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ABSTRACT

In Bayesian structure learning, we are interested in inferring a distribution over the
directed acyclic graph (DAG) structure of Bayesian networks, from data. Defin-
ing such a distribution is very challenging, due to the combinatorially large sample
space, and approximations based on MCMC are often required. Recently, a novel
class of probabilistic models, called Generative Flow Networks (GFlowNets),
have been introduced as a general framework for generative modeling of dis-
crete and composite objects, such as graphs. In this work, we propose to use
a GFlowNet as an alternative to MCMC for approximating the posterior distri-
bution over the structure of Bayesian networks, given a dataset of observations.
Generating a sample DAG from this approximate distribution is viewed as a se-
quential decision problem, where the graph is constructed one edge at a time,
based on learned transition probabilities. Through evaluation on both simulated
and real data, we show that our approach, called DAG-GFlowNet, provides an
accurate approximation of the posterior over DAGs, and it compares favorably
against other methods based on MCMC or variational inference.

1 INTRODUCTION

Given a dataset of observations, most of the existing algorithms for structure learning of Bayesian
networks (Pearl, 1988) return a single DAG (or a single equivalence class; Chickering, 2002), and in
practice those may lead to poorly calibrated predictions (Madigan et al., 1994). Instead of learning a
single graph candidate, we can view the problem of structure learning from a Bayesian perspective
and infer the posterior over graphs P (G | D), given a dataset of observations D. Except in limited
settings (Koivisto, 2006; Meilă & Jaakkola, 2006), characterizing a whole distribution over DAGs
remains intractable because of its combinatorially large sample space and the complex acyclicity
constraint. Therefore, we must often resort to approximations of this posterior distribution, e.g.,
based on MCMC (Madigan et al., 1995; Friedman & Koller, 2003; Giudici & Castelo, 2003; Ni-
inimäki et al., 2016; Kuipers & Moffa, 2017; Viinikka et al., 2020) or, more recently, variational in-
ference (Annadani et al., 2021; Cundy et al., 2021; Lorch et al., 2021).

In this paper, we propose to use a novel class of probabilistic models called Generative Flow Net-
works (GFlowNets; Bengio et al., 2021a;b) to approximate this posterior distribution over DAGs.
A GFlowNet is a generative model over discrete and composite objects that treats the generation
of a sample as a sequential decision problem. This makes it particularly appealing for modeling a
distribution over graphs, where sample graphs are constructed sequentially, starting from the empty
graph, by adding one edge at a time. In the context of Bayesian structure learning, we also introduce
improvements over the original GFlowNet framework, including a novel flow-matching condition
and corresponding loss function, and a hierarchical probabilistic model for forward transitions. We
call our method DAG-GFlowNet, to emphasize that the support of the distribution induced by the
GFlowNet is exactly the space of DAGs, unlike some variational approaches that may sample cyclic
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Figure 1: Structure of a GFlowNet over DAGs.
The states of the GFlowNet correspond to
DAGs, with the initial state G0 being the com-
pletely disconnected graph. Each state G is
complete (i.e., connected to the terminal state
sf , represented by blue arrows for brevity) and
associated to a reward R(G). Transitioning
from one state to another corresponds to adding
an edge to the graph. The state in red is invalid
since the graph includes a cycle.

graphs (Annadani et al., 2021; Lorch et al., 2021). We evaluate DAG-GFlowNet on various problems
with simulated and real data, on both discrete and linear-Gaussian Bayesian networks. Furthermore,
we show that DAG-GFlowNet can be applied on both observational and interventional data, by mod-
ifying standard Bayesian scores (Cooper & Yoo, 1999). On smaller graphs, we also show that it is
capable of learning an accurate approximation of the exact posterior distribution.

2 BACKGROUND

A Bayesian network is a probabilistic model over d random variables {X1, . . . , Xd}, whose joint
distribution factorizes according to a DAG G as P (X1, . . . , Xd) =

∏d
k=1 P

(
Xk | PaG(Xk)

)
,

where PaG(X) is the set of parents of node X in G. Similarly, we denote by ChG(X) the children
of X; when the context is clear, we may drop the explicit dependency on G.

2.1 GENERATIVE FLOW NETWORKS

Originally introduced to encourage the discovery of diverse modes of an unnormalized distribution
(Bengio et al., 2021a), Generative Flow Networks (GFlowNets; Bengio et al., 2021b) are a class
of generative models over a discrete and structured sample space X . The structure of a GFlowNet
is defined by a DAG over some states s ∈ S; in general, the sample space over which we wish to
define a distribution is only a subset of the overall state space of the GFlowNet: X ⊆ S . Samples
s ∈ X are constructed sequentially by following the edges of the DAG, starting from a fixed initial
state s0. We also define a special absorbing state sf , called the terminal state, indicating when the
sequential construction terminates; some of the states s ∈ X are connected to sf , and we call them
complete states.1 An example of a GFlowNet is given in Figure 1, illustrating the sequential process
of constructing a DAG.

In addition to the DAG structure over states, every complete state s ∈ X is associated with a reward
R(s) ≥ 0, indicating a notion of “preference” for certain states. The goal of a GFlowNet is to find a
flow that satisfies, for all states s′ ∈ S, the following flow-matching condition:∑

s∈Pa(s′)

Fθ(s → s′)−
∑

s′′∈Ch(s′)

Fθ(s
′ → s′′) = R(s′), (1)

where Fθ(s → s′) ≥ 0 is a scalar representing the flow from state s to s′, typically parametrized by
a neural network. Putting it in words, the overall flow going into s′ is equal to the flow going out of
s′, plus some residual R(s′). To learn the parameters θ of the flow with SGD, we can turn (1) into a
regression problem, e.g., using a least squares objective over sampled states.

If the conditions in (1) are satisfied for all states s′, a GFlowNet induces a generative process to
sample complete states s ∈ X with probability ∝ R(s). Starting from the initial state s0, if we

1“Complete” here means that the state is a valid sample from the distribution induced by the GFlowNet.
This must not be confused with a “complete graph”, where all the nodes are connected to one another, when
the states are DAGs (see Section 4).
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sample a complete trajectory (s0, s1, . . . , sT , s, sf ) using the transition probability defined as

P (st+1 | st) ∝ Fθ(st → st+1), (2)

with the conventions sT+1 = s and sT+2 = sf , then s is sampled with probability P (s) ∝ R(s).
Unlike MCMC, each sample s ∈ X is constructed from scratch, starting at the initial state s0, instead
of traversing X from sample to sample. Therefore, the underlying Markov process of the GFlowNet
does not have to be irreducible, which is typically necessary in MCMC, but merely requires all the
complete states to be reachable from the initial state.

3 DETAILED-BALANCE CONDITION

Since the flows are added together, one of the downsides of the flow-matching condition is that
flows tend to be orders of magnitude larger the closer we are of the initial state (Bengio et al.,
2021a), making it challenging to parametrize Fθ. Bengio et al. (2021b) proposed an alternative
characterization of GFlowNets inspired by the detailed-balance equations from the literature on
Markov chains (Grimmett & Stirzaker, 2020). Instead of working with flows, this condition uses a
parametrization of the forward transition probability Pθ(st+1 | st) directly, together with a backward
transition probability PB(st | st+1), a distribution over the parents of st+1, to enforce reversibility.
If all the states of the GFlowNet are complete (except the terminal state sf ), which will be the case
here for generating DAGs, then we show in Appendix E that we can write the detailed-balance
condition for all transitions s → s′ as follows:

R(s′)PB(s | s′)Pθ(sf | s) = R(s)Pθ(s
′ | s)Pθ(sf | s′). (3)

Similar to Section 2.1, finding Pθ and PB that satisfy this condition for all the transitions s → s′ of
the GFlowNet also yields a sampling process of complete states s with probability proportional to
R(s), based on the forward transition probability Pθ(st+1 | st). Because this system of equations
also admits many solutions, similar to (1), we can set the backward transition probability PB to some
fixed distribution (e.g., the uniform distribution over the parent states) to reduce the search space,
making Pθ the only quantity to learn. To fit the parameters θ of the forward transition probability,
we can minimize the following non-linear least squares objective, called the detailed-balance loss:

L(θ) = Eπ

[[
log

R(G′)PB(G | G′)Pθ(sf | G)

R(G)Pθ(G′ | G)Pθ(sf | G′)

]2]
, (4)

where π is a distribution over transitions with full support (i.e., π(s → s′) > 0 for all s → s′).

4 GFLOWNET OVER DIRECTED ACYCLIC GRAPHS

Our objective in this paper is to construct a distribution over DAGs. This is a challenging problem in
general, as the space of DAGs is discrete and combinatorially large. We propose to use a GFlowNet
to model such a distribution; this is particularly appropriate here since graphs are composite objects,
and the acyclicity constraint can be obtained by constraining the valid actions (as in Figure 1). The
states of the GFlowNet are DAGs over d nodes, and therefore we will use the notation G to denote
a state, in favour of s as in Section 2.1, except for the terminal state sf . A transition G → G′

in this GFlowNet corresponds to adding an edge to G to obtain the graph G′. The initial state is
the fully disconnected graph G0. Since we assume that all the states G of the GFlowNet are valid
DAGs, they are all complete (i.e., connected to sf ) with a corresponding reward R(G). We use a
hierarchical model to define the forward transition probabilities Pθ(Gt+1 | Gt), each component
being parametrized using a neural network; see Appendix B.2 for details.

In the context of Bayesian structure learning, we consider the task of characterizing the posterior
distribution P (G | D), given a dataset of observations D. For any DAG G, we define its reward
as R(G) = P (G)P (D | G), where P (G) is a prior over DAGs, and P (D | G) is the marginal
likelihood. In Sec. 3, we saw that if the detailed-balance conditions are satisfied at all states of the
GFlowNet, then this yields a sampling process with probability proportional to R(G). Therefore,
by Bayes’ theorem, a GFlowNet with a structure described above, and this specific reward function,
approximates the posterior P (G | D) ∝ R(G). We call our method DAG-GFlowNet. Details about
the parametrization of P (Gt+1 | Gt) and how to train DAG-GFlowNet are available in App. B & C.
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Figure 2: Bayesian structure learning of linear-Gaussian Bayesian networks with d = 20 nodes.
Results for E-SHD & AUROC are aggregated over 25 randomly generated datasets D, sampled
from different (ground-truth) Bayesian networks. Results for logP (G,D′ | D) are given for a single
dataset D; the dashed line corresponds to the log-likelihood of G⋆. For E-SHD lower is better, and
for AUROC & logP (G,D′ | D) higher is better. BCD = BCD Nets, GFN = DAG-GFlowNet.

5 EXPERIMENTAL RESULTS: SIMULATED DATA

We selected a representative experiment on simulated data for presentation in this section, and de-
ferred additional results to Appendix F, including an evaluation of the accuracy of the posterior
approximation induced by DAG-GFlowNet against the exact posterior, and evaluation on real flow
cytometry data (Sachs et al., 2005), based on both observational, and interventional data.

For this experiment, we follow the setup of Zheng et al. (2018), and sample synthetic data from
linear-Gaussian Bayesian networks with randomly generated structures. We experiment with
Bayesian networks of size d = 20 (and d = 50, see Appendix F.2). The ground-truth graphs
are sampled according to an Erdős-Rényi model (Erdős & Rényi, 1960), with 2d edges in expec-
tation. We sampled a dataset D of N = 100 observations, and we used the BGe score (Geiger &
Heckerman, 1994; Kuipers et al., 2014) to compute R(G).

Since we have access to the ground-truth graph G⋆ that generated D, we evaluate the performance
of each algorithm with the expected structural Hamming distance (E-SHD) to G⋆ over the posterior
approximation; a detailed definition is available in Appendix F.2. We also compute the area under
the ROC curve (AUROC; Husmeier, 2003) for the edge marginals induced by the posterior approxi-
mation, compared to the edges of G⋆. Finally, we compute the joint log-likelihood logP (G,D′ | D)
on a held-out dataset D′; we chose this metric over the log-predictive likelihood logP (D′ | D), as
proposed by Eaton & Murphy (2007a), to study the effect of the posterior approximation P (G | D).

We compare DAG-GFlowNet against 3 broad classes of Bayesian structure learning algorithms:
MCMC (MC3 (Madigan et al., 1995) & Gadget (Viinikka et al., 2020)), non-parametric DAG Boot-
strapping (Friedman et al., 1999) with PC (Spirtes et al., 2000) and GES (Chickering, 2002) as
structure learning routines, and variational inference (BCD Nets (Cundy et al., 2021) & DiBS (Lorch
et al., 2021)). The results are shown in Figure 2. We observe that both in terms of E-SHD & AUROC,
DAG-GFlowNet, is competitive against all other methods, in particular those based on MCMC, and
this does not come at a cost in terms of its predictive capacity on held-out data. In particular, we can
see that the distribution induced by DAG-GFlowNet yields a predictive log-likelihood concentrated
near the log-likelihood of the ground-truth DAG G⋆.

6 CONCLUSION

We have proposed a new method for Bayesian structure learning, based on a novel class of prob-
abilistic models called GFlowNets, where the generation of a sample graph is treated as a sequen-
tial decision problem. We introduced a number of enhancements to the standard framework of
GFlowNets, specifically designed for approximating a distribution over DAGs. In cases where the
data is limited and measuring the epistemic uncertainty is critical, DAG-GFlowNet offers an effec-
tive solution to approximate the posterior distribution over DAGs P (G | D). However, we also
observed that in its current state, DAG-GFlowNet may suffer from some limitations, notably as the
size of the dataset D increases; see Appendix D for a discussion.
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While DAG-GFlownet operates on the space of DAGs directly, the structure of the GFlowNet may
eventually be adapted to work with alternative representations of statistical dependencies in Bayesian
networks, such as essential graphs for MECs (Chickering, 2002). Moreover, although we have
already shown that DAG-GFlowNet can approximate the posterior using a mixture of observational
and interventional data, we will continue to study in future work its applications to causal discovery,
especially in the context of learning the structure of models with latent variables.
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APPENDIX

A RELATED WORK

Markov chain Monte Carlo Methods based on MCMC have been particularly popular in
Bayesian structure learning to approximate the posterior distribution. Structure MCMC (MC3;
Madigan et al., 1995) simulates a Markov chain in the space of DAGs, through local moves (e.g.,
adding or removing an edge). Working directly with DAGs leads to slow mixing though; to improve
mixing, Friedman & Koller (2003) proposed a sampler in the space of node orders, that introduced
a bias (Ellis & Wong, 2008). This was further refined by either modifying the underlying space
of the Markov chain (Kuipers & Moffa, 2017; Niinimäki et al., 2016), or its local moves (Mans-
inghka et al., 2006; Eaton & Murphy, 2007a; Kuipers et al., 2021). Recently, Viinikka et al. (2020)
incorporated many of these advances into an efficient MCMC sampler called Gadget.

Variational Inference In the context of structure learning, applying the recent advances in ap-
proximate inference based on gradient methods can be difficult due to the discrete nature of the
problem (Lorch et al., 2021). Cundy et al. (2021) decomposed the adjacency matrix of a DAG into a
triangular matrix and a permutation, and used a continuous relaxation to parametrize a distribution
over permutations. Other methods (Annadani et al., 2021; Lorch et al., 2021) encode the acyclicity
constraint into a soft prior P (G), based on continuous characterizations of acyclicity (Zheng et al.,
2018). While the effect of this prior can be made arbitrarily strong, this does not guarantee that the
graphs sampled from the resulting distribution are acyclic. By contrast, our approach guarantees by
construction that the support of the posterior approximation is exactly the space of DAGs.

Sequential decisions In this work, we treat the construction of a sample graph from the posterior
as a sequential decision problem, starting from the empty graph and adding one edge at a time. Li
et al. (2018) use a similar process for creating a generative model over graphs with a fixed ordering
over nodes. Similarly, although they do not consider a distribution over graphs, Buesing et al. (2020)
use a variant of Monte Carlo Tree Search to approximate a distribution over a pre-specified ordering
of discrete random variables. Our method, based on Generative Flow Networks, does not make any
assumption on the order in which the edges are added, and multiple edge insertion sequences may
lead to the same DAG. Zhu et al. (2020) learn a single high-scoring structure using RL; however,
unlike our approach, the creation of this graph does not involve sequential decisions.

B GFLOWNET OVER DIRECTED ACYCLIC GRAPHS

B.1 STRUCTURE OF THE GFLOWNET

We consider a GFlowNet where the states are DAGs over d (labeled) nodes. Since the states of the
GFlowNet are graphs, we will use the notation G to denote a state, in favour of s as in Section 2.1,
except for the terminal state sf . A transition G → G′ in this GFlowNet corresponds to adding an
edge to G to obtain the graph G′; in other words, the graphs are constructed one edge at a time,
starting from the initial state G0, which is the fully disconnected graph over d nodes. Since we
assume that all the states G of the GFlowNet are valid DAGs, they are all complete (i.e., connected
to the terminal state sf ) with a corresponding reward R(G). Figure 1 shows an illustration of the
structure of such a GFlowNet, where the states are DAGs over d = 3 nodes. This application to
graphs highlights the importance of the DAG structure of the GFlowNet, since there can be multiple
paths leading to the same state: for any graph G with k edges, there are k! possible paths from G0

leading to G, because the edges of G may have been added in any order.

To guarantee the integrity of the GFlowNet, we have to ensure that adding a new edge to some state
G also yields a valid DAG, meaning that this edge (1) must not be already present in G, and (2) must
not introduce a cycle. Fortunately, we can filter out invalid actions using some mask m associated
to the graph, built from the adjacency matrix of G and the transitive closure of its transpose, and
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Figure 3: Neural network architecture of the forward transition probabilities Pθ(Gt+1 | Gt). The
input graph G is encoded as a set of d2 possible edges (including self-loops). Each directed edge
is embedded using the embeddings of its source and target, with an additional vector indicating
whether the edge is present in G. These embeddings are fed into a Linear Transformer (Katharopou-
los et al., 2020), with two separate output heads. The first head (above) gives the probability to add
a new edge Pθ(G

′ | G,¬sf ), using the mask m associated to G to filter out invalid actions; here,
the only valid actions are either adding B → C, or C → B. The second head (below) gives the
probability to terminate the trajectory Pθ(sf | G).

that can be updated efficiently after the addition an edge (Giudici & Castelo, 2003). A description
of this update is given in Appendix G for completeness.

B.2 FORWARD TRANSITION PROBABILITIES

Following Section 3, the GFlowNet may be parametrized only by the forward transition probabilities
Pθ(Gt+1 | Gt); here, Gt+1 might be the terminal state sf by abuse of notation. To make sure that
the detailed-balance conditions can be satisfied, we need to define these transition probabilities using
a sufficiently expressive function, such as a neural network. We use a hierarchical model, where the
forward transition probabilities are defined using two neural networks: (1) a network modeling the
probability of terminating Pθ(sf | G), and (2) another giving the probability Pθ(G

′ | G,¬sf ) of
transitioning to a new graph G′, given that we do not terminate. The probability of taking a transition
G → G′ is then given by

Pθ(G
′ | G) =

(
1− Pθ(sf | G)

)
Pθ(G

′ | G,¬sf ). (5)

In practice, as G′ is the result of adding an edge to the DAG G, we can model Pθ(G
′ | G,¬sf ) as

a probability distribution over the d2 possible edges one could add to G—this includes self-loops,
for simplicity, even though these actions are guaranteed to be invalid. We can use the mask m
introduced in Appendix B.1 to filter out actions that would not lead to a valid DAG G′ and set
Pθ(G

′ | G,¬sf ) = 0 for any invalid action (as well as normalize Pθ accordingly).

B.3 PARAMETRIZATION WITH LINEAR TRANSFORMERS

Beyond having enough capacity to satisfy as well as possible the detailed-balance condition at all
states, we choose to parametrize the forward transition probabilities with neural networks to benefit
from their capacity to generalize to states not encountered during training. In practice, instead of
defining two separate networks to parametrize Pθ(sf | G) and Pθ(G

′ | G,¬sf ), we use a single
neural network with a common backbone and two separate heads, to benefit from parameter sharing.
The full architecture is given in Figure 3.

Our choice of neural network architecture is motivated by multiple factors: we want an architecture
(1) that is invariant to the order of the inputs, since G is represented as a set of edges, (2) that
transforms a set of input edges into a set of output probabilities for each edge to be added, in order
to define Pθ(G

′ | G,¬sf ), and (3) whose parameters θ do not scale too much with d. A natural
option would be to use a Transformer (Vaswani et al., 2017); however, because the size of our inputs
is d2, the self-attention layers would scale as d4, and this would severely limit our ability to apply
our method to model a distribution over larger DAGs.

9
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We opted for a Linear Transformer (Katharopoulos et al., 2020) instead, which has the advantage
to not suffer from this quadratic scaling in the input size. This architecture relies on a linearized
attention mechanism, defined as

Q = xWQ K = xWK V = xWV

LinAttnk(x) =

∑J
j=1

(
ϕ(Qk)

⊤ϕ(Kj)
)
Vj∑J

j=1 ϕ(Qk)⊤ϕ(Kj)
, (6)

where x is the input of the linearized attention layer, ϕ(·) is a non-linear feature map, J is the size
of the input x (in our case, J = d2), and Q, K, and V are linear transformations of x corresponding
to the queries, keys, and values respectively, as is standard with Transformers.

C APPLICATION TO BAYESIAN STRUCTURE LEARNING

We are given a dataset D = {x(1), . . . ,x(N)} of N observations x(j), each consisting of d elements.
We consider the task of characterizing the posterior distribution P (G | D) over Bayesian networks
that model these observations. We assume that the samples in D are iid. and fully-observed. As
an alternative to MCMC (Madigan et al., 1995) or variational inference (Lorch et al., 2021), we
approximate the posterior distribution over DAGs using a GFlowNet, as described in the previous
section. For any DAG G, we will define its reward as the joint probability

R(G) = P (G)P (D | G), (7)

where P (G) is a prior over DAGs (Eggeling et al., 2019), and P (D | G) is the marginal likeli-
hood. In Sec. 3, we saw that if the detailed-balance conditions are satisfied for all the states of the
GFlowNet, then this yields a sampling process with probability proportional to R(G). Therefore,
by Bayes’ theorem, a GFlowNet with the specific reward function in (7) approximates the posterior
distribution P (G | D) ∝ R(G). We call our method DAG-GFlowNet.

C.1 MODULARITY & COMPUTATIONAL EFFICIENCY

Following prior works on Bayesian structure learning, we assume that both the priors over param-
eters P (ϕ | G) of the Bayesian network (required to compute the marginal likelihood) and over
structures P (G) are modular (Heckerman et al., 1995; Chickering et al., 1995). As a consequence
the reward R(G) is also modular, and its logarithm can be written as a sum of local scores that only
depend on individual variables and their parents in G:

logR(G) =

d∑
j=1

LocalScore
(
Xj | PaG(Xj)

)
. (8)

Note that with our choice of reward, logR(G) corresponds to the Bayesian score (Koller & Fried-
man, 2009). Examples of modular scores include the BDe score (Heckerman et al., 1995) and the
BGe score (Geiger & Heckerman, 1994; Kuipers et al., 2014). In order to fit the parameters θ of the
GFlowNet, we will use the detailed-balance loss in (4). We can observe that this loss function only
involves the difference in log-rewards logR(G′)− logR(G) between two consecutive states, where
G′ is the result of adding some edge Xi → Xj to the DAG G. Using our assumption of modularity,
we can therefore compute this difference efficiently, as the terms in (8) remain unchanged for j′ ̸= j:

logR(G′)− logR(G) = LocalScore
(
Xj | PaG(Xj) ∪ {Xi}

)
− LocalScore

(
Xj | PaG(Xj)

)
. (9)

This difference in local scores is sometimes called the delta score, or the incremental value (Fried-
man & Koller, 2003), and has been employed in the literature to improve the efficiency of search
algorithms (Chickering, 2002; Koller & Friedman, 2009).

C.2 OFF-POLICY LEARNING

As the number of states in DAG-GFlowNet is super-exponential in d, the number of nodes in each
DAG G, it would be impractical to minimize the detailed-balance loss for all possible transitions
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G → G′. We can minimize this loss in expectation using a distribution π(G → G′) with full
support over transitions:

L(θ) = Eπ

[[
log

R(G′)PB(G | G′)Pθ(sf | G)

R(G)Pθ(G′ | G)Pθ(sf | G′)

]2]
. (10)

This distribution π(G → G′) can be arbitrary; for example, we can use Pθ(G
′ | G) directly and

learn it on-policy (Rummery & Niranjan, 1994), as long as it assigns non-zero probability to any
next state G′.

Taking inspiration from Deep Q-learning (Mnih et al., 2015), we instead learn Pθ using off-policy
data. Transitions G → G′ are collected based on Pθ(G

′ | G), along with their corresponding delta
score ((9)), and they are stored in a replay buffer. We can also sample some transitions uniformly at
random, with probability ε, to encourage exploration. To estimate L(θ) and update the parameters
θ, we can then sample a mini-batch of transitions randomly from the replay buffer. Moreover,
again inspired by Deep Q-learning (Van Hasselt et al., 2018), we found it advantageous to evaluate
Pθ̄(sf | G′) in (4) with a separate target network—where the parameters θ̄ are updated periodically.

D LIMITATIONS OF DAG-GFLOWNET

Although we have shown in the main paper that DAG-GFlowNet is capable of learning an accurate
approximation of the posterior distribution P (G | D) when the size of the dataset D is moderate (a
situation where the benefits of a Bayesian treatment of structure learning are larger), we observed
that as the size of the dataset increases, fitting the detailed-balance loss in (4) was more challenging.
This can be explained by the fact that with a larger amount of data, the posterior distribution becomes
very peaky (Koller & Friedman, 2009). As a consequence, in this situation, the delta-score in (9),
which is required to calculate the loss, can take a wide range of values: adding an edge to a graph can
drastically increase or decrease its score. In turn, the neural network parametrizing Pθ(Gt+1 | Gt)
needs to compensate these large fluctuations, making it harder to train.

Unfortunately, some of the standard techniques used in Machine Learning to tackle this issue, such
as normalization of the inputs, cannot be applied here. Normalizing the delta-score is equivalent to
normalizing the rewards R(G) and R(G′) themselves, and as a consequence it would change the
distribution that is being approximated: instead of approximating the posterior distribution P (G |
D), we would approximate a distribution P (G | D)τ under some temperature τ . Solutions to this
problem include a schedule of temperature, similar to simulated annealing, or a reparametrization
of Pθ(Gt+1 | Gt) to better handle large fluctuations of delta-scores; this exploration is left as future
work.

E DETAILED-BALANCE CONDITION WITH ALL COMPLETE STATES

In this section, we will prove a special case of the detailed-balance condition introduced by Bengio
et al. (2021b) applied to the case where all the states of the GFlowNet are complete (except the
terminal state sf ). To simplify the presentation, we will follow the notations of Bengio et al. (2021b),
and denote the forward transition probability by PF (st+1 | st)—instead of Pθ(st+1 | st) in the main
paper. Recall that the detailed-balance condition (Bengio et al., 2021b, Def. 17) is given by

F (st)PF (st+1 | st) = F (st+1)PB(st | st+1). (11)
In the case where all the states are complete, we also know that (Bengio et al., 2021b, Def. 16)

PF (sf | st) :=
F (st → sf )∑

s′∈Ch(st)
F (st → s′)

=
R(st)

F (st)
⇔ F (st) =

R(st)

PF (sf | st)
,

where F (s → s′) represents the flow from state s to s′, as described in Section 2.1, F (s) is the total
flow through state s, and we used Proposition 4 & Equation 34 of Bengio et al. (2021b) to introduce
F (st) and R(st) respectively. Replacing F (·) in (11) yields the expected condition:

R(st)PF (st+1 | st)PF (sf | st+1) = R(st+1)PB(st | st+1)PF (sf | st). (12)

The original formulation in (11) would require us to parametrize both PF (st+1 | st) and F (s).
On the other hand, using this alternative condition, we only have to parametrize PF (st+1 | st)
(including when st+1 = sf is the terminal state).
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F ADDITIONAL EXPERIMENTAL RESULTS

F.1 COMPARISON WITH THE EXACT POSTERIOR
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Figure 4: Comparison between the exact posterior distribution and the posterior approximation from
DAG-GFlowNet, for different structural features: (a) edge features Xi → Xj , (b) path features
Xi ⇝ Xj , (c) Markov features Xi ∼M Xj . Each point corresponds to a feature computed for
specific variables Xi and Xj in a graph over d = 5 nodes, either based on the exact posterior (x-axis),
or the posterior approximation found with the GFlowNet (y-axis). We repeated this experiment with
20 different (ground-truth) DAGs. The Pearson correlation coefficient r is included in the bottom-
right corner of each plot.

In order to measure the quality of the posterior approximation returned by DAG-GFlowNet, we
want to compare it with the exact posterior distribution P (G | D). However, the latter requires an
exhaustive enumeration of all possible DAGs, which is only feasible for graphs with no more than
5 nodes. Therefore, we sampled N = 100 datapoints from a randomly generated (under an Erdős-
Rényi model; Erdős & Rényi, 1960) linear-Gaussian Bayesian network over d = 5 variables. We
used the BGe score to compute the reward R(G) = P (G)P (D | G). The exact posterior distribution
P (G | D) is obtained by enumerating all 29,281 possible DAGs over 5 nodes and computing their
respective rewards R(G) (normalized to sum to 1).

We evaluated the quality of the approximation based on the probability of various structural features.
For example, using samples {G1, G2, . . . , Gn} from the posterior approximation, the marginal prob-
ability of an edge feature Xi → Xj can be estimated with

Pθ(Xi → Xj | D) ≈ 1

n

n∑
k=1

1(Xi → Xj ∈ Gk), (13)

where 1(·) is the indicator function. For the exact posterior, we can obtain the posterior probability
of the edge feature by simply marginalizing over P (G | D). Similarly, we compute (or estimate)
the marginal probability of a path feature Xi ⇝ Xj , i.e., of a (directed) path existing from Xi to
Xj , and the probability of a Markov feature Xi ∼M Xj , i.e., of Xi being in the Markov blanket
of Xj (Friedman & Koller, 2003). These features are computed for all variables Xi and Xj in the
Bayesian network.

In Figure 4, we compare the probabilities of these features for both the exact posterior and the dis-
tribution induced by DAG-GFlowNet, where we repeated the experiment above with 20 different
(ground-truth) Bayesian networks. We observe that the probabilities of all structural features esti-
mated by the GFlowNet are strongly correlated with the exact marginal probabilities. This shows
that DAG-GFlowNet is capable of learning a very accurate approximation of the posterior distribu-
tion over graphs P (G | D).

F.2 SIMULATED DATA

In addition to the experiments on simulated data with graphs over d = 20 nodes, we also compared
DAG-GFlowNet with other methods on graphs with d = 50 nodes. The experimental setup de-
scribed in Section 5 remains unchanged. We show this comparison in Figure 5, in terms of E-SHD,
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Figure 5: Bayesian structure learning of linear-Gaussian Bayesian networks with d = 50 nodes.
Results for E-SHD & AUROC are aggregated over 10 randomly generated datasets D, sampled
from different (ground-truth) Bayesian networks. Results for logP (G,D′ | D) are given for a single
dataset D; the dashed line corresponds to the log-likelihood of the ground truth graph. Labels: B-PC
= Bootstrap-PC, B-GES = Bootstrap-GES, BCD = BCD Nets, GFN = DAG-GFlowNet.

AUROC, and the joint log-likelihood P (D′, G | D) on some held-out dataset D′. We observe that
DAG-GFlowNet is still competitive compared to the other algorithms, even though it suffers from a
higher variance. This can be partly explained by the neural network parametrizing the forward tran-
sition probability Pθ(Gt+1 | Gt) (see appendices B.2 and B.3) underfitting the data, and therefore
not accurately matching the detailed-balance conditions, necessary for a close approximation of the
posterior distribution P (G | D). Similar to our observations in Appendix F.3, we also noticed that
algorithms that tend to perform better in terms of E-SHD (e.g., BCD Nets, Bootstrap-PC) tend to
have an order of magnitude fewer edges in the sampled DAGs.

Details about the metrics Throughout this paper, we used mainly two metrics to compare the per-
formance of DAG-GFlowNet over alternative Bayesian structure learning algorithms: the expected
SHD (E−SHD), and the area under the ROC curve (AUROC). Let {G1, . . . , Gn} be samples from
the posterior approximation to be evaluated, and G⋆ be the ground truth graph. The E-SHD to G⋆

can be estimated as

E−SHD ≈ 1

n

n∑
k=1

SHD(Gk, G
⋆), (14)

where SHD(G,G⋆) counts the number of edges changes (adding, removing, reversing an edge)
necessary to move from G to G⋆.

F.3 APPLICATION: FLOW CYTOMETRY DATA

We also evaluated DAG-GFlowNet on real-world flow cytometry data (Sachs et al., 2005) to learn
protein signaling pathways. The data consists of continuous measurements of d = 11 phosphopro-
teins in individual T-cells. Out of all the measurements, we selected the N = 853 observations
corresponding to the first experimental condition of Sachs et al. (2005) as our dataset D. Follow-
ing prior work on structure learning, we used the DAG inferred by Sachs et al. (2005), containing
d = 11 nodes and 17 edges, as our graph of reference (ground-truth). However, it should be noted
that this “consensus graph” may not represent a realistic and complete description of the system be-
ing modeled here (Mooij et al., 2020). We standardized the data, and used the BGe score to compute
R(G).

In Table 1, we compare the expected SHD and the AUROC obtained with DAG-GFlowNet and
other approaches. While BCD Nets and Bootstrap PC have a smaller E-SHD, suggesting that the
distribution is concentrated closer to the consensus graph, in reality they tend to be more conservative
and sample graphs with fewer edges. Overall, DAG-GFlowNet offers a good trade-off between
performance (as measured by the E-SHD and the AUROC), and getting a distribution that assigns
higher probability to DAGs with more edges. We also observed that 1.50% of the graphs sampled
with DiBS contained a cycle.

Beyond these metrics, we would like to test if the advantages of Bayesian structure learning are
also reflected in the distribution induced by DAG-GFlowNet. In particular, we want to study (1) if
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Table 1: Learning protein signaling pathways from flow cytometry data (Sachs et al., 2005). All
results include a 95% confidence interval estimated with bootstrap resampling.

E-# Edges E-SHD AUROC

MC3 10.96± 0.09 22.66± 0.11 0.508
Gadget 10.59± 0.09 21.77± 0.10 0.479
Bootstrap GES 11.11± 0.09 23.07± 0.11 0.548
Bootstrap PC 7.83± 0.04 20.65± 0.06 0.520
DiBS 12.62± 0.16 23.32± 0.14 0.518
BCD Nets 4.14± 0.09 18.14± 0.09 0.510

DAG-GFlowNet 11.25± 0.09 22.88± 0.10 0.541

this distribution covers multiple high-scoring DAGs, instead of being peaked at a single most likely
graph, and (2) if the GFlowNet can sample a variety of DAGs from the same Markov equivalence
class (MEC), showing the inherent uncertainty over equivalent graphs. In Figure 6, we visualize the
MECs of the graphs sampled with DAG-GFlowNet, and two methods based on MCMC (MC3 and
Gadget); other baselines were excluded for clarity. The size of each point represents the number
of unique DAGs in the corresponding MEC. We observe that DAG-GFlowNet largely follows the
behavior of MCMC: the distribution does not collapse to a single most-likely DAG, and covers
multiple MECs. Moreover, the GFlowNet is also capable of sampling different equivalent DAGs
(corresponding to larger points), showing again that the distribution does not collapse to a single
representative of the MECs with higher marginal probability. We also observe that the maximum a
posteriori MEC found by DAG-GFlowNet reaches a higher score than the one found with Gadget,
but a lower score than MC3; as a point of reference, the score of the best MEC obtained with GES
(Chickering, 2002) is −10,716.12.

F.4 APPLICATION: INTERVENTIONAL DATA
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Figure 6: Coverage of the posterior ap-
proximations learned on flow cytom-
etry data (Sachs et al., 2005). Each
point corresponds to a sampled Markov
equivalence class, and its size repre-
sents the number of different DAGs (in
the equivalence class) sampled from the
posterior approximation.

In addition to the observational data we used in Appendix F.3, Sachs et al. (2005) also provided flow
cytometry data under different experimental conditions, where the T-cells were perturbed with some
reagents; this effectively corresponds to interventional data (Pearl, 2009). Although a molecular in-
tervention may be imperfect and affect multiple proteins (Eaton & Murphy, 2007b), we assume here
that these interventions are perfect, and the intervention targets are known. We used a discretized
dataset of N = 5,400 samples from 9 experimental conditions—of which 6 are interventions. We
modified the BDe score to handle this mixture of observational and interventional data (Cooper &
Yoo, 1999).

In Table 2, we compare with Eaton & Murphy (2007b), which compute the AUROC of the exact
posterior using dynamic programming, therefore working as an upper bound for what a posterior
approximation can achieve. They achieve this at the expense of computing only edge marginals,
without providing access to a distribution over DAGs. We also use the modified BDe score with
MC3, which predicts sparser graphs with higher SHD than DAG-GFlowNet, but lower AUROC.
Note that this setup is different from previous works which use continuous data instead (Brouillard
et al., 2020; Faria et al., 2022).
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Table 2: Combining discrete interventional and observational flow cytometry data (Sachs et al.,
2005). ⋆Result reported in Eaton & Murphy (2007b).

E-# Edges E-SHD AUROC

Exact posterior⋆ — — 0.816
MC3 25.97± 0.01 25.08± 0.02 0.665

DAG-GFlowNet 30.66± 0.04 27.77± 0.03 0.700

G DEFINITION AND UPDATE OF THE MASK OVER ACTIONS

In Appendix B.1, we introduced a mask m associated with a DAG G to indicate which edges
could be legally added to G to obtain a new valid DAG G′. This mask must ignore (1) the edges
already present in G (which cannot be added further), and (2) any edge whose addition leads to the
introduction of a cycle. The mask m is constructed using (1) the adjacency matrix of G, and (2)
the adjacency matrix of the transitive closure of G⊤, the transpose graph of G; recall that G⊤ is
obtained from G by inverting the direction of its edges.

Giudici & Castelo (2003) use a similar construction to efficiently obtain the legal actions their
MCMC sampler may take. In particular, they show that this mask m can be updated very effi-
ciently online as edges are added one by one. In practice, this allows us to circumvent an expensive
check for cycles at every stage of the construction of a sample DAG in the GFlowNet. Since the
mask can be composed in 2 parts (as explained above), we can simply update each part anytime a
new edge is added to a DAG G.

In Figure 7, we show how the mask mt associated with a graph Gt can be updated after adding a
new edge C → A to obtain the mask mt+1. The mask is decomposed in 2 parts: the adjacency
matrix of Gt, and the transitive closure of G⊤

t . After adding C → A, each component is updated
separately:

1. Adjacency matrix: To update the adjacency matrix, the entry in the adjacency matrix must
be set (here, the entry corresponding to the edge C → A).

2. Transitive closure: To update the transitive closure of the transpose, we need to compute
the outer product of the column corresponding to the target of the edge (here A, in blue)
with the row corresponding to the source of the edge (here C, in red). The outer product is
added (more precisely, this is a binary OR) to the initial transitive closure.

These two operations can be done very efficiently in O(d2), where d is the number of nodes in the
DAG.
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Figure 7: Online update of the mask m. The mask mt associated with Gt represents (in black)
the edges that cannot be added to Gt to obtain a valid DAG. mt is decomposed in two parts: the
adjacency matrix of Gt (top), and the transitive closure of G⊤

t (bottom). To update the mask and
obtain mt+1 associated with Gt+1, the result of adding the edge C → A to Gt, each component
must be updated separately, and then recombined. The diagonal elements of mt, corresponding to
self-loops (which are always invalid actions to take) are integrated into the transitive closure of G⊤

t
by convention.
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