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Abstract

Neural image classifiers can often learn to001
make predictions by overly relying on non-002
predictive features that are spuriously corre-003
lated with the class labels in the training data.004
This leads to poor performance in real-world005
atypical scenarios where such features are ab-006
sent. This paper presents ASPIRE (Language-007
guided Data Augmentation for SPurIous cor-008
relation REmoval), a simple yet effective solu-009
tion for supplementing the training dataset with010
images without spurious features, for robust011
learning against spurious correlations via better012
generalization. ASPIRE, guided by language013
at various steps, can generate non-spurious im-014
ages without requiring any group labeling or015
existing non-spurious images in the training set.016
Precisely, we employ LLMs to first extract fore-017
ground and background features from textual018
descriptions of an image, followed by advanced019
language-guided image editing to discover the020
features that are spuriously correlated with the021
class label. Finally, we personalize a text-to-022
image generation model using the edited im-023
ages to generate diverse in-domain images with-024
out spurious features. ASPIRE is complemen-025
tary to all prior robust training methods in lit-026
erature, and we demonstrate its effectiveness027
across 4 datasets and 9 baselines and show that028
ASPIRE improves the worst-group classifica-029
tion accuracy of prior methods by 1% - 38%.030
We also contribute a novel test set for the chal-031
lenging Hard ImageNet dataset.032

1 Introduction033

Spurious correlations are unintended associations034

or biases learned by models, between the input im-035

age and the target label, often resulting from factors036

like data selection biases (Torralba and Efros, 2011;037

Jabri et al., 2016). The repeated co-occurrence of038

certain features (like foreground objects or back-039

grounds), with a more than average chance, within040

instances of a particular class leads the model to041
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Figure 1: Overview of ASPIRE. Given a training dataset,
ASPIRE automatically detects non-predictive spuriously corre-
lated features for each class (e.g., indoor background for small
dogs) and generates synthetic images without them (small
dogs in an outdoor background). These images can then be
added to the train set to learn a more robust image classifier.

learn shortcuts and focus on these spurious non- 042

predictive features for prediction than core ones. 043

For example, most of the images in ImageNet 044

dataset (Deng et al., 2009) labeled as Dog Sled 045

also show a dog, and image classifiers trained on 046

ImageNet fail to correctly identify an image of a 047

dog sled without a dog in it. 048

Instances of a class in the training set where the 049

co-occurring spurious features are present are com- 050

monly known as majority groups, while atypical 051

instances where such spurious features are absent 052

are known as minority groups. Deep neural net- 053

works trained on these datasets poorly generalize 054

on minority groups (naturally due to their scarcity) 055

and thus can exhibit significant performance degra- 056

dation on minority groups in the test (Sagawa et al., 057

2019), or in real-world scenarios when encounter- 058

ing domain shift (Arjovsky et al., 2019). When 059

training over-parameterized deep neural networks, 060

there are multiple solutions with the same loss val- 061

ues at any given training stage, and the optimizer 062

usually gravitates towards a solution with lesser 063

complexity (or tends to learn a shortcut) (Wilson 064

et al., 2017; Valle-Perez et al., 2018; Arpit et al., 065

2017; Kalimeris et al., 2019). When faced with co- 066

occurring spurious features, the optimizer may pref- 067
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erentially utilize them, as they often require less068

complexity than the anticipated semantic signals069

of interest (Bruna and Mallat, 2013; Bruna et al.,070

2015; Brendel and Bethge, 2019; Khani and Liang,071

2021). Even powerful classifiers like CLIP and ViT072

undergo a significant drop in performance when073

exposed to minority group images in the test (Yang074

et al., 2023; Kirichenko et al., 2023).075

Motivation. Learning classifiers robust to spurious076

correlations is an active area of research (Sagawa*077

et al., 2020; Liu et al., 2021a; Kirichenko et al.,078

2023), and has the potential to improve various079

Computer Vision (CV) applications such as visual080

question-answering (Liu et al., 2023d), retrieval081

(Kong et al., 2023; Kim et al., 2023), classification082

(Liu et al., 2021a), etc. have shown to consistently083

In prior work, researchers generally employed dif-084

ferent learning techniques with the assumption that085

annotated data for the minority groups existed in086

the training dataset. Most of these works are built087

on the same base principle: improved generaliza-088

tion on minority groups can lead to a more robust089

classifier. Despite extensive research in deep learn-090

ing indicating that more data may lead to better091

generalization, little effort has been made to lever-092

age this principle specifically for building robust093

classifiers. Additionally, we argue that it is imprac-094

tical to manually collect and label minority group095

images for real-world, large-scale datasets. For096

example, in more complex datasets like the Hard097

ImageNet, beyond the commonly evaluated CelebA098

(Liu et al., 2015) and Waterbirds (Welinder et al.,099

2010), a single class of images may have multiple100

spuriously correlated features. Thus, identifying all101

such features through human perception to collect102

and label minority group images is a difficult task.103

Main Contributions. In this paper, we present AS-104

PIRE, a novel technique to augment existing image105

classification datasets with diverse non-spurious106

images for building robust image classifiers. In-107

tuitively, our solution exploits the fact that more108

data can lead to better generalization on minor-109

ity groups (Sagawa et al., 2020; Liu et al., 2021b).110

Guided by language, ASPIRE does not depend111

on any additional image annotations or human-112

labeled non-spurious data and only requires a train-113

ing dataset and a standard model trained using Em-114

pirical Risk Minimization (ERM) to identify most115

of the spurious correlated features for each class in116

the training dataset. ASPIRE first selects a small117

portion of the total instances in the training set,118

misclassified by a classifier after ERM training. 119

These selected images are then captioned, and an 120

LLM extracts the tokens from the caption that de- 121

scribe the foreground objects and background. This 122

is followed by editing the image using advanced 123

language-guided image editing pipelines to remove 124

or replace one object at a time and predicting the 125

class of the edited image using the standard ERM 126

classifier. We attribute the objects or background 127

features that lead to the highest miss-prediction 128

(due to its absence) as plausible spurious correla- 129

tions learned by the model. Finally, we personalize 130

a diffusion model on the edited images to generate 131

diverse in-domain synthetic images for each class 132

with our desired features, i.e., without the plausi- 133

ble spurious correlations detected by ASPIRE. To 134

summarize, our main contributions are as follows: 135

• We propose ASPIRE, a method to expand ex- 136

isting datasets with non-spurious images to 137

build more robust image classifiers. ASPIRE 138

is dataset-agnostic (works with any dataset 139

with one or multiple spuriously correlated 140

features per class), training-method agnostic 141

(complements all other methodologies pro- 142

posed in prior work), and does not need any 143

additional labeled supervision of spurious fea- 144

tures or non-spurious images. 145

• We extensively evaluate ASPIRE on 4 datasets 146

and 9 baselines and show that augmentations 147

generated by ASPIRE improve the worst- 148

group accuracy of all baselines. Additionally, 149

we perform extensive qualitative analysis to 150

prove the effectiveness of ASPIRE. 151

• We contribute a novel test set for the Hard Im- 152

ageNet dataset (Moayeri et al., 2022) equally 153

balanced with spurious and non-spurious im- 154

ages to promote research in this space. 155

2 Methodology 156

Preliminaries. In this section, we provide an 157

overview of our proposed approach. Fig. 2 pic- 158

torially describes the various steps in ASPIRE. 159

Let’s assume we have a training dataset Dtrain 160

= {xi,yi}, where every group of images belong- 161

ing to a particular class predominantly has images 162

with co-occurring spurious features, also known 163

as the majority group. Dtrain might have a much 164

smaller number of non-spurious images, or might 165

not, which is also known as the minority group. 166
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Figure 2: Illustration of ASPIRE: ASPIRE follows a 6-step process to improve the robustness against spurious correlations.
1 We first train a base classifier E using ERM on the entire training set and extract images with features that are spuriously

correlated to construct Dhold. 2 We caption each image in Dhold. 3 We feed the caption to a LLM and extract the foreground
objects and background for each image. 4a We remove one foreground object at a time and predict the class of the edited image
E . If E predicts incorrectly, we consider the object as a plausible spurious correlation learned by E for that class. 4b We edit the
image to change its original background with an alternative background suggested by the LLM and follow the process to similar
to 4a . 5 We personalize a text-to-image diffusion model using edited images from the previous step for the top-k unique items
leading to the highest number of wrong predictions. 6 We re-train E using the generated augmentations to obtain Ê .

We do not assume our training dataset to have any167

group labeling or additional supervision, like label-168

ing for spurious objects. We also have a test dataset169

Dtest = {xi,yi} where both groups are represented170

equally. Additionally, we have a model E trained171

on Dtrain, using naive Empirical Risk Minimiza-172

tion (ERM). Thus, E would already identify the173

majority group images in Dtest with remarkable174

accuracy; our primary objective is to improve the175

performance of the classifier on the minority group176

without hurting the model’s overall performance.177

The next subsections describe each step in detail.178

(1) Extracting Dhold using E . We use E to ex-179

tract a small hold-out set from Dtrain, which we180

denote as Dhold. Dhold should consist of images181

with spurious correlations in the train (or the ma-182

jority group), which we will use in our later stages183

to detect the specific features that are the spurious184

correlations. Precisely, we first identify training185

examples that are correctly classified by a standard186

ERM model and then randomly select p% of them187

for constructing Dhold. We are inspired by prior188

work in this space and build on the heuristic that189

a well-trained classifier tends to have low majority190

group loss (and subsequently high majority group191

accuracy) (Liu et al., 2021a; Nam et al., 2020).192

(2) Image Captioning on Dhold. As mentioned193

earlier, ASPIRE depends on language guidance194

to achieve its primary objective of generating syn-195

thetic, non-spurious images. Thus, in this step, 196

we generate a textual description of each image 197

in Dhold, which can capture foreground and back- 198

ground information in the image. To accomplish 199

this, we use a state-of-the-art image captioning 200

model, GIT (Wang et al., 2022). We expect our im- 201

age description to include information about most 202

of the visible foreground objects and the predomi- 203

nant background, and we found captions generated 204

by GIT to meet these requirements and not suffer 205

from spurious correlations themselves. As caption- 206

ing tools get better, we acknowledge that replacing 207

GIT with its improved counterparts will improve 208

the performance of ASPIRE even further. 209

(3) Extracting objects and backgrounds from 210

captions. After captioning, we use LLMs to ex- 211

tract the phrases in the caption that correspond to 212

foreground and background objects and the single 213

predominant background. We assume our search 214

space for identifying spurious correlations to be 215

bounded within them, which is a reasonable as- 216

sumption in most real-world cases and also in line 217

with most prior work in this space (Joshi et al., 218

2023). Recent LLMs have been shown to possess 219

superior reasoning abilities, and we employ GPT-4 220

for our task (OpenAI, 2023). LLaMa-2 70B (Tou- 221

vron et al., 2023) also proved to be competitive 222

in this task. However, GPT-4 made fewer mis- 223

takes. An example of the input and output of this 224

step of ASPIRE is as follows: Original Caption: 225
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“A man with two dogs and a sled in the snow.",226

Original Label: “Dog Sled". Output: foreground:227

[“man",“dogs"], background:[“snow"], alternate228

background:[“desert"]. For simplicity, let us de-229

note the list of identified foreground and back-230

ground objects for image xi as Fi and the pre-231

dominant background as Bi (more about the alter-232

nate background in Step 4.b.). The task of extract-233

ing objects and backgrounds from text captions is234

effectively an information extraction task that in-235

volves understanding the structure of the sentence236

and the relationship between the words, and we237

found LLMs to deal better with anomalies and out-238

of-distribution text scenarios than traditional NLP239

methodologies (algorithmic details about the tradi-240

tional NLP method can also be found in Appendix241

A.2). Additionally, we want the identified objects242

or background to ignore the actual class label. This243

is crucial for the ASPIRE pipeline, as we do not244

want to edit the core feature in the image (discussed245

in detail in the next subsections). This can also be246

challenging as the class label may or may not ex-247

actly appear in the caption. However, we found248

LLMs to complete this task with remarkable ac-249

curacy and ASPIRE to be able to handle minor250

errors (due to top-k selection described later in this251

section). We use a single generic prompt with an-252

notated exemplars for all datasets, which can be253

found in Appendix A.6.254

(4.a.) Identifying spurious foreground objects.255

The primary objective of this step is to identify one256

or several unique features per class that are plausi-257

ble spurious correlations. To achieve this, we build258

on recent advancements in language-guided image259

in-painting to remove one object at a time identi-260

fied in Fi followed by allowing E to predict the261

class of the edited image. If E predicts the image262

correctly, we do not do anything with that image.263

If E predicts an image incorrectly, we identify the264

removed object as a plausible spurious correlation265

for the class c in the dataset and add the image to a266

set Dsynth (which we later use to personalize text-267

to-image generation). Additionally, we add the text268

phrase of the spurious object to another set Tsynth.269

Precisely, for every fore-ground object f in Fi,270

we first localize the object using Grounding DINO271

(Liu et al., 2023c), which takes as input the text272

phrase of f identified from the caption and out-273

puts a bounding box bb for f . This is followed by274

extracting the segmentation map M for f using275

Segment Anything (Kirillov et al., 2023), which276

accepts bb as the segmentation prompt. M is then 277

used to remove f from xi using LaMa image in- 278

painting (Suvorov et al., 2022). For detailed infor- 279

mation on the workings of Grounding DINO, Seg- 280

ment Anything, and LaMa, we request our readers 281

refer to the original paper. 282

(4.b.) Identifying spurious backgrounds. The pri- 283

mary objective of this step is to identify if the pre- 284

dominant background of the image xi serves as a 285

spurious correlation for the particular class c of im- 286

ages in the dataset to which xi belongs. Following 287

a hypothesis similar to (4.a.), we assume that if re- 288

moving the background b in Bi from xi can lead E 289

to a wrong prediction, b can be a plausible spurious 290

correlation. However, removing the background 291

altogether (and keeping just the foreground items) 292

not only disrupts the image semantics but is also 293

not representative of real-world cases. Prior work 294

also shows that removing the background forces 295

the model to pay attention to foreground objects 296

(Kirichenko et al., 2023) which are not suitable for 297

our use case. Thus, we employ recent advances 298

in instruction-based image editing to achieve this 299

task. We first leverage the superior reasoning abili- 300

ties of an LLM to suggest an alternate contrasting 301

background b̃ for the image from its caption. Next, 302

we instruct InstructPix2Pix (Brooks et al., 2023) to 303

convert the background of xi from b to b̃. Similar to 304

the previous step, if E predicts the image correctly, 305

we do not do anything with that image. However, 306

if E predicts an image incorrectly, we identify the 307

original background as a plausible spurious corre- 308

lation and add the edited image to Dsynth while we 309

add the original text phrase of the background from 310

the caption to Tsynth. 311

(5) Non-spurious augmentation generation. The 312

primary objective of this step is to generate in- 313

domain non-spurious images Daug for every class 314

in the dataset Dtrain. These generated augmenta- 315

tions can then be used to supplement the training 316

dataset Dtrain followed by re-training E to reduce 317

its reliance on the spurious correlations. Generat- 318

ing in-domain augmentations without non-spurious 319

features is crucial to the success of our approach 320

as out-of-distribution samples may adversely affect 321

model performance (Trabucco et al., 2023). The 322

most trivial approach would be to generate Daug by 323

prompting any open-source text-to-image model. 324

However, there exist two primary roadblocks to 325

this approach: (1) Open-source diffusion models 326

trained on internet-scale data generate diverse im- 327
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ages for diverse prompts. Thus, prompting these328

models does not confirm the consistency of gener-329

ations with the underlying distribution. (2) These330

models also posses spurious correlations or biases331

themselves (Trabucco et al., 2023). For example,332

prompting Stable Diffusion with the prompt: “pic-333

ture of a dog sled” generates dog sleds with dogs334

most of the time. Attaching negative words with335

the prompts (like “picture of a dog sled without a336

dog”) often leads to the same spurious images.337

To overcome the aforementioned problems and338

generate in-domain images with the desired non-339

spurious features, we resort to personalizing a text-340

to-image generation model. Specifically, we train341

Stable Diffusion using textual-inversion (Gal et al.,342

2023) with samples from top-k phrases in Tsynth,343

and their corresponding images in Dsynth. Textual-344

inversion effectively learns concepts and style from345

a small set of images for each class in Dsynth by346

just fine-tuning a single token in the embedding347

layer (which in our case is just the original class348

label) without over-fitting the generation model.349

Dsynth is the perfect candidate for extracting this350

small set as it contains non-spurious images, i.e.,351

images without spurious features and concepts. Fi-352

nally, we prompt the fine-tuned model to generate353

n× diverse samples for Daug.354

Top-k selection. Recall that Dsynth and their cor-355

responding text phrases in Tsynth represent all356

wrongly predicted edited instances, i.e., they have a357

diverse set of foreground objects and backgrounds358

for each class. Thus, we attribute only the top-k359

unique items in Tsynth with the highest frequen-360

cies as the spurious correlation associated with that361

class and use images from only the top-k items for362

diffusion personalization. However, due to diver-363

sity in generated captions, text phrases correspond-364

ing to the same type of objects and backgrounds365

may be represented in Tsynth in diverse forms, for366

e.g., [“dogs”,“dog”,“two dogs”, ⋯]. Thus, before367

selecting the top-k items, we first collapse all the368

similar phrases to one by first finding the root for all369

phrases in Tsynth by stemming and then calculating370

the cosine similarity between the glove embedding371

of the roots (to account for dissimilar roots, for372

e.g., “snow” and “snowy mountain”). Items with a373

cosine similarity of ≥ 0.90 are collapsed into one.374

(6) Re-training the base classifier E . Once we375

have generated Daug, we add the generated images376

to the existing Dtrain to re-train our standard classi-377

fier E . As mentioned earlier, the ASPIRE augmen-378

tation methodology is training-method-agnostic,379

and the augmentations generated can be coupled 380

with any existing training approach from literature. 381

The next Section describes how we add ASPIRE 382

augmentations to our baseline training pipelines. 383

3 Experimental Setup 384

Datasets. To evaluate the effectiveness of ASPIRE, 385

we experiment on 4 benchmark datasets, includ- 386

ing Waterbirds (Sagawa et al., 2019), CelebA (Liu 387

et al., 2015), SPUCO Dogs (Joshi et al., 2023) and 388

Hard ImageNet (Moayeri et al., 2022). The Water- 389

birds dataset, generated synthetically by combining 390

images of birds from the CUB dataset (Wah et al., 391

2011) and backgrounds from the Places dataset 392

(Zhou et al., 2017), has 4 groups of images in train- 393

ing and testing datasets including waterbirds on 394

water background, waterbirds on land background, 395

landbirds on water background and landbirds on 396

land background. The minority groups for the 397

dataset (groups with the least number of samples 398

in the training set) are waterbirds on land and land- 399

birds on water. The main challenge is correctly 400

identifying the minority groups in the test. For 401

CelebA, we perform the hair color prediction task, 402

which has 4 groups of images, including blond 403

and non-blond males and blond and non-blond fe- 404

males. The minority group is blond males. SPUCO 405

Dogs has 4 groups of images, including big dogs 406

in indoor and outdoor settings and small dogs in 407

indoor and outdoor settings. The minority groups 408

are big dogs indoors and small dogs outdoors. The 409

Hard ImageNet dataset has images from 15 Ima- 410

geNet synsets and is more complex than the other 3 411

datasets, does not have group labeling, and has mul- 412

tiple spurious correlations for each class. For more 413

details, we request our readers to refer to Moay- 414

eri et al. (2022). Since the dataset does not have 415

a test set, we contribute a novel expert-annotated 416

test dataset with 25 spurious and 25 non-spurious 417

images per class. The spurious and non-spurious 418

features for each class were inspired by the origi- 419

nal paper. More details about dataset statistics and 420

annotation can be found in Appendix A.1. 421

Baselines. To prove the efficacy of ASPIRE aug- 422

mentations, we add ASPIRE augmentations to 423

the original training pipeline for various robust 424

training methods proposed in literature. Precisely, 425

we employ Group DRO (Sagawa et al., 2019), 426

SUBG (Idrissi et al., 2022), Just Train Twice (JTT), 427

Learning from Failure (LfF) (Nam et al., 2020), 428

Correct-n-Contrast (CnC) (Zhang et al., 2022), 429
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Method Waterbirds CelebA SpucoDogs Hard ImageNet

Worst-group Acc. (%) Avg Acc. (%) Worst-group Acc. (%) Avg Acc. (%) Worst-group Acc. (%) Avg Acc. (%) Worst-group Acc. (%) Avg Acc. (%)

ERM 74.4 96.9 43.4 95.5 42.3 74.5 12.6 74.3
ERM + Azizi et al. 71.8 97.1 36.2 96.7 39.6 75.4 10.7 76.7
ERM + Gowal et al. 75.7 85.6 45.7 96.4 46.8 73.7 23.3 83.4

ERM + ASPIRE 78.7±1.31 (+4.3) 89.6±1.10 50.5±0.79 (+7.1) 95.4±1.08 51.6±0.86 (+9.3) 75.5±1.18 50.1±1.26 (+37.5) 96.5±1.32
LfF (Nam et al., 2020) 78.0 91.2 77.2 85.1 70.2 80.8 58.8 92.5
LfF + Azizi et al. 74.2 92.3 74.4 85.7 67.5 81.6 54.3 92.6
LfF + Gowal et al. 81.0 89.3 78.2 85.8 72.9 80.9 60.3 92.7

LfF + ASPIRE 83.2±0.20 (+5.2) 91.4±1.12 81.7±0.43 (+4.5) 86.3±1.25 75.4±0.38 (+5.2) 80.9±0.31 63.8±0.30 (+5.0) 92.7±0.21
Group DRO (Sagawa et al., 2019) 91.4 93.5 88.9 92.9 75.4 82.8 65.6 91.8
Group DRO + Azizi et al. 88.2 94.1 85.6 93.2 71.7 84.1 62.8 92.9
Group DRO + Gowal et al. 91.6 94.2 89.8 93.7 76.3 83.4 65.5 91.7

Group DRO + ASPIRE 92.8±0.49 (+1.4) 94.6±0.49 90.1±1.08 (+1.2) 94.3±0.92 78.7±1.26 (+3.3) 84.3±0.58 67.4±1.01 (+1.8) 92.4±0.59

JTT (Liu et al., 2021b) 86.7 93.3 81.1 88.0 73.0 80.4 63.5 90.6
JTT + Azizi et al. 83.2 94.9 78.3 90.2 71.8 82.2 61.4 92.4
JTT + Gowal et al. 87.5 94.2 83.8 89.6 74.1 81.1 64.1 91.9

JTT + ASPIRE 90.2±1.16 (+3.5) 94.6±1.24 85.7±0.64 (+4.6) 91.6±0.75 75.5±1.33 (+2.5) 81.7±1.12 65.2±0.54 (+1.7) 92.9±0.82
DivDis (Lee et al., 2022) 85.6 87.3 55.0 90.8 39.3 65.5 15.5 71.8
DivDis + Azizi et al. 84.2 88.6 53.7 92.2 37.5 66.4 13.7 77.2
DivDis + Gowal et al. 86.3 87.4 56.1 91.2 42.1 66.3 23.9 76.9

DivDis + ASPIRE 87.2±0.49 (+1.6) 87.8±0.84 57.4±1.13 (+2.4) 91.6±0.66 43.6±1.48 (+4.3) 67.1±1.22 35.5±0.82 (+20.0) 77.6±0.34
SUBG (Idrissi et al., 2022) 88.9 91.2 86.2 89.1 74.2 81.5 62.3 90.9
SUBG + Azizi et al. 86.5 91.8 85.4 91.3 72.3 81.6 60.5 92.9
SUBG + Gowal et al. 89.7 91.7 88.2 89.9 75.6 81.7 64.8 91.6

SUBG + ASPIRE 90.7±0.62 (+1.8) 92.1±0.88 88.6±1.37 (+2.4) 90.1±0.64 77.5±0.73 (+3.3) 83.5±0.92 66.7±1.22 (+4.4) 92.4±0.63

Correct-n-Contrast (Zhang et al., 2022) 88.7 90.6 88.1 89.4 73.7 81.2 60.5 91.7
Correct-n-Contrast + Azizi et al. 84.3 93.4 85.2 91.3 70.8 85.6 58.7 93.3
Correct-n-Contrast + Gowal et al. 89.1 91.7 88.7 90.6 74.9 82.6 63.2 92.1

Correct-n-Contrast + ASPIRE 90.8±1.18 (+2.1) 92.6±1.48 89.9±1.45 (+1.8) 91.3±0.28 76.8±1.10 (+3.1) 83.1±1.04 65.9±0.94 (+5.4) 91.9±1.11

MaskTune (Taghanaki et al., 2022) 78.0 91.2 77.9 92.5 31.6 59.2 33.0 58.5
MaskTune + Azizi et al. 75.8 93.4 73.3 93.5 26.3 63.4 28.9 61.3
MaskTune + Gowal et al. 79.3 85.2 78.8 88.1 35.2 60.7 35.3 55.8

MaskTune + ASPIRE 81.6±1.28 (+3.6) 91.3±0.54 81.2±0.22 (+3.3) 92.8±0.38 37.5±0.33 (+5.9) 61.3±1.05 41.0±0.61 (+8.0) 60.2±0.37

DFR (Kirichenko et al., 2023) 81.7 90.1 80.5 85.3 78.8 83.2 33.3 95.7
DFR + Azizi et al. 78.6 92.7 78.3 88.4 72.1 85.1 29.5 96.3
DFR + Gowal et al. 83.1 86.5 83.4 86.2 81.0 84.4 35.2 92.0

DFR + ASPIRE 85.3±1.34 (+3.6) 91.7±0.79 85.5±0.64 (+5.0) 89.5±0.51 84.2±0.83 (+5.4) 87.5±0.57 37.5±0.39 (+4.2) 96.2±0.91

Table 1: Average and worst-group test accuracies of all baselines trained with and without ASPIRE augmentations. ASPIRE
substantially improves the worst-group accuracy of all baselines (in the range of 1% - 38%) with just 1× more augmentations.

Deep Feature Reweighting (DFR). (Kirichenko430

et al., 2023) and MaskTune (Asgari et al., 2022),431

To this list, we add the standard Empirical Risk432

Minimization (ERM) baseline, trained using SGD433

without any additional modifications. Additionally,434

we compare ASPIRE augmentations with augmen-435

tations generated using the methods proposed by436

Gowal et al. (2021) and Azizi et al. (2023). More437

details on baselines and how ASPIRE augmenta-438

tions were added for training can be found in Ap-439

pendix A.4. We do not experiment with CLIP (Rad-440

ford et al., 2021) or other LVLMs like LLaVa (Liu441

et al., 2023a) as there is no simple method to fine-442

tune them for robustness against spurious correla-443

tions proposed in literature. ASPIRE is only meant444

to complement methods proposed on the standard445

framework of fine-tuning vision encoders for image446

classification (all baselines mentioned), and we447

only experiment with the systems proposed under448

this framework.449

Hyper-parameters. For training the base ERM450

model, we train the model for 100 epochs with a451

learning rate of 1e−3 using the SGD optimizer with452

a weight decay of 1e−4. For training all other base-453

lines, we use the original hyper-parameter settings 454

proposed by the authors in their original paper. This 455

includes the seed settings and the number of runs 456

for every model. We use just 1 × augmentations 457

of non-spurious images. Though this is possible 458

for us as all our current datasets are also anno- 459

tated with group labels, the number of ASPIRE 460

augmentations to be added can be decided using 461

hyper-parameter search, and we noticed no signs of 462

over-fitting till 3× augmentations (see Appendix 1). 463

For top-k, we resort to k=3 post a hyper-parameter 464

search among k={1,2,3,4,5}. k=3 seemed to cap- 465

ture the most major spurious correlations while 466

ignoring the minor ones. Examples of extracted 467

top-k can be found in Figure 4 and Appendix 1. For 468

prompting InstructPix2Pix, we use Text CFG=7.5 469

and Image CFG=1.5. Prompt in Appendix A.6. 470

4 Results and Analysis 471

4.1 Quantitative Analysis 472

Table 1 compares the results of 9 baselines trained 473

with and without ASPIRE augmentations. Worst- 474

group accuracy corresponds to the accuracy of mi- 475

nority groups (or non-spurious images) in the test. 476
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Worst-group Acc.(%) Avg. Acc.(%)
ASPIRE - Step 4.a. 70.65 86.54
ASPIRE - Step 4.b. 66.40 82.67
ASPIRE - Step 5. 65.75 81.44

ASPIRE 71.80 87.39

Table 2: Ablation study of ASPIRE. “-” indicates that the
step was removed from the ASPIRE pipeline. All results are
averaged across all datasets.

As we clearly see, with just 1× augmentations, AS-477

PIRE improves the average accuracy of our base-478

lines by 0.1%-22.2% and the worst-group accuracy479

of our baselines by 1.2%-37.5%. ASPIRE consis-480

tently achieves higher gains in worst-group accu-481

racy and only undergoes a slight drop in average482

accuracy in some settings, which is in line with483

prior art and our primary motivation of improv-484

ing robustness against spurious correlations. We485

notice the highest gains in Hard ImageNet, a fun-486

damentally more difficult dataset with no minority487

group images in the training dataset and multiple488

spurious correlations per class. Our standard ERM489

model also witnesses the highest gains among all490

other baselines. On average, our 2-stage training491

baselines improve by a higher margin on average492

than 1-stage baselines due to improved explicit493

generalization over ASPIRE augmentations. The494

method proposed by Gowal et al. (2021) consis-495

tently underperforms ASPIRE, thereby highlight-496

ing that explicitly removing spurious features in497

the generated dataset improves robustness. On498

the other hand, the method proposed by Azizi499

et al. (2023) significantly underperforms ASPIRE500

in worst group accuracy but outperforms in average501

accuracy in some settings. This is due to the fact502

that standard data augmentation amplifies spurious503

correlations already present in the training set as it504

generates images with similar features to those on505

which it is conditioned.506

Ablations. Table 2 removes certain key compo-507

nents in the ASPIRE pipeline to prove their effi-508

cacy. As we see, the ASPIRE performance de-509

creases significantly when the image generation510

step is removed (and only edited images are used511

for training the robust classifier). Additionally, AS-512

PIRE undergoes a sharper drop in performance513

when foreground identification is removed than the514

background, which we attribute to the design of the515

test set minority groups of existing datasets.516

4.2 Qualitative Analysis517

Fig. 3 illustrates the GradCAM visualizations518

of the features used by the standard ERM model519

(a) Without augmentations. (b) With augmentations.

(c) Without augmentations. (d) With augmentations.

Figure 3: GradCAM visualizations of the features used by
the standard ERM model trained with and w/o ASPIRE aug-
mentations on the Hard ImageNet dataset (Balance beam top
and Volleyball bottom). As clearly visible, when trained with
ASPIRE augmentations, the model tends to focus better on
core features than spurious ones (more in Appendix B).

trained with and w/o ASPIRE augmentations for 520

two classes from the Hard ImageNet dataset, Vol- 521

leyball and Horizontal Bar. When trained with 522

ASPIRE augmentations, the model tends to focus 523

better on core features corresponding to the actual 524

class than spurious ones. Fig. 4 illustrates ex- 525

amples of original images, edited images (edited 526

by the ASPIRE pipeline), and ASPIRE-generated 527

augmentations. ASPIRE successfully captures the 528

major spurious cues learned by a model (shown in 529

top-k) and generates diverse images without them. 530

We show more examples in Appendix B and C and 531

illustrate some failure cases in Appendix D. 532

5 Literature Review 533

Geirhos et al. (2020) provides a detailed survey on 534

how image classification models perform poorly 535

when trained on datasets with spurious correlations. 536

Following this, a lot of works explore SGD train- 537

ing dynamics and inductive biases of such models 538

in the presence of spurious correlations (Nagara- 539

jan et al., 2021; Pezeshki et al., 2021; Rahaman 540

et al., 2019). Shah et al. (2020) shows how deep 541

neural networks, trained using ERM, can take short- 542

cuts and learn to rely on spurious features rather 543

than core features for a class. They call this phe- 544

nomenon the extreme simplicity bias. Hermann 545

and Lampinen (2020) and Jacobsen et al. (2019) 546
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Figure 4: Examples of Original Images, Edited Images from the ASPIRE pipeline and Generated Augmentations. To the
left of the Generated Augmentations, we also mention the top-k spurious correlations discovered by ASPIRE for the particular
class. ASPIRE generates diverse augmentations with the desired non-spurious features that can be used to train robust models.

further present examples with both natural and syn-547

thetic images, highlighting instances where these548

networks overlook core features. Shinoda et al.549

(2023) explore the types of shortcuts that are more550

likely to be learned.551

A plethora of methods in literature propose novel552

training strategies for improving robustness against553

spurious correlations (Ben-Tal et al., 2011; Hu554

et al., 2018; Sagawa* et al., 2020; Oren et al., 2019;555

Zhang et al., 2021). A detailed explanation of all556

these methods can be found in Section 3 and Ap-557

pendix A.4.558

The use of synthetic data for improving the per-559

formance of downstream CV tasks has been ex-560

plored extensively in the past. For data-driven gen-561

erative models, GANs have remained the predomi-562

nant approach to date (Brock et al., 2018; Li et al.,563

2022). Very recently, He et al. (He et al., 2022) em-564

ploy large-scale text-to-image models like GLIDE565

(Nichol et al., 2021) to augment training data with566

synthetic images and show improvement in image567

classification performance.568

Prior work explores language-guidance for im-569

age generation for varied objectives. For example,570

Prabhu et al. (2023) proposes to generate counter-571

factual images for stress-testing image classifica- 572

tion models. On similar lines, Wiles et al. (2022) 573

and Vendrow et al. (2023) propose to identify 574

failure cases and spurious correlations using aug- 575

mented data generated using language-guidance. 576

Finally, Dunlap et al. (2023) proposes to adapt a 577

model to new domains using augmented data. To 578

the best of our knowledge, generative data aug- 579

mentation with or without language-guidance for 580

improving robustness against spurious correlations 581

has not yet been explored. 582

6 Conclusion 583

In this paper, we present ASPIRE, a novel data 584

augmentation methodology to augment existing 585

datasets with non-spurious minority group images 586

to build robust and de-biased image classifiers. We 587

evaluate ASPIRE on 4 benchmark datasets with 9 588

baselines and show that ASPIRE augmentations 589

improve the worst-group accuracy of all baselines 590

while maintaining average accuracies. 591

Limitations and Future Work 592

As part of future work, we would like to address 593

the current limitations of ASPIRE, which include: 594
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1. ASPIRE is limited to how well image caption-595

ing models can describe the image. Though596

captioning models improve over time, we597

would like to explore novel ways to resolve598

this bottleneck. For example, Large Multi-599

Modal Language Models like LLaVa (Liu600

et al., 2023b) have been shown to perform601

exceptionally well at generating detailed cap-602

tions of input images.603

2. The edited images used to personalize text-to-604

image generation may sometimes be of low605

quality, leading to poor augmentations in more606

complex datasets, and we would like to ex-607

plore ways to resolve this bottleneck. We also608

acknowledge that the advancement of text-to-609

image diffusion models to better follow text610

prompts will eventually lead to performance611

improvement of ASPIRE.612

3. The different components of ASPIRE add613

computational overhead to the ASPIRE614

pipeline (over just the ERM classifier). How-615

ever, it should be noted that a wealth of litera-616

ture in offline data augmentation for NLP and617

CV tasks (through synthetic data generation)618

almost always employs computationally ex-619

pensive foundation models for additional data620

generation. Textual-inversion fine-tuning of621

diffusion models used in our experiments is622

also computationally cheaper than full fine-623

tuning. Lastly, as part of future work, we624

would like to explore computationally cheaper625

alternatives to an LLM for information extrac-626

tion from captions. Additionally, the augmen-627

tation process is completely offline and needs628

to be done just once for each dataset.629

4. We also illustrate some failure cases of AS-630

PIRE in Appendix D.631

Ethics Statement632

Image generation models are prone to generating633

harmful, obscene and offensive context for certain634

classes pf objects, we prevent this from happen-635

ing in ASPIRE by using a safety checker for the636

Stable Diffusion model which estimates whether637

a generated images could be considered offensive638

or harmful. For the CelebA dataset, ASPIRE per-639

forms modification where genders of people are640

swapped to debias the model towards certain at-641

tributes related a class. This approach is used only642

to improve the fairness and debiasing of the model.643
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A Appendix965

A.1 Dataset Details966

Table A.8 shows dataset details for all 4 datasets967

used in our experiments. As clearly visible, there968

is a notable disparity between the number of im-969

ages representing minority groups (non-spurious970

images) and those representing majority groups971

(images with spuriously correlated features). In972

contrast, the test set for each dataset maintains973

a balanced representation between the minority 974

and majority groups. This can lead classifiers to 975

quickly adopt spurious correlations, resulting in 976

sub-optimal performance on the test set.

Dataset Train Test

Majority Minority Majority Minority
Group Group Group Group

Hard ImageNet 19097 0 375 375
Waterbirds 4555 240 2897 2897
CelebA 161383 1387 19782 180
Spuco Dogs 17000 1000 1000 1000

Table 3: Dataset details

977

A.2 Algorithm 978

Algorithm 1 describes algorithmically the ASPIRE 979

pipeline. Readers can refer to the algorithm for a 980

detailed step-by-step understanding of the work- 981

ings of ASPIRE. 982

A.3 Traditional NLP algorithm details 983

Introduction Extracting foreground objects and 984

the background from a caption using traditional 985

Natural Language Processing (NLP) techniques 986

and libraries like SpaCy involves several steps. 987

Here’s a general approach: 988

Text Preprocessing First, preprocess the text to 989

ensure it’s in a suitable format for analysis. This 990

might include: 991

• Lowercasing all words. 992

• Removing punctuation and special characters. 993

• Tokenization: Breaking the text into individ- 994

ual words (tokens). 995

Part-of-Speech Tagging Use SpaCy to perform 996

part-of-speech (POS) tagging, which identifies the 997

grammatical parts of speech for each word (e.g., 998

noun, verb, adjective). This is crucial for identify- 999

ing potential objects and elements of the scene. 1000

Named Entity Recognition (NER) Employ 1001

Named Entity Recognition to identify named en- 1002

tities in the text, which can include names of peo- 1003

ple, places, organizations, or other proper nouns. 1004

These entities can be part of the foreground or back- 1005

ground. 1006

Dependency Parsing Dependency parsing helps 1007

understand the grammatical structure of the sen- 1008

tence, showing how words relate to each other. 1009

This is useful to distinguish between main subjects 1010
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(likely foreground objects) and contextual elements1011

(possibly background).1012

Chunking or Phrase Detection Use chunking or1013

phrase detection to group together contiguous se-1014

quences of tokens that form meaningful phrases.1015

Noun phrases, in particular, are often key in identi-1016

fying objects and scene elements.1017

Identifying Foreground and Background Fore-1018

ground Objects Typically, these are nouns or noun1019

phrases that are the main subjects or objects of the1020

sentence. They often appear with adjectives and1021

are part of active clauses.1022

Background Information This can include de-1023

scriptions of settings, locations, or contexts. Ad-1024

verbial phrases and clauses, as well as descriptive1025

language, can signal background details.1026

SpaCy Implementation Here’s a simple imple-1027

mentation using SpaCy:1028

import spacy1029

1030

# Load the SpaCy model1031

nlp = spacy.load("en_core_web_sm")1032

1033

def extract_foreground_background(text):1034

doc = nlp(text)1035

1036

foreground = []1037

background = []1038

1039

for token in doc:1040

# Check for nouns and proper nouns1041

for foreground1042

if token.pos_ in ["NOUN", "PROPN"]:1043

foreground.append(token.text)1044

1045

# Background might be set by1046

adverbial phrases or adjectives1047

if token.pos_ in ["ADJ", "ADV"]:1048

background.append(token.text)1049

1050

# Check for named entities1051

if token.ent_type_:1052

if token.ent_type_ in ["PERSON",1053

"ORG", "GPE"]:1054

foreground.append(token.text)1055

else:1056

background.append(token.text)1057

1058

return foreground, background1059

1060

# Example Usage1061

text = "The cat sat on the mat in the 1062

sunny room." 1063

foreground, background = 1064

extract_foreground_background(text) 1065

print("Foreground:", foreground) 1066

print("Background:", background) 1067

A.4 Details on Baselines 1068

To maintain training efficiency, for training each 1069

baseline with ASPIRE augmentations, we add only 1070

1× more augmentations to the original dataset for 1071

CelebA, Waterbirds, and SPUCO Dogs, or effec- 1072

tively or effectively double the number of non- 1073

spurious minority group images in each dataset. 1074

These 3 datasets have labeled minority groups, and 1075

thus, the number of augmentations to be added 1076

amounted to the total minority group images in 1077

each class of the original dataset. For Hard Im- 1078

ageNet, we add as many more augmentations as 1079

the total number of original training samples in 1080

each class of the original dataset. We elaborate 1081

on the rationale behind the choice of our baseline 1082

setup in Appendix A.5, where we also describe 1083

why we choose not to compare ASPIRE with large 1084

multi-modal models. We next describe how we 1085

add ASPIRE augmentations to the original training 1086

pipeline for different baselines. 1087

Emperical Risk Minimization (ERM) For this 1088

baseline, we compare a ResNet-50 model trained 1089

using ERM (with SGD) on the original dataset 1090

with a ResNet-50 model trained on the original 1091

dataset augmented with ASPIRE augmentations. 1092

For ERM, we just add ASPIRE augmentations to 1093

the initial training set. 1094

1-stage training baselines. Group DRO (Sagawa 1095

et al., 2019) is a state-of-the-art method that 1096

uses group information on train and adaptively 1097

upweights worst-group examples during training. 1098

SUBG (Idrissi et al., 2022) is ERM applied to a 1099

random subset of the data where the groups are 1100

equally represented, which was recently shown to 1101

be a strong baseline. We also add ASPIRE augmen- 1102

tations to the initial training set for both baselines. 1103

2-stage training baselines. Just Train Twice 1104

(JTT). JTT follows a 2-stage training process 1105

wherein they first identify training examples that 1106

are misclassified by a standard ERM model, and 1107

then train the final model by upweighting the ex- 1108

amples identified in the first stage. Learning from 1109

Failure (LfF). (Nam et al., 2020) Similar to JTT, 1110

LfF follows a 2-stage training process wherein 1111
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Algorithm 1 ASPIRE Data Augmentation Algorithm
Data: Image Classification Dataset Dtrain → {xi (Image), yi (Label)};
E = Classifier(xi, yi) // Image classification model
C = Captioning(xi) // Image captioning model
L = LLM(Prompt, Captions, y) // LLM to extract foreground and background objects.
BG = InstructPix2Pix(b, b̃, xi) // InstructPix2Pix to convert background of an image.
G = GroundingDino(f, xi) // Creates bounding box around objects.
S = SegmentAnything(bb) // Extracts image segmentation maps from bounding boxes.
I = InpaintAnything(M, xi) // Removal of objects corresponding to segmentation maps.
Dcorrect ← ∅ for xi in Dtrain do
// Consider only the images which are predicted correctly.

if E(xi) == yi then
Dcorrect ← Dcorrect ∪ {(xi, yi)};

end
end
Sample p% of Dcorrect to create Dhold.
Dcaptions ← C(Dhold) // Caption the images in the holdout set.
Fi,Bi ← L(Prompt,Dcaptions,D

y
hold) // Extract foreground and background objects by

prompting the LLM.
Dsynth ← ∅, Tsynth ← ∅;
for {f} in Fi do

bb ← G(f, xi); // Create the bounding boxes.
M ← S(bb); // Extract the segmentation maps.

x
mod
i ← I(M); // Modify image by removing the foreground object.

// Consider only the images which are predicted wrong after modification.
if ycorrecti ≠ E(xmod

i ) then
Dsynth ← Dsynth ∪ {xmod

i };
Tsynth ← Tsynth ∪ {f};

end
end
for {b, b̃} in Bi do

x
mod
i ← BG(b, b̃, xi);// Change image background as suggested by the LLM.
// Consider only the images which are predicted wrong after modification.
if ycorrecti ≠ E(xmod

i ) then
Dsynth ← Dsynth ∪ {xmod

i };
Tsynth ← Tsynth ∪ {b};

end
end
// Collapse synthetic dataset based on text phrases that are similar to each other.
Select top-k items that have the highest count per image class in the dataset.
T k
synth,D

k
synth ← TopK(Col(Tsynth,Dsynth))

Train the Stable Diffusion model SD using Dk
synth.

Generate Daug from SD.
// Creating a new training dataset by combining the augmentations with the original
training data.
Dnew

train ← Dtrain ∪Daug;
// Retrain the original image captioning model on the new training data.
Retrain E on Dnew

train.
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they first identify training examples that are mis-1112

classified by a biased ERM model, and then train1113

the final model by re-weight training samples us-1114

ing the relative difficulty score based on the loss1115

of the biased model. Correct-n-Contrast (CnC)1116

(Zhang et al., 2022) detects the minority group1117

examples similarly to JTT and uses a contrastive1118

objective to learn representations robust to spurious1119

correlations. Deep Feature Reweighting (DFR).1120

(Kirichenko et al., 2023) DFR follows a 2-stage1121

training process wherein they first fine-tune a pre-1122

trained ResNet model (pre-trained on the entire Im-1123

ageNet dataset) using ERM on the entire train split1124

followed by re-training the last layer using a small1125

set from the train with an equal number of instances1126

for both majority and minority groups. MaskTune.1127

(Asgari et al., 2022) follows a 2-stage training pro-1128

cess, wherein they first fine-tune a ResNet model1129

on a dataset using ERM on the entire train split fol-1130

lowed by re-training the model with new masked1131

data for one full epoch. For all these baselines, we1132

add ASPIRE augmentations to the set used in the1133

second stage of training.1134

A.5 Choice of Baselines1135

To the best of our knowledge, there exists no prior1136

method in literature that generates minority group1137

images to expand the training set. Most work has1138

focused on devising novel training methods for ro-1139

bust classification, all of which are complementary1140

to ASPIRE and compared to our method in this1141

paper. As also mentioned in Section 5 of our paper,1142

generative data augmentation for improving over-1143

all accuracy has been explored but is unrelated to1144

our method. Additionally, the primary aim of AS-1145

PIRE is to improve the downstream performance1146

of image classification models. We acknowledge1147

that other types of models, like instruction-tuned1148

Vision-Language Models (Liu et al., 2023b), might1149

identify and classify the image correctly into a pre-1150

defined class given specific prompts (again, this is1151

an underexplored area in CV), but comparing this1152

is beyond the scope of this paper and experimental1153

setting. Our setting is consistent with most prior1154

art in (methods listed in Table 1).1155

A.6 Prompts1156

GPT-4.The general-purpose prompt we use for1157

GPT-4 is listed as follows: I will provide you with a1158

list of tuples. Each tuple in the list has 2 items: the1159

first is a caption of an image and the second is the1160

label of the image. For each, you will have to re-1161

turn a JSON with 3 lists. One list should be the list 1162

of all phrases from the caption that are objects that 1163

appear in the foreground of the image but ignore 1164

objects that correspond to the actual label (the la- 1165

bel for the phrase might not be present exactly in 1166

the caption) (named ’foreground’). The second list 1167

should have the single predominant background of 1168

the image to the foreground objects (named ’back- 1169

ground’). If you do not find a phrase that corre- 1170

sponds to the background, return an empty list for 1171

the background. The third is an alternative back- 1172

ground for the image, an alternative to the back- 1173

ground you suggested earlier (named ’alt’). Here 1174

are some examples which also show the format in 1175

which you need to return the output. Please just re- 1176

turn the JSON in the following format: Exemplars 1177

⋯ and here is the caption:. We will provide the 1178

exemplars on our GitHub. 1179

InstructPix2Pix.The prompt we use for Instruct- 1180

Pix2Pix is: turn the background from original back- 1181

ground to alternative background. 1182

A.7 Examples of top-k identified by ASPIRE 1183

Table 4 shows the top-k spuriously correlated fea- 1184

tures (or groups of features) for each class and 1185

for each dataset. As mentioned earlier, due to di- 1186

versity in captions, the same kind of foreground 1187

object or background may be expressed with differ- 1188

ent phrases. ASPIRE thus returns groups of top-k 1189

items rather than a single top-k item for each k. 1190

A.8 Collection of Test-Set for Hard ImageNet 1191

Our institution’s Institutional Review Board(IRB) 1192

has granted approval for the data collection. We 1193

followed the following steps for collecting a test 1194

set of the Hard ImageNet dataset: 1195

1. We first identified spurious features in the 1196

Hard ImageNet and verbalized them. These 1197

features were identified from annotations in 1198

the original proposed dataset by Moayeri et al. 1199

(2022). 1200

2. 3 annotators with extensive vision and lan- 1201

guage experience collected 1/3rd of the total 1202

750 images. The annotators were not hired 1203

from any crowdsourcing platform and, in fact, 1204

were volunteers from our organization. The 1205

only instruction that was provided was that the 1206

image should have the primary target label of 1207

the image, and while majority group images 1208
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should have the identified spurious features,1209

minority group images should not.1210

3. Post this step, each annotator validated the1211

images collected by the other annotators.1212

4. We filter the images for offensive content and1213

replace them with non-offensive images, if1214

any.1215

B GradCam Visualizations1216

Figure 5 and 6 illustrates the GradCAM visual-1217

izations of the features used by the last layer of a1218

standard ERM model (ResNet-50), for prediction1219

on the test set images, trained with and w/o AS-1220

PIRE augmentations on all 4 datasets used in our1221

experiments. For a fair comparison, and to clearly1222

show the benefits of ASPIRE, we show GradCAM1223

visualizations only for the standard ERM model, as1224

all other baselines perform explicit steps to reduce1225

reliance on such features. Standard ERM training1226

is also still the most widely used methodology for1227

training image classifiers.1228

While Fig. 5 shows examples of the majority1229

group images from the test set with spurious fea-1230

tures, Figure 6 shows examples of minority group1231

images without any spurious features. For Fig. 61232

we show examples where the ERM classifier pre-1233

dicted the class of the image incorrectly (due to1234

the absence of spurious features) while the one1235

trained with ASPIRE predicted the class correctly.1236

As we clearly see, in both cases, when trained with1237

ASPIRE augmentations, the model learns to focus1238

on core features than spurious ones while making1239

predictions.1240

C Generation Examples1241

Table 8 shows examples of original images from1242

the train set, the edited images from the ASPIRE1243

pipeline and augmentations generated using AS-1244

PIRE. To the left of the generated augmentations,1245

we also mention the top-k spurious correlations1246

discovered by ASPIRE for the particular class. AS-1247

PIRE generates diverse augmentations with the de-1248

sired non-spurious features that can be used to train1249

robust models1250

(a) Original Image (b) Edited Image

(c) Original Image (d) Edited Image

Figure 7: Images illustrating cases of ASPIRE failures.

D ASPIRE Failure Cases 1251

This section lists some failure cases of our pro- 1252

posed ASPIRE framework. As APSIRE leverages 1253

external models in its pipeline, the success of AS- 1254

PIRE at times depends on the capabilities of these 1255

models. For generating augmentations, we notice 1256

the following failure cases: 1257

1. Superimposition of other foreground ob- 1258

jects on the foreground object of interest. 1259

Recall that ASPIRE detects foreground ob- 1260

jects to remove (for spurious correlation de- 1261

tection) by parsing captions. These objects are 1262

then removed to detect if the object is spuri- 1263

ous or not. In cases where another foreground 1264

object in the image is superimposing the fore- 1265

ground object, though the language-grounded 1266

pipeline is able to detect it properly, the in- 1267

painting model is at times unable to precisely 1268

remove just that object without not removing 1269

the superimposing foreground object and re- 1270

moves both the original object and the object 1271

superimposing it. An example is a human 1272

wearing spectacles, where we only want to 1273

remove the human, but the inpainting model 1274

removes both the human and the spectacles 1275

it is wearing. We provide an example of this 1276

case in Figure 7 (bottom row). 1277

2. Foreground objects change on changing 1278

background. InstructPix2Pix, at times, 1279

tends to change the foreground object when 1280

prompted to change the background signifi- 1281

cantly, for example, changing outdoor back- 1282

ground → indoor background. We provide an 1283

example of this case in Figure 7 (top row). 1284

3. Bias in Stable Diffusion. Although our Sta- 1285

ble Diffusion fine-tuning step, with textual 1286
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Dataset Class Top-k groups

{volleyball player, female volleyball player, two volleyball players}
Volleyball {woman, young girl, girl, women}

{beach, sandy beach}
{keyboard, computer keyboard}

Spacebar {number pad}
{mouse}

{girl, little girl, young girl, two girls}
Horizontal bar {ballet, ballet barre}

{olympic games}
{boy, little boy, two boys}

Snorkel {blue swimsuit, swimsuit}
{water, ocean}

{child, children, child’s feet}
Balance Beam {female gymnast, gymnast, gymnasts}

{split, leg split}
{back of the car, back of a car}

Seatbelt {handle, door handle}
{seat, car seat, back seat}

{two dogs, dogs, dog, husky dogs, dog team}
Dog sled {snowy hill, snowy landscape, snowy slope}

{snow}
{woman, young woman, women}

Hard ImageNet Miniskirt -

{pink hat, hats}
Sunglasses {woman, blonde woman, women}

{man, man’s face}
{tree, tree branch, branch}

Howler monkey {log, wooden bench, wooden beam}
{leaves}

{hockey player, hockey players, ice hockey players}
Puck {ice, ice rink}

{hockey logo, hockey stick}
{boy, young boy, little boy}

Swimming cap {pool, swimming pool, pool edge}
{swimmer, swimmers}

{chairs, chair, lawn chair}
Patio {building, buildings}

{deck, new deck}
{mountain, mountain top, snowy mountain, snowy mountain side}

Ski {ski poles, ski slope, ski lift}
{person, group of people}

{baseball field, field}
Baseball player {baseball game, game}

{stadium}
{ lake, stream, pond}

Waterbird {beach, sand}
{water, river bank}

Waterbirds {forest, bamboo forest}
Landbird {woods, trees}

{branch, branches}
{field, grass field, green field, grassy field, green grass covered field, lush green field}

Big dog {ground, playground}
{floor, concrete floor}

Spuco Dogs {blanket, blue blanket, green blanket, red blanket, white blanket}
Small dog {bed, dog bed, blue dog bed, small bed}

{couch, red couch, gray couch}
Blonde {woman, lady}

CelebA Not blonde -

Table 4: Details of Top-k (k=3 for our experiments) spuriously correlated features per dataset and per class identified
by ASPIRE. As discussed in the main paper, due to the fact that our captioning model generates diverse and variable
phrases for the same type of object, we collapse these phrases into groups and instead work with groups (using the
algorithm explained in Section 3 of the main paper) of spurious features. Groups in {} show spurious foreground
objects while groups in {} are spurious backgrounds.

inversion, helps overcome its current biases,1287

limited samples present for fine-tuning some-1288

times hurt this adaptation. For example, even1289

after fine-tuning, Stable Diffusion might gen-1290

erate images of dog sled with dogs in it.1291

E Additional Details 1292

E.1 Model Parameters 1293

Git-Large-Coco has ≈ 300M parameters with a 1294

CLIP/ViT-L/14 image encoder and a 6 layer trans- 1295

former decoder with 12 attention heads and 768 1296
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hidden-state. Stable Diffusion is a ≈ 860M pa-1297

rameter UNet and ≈ 123M parameter text encoder1298

model. ResNet-50 has ≈ 25M parameters with 501299

layers.1300

E.2 Compute Infrastructure1301

All our experiments are conducted on NVIDIA1302

A100 GPUs. We batch prompted LLaMa-2 13B,1303

with a BS of 16, where LLaMa-2 performed dis-1304

tributed inference on 4 A100 GPUs. That translates1305

to 52.51 TFLOPs per batch. Fine-tuning SD with1306

textual inversion with a BS of 8 takes and an avg.1307

of ≈1 hour. For generating 1× augmentation, we1308

use 1 A100 GPU for an average ≈1.2 hours in total.1309

E.3 Implementation Software and Packages1310

We implement all our models in PyTorch1 and1311

use the HuggingFace2 implementations of ERM,1312

Git (Wang et al., 2022), LLaMa-2 13B (Touvron1313

et al., 2023) and InstructPix2Pix (Brooks et al.,1314

2023). We also use the following code/components1315

in our pipeline Grounding DINO3 (Liu et al.,1316

2023c), Segment Anything4 (Kirillov et al., 2023)1317

and Stable Diffusion using textual-inversion5 (Gal1318

et al., 2023).1319

1320

We also use the following repositories for run-1321

ning the baselines: Group DRO6 (Sagawa et al.,1322

2019), SUBG7 (Idrissi et al., 2022), JTT8 (Liu et al.,1323

2021b), Learning from Failure 9 (Nam et al., 2020),1324

Correct-n-Contrast10 (Zhang et al., 2022), Deep1325

Feature Reweighting11 (Kirichenko et al., 2023),1326

MaskTune12 (Asgari et al., 2022) and DivDis13
1327

(Lee et al., 2022).1328

All the above GitHub code has been released1329

under an MIT license, free for research use.1330

1https://pytorch.org/
2https://huggingface.co/
3https://github.com/IDEA-Research/GroundingDINO
4https://github.com/facebookresearch/segment-anything
5https://github.com/rinongal/textual_inversion
6https://github.com/kohpangwei/group_DRO
7https://github.com/facebookresearch/BalancingGroups
8https://github.com/anniesch/jtt
9https://github.com/alinlab/LfF

10https://github.com/HazyResearch/correct-n-contrast
11https://github.com/PolinaKirichenko/deep_feature_reweighting
12https://github.com/aliasgharkhani/masktune
13https://github.com/yoonholee/DivDis

E.4 Dataset Links 1331

We use the Waterbirds 14, SPUCO Dogs 15, Hard 1332

ImageNet 16 and the CelebA 17 dataset. All the 1333

datasets are free for research use. 1334

E.5 Potential Risks 1335

Generative models are prone to hallucinate and po- 1336

tentially generate nonsensical, unfaithful or harm- 1337

ful content to the provided source input that it is 1338

conditioned on. 1339

14https://www.vision.caltech.edu/visipedia/CUB-200.html
15https://github.com/BigML-CS-UCLA/SpuCo
16https://openreview.net/forum?id=76w7bsdViZf
17https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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(a) Dog sled w/o ASPIRE (b) Dog sled w/ ASPIRE (c) Puck w/o ASPIRE (d) Puck w/ ASPIRE

(e) Blonde female w/o
ASPIRE

(f) Blonde female w/ AS-
PIRE

(g) Blonde female w/o
ASPIRE

(h) Blonde female w/ AS-
PIRE

(i) Waterbird w/o AS-
PIRE (j) Waterbird w/ ASPIRE

(k) Landbird w/o AS-
PIRE (l) Landbird w/ ASPIRE

(m) Bigdog w/o ASPIRE (n) Bigdog w/ ASPIRE
(o) Smalldog w/o AS-
PIRE (p) Smalldog w/ ASPIRE

Figure 5: GradCam visualizations of features used by the last layer of a standard ERM model to predict majority
group images (with spuriously correlated features) from the test set of 4 datasets.
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(a) Seatbelt w/o ASPIRE (b) Seatbelt w/ ASPIRE (c) Dogsled w/o ASPIRE (d) Dogsled w/ ASPIRE

(e) Male blonde w/o AS-
PIRE

(f) Male blonde w/ AS-
PIRE

(g) Male blonde w/o AS-
PIRE

(h) Male blonde w/ AS-
PIRE

(i) Waterbird w/o AS-
PIRE (j) Waterbird w/ ASPIRE (k) Landbird w/ ASPIRE (l) Landbird w/o ASPIRE

(m) Bigdog w/o ASPIRE (n) Bigdog w/ ASPIRE
(o) Smalldog w/o AS-
PIRE (p) Smalldog w/ ASPIRE

Figure 6: GradCam visualizations of features used by the last layer of a standard ERM model to predict majority
group images (without spuriously correlated features) from the test set of 4 datasets.
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Figure 8: Examples of Original Images, Edited Images from the ASPIRE pipeline and Generated Augmentations.
To the left of the Generated Augmentations, we also mention the top-k spurious correlations discovered by ASPIRE
for the particular class. ASPIRE generates diverse augmentations with the desired non-spurious features that can be
used to train robust models.
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