b) DT 97.57% 6.0s
Yao et al. (2021) DT 97.57% 1.2s

Kugele et al. (2020) CV 95.56% -
SNN-COE (w/ cutoff) CV 97.34% 0.8s

SNN-QA CV 93.56% 0.9s
SNN-ROE (w/ cutoff) CV 98.10% 0.8s

6 CONCLUSIONS

This paper promotes anytime optimal inference SNNs (AOI-SNNs), which maintain the optimal
performance throughout the inference stage, and therefore are suitable for event-driven inputs such
as those from dynamic vision sensor or dynamic audio sensor. Two technical novelties are proposed
to optimise the attainment of AOI-SNNs, one for the training stage and the other for the inference
stage. Our experiments demonstrate the superior performance with respect to the accuracy and
latency, comparing to the state-of-the-art.
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A APPENDIX

A.1 NOTATION TABLE

Symbol Definition Symbol Definition
i Element index l Layer index
Ttotal Total inference time F Number of input frame
T Duration of one frame t Inference time
Nmax Maximum spikes in training dataset Sr Spiking resolution
V l(t) Membrane potential Zl(t) Weighted current
θl(t) Step function Vthr Threshold voltage
W l Weight bl Bias
X(t) Input spike train X̂f Spiking rate of f-th frame
Yf Output of X̂f Y Ground truth
N l(t) Number of spikes received rl(t) Spiking rate
∆l(t) Residual spiking rate λl

d Maximum value of activation
rld Desired spiking rate ϕl Angular between rld and rl(t)
al Activation n Dimension of al

Al A batch of activation LTT Temporal training loss
t̂ Discrete inference time C(t̂, ·) Confidence rate
g(X) Gap of top-1 and top-2 number of spikes β Constant value for cutoff
D Training dataset R(·) Regulariser term
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A.2 INEQUATION PROOF

We follow Banner et al. (2018) to derive the bound of expected norm of a random variable vector.
By Jensen’s inequality, it gives

E(∥V (t)∥2) = E(
√∑

i

Vi(t)2) ≤
√

E(
∑
i

Vi(t)2) =

√∑
i

E(Vi(t)2) (1)

As the Vi(t) is a uniform random variable in range [0, Vthr], the expected value of V 2
i (t) can be

computed as follows

E(V (t)2i ) =

∫ Vthr

0

x2 1

Vthr
dx =

V 2
thr

3
(2)

which yields

E(∥V (t)∥2) ≤
√
nVthr√
3

(3)

Since t and Sr are constant values, the following inequality holds

E(∥V (t)/(tSr)∥2) ≤
√
nVthr√
3tSr

(4)

A.3 EXPERIMENT SETUP

The network architectures for difference datasets are given in Table A-1, which are modified from
VGG-11 Simonyan & Zisserman (2014) for Cifar10-DVS & N-Caltech101 and VGG-like structure
Fang et al. (2021b) for DVS128 Gesture.

Table A-1: Network architectures for difference datasets. C64k8s4 represents the convolutional
layer with filters = 64, kernel size = 4 and strides = 4. The default values of Kernel size and
strides are 3 and 1 respectively. AP2 is the average pooling layer, MP2 is the max pooling layer with
kernel size = 2 and FC is the fully-connected layer.

Dataset Network Architecture
Cifar10-DVS C64k8s4-C64-C128-C256s2-C256-C512s2
N-Caltech101 -C512-C512s2-C512-AP2-FC512-Output(10 or 101)

DVS128 Gesture C128k8s4-{C128-MP2}*5 -FC512-FC128-Output(11)

Batch Normalisation Ioffe & Szegedy (2015) is applied after each convolutional and fully-connected
layer to accelerate the convergence of ANN training. For all experiment, the learning rate is set to 0.1
and decays to zero after 300 epochs based on cosine decay schedule Loshchilov & Hutter (2016).
Weight decay is set to 0.0005. We set α to 0.003 for the regulariser proposed in Section 4.2 and
use pixel shifting as the data augmentation for all models, i.e., both width and height are randomly
shifted by the range [-20%,20%]. Dropout is applied after fully-connected layer for DVS128 Gesture
to improve the training and the dropout rate is 0.2. We set the batch size to 128 for F = 1 and 32
for F > 1 to reduce memory consumption.

For SNN training, we inherit the conversion methods and most of the notation from Wu et al. (2022);
Bu et al. (2022). Particularly, the relationship between ReLU and IF is from Wu et al. (2022) and the
relationship between quantised ReLU and IF is from Bu et al. (2022). Moreover, ROE minimisation
is based on Wu et al. (2022) and operates as a penalty term during ANN training.

A.4 EVENT-BASED DATASETS

The samples in the event-based datasets record the event addresses with on/off events over a period
of time. For Cifar10-DVS, it consists of 10,000 samples extracted from Cifar10Krizhevsky & Hinton
(2009). Each sample has 128×128 spatial resolution. The length of each spike train is less equal to
1.3s. For N-Caltech101, it has 8709 samples categorised into 101 classes. The number of samples
in each class ranges from 31 to 800. The length of each spike train is about 0.3s. The width in
x-direction does not exceed 240 pixels and in y-direction does not exceed 180 pixels. For this two
datasets, we use 90% samples in each class for training and 10% for testing. DVS128 Gesture
consists of 1341 samples with 11 categories. Each sample is repetitive over 6.0s.
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A.5 APPLYING TEMPORAL TRAINING IN ANN
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Figure A-1: Forward propagation in temporal training.

Similar to the direct training in Fang et al. (2021b), the temporal training in ANN, shown in Figure
A-1, reshapes the temporal frames before forwarding them into the neural network and computes
average loss after multiple outputs for optimisation. However, temporal training uses ReLU as the
activation function and has no iterative operation during forward propagation. Although it ignores
the correlation between the neighbouring frames in hidden layers, our experiment shows that SNN
still can achieve good performance. Normally, iterative operation can be expensive when the number
of iteration is large, i.g., large memory required Fang et al. (2021b). Figure A-2 presents that the
increase of F can improve the accuracy on DVS128 Gesture, while it has little effect on Cifar10-
DVS. We did not examine F in N-Caltch101 due to its large size.
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Figure A-2: ANN accuracy w.r.t F on Cifar10-DVS and DVS128 Gesture.

Moreover, since temporal training treats consecutive frames as individual frames and generates most
spike for the prediction, regulariser and cutoff can be directly applied when F > 1,

A.6 ADDITIONAL EXPERIMENTS

Figure A-3 shows the confidence comparison on N-Caltech101 and DVS128 Gesture. The results
are consistent, SNN-ROE can have better confidence at early inference time.
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Figure A-3: Confidence w.r.t time ratio. for N-Caltech101 (left) and DVS128 Gesture (Right).

Figure A-4 shows that the proposed regulariser improves cos(ϕ), i.e., the cosine similarity between
spiking rate r(t) and desired spiking rate rd, over different layer and reduces the conversion error at
early inference time. After increasing α above 0.003, the improvement in cos(ϕ) becomes limited.
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Therefore, we remain α = 0.003 in other experiments. Figure A-5 shows the difference of cos(ϕ)
on SNN using ROE, QA and COE. SNN-ROE has general higher cos(ϕ) than the other methods.
Meanwhile, Figure A-4 and A-5 also show that the increase of inference time benefits cos(ϕ).
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Figure A-4: Comparison of cos(ϕ) for SNN-ROE w.r.t different setting of α, at 0.375Ttotal (left)
and 0.500Ttotal (right), on Cifar10-DVS. The conversion error is shown in the bracket.
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0.375Ttotal (left) and 0.500Ttotal (right), on Cifar10-DVS. The conversion error is shown in the
bracket.

Figure A-6 indicates that the change of α and batch size can influence the performance of resulted
SNN. It can be easily found that ROE-SNN can achieve better accuracy at 0.125Ttotal with larger
batch size. However, too small or large batch size can significantly degrade the normal ANN train-
ing. Thus, we set the batch size wisely that can result in an optimal SNN.

Figure A-7 presents the activation distributions for ROE, COE and QA over different layers. Com-
paring with QA, ROE helps ANN retain a Gaussian-like distribution. On the other hand, ROE brings
the 99.99th percentile value closer to the mean of the activation than COE.
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Figure A-6: Impact of α and batch size on resulted SNN at early inference time, for Cifar10-DVS.
We use method@batch size to present training method with the setting of batch size. ’ROE’ repre-
sents α = 0.003 and ’Normal’ means training without ROE. The accuracy at 0.500Ttotal is shown
in the bracket.
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Figure A-7: Comparison of Normalised activation distribution of ANN using different methods,
ROE, COE and QA, for Cifar10-DVS. The dashed line indicates the 99.99th percentile of activation.
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