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ABSTRACT

We propose DMV3D, a novel 3D generation approach that uses a transformer-
based 3D large reconstruction model to denoise multi-view diffusion. Our
reconstruction model incorporates a triplane NeRF representation and can denoise
noisy multi-view images via NeRF reconstruction and rendering, achieving single-
stage 3D generation in ∼30s on single A100 GPU. We train DMV3D on large-
scale multi-view image datasets of highly diverse objects using only image
reconstruction losses, without accessing 3D assets. We demonstrate state-of-
the-art results for the single-image reconstruction problem where probabilistic
modeling of unseen object parts is required for generating diverse reconstructions
with sharp textures. We also show high-quality text-to-3D generation results
outperforming previous 3D diffusion models. Our project website is at: https:
//justimyhxu.github.io/projects/dmv3d/.

1 INTRODUCTION

The advancements in 2D diffusion models (Ho et al., 2020; Song et al., 2020a; Rombach et al.,
2022a) have greatly simplified the image content creation process and revolutionized 2D design
workflows. Recently, diffusion models have also been extended to 3D asset creation in order
to reduce the manual workload involved for applications like VR, AR, robotics, and gaming.
In particular, many works have explored using pre-trained 2D diffusion models for generating
NeRFs (Mildenhall et al., 2020) with score distillation sampling (SDS) loss (Poole et al., 2022; Lin
et al., 2023a). However, SDS-based methods require long (often hours of) per-asset optimization
and can frequently lead to geometry artifacts, such as the multi-face Janus problem.

On the other hand, attempts to train 3D diffusion models have also been made to enable diverse
3D asset generation without time-consuming per-asset optimization (Nichol et al., 2022; Jun &
Nichol, 2023). These methods typically require access to ground-truth 3D models/point clouds for
training, which are hard to obtain for real images. Besides, the latent 3D diffusion approach (Jun
& Nichol, 2023) often leads to an unclean and hard-to-denoise latent space (Chen et al., 2023b) on
highly diverse category-free 3D datasets due to two-stage training, making high-quality rendering a
challenge. To circumvent this, single-stage models have been proposed (Anciukevičius et al., 2023;
Karnewar et al., 2023), but are mostly category-specific and focus on simple classes.

Our goal is to achieve fast, realistic, and generic 3D generation. To this end, we propose DMV3D,
a novel single-stage category-agnostic diffusion model that can generate 3D (triplane) NeRFs from
text or single-image input conditions via direct model inference. Our model allows for the generation
of diverse high-fidelity 3D objects within 30 seconds per asset (see Fig. 1). In particular, DMV3D
is a 2D multi-view image diffusion model that integrates 3D NeRF reconstruction and rendering
into its denoiser, trained without direct 3D supervision, in an end-to-end manner. This avoids both
separately training 3D NeRF encoders for latent-space diffusion (as in two-stage models) and tedious
per-asset optimization (as in SDS methods).

In essence, our approach uses a 3D reconstruction model as the 2D multi-view denoiser in a multi-
view diffusion framework. This is inspired by RenderDiffusion (Anciukevičius et al., 2023) –
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Figure 1: Top left: our approach achieves fast 3D generation (∼30s on A100 GPU) from text or
single-image input; the latter one, combined with 2D segmentation methods (like SAM (Kirillov
et al., 2023)), can reconstruct objects segmented from natural images. Bottom: as a probabilistic
single-image-to-3D model, we can produce multiple reasonable 3D assets from the same image.
Top right: we demonstrate a scene comprising diverse 3D objects generated by our models.

achieving 3D generation through single-view diffusion. However, their single-view framework
relies on category-specific priors and canonical poses and thus cannot easily be scaled up to
generate arbitrary objects. In contrast, we consider a sparse set of four multi-view images that
surround an object, adequately describing a 3D object without strong self-occlusions. This design
choice is inspired by the observation that humans can easily imagine a complete 3D object from a
few surrounding views with little uncertainty. However, utilizing such inputs essentially requires
addressing the task of sparse-view 3D reconstruction – a long-standing problem and known to be
highly challenging even without noise in the inputs.

We address this by leveraging large transformer models that have been shown to be effective
and scalable in solving various challenging problems (Jun & Nichol, 2023; Nichol et al., 2022;
Hong et al., 2023; Brown et al., 2020; Shen et al., 2023). In particular, built upon the recent 3D
Large Reconstruction Model (LRM) (Hong et al., 2023), we introduce a novel model for joint
reconstruction and denoising. More specifically, our transformer model can, from a sparse set of
noisy multi-view images, reconstruct a clean (noise-free) NeRF model that allows for rendering
(denoised) images at arbitrary viewpoints. Our model is conditioned on the diffusion time step,
designed to handle any noise levels in the diffusion process. It can thus be directly plugged as the
multi-view image denoiser in an multi-view image diffusion framework.

We enable 3D generation conditioned on single images/texts. For image conditioning, we fix one of
the sparse views as the noise-free input and denoise other views, similar to 2D image inpainting (Xie
et al., 2023). We apply attention-based text conditioning and classifier-free guidance, commonly
used in 2D diffusion models, to enable text-to-3D generation. We train our model on large-scale
datasets consisting of both synthetic renderings from Objaverse (Deitke et al., 2023) and real
captures from MVImgNet (Yu et al., 2023) with only image-space supervision. Our model achieves
state-of-the-art results on single-image 3D reconstruction, outperforming prior SDS-based methods
and 3D diffusion models. We also demonstrate high-quality text-to-3D results outperforming
previous 3D diffusion models. In sum, our main contributions are:

• A novel single-stage diffusion framework that leverages multi-view 2D image diffusion
model to achieve 3D generation;

• An LRM-based multi-view denoiser that can reconstruct noise-free triplane NeRFs from
noisy multi-view images;

• A general probabilistic approach for high-quality text-to-3D generation and single-image
reconstruction that uses fast direct model inference (∼30s on single A100 GPU).

Our work offers a novel perspective to address 3D generation tasks, which bridges 2D and 3D
generative models and unifies 3D reconstruction and generation. This opens up opportunities to
build a foundation model for tackling a variety of 3D vision and graphics problems.
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Figure 2: SAM + DMV3D. We can use SAM (Kirillov et al., 2023) to segment any objects from a
real scene photo and reconstruct their 3D shape and appearance with our method, showcasing our
model’s potential in enabling 3D-aware image editing experiences.

2 RELATED WORK

Sparse-view Reconstruction. Neural representations (Mescheder et al., 2019; Park et al., 2019;
Mildenhall et al., 2020; Sitzmann et al., 2019; 2020; Chen et al., 2022; Müller et al., 2022) offer
a promising platform for scene representation and neural rendering (Tewari et al., 2022). Applied
to novel-view synthesis, these approaches have been successful in single-scene overfitting scenarios
where lots of multi-view training images are available. Recent efforts (Yu et al., 2021; Chen et al.,
2021; Long et al., 2022; Wang et al., 2021; Lin et al., 2023b; Jain et al., 2021) have extended
these ideas to operate with a sparse set of views, showcasing improved generalization capabilities
to unseen scenes. As non-generative methods, these approaches struggle on covering the multiple
modes in the large-scale datasets and thus can not generate diverse realistic results. In particular,
the recently-proposed LRM (Hong et al., 2023) tackles the inherent ambiguous single-image-to-3D
problem in a deterministic way, resulting in blurry and washed-out textures for unseen part of the
objects due to mode averaging. We resolve this issue by building a probabilistic image-conditioned
3D generation model through denosing multi-view diffusion.

3D Generative Adversarial Networks (GANs). GANs have made remarkable advancements in
2D image synthesis (Brock et al., 2018; Karras et al., 2018; 2019; 2020; 2021). 3D GANs (Nguyen-
Phuoc et al., 2019; Schwarz et al., 2020; Chan et al., 2021; 2022; Niemeyer & Geiger, 2021;
Gu et al., 2021; Skorokhodov et al., 2022; Xu et al., 2022; 2023; Shi et al., 2022; Gao et al.,
2022; Skorokhodov et al., 2023) extend these capabilities to generating 3D-aware assets from
unstructured collections of single-view 2D images in an unsupervised manner. GAN architectures,
however, are difficult to train and generally best suited for modeling datasets of limited scale and
diversity (Dhariwal & Nichol, 2021).

3D-aware Diffusion Models (DMs). DMs have emerged as foundation models for visual
computing, offering unprecedented quality, fine-grained control, and versatility for 2D image
generation (Ho et al., 2020; Song et al., 2020b; Rombach et al., 2022a; Po et al., 2023). Several
strategies have been proposed to extend DMs to the 3D domain. Some of these approaches (Nichol
et al., 2022; Jun & Nichol, 2023; Shue et al., 2023; Gupta et al., 2023; Ntavelis et al., 2023) use
direct 3D supervision. The quality and diversity of their results, however, is far from that achieved
by 2D DMs. This is partly due to the computational challenge of scaling diffusion network models
up from 2D to 3D, but perhaps more so by the limited amount of available 3D training data. Other
approaches in this category build on optimization using a differentiable 3D scene representation
along with the priors encoded in 2D DMs (Poole et al., 2022; Lin et al., 2023a; Wang et al., 2022;
2023). While showing some success, the quality and diversity of their results is limited by the
SDS–based loss function (Poole et al., 2022). Another class of methods uses 2D DM–based image-
to-image translation using view conditioning (Liu et al., 2023b; Chan et al., 2023; Gu et al., 2023).
While these approaches promote multi-view consistency, they do not enforce it, leading to flicker
and other view-inconsistent effects. Finally, several recent works have shown success in training 3D
diffusion models directly on single-view or multi-view image datasets (Karnewar et al., 2023; Chen
et al., 2023b; Shen et al., 2023) for relatively simple scenes with limited diversity.

Prior RenderDiffusion (Anciukevičius et al., 2023) and concurrent Viewset Diffusion (Szymanowicz
et al., 2023) work are closest to our method. Both solve the 3D generation problem using 2D DMs
with 3D-aware denoisers. Neither of these methods, however, has been demonstrated to work on
highly diverse datasets containing multi-view data of >1M objects. Our novel LRM-based (Hong
et al., 2023) 3D denoiser architecture overcomes this challenge and enables state-of-the-art results
for scalable, diverse, and high-quality 3D generation.

3



© 2023 Adobe. All Rights Reserved. Adobe Confidential.

Image 
tokenizer 
(DINO)

Reshape & 
Upsample

t

Image tokens

Transformer

Cross-Att MLP+ +Self-Att +

Text tTriplane position 
embeddings

Plücker rays

Triplane 
tokens

t-1

Rendering loss

Figure 3: Overview of our method. We denoise multiple views (three shown in the figure to
reduce clutterness; four used in experiments) for 3D generation. Our multi-view denoiser is a large
transformer model that reconstructs a noise-free triplane NeRF from input noisy images with camera
poses (parameterized by Plucker rays). During training, we supervise the triplane NeRF with a
rendering loss at input and novel viewpoints. During inference, we render denoised images at input
viewpoints and combine them with inputs to obtain less noisy inputs for the next denoising step. We
output the clean triplane NeRF at final denoising step, enabling 3D generation. Refer to Sec. 3.3 for
how to extend this model to condition on single image or text.

3 METHOD

We now present our single-stage 3D diffusion model. In particular, we introduce a novel diffusion
framework that uses a reconstruction-based denoiser to denoise noisy multi-view images for 3D
generation (Sec. 3.1). Based on this, we propose a novel LRM-based (Hong et al., 2023) multi-
view denoiser conditioning on diffusion time step to progressively denoise multi-view images via
3D NeRF reconstruction and rendering (Sec. 3.2). We further extend our model to support text and
image conditioning, enabling controllable generation (Sec. 3.3).

3.1 MULTI-VIEW DIFFUSION AND DENOISING

Diffusion. Denoising Diffusion Probabilistic Models (DDPM) transforms the data distribution x0 ∼
q(x) using a Gaussian noise schedule in the forward diffusion process. The generation process is
the reverse process where images are gradually denoised. The diffused data sample xt at timestep t
can be written as xt =

√
ᾱtx0 +

√
1− ᾱtϵ, where ϵ ∼ N (0, I) represents Gaussian noise and the

monotonically decreasing ᾱt controls the Signal-Noise-Ratio (SNR) of noisy sample xt.

Multi-view diffusion. The original x0 distribution addressed in 2D DMs is the (single) image
distribution in a dataset. We instead consider the (joint) distribution of multi-view images
I = {I1, ..., IN}, where each set of I are image observations of the same 3D scene (asset)
from viewpoints C = {c1, ..., cN}. The diffusion process is equivalent to diffusing each image
independently with the same noise schedule:

It = {
√
ᾱtI+

√
1− ᾱtϵI|I ∈ I} (1)

Note that this diffusion process is identical to the original one in DDPM, despite that we consider a
specific type of data distribution x = I denoting per-object 2D multi-view images.

Reconstruction-based denoising. The reverse of the 2D diffusion process is essentially denoising.
In this work, we propose to leverage 3D reconstruction and rendering to achieve 2D multi-view
image denoising, while outputting a clean 3D model for 3D generation. In particular, we leverage
a 3D reconstruction module E(·) to reconstruct a 3D representation S from the noisy multi-view
images It, and render denoised images with a differentiable rendering module R(·):

Ir,t = R(St, c), St = E(It, t, C) (2)

where Ir,t represents a rendered image from St at a specific viewpoint c.

Denoising the multi-view input It is done by rendering St at the viewpoints C, leading to the
prediction of noise-free I0. This is equivalent to x0 prediction in 2D DMs (Song et al., 2020a);
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one can solve for xt−1 from the input xt and prediction x0 to enable progressive denoising during
inference. However, unlike pure 2D generation, we find only supervising I0 prediction at input
viewpoints cannot guarantee high-quality 3D generation (see Tab. 3), often leading to degenerate 3D
solutions where input images are pasted on view-aligned planes. Therefore, we propose to supervise
novel-view renderings from the 3D model St as well, which leads to the following training objective:

Lrecon(t) = EI,c∼Ifull ,Cfull
ℓ
(
I,R(E(It, t, C), c)

)
(3)

where Ifull and Cfull represent the full set of images and poses (from both randomly selected input
and novel views), and ℓ(·, ·) is an image reconstruction loss penalizing the difference between
groundtruth I and rendering R(E(It, t, C), c). Note that our framework is general – potentially
any 3D representations (S) can be applied. In this work, we consider a (triplane) NeRF (Chan et al.,
2022) representation (where R(·) becomes neural volumetric rendering (Mildenhall et al., 2020))
and propose a LRM-based reconstructor E(·) (Hong et al., 2023).

3.2 RECONSTRUCTOR-BASED MULTI-VIEW DENOISER

We build our multi-view denoiser upon LRM (Hong et al., 2023) and uses large transformer model
to reconstruct a clean triplane NeRF (Chan et al., 2022) from noisy sparse-view posed images.
Renderings from the reconstructed triplane NeRF are then used as denoising outputs.

Reconstruction and Rendering. As shown in Fig. 3, we use a Vision Transformer (DINO (Caron
et al., 2021)) to convert input images I = {I1, ..., IN} to 2D tokens, and then use a transformer
to map a learnable triplane positional embedding to the final triplane representing the 3D shape
and appearance of an asset; the predicted triplane is then used to decode volume density and color
with an MLP (not shown in Fig. 3 to avoid clutterness) for differentiable volume rendering. The
transformer model consists of a series of triplane-to-images cross-attention and triplane-to-triplane
self-attention layers as in the LRM work (Hong et al., 2023). We further enable time conditioning
for diffusion-based progressive denoising and introduce a new technique for camera conditioning.

Time Conditioning. Our transformer-based model requires different designs for time-conditioning,
compared to CNN-based DDPM (Ho et al., 2020). Inspired by DiT (Peebles & Xie, 2022), we
condition on time by injecting the adaLN-Zero block (Ho et al., 2020) into the self- and cross-
attention layers of our model to effectively handle inputs with different noise levels.

Camera Conditioning. Training our model on datasets with highly diverse camera intrinsics
and extrinsics, e.g., MVImgNet (Yu et al., 2023), requires an effective design of input camera
conditioning to facilitate the model’s understanding of cameras for 3D reasoning. A basic strategy
is, as in the case of time conditioning, to use adaLN-Zero block (Peebles & Xie, 2022) on the
camera parameters (as done in Hong et al. (2023); Li et al. (2023)). However, we find that
conditioning on camera and time simultaneously with the same strategy tends to weaken the effects
of these two conditions and often leads to an unstable training process and slow convergence.
Instead, we propose a novel approach – parameterizing cameras with sets of pixel-aligned rays.
In particular, following Sitzmann et al. (2021); Chen et al. (2023a), we parameterize rays using
Plucker coordinates as r = (o × d,d), where o and d are the origin and direction of a pixel ray
computed from the camera parameters, and × denotes cross-product. We concatenate the Plucker
coordinates with image pixels, and send them to the ViT transformer for 2D image tokenization,
achieving effective camera conditioning.

3.3 CONDITIONING ON SINGLE IMAGE OR TEXT

The methods described thus far enable our model to function as an unconditional generative model.
We now introduce how to model the conditional probabilistic distribution with a conditional denoiser
E(It, t, C, y), where y is text or image, enabling controllable 3D generation.

Image Conditioning. We propose a simple but effective image-conditioning strategy that requires
no changes to our model architecture. We keep the first view I1 (in the denoiser input) noise-free to
serve as the conditioning image, while applying diffusion and denoising on other views. In this case,
the denoiser essentially learns to fill in the missing pixels within the noisy unseen views using cues
extracted from the first input view, similar to the task of image inpainting which has been shown to be
addressable by 2D DMs (Rombach et al., 2022a). In addition, to improve the generalizability of our
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image-conditioned model, we generate triplanes in a coordinate frame aligned with the conditioning
view and render other images using poses relative to the conditioning one. We normalize the input
view’s pose in the same way as LRM (Hong et al., 2023) during training, and specify the input
view’s pose in the same way too during inference.

Text Conditioning. To add text conditioning into our model, we adopt a strategy similar to that
presented in Stable Diffusion (Rombach et al., 2022a). We use the CLIP text encoder (Radford
et al., 2021) to generate text embeddings and inject them into our denoiser using cross-attention.
Specifically, we include an additional cross-attention layer after each self-attention block in the ViT
and each cross-attention block in the triplane decoder.

3.4 TRAINING AND INFERENCE

Training. During the training phase, we uniformly sample time steps t within the range [1, T ],
and add noise according to a cosine schedule. We sample input images with random camera poses.
We also randomly sample additional novel viewpoints to supervise the renderings (as discussed in
Sec. 3.1) for better quality. We minimize the following training objective with conditional signal y:

L = Et∼U [1,T ],(I,c)∼(Ifull,Cfull) ℓ
(
I,R(E(It, t,D, y), c)

)
(4)

For the image reconstruction loss ℓ(·, ·), we use a combination of L2 loss and LPIPS loss (Zhang
et al., 2018), with loss weights being 1 and 2, respectively.

Inference. For inference, we select four viewpoints that uniformly surround the object in a circle
to ensure a good coverage of the generated 3D assets. We fix the camera Field-of-Views to 50
degrees for the four views. Since we predict triplane NeRF aligned with the conditioning image’s
camera frame, we also fix the conditioning image’s camera extrinsics to have identity orientation and
(0,−2, 0) position, following the practice of LRM (Hong et al., 2023). We output the triplane NeRF
from the final denoising step as the generated 3D model. We utilize DDIM (Song et al., 2020a)
algorithm to improve the inference speed.

4 EXPERIMENTS

In this section, we present an extensive evaluation of our method. In particular, we briefly describe
our experiment settings (Sec. 4.1), compare our results with previous works (Sec. 4.2), and show
additional analysis and ablation studies (Sec. 4.3).

4.1 SETTINGS

Implementation details. We use AdamW optimizer to train our model with an initial learning rate
of 4e−4. We also apply a warm-up of 3K steps and a cosine decay on the learning rate. We train our
denoiser with 256 × 256 input images and render 128 × 128 image crops for supervision. To save
GPU memory for NeRF rendering, we use the deferred back-propagation technique (Zhang et al.,
2022). Our final model is a large transformer with 44 attention layers (counting all the self- and
cross-attention layers in the encoder and decoder) outputting 64×64×3 triplanes with 32 channels.
We use 128 NVIDIA A100 GPUs to train this model with a batch size of 8 per GPU for 100K steps,
taking about 7 days. Since the final model takes a lot of resources, it is impractical for us to evaluate
the design choices with this large model for our ablation study. Therefore, we also train a small
model that consists of 36 attention layers to conduct our ablation study. The small model is trained
with 32 NVIDIA A100 GPUs for 200K steps (4 days). Please refer to Tab. 6 in the appendix for an
overview of the hyper-parameter settings.

Datasets. Our model requires only multi-view posed images to train. We use rendered multi-view
images of ∼730k objects from the Objaverse (Deitke et al., 2023) dataset. For each object, we render
32 images under uniform lighting at random viewpoints with a fixed 50◦ FOV, following the settings
of LRM (Hong et al., 2023). To train our text-to-3D model, we use the object captions provided
by Cap3D (Luo et al., 2023), which covers a subset of ∼660k objects. For image-conditioned
(single-view reconstruction) model, we combine the Objaverse data with additional real captures of
∼220k objects from the MVImgNet (Yu et al., 2023) dataset, enhancing our model’s generalization
to out-of-domain inputs (see Fig. 7). We preprocess the MVImgNet dataset in the same way as
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Table 1: Evaluation Metrics of single-image 3D reconstruction on ABO and GSO datasets.
ABO dataset GSO dataset

FID ↓ CLIP ↑ PSNR ↑ LPIPS ↓ CD ↓ FID ↓ CLIP ↑ PSNR ↑ LPIPS ↓ CD ↓
Point-E 112.29 0.806 17.03 0.363 0.127 123.70 0.741 15.60 0.308 0.099
Shap-E 79.80 0.864 15.29 0.331 0.097 97.05 0.805 14.36 0.289 0.085
Zero-1-to-3 31.59 0.927 17.33 0.194 − 32.44 0.896 17.36 0.182 −
One-2-3-45 190.81 0.748 12.00 0.514 0.163 139.24 0.713 12.42 0.448 0.123
Magic123 34.93 0.928 18.47 0.180 0.136 34.06 0.901 18.68 0.159 0.113

Ours (S) 36.77 0.915 22.62 0.194 0.059 35.16 0.888 21.80 0.150 0.046
Ours 27.88 0.949 24.15 0.127 0.046 30.01 0.928 22.57 0.126 0.040
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Figure 4: Qualitative comparisons on single-image reconstruction.

LRM (Hong et al., 2023): for each capture, we crop out the object of interest for all views, remove
the background, and normalize the cameras to tightly fit the captured object into the box [−1, 1]3.
In general, these datasets contain a large variety of synthetic and real objects, allowing us to train a
generic category-free 3D generative model.

We evaluate our image-conditioned model on novel synthetic datasets, including 100 objects from
the Google Scanned Object (GSO) (Downs et al., 2022) and 100 objects from the Amazon Berkeley
Object (ABO) (Collins et al., 2022) datasets. This allows for direct comparison of single-view
reconstruction with the groundtruth. For each object, we select 20 views that uniformly cover an
object from the upper hemisphere to compute metrics; we pick a slightly skewed side view as input.

4.2 RESULTS AND COMPARISONS

Single-image reconstruction. We compare our image-conditioned model with previous methods,
including Point-E (Nichol et al., 2022), Shap-E (Jun & Nichol, 2023), Zero-1-to-3 (Liu et al., 2023b),
One-2-3-45 (Liu et al., 2023a), and Magic123 (Qian et al., 2023), on single-image reconstruction.
We evaluate the novel-view rendering quality from all methods using PSNR, LPIPS (Zhang et al.,
2018), CLIP similarity score (Radford et al., 2021) and FID (Heusel et al., 2017), computed between
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Figure 5: Qualitative comparisons on Text-to-3D.

the rendered and GT images. In addition, we also compute the Chamfer distance (CD) for geometry
evaluation, for which we use marching cubes to extract meshes from NeRFs. Note that accurate
quantitative evaluation of 3D generation remains a challenge in the field due to the generative nature
of this problem; we use the most applicable metrics from earlier works to assess our model and
baselines.

Tab. 1 reports the quantitative results on the GSO and ABO testing sets respectively. Note that our
models (even ours (S)) can outperforms all baseline methods, achieving the best scores across all
metrics for both datasets. Our high generation quality is reflected by the qualitative results shown
in Fig. 4; our model generates realistic results with higher-quality geometry and sharper appearance
details than all baselines.

In particular, the two-stage 3D DMs, Shap-E (3D encoder + latent diffusion) and Point-E (point
diffusion + points-to-SDF regression), lead to lower-quality 3D assets, often with incomplete shapes
and blurry textures; this suggests the inherent difficulties in denoising 3D points or pretrained 3D
latent spaces, a problem our model avoids. On the other hand, Zero-1-to-3 leads to better quantitative
results than Shap-E and Point-E on appearnce, because it’s a 2D diffusion model finetuned from
the pretrained Stable Diffusion (Rombach et al., 2022b) to generate novel-view images. However,
Zero-1-to-3 alone cannot output a 3D model needed by many 3D applications and their rendered
images suffer from severe inconsistency across viewpoints. This inconsistency also leads to the low
reconstruction and rendering quality from One-2-3-45, which attempts to reconstruct meshes from
Zero-1-to-3’s image outputs. On the other hand, the per-asset optimization-based method Magic123
can achieve rendering quality comparable to Zero-1-to-3 while offering a 3D mdoel. However,
these methods require long (hours of) optimization time and also often suffer from unrealistic Janus
artifacts (see the high heels object in Fig. 4). In contrast, our approach is a single-stage model
with 2D image training objectives and directly generates a 3D NeRF model (without per-asset
optimization) while denoising multi-view diffusion. Our scalable model learns strong data priors
from massive training data and produces realistic 3D assets without Janus artifacts. In general, our
approach leads to fast 3D generation and state-of-the-art single-image 3D reconstruction results.

Table 2: Evaluation Metrics on Text-to-3D.

Method VIT-B/32 ViT-L/14

R-Prec AP R-Prec AP

Point-E 33.33 40.06 46.4 54.13
Shap-E 38.39 46.02 51.40 58.03
Ours 39.72 47.96 55.14 61.32

Text-to-3D. We also evaluate our text-to-3D genera-
tion results and compare with 3D diffusion models
Shap-E (Jun & Nichol, 2023) and Point-E (Nichol
et al., 2022), that are also category-agnostic and sup-
port fast direct inference. For this experiment, we
use Shap-E’s 50 text prompts for the generation, and
evaluate the results with CLIP precisions (Jain et al.,
2022) and averaged precision using two different ViT
models, shown in Tab. 2. From the table, we can see
that our model achieves the best precision. We also
show qualitative results in Fig. 5, in which our results clearly contain more geometry and appearance
details and look more realistic than the compared ones.

4.3 ANALYSIS, ABLATION, AND APPLICATION

We analyze our image-conditioned model and verify our design choices using our small model
architecture for better energy efficiency. Refer to Tab. 6 in the appendix for an overview of the
hyper-parameter settings for this small model.
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Table 3: Ablation on GSO dataset (DMV3D-S).
#Views FID ↓ CLIP ↑ PSNR ↑ SSIM ↑ LPIPS ↓ CD ↓

4 (Ours) 35.16 0.888 21.798 0.852 0.150 0.0459

1 70.59 0.788 17.560 0.832 0.304 0.0775
2 47.69 0.896 20.965 0.851 0.167 0.0544
6 39.11 0.899 21.545 0.861 0.148 0.0454

w.o Novel 102.00 0.801 17.772 0.838 0.289 0.185

w.o Plucker 43.31 0.883 20.930 0.842 0.185 0.0505
Input Novel-viewInputNovel-view

Figure 6: Robustness to out-of-domain inputs: synthetic (top left), real (bottom left, top right),
and generated images (bottom right).
#Views. We show quantitative and qualitative comparisons of our models trained with different
numbers (1, 2, 4, 6) of input views in Tab. 3 and Fig. 8. We can see that our model consistently
achieves better quality when using more images, benefiting from capturing more shape and
appearance information. However, the performance improvement of 6 views over four views is
marginal, where some metrics (like PSNR, FID) from the 4-view model is even better. We therefore
use four views as the default setting to generate all of our main results.

Multiple instance generation. Similar to other DMs, our model can generate various instances from
the same input image with different random seeds as shown in Fig. 1, demonstrating the diversity of
our generation results. In general, we find the multiple instance results can all reproduce the frontal
input view while containing varying shape and appearance in the unseen back side.

Input sources. Our model is category-agnostic and generally works on various input sources as
shown in many previous figures (Fig. 1,2,4). We show additional results in Fig. 6 with various
inputs out of our training domains, including synthetic renderings, real captures, and generated
images. Our method can robustly reconstruct the geometry and appearance of all cases.

Ablation of MVImgNet. We compare our models trained with and without the real MVImgNet
dataset on two challenging examples. As shown in Fig. 7, we can see that the model without
MVImgNet can lead to unrealistic flat shapes, showcasing the importance of diverse training data.

Ablations of novel-view supervision and Plucker rays. We compare with our ablated models
including one trained without the novel-view supervision, and one without the Plucker ray
conditioning (using the adaLN-Zero block conditioning instead). We can also see that the novel
view rendering supervision is critical for our model. Without it, all quantitative scores drop by
a large margin due to that the model cheats by pasting the input images on view-aligned planes
instead of reconstructing plausible 3D shapes. In addition, our design of Plucker coordinate-based
camera conditioning is also effective, leading to better quantitative results than the ablated model.

Application. The flexibility and generality of our method can potentially enable broad 3D
applications. One useful image editing application is to lift any objects in a 2D photo to 3D by
segment them (using methods like SAM (Kirillov et al., 2023)) and reconstruct the 3D model with
our method, as shown in Fig. 1 and 2.

5 CONCLUSION

We present a novel single-stage diffusion model for 3D generation which generates 3D assets by
denoising multi-view image diffusion. Our multi-view denoiser is based on a large transformer
model (Hong et al., 2023), which takes noisy multi-view images to reconstruct a clean triplane
NeRF, outputting denoised images through volume rendering. Our framework supports text- and
image-conditioning inputs, achieving fast 3D generation via direct diffusion inference without per-
asset optimization. Our method outperforms previous 3D diffusion models for text-to-3D generation
and achieves state-of-the-art quality on single-view reconstruction on various testing datasets.
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Ethics Statement. Our generative model is trained on the Objaverse data and MVImgNet data.
The dataset (about 1M) is smaller than the dataset in training 2D diffusion models (about 100M to
1000M). The lack of data can raise two considerations. First, it can possibly bias towards the training
data distribution. Secondly, it might not be powerful enough to cover all the vast diversity in testing
images and testing texts. Our model has certain generalization ability but might not cover as much
modes as the 2D diffusion model can. Given that our model does not have the ability to identify
the content that is out of its knowledge, it might introduce unsatisfying user experience. Also, our
model can possibly leak the training data if the text prompt or image input highly align with some
data samples. This potential leakage raises legal and security considerations, and is shared among
all generative models (such as LLM and 2D diffusion models).

Reproducibility Statement. We provide detailed implementation of our training method in the
main text and also provide the model configurations in Table 6 of the appendix. We will help resolve
uncertainty of our implementation in open discussions.
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A APPENDIX

A.1 ROBUSTNESS EVALUATION.

We evaluate our model on GSO (Downs et al., 2022) renderings that use different camera Field-Of-
Views (FOVs) and lighting conditions to justify its robustness. Specifically, while the MVImgNet
dataset include diverse camera FOVs and lighting conditions, the Objaverse renderings we are also
trained on share a constant 50◦ FOV and uniform lighting. We evaluate the robustness of our image-
conditioned model by testing images with other FOV angles and complex environmental lightings.
As shown in Tab. 4, our model is relatively robust to the FOV of the captured images, though quality
indeed drops when the actual FOV deviates more from the 50◦ FOV we assume during inference
(see Sec. 3.4). However, it exhibits lower sensitivity to lighting variations, leading to similar quality
across different lighting conditions. When the lighting is non-uniform, our model bakes the shading
effects into the NeRF appearance, yielding plausible renderings.

Table 4: Robustness on GSO dataset.

Lighting/Fov Appearance Geometry

FID ↓ CLIP ↑ PSNR ↑ SSIM ↑ LPIPS ↓ CD ↓
Ours 30.01 0.928 22.57 0.845 0.126 0.0395
Fov10 35.69 0.912 19.136 0.820 0.207 0.0665
Fov30 32.309 0.921 20.428 0.839 0.166 0.0527
Fov70 32.095 0.921 20.961 0.860 0.154 0.0616
Fov90 34.438 0.912 19.952 0.855 0.190 0.0754

city 33.31 0.916 21.19 0.831 0.142 0.0437
night 36.32 0.907 20.383 0.829 0.161 0.0413
sunrise 33.264 0.917 21.080 0.843 0.140 0.0423
studio 36.32 0.927 21.383 0.839 0.141 0.0428

A.2 QUANTATIVE EVALUATION ON MVIMGNET.

MVImgNet (Yu et al., 2023) contains a diverse set of real data, which helps improve our
generalization capabilities for real data or out-of-domain data, as demonstrated in Fig 7. We
also perform quantative evaluation on the model with and without MVImgNet on the GSO
dataset (Downs et al., 2022) in Tab. 5. The reconstructed results in terms of appearance and geometry
are similar to the previous results only trained with Objaverse, indicating that MVImgNet improves
generalization without compromising the quality of reconstruction. We train both settings for an
equal number of 100K iterations with exactly the same learning rate schedules and computes.

Input w. MvImageNet w.o. MvImageNet

Figure 7: Qualitative comparison of our model trained with and without MVImgNet.

Table 5: Ablation of MVImgNet.

#Views Appearance Geometry

FID ↓ CLIP ↑ PSNR ↑ SSIM ↑ LPIPS ↓ CD ↓
w. MvImageNet 30.01 0.928 22.57 0.845 0.126 0.0395
w.o MvImageNet 27.76 0.924 21.85 0.850 0.128 0.0378
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A.3 IMPLEMENTATION DETAILS.

Our experiments are implemented in the PyTorch and the codebase is built upon guided diffu-
sion (Dhariwal & Nichol, 2021). For the AdamW optimizer, we use a weight-decay 0.05 and
beta (0.9, 0.95). Table 6 presents the detailed configuration of our various image-conditioned
models. The architecture of the text-conditioned model closely mirrors that of the image-conditioned
models, with the primary distinction being the approach to injecting the condition signal. For text-
conditioned models, we employ the CLIP text encoder to derive text embeddings, integrating them
into our denoiser through cross-attention layers. Specifically, in each transformer block within the
encoder and decoder, a new cross-attention layer is introduced between the original attention and
FFN. In such a case, text-conditioned models consistently exhibit larger sizes than their image-
conditioned counterparts, resulting in a slightly slower inference speed. During inference, we adopt
a classifier-free guidance approach Ho & Salimans (2022) with a scale of 5 to generate 3D assets
conditioned on text.

Small Large

Encoder
Image resolution 256×256 256×256
Patch size 16 8
Att. Layers 12 12
Att. channels 768 768

Decoder

Triplane tokens 32× 32× 3 32× 32× 3
Att. channels 768 1024
Att. layers 24 (12a+12c) 32 (16a+16c)
Triplane upsample 1 2
Triplane shape 32× 32× 3× 32 64× 64× 3× 32

Renderer

Rendering patch size 64 128
Ray-marching steps 48 128
MLP layers 10 10
MLP width 64 64
Activation ReLU ReLU

Diffusion
Times steps 1000 1000
Prediction target x0 x0

Schedule cosine cosine

Traininig
Learning rate 4e-4 4e-4
Optimizer AdamW AdamW
Warm-up steps 3000 3000
Batch size per GPU 8 8
#GPUS 32 128
Iterations 200K 100K
Training time 4 days 7 days

Dataset
Source MVImgNet & Objaverse MVImgNet & Objaverse
Mixing ratio 1:3 1:3
Resolution 256 256

Table 6: Implementation details for our models. Att. denotes the attention. a and c represents the
self-attention and cross attention.

A.4 VIEW NUMBERS

We have compared the effects of using different numbers of views quantitatively in Tab. 3. Here,
we also present qualitative results in Fig. 8. When there is only one view, the predicted novel view
is very blurry. However, when the view number increases to four, the results become much clearer.
When using six views, the improvement compared to four views is not significant, consistent to the
metrics reported in Tab. 3, indicating performance saturation. Therefore, our model uses four views
as the default configuration.

A.5 MORE COMPARISON.

We also include more qualitative comparison on single-view image reconstruction in Fig. 9.
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Input #view 1 #view 4#view 2 #view 6

Figure 8: Qualitative comparison on different view numbers.

Shap-E Point-E One-2-3-45 Magic123 Ours

Figure 9: Qualitative comparison on single-image reconstruction.
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