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Abstract

Accurate attribution for multiple platforms is critical for evaluating performance-
based advertising. However, existing attribution methods rely heavily on the
heuristic methods, e.g., Last-Click Mechanism (LCM) which always allocates the
attribution to the platform with the latest report, lacking theoretical guarantees for
attribution accuracy. In this work, we propose a novel theoretical model for the
advertising attribution problem, in which we aim to design the optimal dominant
strategy incentive compatible (DSIC) mechanisms and evaluate their performance.
We first show that LCM is not DSIC and performs poorly in terms of accuracy and
fairness. To address this limitation, we introduce the Peer-Validated Mechanism
(PVM), a DSIC mechanism in which a platform’s attribution depends solely on
the reports of other platforms. We then examine the accuracy of PVM across both
homogeneous and heterogeneous settings, and provide provable accuracy bounds
for each case. Notably, we show that PVM is the optimal DSIC mechanism in the
homogeneous setting. Finally, numerical experiments are conducted to show that
PVM consistently outperforms LCM in terms of attribution accuracy and fairness.

1 Introduction

Online advertising has become the dominant force in the global advertising landscape, with expen-
ditures projected to exceed $790 billion in 2024—accounting for over 72% of total ad spend—and
continuing to grow at a consistent rate of more than 10% annually. This substantial and growing
capital investment calls for the development and application of robust methodologies to optimize
budget allocation across diverse digital platforms.
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Advertising attribution, the process of assigning credit for user conversions (such as app downloads
or product purchases) to the platforms that contributed to them, plays a central role in guiding these
allocation decisions and has consequently garnered significant attention. In practice, attribution
reflects a variety of design principles and business objectives. Methods range from simple heuristics
such as first-click and time-decay attribution to data-driven approaches based on machine learning
and causal inference. Among these, last-click attribution has become the industry default due to its
simplicity and its practical relevance for measuring revenue-driven, bottom-of-funnel conversions.

Under last-click attribution, the platform that most recently interacted with the user receives full
conversion credit. Because these credits directly determine performance metrics and future budget
allocation, platforms have a strong incentive to manipulate the timing of their reports to appear last in
the user’s interaction sequence. Such strategic behavior can distort attribution outcomes, overstating
the influence of certain platforms even on its own terms.

This manipulation has become increasingly feasible in modern advertising ecosystems, especially
when the advertiser does not control the landing page—such as app installations through app stores
or purchases on major e-commerce platforms—where click events cannot be directly measured. In
the past, advertisers relied on redirect-based tracking flows, where an intermediary measurement
partner (MMP) logged the click before redirecting the user to the final landing page, thus providing
an independent, verifiable timestamp. However, the industry has since shifted toward redirect-less
tracking paradigm, in which user navigation and click reporting are decoupled to improve latency and
privacy. Without an intermediary verifier, advertisers now depend entirely on platform’s self-reported
timestamps, making strategically timed reports both feasible and practically undetectableE]

Nevertheless, such strategic behavior has received limited attention in the academic literature. Most
prior work on advertising attribution instead focuses on modeling platform contributions to conver-
sions using increasingly sophisticated statistical or machine learning methods, under the assumption
that platforms passively and truthfully report user interaction data. In this paper, we initiate the study
of advertising attribution from a mechanism design perspective, treating platforms as strategic agents
that may misreport in order to maximize their assigned credit. Rather than proposing a new attribution
philosophy, we work within the prevailing logic of last-click attribution and ask: How can we design
an attribution mechanism such that platforms have no incentive to misreport, while still assigning
credit to the platform with the true last click?

Main Contribution To address the above question, we first model the advertising attribution
scenario as a game-theoretic model in which multiple platforms strategically submit user interaction
logs to compete for conversion credit. The advertiser then allocates credit according to a predefined
attribution rule. In this model, our analysis focuses on characterizing dominant strategy incentive
compatible (DSIC) mechanisms, and evaluating the performance of different attribution mechanisms,
using two key metrics: accuracy and fairness. Accuracy measures the alignment between the assigned
and true contributors, while fairness assesses whether each platform receives its deserved share of
credit in expectation. Detailed results are presented in Table[I] with proofs in the full version.

Table 1: Mechanism performance under different settings
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We begin by analyzing the commonly used Last-Click Mechanism (LCM) and theoretically demon-
strate that it is not DSIC. For LCM’s performance, our findings reveal that, in the worst-case scenario,

>This shift has been driven by privacy regulations such as the European Union’s General Data Protection
Regulation and Apple’s App Tracking Transparency framework [8] 2| [16], and the adoption of redirect-less
systems including Google’s and Microsoft’s parallel tracking and Apple’s SKAdNetwork [10L[19, 3]



LCM can perform remarkably poorly. Even with just two heterogeneous platforms, both accuracy
and fairness can approach arbitrarily low values.

To ensure DSIC, we propose a novel attribution mechanism called the Peer-Validated Mechanism
(PVM). The mechanism operates as follows: only platforms reporting before the conversion are
eligible for attribution, and the credit a platform receives depends solely on peer reports and prior
probabilities—independent of its own report. Since a platform’s report does not influence its own
outcome, PVM is DSIC by design. We then theoretically demonstrate that PVM consistently
outperforms the LCM in terms of both attribution accuracy and fairness. We further prove that it is
the optimal DSIC mechanism in the homogeneous setting (Theorem [5). Mutiple simulations using
distributions fitted from real-world ad-conversion data further validate the superiority of PVM.

To the best of our knowledge, this is the first work to formally model the advertising attribution
problem within a theoretical framework, and to rigorously analyze the incentive and efficiency
properties of the widely adopted Last-Click Mechanism. By shifting attention from empirical
heuristics and estimation to mechanism design, our work offers foundational insights for developing
attribution systems that are robust, fair, and incentive-compatible in digital advertising markets.

All missing proofs can be found in full version.

Related Work Recent research on advertising attribution has primarily focused on multi-touch
attribution, which distributes conversion credit across multiple platforms based on observed user
interactions data. A wide range of modeling approaches have been explored, including probabilistic
models such as survival analysis [13} 14} 23, 28} 29], Shapley value-based methods for fair allocation
[ 14} 241, and Markov models for channel transition influence [1,[15]]. Furthermore, causal inference
[6, 27] and deep learning [21} [18} 16} [17, 26, 27]] have been applied to better capture temporal and
interaction complexity. Despite their sophistication, these approaches generally assume that the user
interactions data reported by platforms are accurate and complete.

However, this assumption often fails in practice, as platforms may strategically misreport to gain
greater attribution. In contrast, mechanism design offers a principled framework for addressing
strategic behavior, with incentive compatibility (IC) as a central design goal [[12} 20} 25} IS} [11]].
While IC-based techniques have been widely applied in domains such as auctions [[7]], voting [9], and
resource allocation [22], their application to attribution remains underexplored. Attribution presents
new challenges: the strategic behavior of platforms is often ill-defined, and their utility depends on
uncertain conversion outcomes, making standard mechanism design tools difficult to apply directly.

2 Model and Preliminaries

This section develops a formal model to study advertising attribution under strategic platform behavior.
We first describe a typical real-world scenario, then formalize the model components, define the
attribution mechanism, analyze strategic behavior, and finally define the advertiser’s objective.

Throughout, we adopt the last-click attribution standard, treating the final platform in a user’s
interaction sequence as the one that deserves credit. We focus on settings with at least two platforms,
the minimal case where attribution ambiguity and manipulation arise. In practice, the number of
platforms involved in a conversion is typically small—often no more than five.

2.1 Real-World Advertising Scenario

Consider the real-world online advertising scenario where a user interacts with ads from multiple
platforms (n > 2) before a conversion event. When the user converts, the advertiser seeks to allocate
credit based on the click logs reported by the platforms.

The process unfolds as follows. Each platform i € [n] first detects a user click and records a log at the
corresponding absolute click time 3. It then selects an absolute reported time r®® > 12, at which
it submits the log to the advertiser. At some time {9 > max;c[y) {t3}, the user converts, and the
advertiser performs credit attribution based on reports received by to—that is the set {2 | 72 < 4},
Crucially, while the advertiser observes the conversion time ¢y, platforms must decide when to report
without knowing when the conversion will occur.



This scenario highlights the fundamental challenge in attribution: the advertiser must infer the true
sequence of events based on potentially delayed reports from strategically acting platforms. The
discrepancy between true click times and reported times necessitates careful mechanism design.

2.2 Advertising Attribution Model

We now present a game-theoretic model of the attribution process, capturing strategic platform
behavior and informing mechanism design. To simplify analysis, we adopt a conversion-aligned
timeline, setting the conversion time ¢y = 0 without loss of generality. Under this transformation, all
click times are expressed relative to the conversion and lie in (—oo, 0]. Specifically, we define

ti =t 15 <0, Vicn],
where ¢; denotes the relative click time of platform . Figure [I]illustrates this transformation: if
two platforms record clicks at 10:40 a.m. and 10:50 a.m., and the conversion occurs at 11:00 a.m.,

their relative click times become ¢; = —20 and t, = —10, with the conversion at time 0. Under the
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Figure 1: Conversion-aligned time transformation

conversion-aligned timeline, the relative click time ¢ = (%;);c[,)—Wwhich depends on the unknown
conversion time—is therefore unobservable to platforms. To capture this uncertainty, we model ¢;
as a random variable drawn independently from a commonly known distribution, with cumulative
distribution function (CDF) F;(t) and probability density function (PDF) f;(¢), supported on (—o0, 0].
This distribution may be interpreted as a prior belief based on platform-level statistics. Let F' =
{F;}ie[n) denote the joint distribution from which the click time vector ¢ is drawn.

To model strategic reporting, we assume each platform i € [n] selects a non-negative reporting delay
7; > 0, resulting in a reported time r; = t; + 7; on the conversion-aligned timelineE]U . Since t; is
unobservable when the platform commits to its strategy, the chosen delay 7; is applied uniformly
across all realizations of ¢;. We denote the delay profile as 7 = (7;);¢[n]» and the resulting reported
time profile by 7 = (7;);c[n) = t + 7. Unless stated otherwise, all subsequent analysis is conducted
on the conversion-aligned timeline.

2.3 Attribution Mechanism

We define an attribution mechanism M by its assignment rule M(r) := {z;(r) };c}n), Where ()

denotes the credit assigned to platform ¢ given the reported time profile TEI A mechanism is said to
be feasible if it satisfies the following constraints:

0<uzi(r)<1, Vi€]n]r (1)

xi(ri,r_i) = O, Vi e [n],ri > O,T‘_i (2)

Eewr | Y zi(t+7)| <1, VF,7 )
i=1

Constraints (I) and (2) bound individual credit and exclude post-conversion reports. Constraint (3)
limits the expected credit, ensuring that the advertiser’s overall budget is respectedE]

3We focus on strategic delay in reporting rather than repeated or fraudulent submissions. Each platform
reports its click once, possibly after a strategic delay, to maximize its attribution credit. This setting differs from
click spamming and click injection, which involve multiple or fabricated reports.

“In practice, reports submitted after the conversion time (i.e., r; > 0) are typically not received or used
by the advertiser. However, for modeling generality, we allow such values as inputs to the mechanism. Their
exclusion from attribution is later enforced through explicit feasibility constraints (see Constraint (EI)).

>Constraint (3) normalizes total credit in expectation rather than per conversion. This design reflects
advertisers’ long-term budget control: it maintains the average expenditure over many conversions while
allowing more flexibility for designing incentive-compatible mechanisms than strict per-instance normalization.



Given an attribution mechanism M, we define platform ¢ € [n]’s instantaneous utility under report
profile 7 as the credit assigned to it by the mechanism: u;(r) = z;(r). Given the distribution profile
F and others’ strategy 7_;, platform ¢ selects its delay 7; to maximize its expected utility:

Ui(ti, =) = Etor [ui(t + 7)] = Epor [zi(t + 7)) E]

From the advertiser’s perspective, an ideal attribution mechanism M should achieve two primary
goals: (i) incentivize truthful reporting to ensure reliable interaction data; and (ii) accurately assign
credit to the platform responsible for the conversion.

We first use dominant strategy incentive compatibility (DSIC) to capture truthful reporting:

Definition 1 (DSIC). A mechanism M is DSIC if for every platform i, truthful reporting (1; = 0)
maximizes its utility u;(r) regardless of the realized true click times t = (t;,t_;) or the strategies
T _; chosen by other platformsm That is, for all platforms i € [n], all true times t; < 0 and t_;, all
others’ strategies T _;, and any deviation delay 7| > 0:

ui(ti,t,i + ’7',1') 2 Ui(ti + Ti/,t,i + T,i).

It is easy to verify that DSIC is equivalent to a non-increasing allocation rule with respect to a
platform’s own report.

Theorem 1. An attribution mechanism M satisfies DSIC if and only if, for every platform i and any
fixed reports from other platforms r _;, the credit x;(r;, 7 _;) is non-increasing in its own report ;.

Second, we formalize attribution accuracy as the mechanism’s ability to assign credit to the true
last-click platform. Specifically, we defined the accuracy of a mechanism M, given F' as

ACC(M; F) =Eior sz(t + 7NE) - 1[i = arg max{¢,}]| ,
i=1 /

where 7NE is the Nash equilibrium induced by F and M. Note that 7N = 0 for a DSIC mechanism.
Thus, given a known distribution F', the advertiser’s optimization problem is formulated as:

max ACC(M; F)
s.t. Feasible and DSIC.

“

Beyond defining accuracy with respect to a fixed F', we define the accuracy of mechanism M as
ACC(M) = i%fACC(M; F),

capturing worst-case performance across F, serving as a evaluation for a mechanism’s performance.

3 The Last-Click Mechanism

In this section, we conduct a rigorous analysis of the Last-Click Mechanism (LCM). We begin
by formally defining LCM and then demonstrate that it fails to satisfy DSIC. We further evaluate
its accuracy at equilibrium and derive accuracy bounds in both homogeneous and heterogeneous
platform settings. Formally, the Last-Click Mechanism is defined as My cum:

Definition 2 (Last-Click Mechanism). Given the report profile 1 = (r;)ic[n), the Last-Click Mecha-
nism is defined as Mrcy = {xi(7) }ie[n). Specifically,

55(r) = 1 ifie Sandr; =maxjes{r;},
! |0 otherwise,

where S = {j € [n] | r; < 0} is the set of platforms with effective reports. Ties are broken uniformly
at random among the tied platforms.

SNote that, in the absolute-time model, the platform must take expectation over the unknown conversion
time and other click times. In the conversion-aligned model, the conversion time is fixed at 0, and the same
uncertainty is reflected in the distribution of ¢.

"DSIC benefits cold-start scenarios by ensuring truthful reporting without requiring prior knowledge, enabling
reliable attribution from the outset and facilitating the learning of the true distribution.



Due to its simplicity and its intuitive principle of crediting the platform associated with the user’s
final click before conversion, LCM is widely adopted in practice. However, it is easy to see that
platforms may benefit from strategically delaying their reports, making truthful reporting suboptimal.
Therefore, LCM does not satisfy DSIC.

Proposition 1. The Last-Click Mechanism is not a DSIC mechanism.

3.1 Accuracy Analysis

Since LCM is not DSIC, it may assign credit to a platform that wasn’t truly last, leading to inaccurate
attribution. We therefore analyze its equilibrium accuracy in both homogeneous and heterogeneous
platform settings, and derive accuracy bounds for both two-platform and n-platform cases

We first consider the case with two homogeneous platforms and present our result in Theorem 2}

Theorem 2. When there are two homogeneous platforms with identical distribution F(t), supported
on (—00,0), the accuracy of Mycy is exactly (2 — +/2)2, and this bound is tight.

To prove Theorem we first analyze the incentive constraint at a symmetric strategy profile (7q, 7).
By requiring that no platform benefits by unilaterally deviating from 7y to truthful reporting, we
derive the necessary condition F'(—7) > 2 — /2. Since LCM can only attribute correctly when
both true click times are before —y, this yield a lower bound on accuracy of (2 — \/5)2 ‘We then
construct a family of distributions f;(t) = cp(e™t — 1), supported on [—M, 0], where ¢y is a
normalization constant. We show that this game admits a unique symmetric Nash equilibrium, and as

M — oo, the accuracy converges to exactly (2 — v/2)2.

We now extend our analysis to the general case with n homogeneous platforms.

Theorem 3. When there are n homogeneous platforms with identical distribution F(t), supported
on (—o00, 0], the accuracy of My is bounded as follows:

n 2 n
(1 _ (i) ) < ACCMua) < | 1- \3/2 +4\/6 + §/2 _4¢6 .

The lower bound is derived using an argument similar to the two-platform case, by examining the
conditions required for a symmetric equilibrium. For the upper bound, we analyze the symmetric
equilibrium under a specific distribution with a linear probability density function f(t) = —2¢
supported on [—1, 0].

Finally, we consider the heterogeneous case, where each platform may follow a different distribution
F;(t). Surprisingly, we show that the accuracy of the LCM can be arbitrarily low, even in a simple
setting with just two heterogeneous platforms.

Theorem 4. When there are n heterogeneous platforms with distributions F;(t), all supported on
(=00, 0]. the accuracy of Mycy can be arbitrarily small and approach to 0.

The proof relies on a key insight: a platform with a highly concentrated distribution (e.g., supported
on (C' — ¢,C + €)) can easily manipulate its report to secure attribution credit. We construct an
instance where one platform has such a concentrated distribution, while the others have click time
supports strictly greater than it. In this scenario, we show that in equilibrium, the concentrated
platform receives attribution with probability approaching 1, causing overall accuracy to approach 0.

4 The Peer-Validated Mechanism

In this section, we introduce the Peer-Validated Mechanism (PVM), a novel mechanism addressing
the non-DSIC issue of LCM. Intuitively, if the credit assigned to a platform is independent of its own
report, the mechanism is DSIC. Based on this idea, we propose the PVM as follows:

8Since our focus is on DSIC mechanisms, we restrict our evaluation of LCM to instances where equilibrium
is guaranteed, without analyzing its existence in general. Even within this limited scope, the results clearly
demonstrate LCM’s poor performance in our setting.



Definition 3 (Peer-Validated Mechanism). Consider n platforms with the CDF {F}};c,, and PDF
{fi}tien supported on (—o0,0]. Let 7 = (7;);c[n) be the reported time profile from n platforms. The
Peer-Validated Mechanism assigns credit based on mutual validation among platforms, and is defined
as Mpyy = {xi(7) }igpn), with

p(r) = A Trs < O] Tmaxjes oy {ri} < o] IS\ (i} > 1,
’ I[r; <0]-B; otherwise,

where S = {j € [n] |r; < 0} denotes platforms with eligible reports. 3; = P(i = arg max;{t;}) =
f?oo fi(t) I1;.4: F5(t) dt is the probability that platform i is the true last-click platform based on the
prior. The validation threshold ag) is defined as the solution to HjeS\{i} F; (oz(sz)) = ﬂlﬂ

Roughly speaking, PVM assigns credit to platform i’s credit based on eligible reports from other
platforms. When such peer reports exist, the mechanism compares them to a threshold ag), which
is chosen so that the probability of all peers’ true click times being no later than ag) matches the
prior (3; that platform 7 is the true last. This validation process leverages instance-level information
to make attribution decisions while preserving incentive compatibility. If no eligible peer reports
are available, PVM falls back to allocating (3; based on the prior. The reason only eligible reports
are used for validation is that the mechanism assumes no overt misreporting among them, while
ineligible reports (r; > 0) are definitely misreports and thus excluded due to unmodeled behavior.

Finally, the indicator I[r; < 0] ensures that attribution only goes to pre-conversion reports.

Since any reporting delay either disqualifies the platform itself or prevents others from being at-
tributed, it is straightforward to verify that PVM satisfies feasibility and DSIC [115], as formalized in
Proposition 2]

Proposition 2. The Peer-Validated Mechanism is a DSIC mechanism.

As PVM is DSIC, we focus on truthful reports (r = ¢). In this case, S = [n], and we let «; denote
the threshold used in z;(-), defined by [ [, ; F;j(«;) = B;. The allocation rule then simplifies to

wi(t) = Imax{t;} < os] Vi € [n].
JFT
We adopt this reduced form throughout the remainder of our analysis of PVM.

4.1 Optimality of PVM for Homogeneous Platforms

We surprisingly find that PVM is the optimal DSIC mechanism in the homogeneous platform setting.

Theorem 5. When the platforms are homogeneous, the Peer-Validated Mechanism (PVM) is the
optimal DSIC mechanism with respect to the accuracy.

To show this optimality, we aim to identify the DSIC attribution rule {z;(t)};c[, that maximizes
accuracy. This is a challenging task, as it involves optimizing over a set of functions simultaneously.
However, if for any fixed expected attribution e; = E¢[z;(¢)], we can characterize the most accurate
DSIC rule that achieves it, then the problem reduces to optimizing over the expected attribution vector
€ = (e;);ie[n]- The following lemma shows that such a characterization indeed exists.

Lemma 1. For platform i and a fixed expected attribution e;, there exists an optimal DSIC attribution
rule for platform i w.r.t. accuracy, satisfying e; = Ey[z;(t)], that can be written as

1 ifmax-#{tl} S 92
P(tit_i) =4 St ’
zi( ) {0, otherwise,

where G;(t) = 11,4, F;(t) is the CDF of the random variable max;;{t;}, and G;(0;) = e;.

The existence and uniqueness of ag) and f3; under standard regularity conditions, along with handling edge
cases (e.g., flat or discontinuous CDFs), are detailed in full version.

10A simple variant of PVM also preserves DSIC under the click spamming problem, where a platform may
repeatedly report the same click at later timestamps. Specifically, the modified mechanism takes the first valid
report (if any) from each platform as input while keeping the rest of the allocation rule unchanged. Under this
setting, the platform’s own reporting time remains decoupled from its expected number of attributions.



Herein, we give a proof sketch of Lemmal([l] First, as any DSIC rule must be non-increasing in ¢;
(Theorem , we claim that, to maximize accuracy, the optimal DSIC rule z;(¢;,t_;) should be a
constant when given t_;, so that larger values of ¢;, which more better indicate that platform 7 is last,
are not penalized. Second, given a fixed expected attribution e;, the self-independent rule x;(¢t_;)
should prioritize instances with smaller max;;{t;}, where platform ¢ is more likely to be last. This
greedy strategy yields the threshold-form optimal DSIC rule in the lemma. When G is somewhere
flat, multiple thresholds may achieve e;, and combining them may yield non-threshold variants. Still,
at least one such optimal rule exists.

Based on Lemma the task reduces to finding the optimal (e} );e[n]. Since G;(6;) = e;, the original
optimization problem (4) can therefore be reformulated in terms of 8 = (0;);c|y, as follows:

n 0;
max ; [m gi(u)(1 — Fi(u)) du

s.t. zn: GZ(GZ) =1
1=1

In particular, for homogeneous platforms, the thresholds defined within the PVM precisely align
with the solution to the optimization problem outlined above, establishing its optimality as stated in
Theorem 3l

4.2 Accuracy Analysis

We now analyze the accuracy of PVM. For the homogeneous setting, we give a tight bound on the
accuracy. Since PVM is the optimal DSIC mechanism, this accuracy is the maximum value a DSIC
mechanism can achieve.

Theorem 6. When there are n homogeneous platforms with identical distribution F (t), supported
on (—00, 0], the accuracy of Mpyy is exactly equal to

ACC(Mpyy) =1 — <1 - ;) (;) o .

In the homogeneous case, symmetry implies that all thresholds «; are equal, denoted by «, and satisfy
F(a)™! = 1/n. Therefore, PVM makes a correct attribution if either all reports are no greater than

o, which occurs with probability (1/7)"/(~1), or exactly one report exceeds v, which occurs with
probability 1 — (1/n)'/ (=1 These probabilities depend only on 7, not on the specific distribution.
Summing them gives the accuracy in Theorem [6]

In practice, the number of platforms n typically does not exceed 5. We therefore conduct a comparison
with the Last-Click mechanism (presented in Table[2)) to show that PVM is strictly superior.

Table 2: The accuracy comparison between PVM and LCM (Upper bound).

n  Mpwm Upper bound of M cm Ratio (Mpym / Mrcm UB)
2 0.75 (2 - \/5)2 ~ (0.3431 (tight bound) 2.1857
3 0.6151 0.3336 1.8437
4 0.5275 0.2314 2.2799
5  0.4650 0.1605 2.8977

In the rest, we consider the general heterogeneous-platform setting. We show a tight bound on
accuracy for two-platform case (Theorem[7) and a lower bound for n-platform case (Theorem |g)).

Theorem 7. When there are two heterogeneous platforms, the accuracy of Mpyyy is exactly equal to
ACC(Mpyy) = 19/27 =~ 0.7037.

To establish the result, we first formulate an optimization problem that characterizes the worst-case
accuracy by maximizing the misattribution probability. In the two-platform setting, all attribution
outcomes can be explicitly enumerated, making this optimization analytically tractable. To show
tightness, we then construct a concrete instance that satisfies the optimality conditions, thereby
achieving the accuracy value of 19/27.



Theorem 8. When there are n heterogeneous platforms, the lower bound on the accuracy of Mpyy
is ACC(Mpyy) = (19/27)Megz 71,

For n heterogeneous platforms, we design a binary-tree-based mechanism to derive a lower bound
for PVM. Starting from the root node, which represents all n platforms, we recursively partition them
into two disjoint subsets L and R of sizes [n/2] and |n/2], respectively. Each subset is treated as
a virtual platform, represented by the distribution of max;cr,{t;} or max;cg{¢;}. Ateach internal
node, the attribution reduces to a problem between two heterogeneous platforms. Repeating this over
[log, 1] levels yields an overall accuracy lower bound of (19/27)'°821, Since PVM is guaranteed
to perform at least as well as this mechanism, the same expression serves as a lower bound for its
accuracy.

4.3 Fairness of PVM

Besides the DSIC and accuracy, PVM also satisfies a strong fairness property: the expected attri-
bution E|[z;] for each platform i exactly matches its true probability of contributing the last click,
P(i = argmax;{t;}). This alignment offers a principled basis for evaluating long-term platform
effectiveness and simultaneously promotes trust in the mechanism’s equity. To quantify this alignment
and enable comparisons across mechanisms, we define the following metric:

Definition 4. The fairness score of mechanism M under the joint distribution F' is defined as
min - .
{t|P(i=arg max; {t; })>0} P(Z = arg man{tJ})
Definition 5. A mechanism M is Fair if, for any joint distribution F, it holds that
FAIR(M; F)=1.

FAIR(M;F) =

The fairness score F'AI R(M; F') quantifies how closely a mechanism’s expected attribution matches
the true last-click probabilities, with a score of 1 indicates perfect alignment. A Fair mechanism
ensures that attribution faithfully reflects contribution probabilities across all distributions. PVM is a
fair mechanism directly from the choice of (c;);c,) under DSIC:

Et[zi(t)] = Eq [mgf{tj} < oi] = [[ Fi(i) = P(i = argmax{t;}).
’ i#i !
Proposition 3. The Peer-Validated Mechanism is Fair.
In contrast, the Last-Click Mechanism fails to meet this property.
Proposition 4. The Last-Click Mechanism is not Fair.
LCM fails the Fair property due to its fairness score being highly sensitive to distributional differences

and strategic delays, especially under heterogeneity. As shown in Table [3] the fairness score can
degrade to zero in such settings.

Table 3: Worst-Case Fairness Score of LCM under Equilibrium.

Scenario Worst-Case Fairness (inf p FAIR(M o F))
Homogeneous, n = 2 1—(vV2-1)2~0.828

Homogeneous, n >3 (1 — (1/n)™/ (=11 — (/258 1 3/2=1/6)2n
0

Heterogeneous, n > 2

5 Numerical Experiments

We empirically evaluate PVM against LCM using simulations based on click time distributions fitted
from real-world ad conversion logs from four advertising platforms. Experiments cover two settings:
homogeneous and heterogeneous. In the homogeneous case, we simulate n € {2, 3,4, 5} identical
platforms, all following the click time same distribution, repeated across four distributions derived



from real data. In the heterogeneous case with n = 2, we simulate all six platform pairs formed by
different combinations of the four distributions. Under LCM, platforms play in equilibrium; under
PVM, they report truthfully by DSIC. Each configuration was evaluated using 5 x 10% simulated user
paths, repeated over 10 independent runs.

PVM consistently outperforms LCM in both accuracy and fairness across all settings. Table ] reports
the improvements as mean =+ standard deviation over platforms (homogeneous) or platform pairs
(heterogeneous). Specifically, accuracy gains grew with n (up to 0.3041 when n = 5) and remains
notable under heterogeneity (0.0655). Fairness improvements are small in homogeneous cases but
substantial in heterogeneous ones (0.1320).

Table 4: Aggregate summary of PVM’s improvements over LCM, (mean = standard deviation)

Homo Setting Hetero Setting

Metric n=2 n=23 n=4 n=>5 (over 6 pairs)

Acc. 0.0404 £0.0396  0.1583 £0.0439 0.2444 £0.0580 0.3041 £0.0490 0.0655 £ 0.0283
Fair. 0.0248 +0.0089  0.0157 +0.0034  0.0107 +0.0047 0.0111 +0.0040  0.1320 4 0.0598

6 Conclusion and Discussion

This paper introduces a formal game-theoretic framework for advertising attribution under strategic
platform behavior. We show that the widely used Last-Click Mechanism fails to be dominant
strategy incentive-compatible (DSIC) and performs poorly in both accuracy and fairness. To address
these limitations, we propose the Peer-Validated Mechanism (PVM), a novel DSIC mechanism that
allocates credit based on peer reports. We prove that PVM achieves optimal accuracy in homogeneous
settings, offers provable guarantees in heterogeneous ones, and satisfies a strong fairness property.
Our theoretical analysis is further validated by numerical experiments using real-world data, where
PVM consistently outperforms LCM.

In practice, peer-validation principle offers a concrete design guideline for incentive-compatible
attribution systems. For instance, in machine learning-based models, excluding a platform’s own
report as an input feature ensures truthfulness, shifting the focus from detection to design.

Besides, PVM framework can be extended to settings with correlated click-time distributions while
preserving the core peer-validation principle and the DSIC property. The validation rule generalizes
from a scalar threshold (a;) to a multi-dimensional acceptance region D; over peer reports t_;,
constructed greedily by including outcomes with the highest posterior probability that platform 4
was the true last click until P(t_; € D;) = f3;. A platform receives credit if and only if its peers’
reports fall within D;. Under this modification, the homogeneous-case results remain unchanged,
since our proofs for those theorems do not rely on the independence assumption; the results for the
last-click mechanism also remain the same, as its accuracy and fairness are already zero; while in
heterogeneous settings, PVM retains a weaker but still meaningful 1/n lower bound on accuracy.
We focus on the independence assumption in this paper to present the mechanism’s core insight in
the clearest setting, which is sufficient to capture the essential strategic structure, leaving correlated
extensions for future work.

Several directions remain open. First, while PVM aligns the expected attribution with true last-
click probability, future work may explore mechanisms that further improve instance-level accuracy.
Second, investigating correlated click-time distributions could enhance a mechanism’s applicability
in realistic scenarios. Next, a joint optimization framework modeling both advertiser and platform
utilities, integrating attribution with budget allocation, represents a compelling direction. Finally,
investigating repeated games with externalities—where platforms may strategically harm peers or
misreport distributions to manipulate learned priors—could address dynamic interactions, potentially
incorporating bidding strategies for a more comprehensive ecosystem model.
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» The answer NA means that there is no societal impact of the work performed.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
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Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
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* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
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safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We only uses LLMs to edit and format this paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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