Beyond Last-Click: An Optimal Mechanism for Ad Attribution

Nan An

Gaoling School of Artificial Intelligence Renmin University of China Beijing, China annan0425@ruc.edu.cn

Qi Qi*

Gaoling School of Artificial Intelligence Renmin University of China Beijing, China qi.qi@ruc.edu.cn

Weian Li

School of Software Shandong University Jinan, China weian.li@sdu.edu.cn

Changyuan Yu

Baidu Inc. Beijing, China yuchangyuan@baidu.com

Liang Zhang

Gaoling School of Artificial Intelligence Renmin University of China Beijing, China zhang.liang@ruc.edu.cn

Abstract

Accurate attribution for multiple platforms is critical for evaluating performance-based advertising. However, existing attribution methods rely heavily on the heuristic methods, e.g., Last-Click Mechanism (LCM) which always allocates the attribution to the platform with the latest report, lacking theoretical guarantees for attribution accuracy. In this work, we propose a novel theoretical model for the advertising attribution problem, in which we aim to design the optimal dominant strategy incentive compatible (DSIC) mechanisms and evaluate their performance. We first show that LCM is not DSIC and performs poorly in terms of accuracy and fairness. To address this limitation, we introduce the Peer-Validated Mechanism (PVM), a DSIC mechanism in which a platform's attribution depends solely on the reports of other platforms. We then examine the accuracy of PVM across both homogeneous and heterogeneous settings, and provide provable accuracy bounds for each case. Notably, we show that PVM is the optimal DSIC mechanism in the homogeneous setting. Finally, numerical experiments are conducted to show that PVM consistently outperforms LCM in terms of attribution accuracy and fairness.

1 Introduction

Online advertising has become the dominant force in the global advertising landscape, with expenditures projected to exceed \$790 billion in 2024—accounting for over 72% of total ad spend—and continuing to grow at a consistent rate of more than 10% annually. This substantial and growing capital investment calls for the development and application of robust methodologies to optimize budget allocation across diverse digital platforms.

^{*}Corresponding author.

Advertising attribution, the process of assigning credit for user conversions (such as app downloads or product purchases) to the platforms that contributed to them, plays a central role in guiding these allocation decisions and has consequently garnered significant attention. In practice, attribution reflects a variety of design principles and business objectives. Methods range from simple heuristics such as first-click and time-decay attribution to data-driven approaches based on machine learning and causal inference. Among these, last-click attribution has become the industry default due to its simplicity and its practical relevance for measuring revenue-driven, bottom-of-funnel conversions.

Under last-click attribution, the platform that most recently interacted with the user receives full conversion credit. Because these credits directly determine performance metrics and future budget allocation, platforms have a strong incentive to manipulate the timing of their reports to appear last in the user's interaction sequence. Such strategic behavior can distort attribution outcomes, overstating the influence of certain platforms even on its own terms.

This manipulation has become increasingly feasible in modern advertising ecosystems, especially when the advertiser does not control the landing page—such as app installations through app stores or purchases on major e-commerce platforms—where click events cannot be directly measured. In the past, advertisers relied on redirect-based tracking flows, where an intermediary measurement partner (MMP) logged the click before redirecting the user to the final landing page, thus providing an independent, verifiable timestamp. However, the industry has since shifted toward *redirect-less* tracking paradigm, in which user navigation and click reporting are decoupled to improve latency and privacy. Without an intermediary verifier, advertisers now depend entirely on platform's self-reported timestamps, making strategically timed reports both feasible and practically undetectable.²

Nevertheless, such strategic behavior has received limited attention in the academic literature. Most prior work on advertising attribution instead focuses on modeling platform contributions to conversions using increasingly sophisticated statistical or machine learning methods, under the assumption that platforms passively and truthfully report user interaction data. In this paper, we initiate the study of advertising attribution from a mechanism design perspective, treating platforms as strategic agents that may misreport in order to maximize their assigned credit. Rather than proposing a new attribution philosophy, we work within the prevailing logic of last-click attribution and ask: *How can we design an attribution mechanism such that platforms have no incentive to misreport, while still assigning credit to the platform with the true last click?*

Main Contribution To address the above question, we first model the advertising attribution scenario as a game-theoretic model in which multiple platforms strategically submit user interaction logs to compete for conversion credit. The advertiser then allocates credit according to a predefined attribution rule. In this model, our analysis focuses on characterizing dominant strategy incentive compatible (DSIC) mechanisms, and evaluating the performance of different attribution mechanisms, using two key metrics: accuracy and fairness. Accuracy measures the alignment between the assigned and true contributors, while fairness assesses whether each platform receives its deserved share of credit in expectation. Detailed results are presented in Table 1, with proofs in the full version.

Table 1: Mechanism performance under different settings

	DSIC	Fair	Accuracy (Homogeneous)	Accuracy (Heterogeneous)	
LCM	Х	Х	$n = 2$: $(2 - \sqrt{2})^2 \approx 0.3431$ (Theorem 2)	0	
	(Proposition 1)	(Proposition 4)	$n \ge 3$: $\left(\left(1 - \frac{1}{n} \frac{1}{n-1} \right)^n, (1 - \gamma^2)^n \right]^*$ (Theorem 3)	(Theorem 4)	
PVM	✓	✓	n = 2: $3/4 = 0.75$ (Theorem 6)	$n = 2$: $19/27 \approx 0.7037$ (Theorem 7)	
	(Proposition 2)	(Proposition 3)	$n \ge 3$: $1 - \left(1 - \frac{1}{n}\right) \left(\frac{1}{n}\right)^{\frac{1}{n-1}}$ (Theorem 6)	$n \geq 3: \left[\left(\frac{19}{27}\right)^{\lceil \log_2 n \rceil}, \ 1 - \left(1 - \frac{1}{n}\right) \left(\frac{1}{n}\right)^{\frac{1}{n-1}} \right]$ (Theorem 6 & 8)	
$^*\gamma = \sqrt[3]{}$	$\sqrt{\frac{2+\sqrt{6}}{4}} + \sqrt[3]{\frac{2-\sqrt{6}}{4}}$).				

We begin by analyzing the commonly used Last-Click Mechanism (LCM) and theoretically demonstrate that it is not DSIC. For LCM's performance, our findings reveal that, in the worst-case scenario,

²This shift has been driven by privacy regulations such as the European Union's *General Data Protection Regulation* and Apple's *App Tracking Transparency* framework [8, 2, 16], and the adoption of redirect-less systems including Google's and Microsoft's *parallel tracking* and Apple's *SKAdNetwork* [10, 19, 3].

LCM can perform remarkably poorly. Even with just two heterogeneous platforms, both accuracy and fairness can approach arbitrarily low values.

To ensure DSIC, we propose a novel attribution mechanism called the Peer-Validated Mechanism (PVM). The mechanism operates as follows: only platforms reporting before the conversion are eligible for attribution, and the credit a platform receives depends solely on peer reports and prior probabilities—independent of its own report. Since a platform's report does not influence its own outcome, PVM is DSIC by design. We then theoretically demonstrate that PVM consistently outperforms the LCM in terms of both attribution accuracy and fairness. We further prove that it is the optimal DSIC mechanism in the homogeneous setting (Theorem 5). Mutiple simulations using distributions fitted from real-world ad-conversion data further validate the superiority of PVM.

To the best of our knowledge, this is the first work to formally model the advertising attribution problem within a theoretical framework, and to rigorously analyze the incentive and efficiency properties of the widely adopted Last-Click Mechanism. By shifting attention from empirical heuristics and estimation to mechanism design, our work offers foundational insights for developing attribution systems that are robust, fair, and incentive-compatible in digital advertising markets.

All missing proofs can be found in full version.

Related Work Recent research on advertising attribution has primarily focused on multi-touch attribution, which distributes conversion credit across multiple platforms based on observed user interactions data. A wide range of modeling approaches have been explored, including probabilistic models such as survival analysis [13, 14, 23, 28, 29], Shapley value-based methods for fair allocation [1, 4, 24], and Markov models for channel transition influence [1, 15]. Furthermore, causal inference [6, 27] and deep learning [21, 18, 6, 17, 26, 27] have been applied to better capture temporal and interaction complexity. Despite their sophistication, these approaches generally assume that the user interactions data reported by platforms are accurate and complete.

However, this assumption often fails in practice, as platforms may strategically misreport to gain greater attribution. In contrast, mechanism design offers a principled framework for addressing strategic behavior, with incentive compatibility (IC) as a central design goal [12, 20, 25, 5, 11]. While IC-based techniques have been widely applied in domains such as auctions [7], voting [9], and resource allocation [22], their application to attribution remains underexplored. Attribution presents new challenges: the strategic behavior of platforms is often ill-defined, and their utility depends on uncertain conversion outcomes, making standard mechanism design tools difficult to apply directly.

2 Model and Preliminaries

This section develops a formal model to study advertising attribution under strategic platform behavior. We first describe a typical real-world scenario, then formalize the model components, define the attribution mechanism, analyze strategic behavior, and finally define the advertiser's objective.

Throughout, we adopt the last-click attribution standard, treating the final platform in a user's interaction sequence as the one that deserves credit. We focus on settings with at least two platforms, the minimal case where attribution ambiguity and manipulation arise. In practice, the number of platforms involved in a conversion is typically small—often no more than five.

2.1 Real-World Advertising Scenario

Consider the real-world online advertising scenario where a user interacts with ads from multiple platforms ($n \ge 2$) before a conversion event. When the user converts, the advertiser seeks to allocate credit based on the click logs reported by the platforms.

The process unfolds as follows. Each platform $i \in [n]$ first detects a user click and records a log at the corresponding absolute click time $t_i^{\rm abs}$. It then selects an absolute reported time $r_i^{\rm abs} \geq t_i^{\rm abs}$, at which it submits the log to the advertiser. At some time $t_0 \geq \max_{i \in [n]} \{t_i^{\rm abs}\}$, the user converts, and the advertiser performs credit attribution based on reports received by t_0 —that is the set $\{r_i^{\rm abs} \mid r_i^{\rm abs} \leq t_0\}$. Crucially, while the advertiser observes the conversion time t_0 , platforms must decide when to report without knowing when the conversion will occur.

This scenario highlights the fundamental challenge in attribution: the advertiser must infer the true sequence of events based on potentially delayed reports from strategically acting platforms. The discrepancy between true click times and reported times necessitates careful mechanism design.

2.2 Advertising Attribution Model

We now present a game-theoretic model of the attribution process, capturing strategic platform behavior and informing mechanism design. To simplify analysis, we adopt a conversion-aligned timeline, setting the conversion time $t_0 = 0$ without loss of generality. Under this transformation, all click times are expressed relative to the conversion and lie in $(-\infty, 0]$. Specifically, we define

$$t_i := t_i^{\text{abs}} - t_0 \le 0, \quad \forall i \in [n],$$

 $t_i:=t_i^{\text{abs}}-t_0\leq 0,\quad \forall i\in[n],$ where t_i denotes the relative click time of platform i. Figure 1 illustrates this transformation: if two platforms record clicks at 10:40 a.m. and 10:50 a.m., and the conversion occurs at 11:00 a.m., their relative click times become $t_1 = -20$ and $t_2 = -10$, with the conversion at time 0. Under the

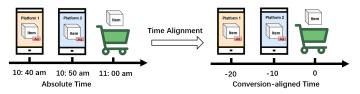


Figure 1: Conversion-aligned time transformation

conversion-aligned timeline, the relative click time $t = (t_i)_{i \in [n]}$ —which depends on the unknown conversion time—is therefore unobservable to platforms. To capture this uncertainty, we model t_i as a random variable drawn independently from a commonly known distribution, with cumulative distribution function (CDF) $F_i(t)$ and probability density function (PDF) $f_i(t)$, supported on $(-\infty, 0]$. This distribution may be interpreted as a prior belief based on platform-level statistics. Let F = $\{F_i\}_{i\in[n]}$ denote the joint distribution from which the click time vector t is drawn.

To model strategic reporting, we assume each platform $i \in [n]$ selects a non-negative reporting delay $\tau_i \geq 0$, resulting in a reported time $r_i = t_i + \tau_i$ on the conversion-aligned timeline³. Since t_i is unobservable when the platform commits to its strategy, the chosen delay τ_i is applied uniformly across all realizations of t_i . We denote the delay profile as $\tau = (\tau_i)_{i \in [n]}$, and the resulting reported time profile by $r = (r_i)_{i \in [n]} = t + \tau$. Unless stated otherwise, all subsequent analysis is conducted on the conversion-aligned timeline.

2.3 Attribution Mechanism

We define an attribution mechanism \mathcal{M} by its assignment rule $\mathcal{M}(r) := \{x_i(r)\}_{i \in [n]}$, where $x_i(r)$ denotes the credit assigned to platform i given the reported time profile r.⁴ A mechanism is said to be feasible if it satisfies the following constraints:

$$0 < x_i(\mathbf{r}) < 1, \quad \forall i \in [n], \mathbf{r} \tag{1}$$

$$x_i(r_i, \mathbf{r}_{-i}) = 0, \quad \forall i \in [n], r_i > 0, \mathbf{r}_{-i}$$
 (2)

$$\mathbb{E}_{\boldsymbol{t} \sim \boldsymbol{F}} \left[\sum_{i=1}^{n} x_i(\boldsymbol{t} + \boldsymbol{\tau}) \right] \leq 1, \quad \forall \boldsymbol{F}, \boldsymbol{\tau}$$
 (3)

Constraints (1) and (2) bound individual credit and exclude post-conversion reports. Constraint (3) limits the expected credit, ensuring that the advertiser's overall budget is respected.⁵

³We focus on strategic *delay* in reporting rather than repeated or fraudulent submissions. Each platform reports its click once, possibly after a strategic delay, to maximize its attribution credit. This setting differs from click spamming and click injection, which involve multiple or fabricated reports.

⁴In practice, reports submitted after the conversion time (i.e., $r_i > 0$) are typically not received or used by the advertiser. However, for modeling generality, we allow such values as inputs to the mechanism. Their exclusion from attribution is later enforced through explicit feasibility constraints (see Constraint (2)).

⁵Constraint (3) normalizes total credit in expectation rather than per conversion. This design reflects advertisers' long-term budget control: it maintains the average expenditure over many conversions while allowing more flexibility for designing incentive-compatible mechanisms than strict per-instance normalization.

Given an attribution mechanism \mathcal{M} , we define platform $i \in [n]$'s instantaneous utility under report profile r as the credit assigned to it by the mechanism: $u_i(r) = x_i(r)$. Given the distribution profile F and others' strategy τ_{-i} , platform i selects its delay τ_i to maximize its expected utility:

$$U_i(\tau_i, \boldsymbol{\tau}_{-i}) = \mathbb{E}_{\boldsymbol{t} \sim \boldsymbol{F}} \left[u_i(\boldsymbol{t} + \boldsymbol{\tau}) \right] = \mathbb{E}_{\boldsymbol{t} \sim \boldsymbol{F}} \left[x_i(\boldsymbol{t} + \boldsymbol{\tau}) \right].^6$$

From the advertiser's perspective, an ideal attribution mechanism \mathcal{M} should achieve two primary goals: (i) incentivize truthful reporting to ensure reliable interaction data; and (ii) accurately assign credit to the platform responsible for the conversion.

We first use dominant strategy incentive compatibility (DSIC) to capture truthful reporting:

Definition 1 (DSIC). A mechanism \mathcal{M} is DSIC if for every platform i, truthful reporting $(\tau_i = 0)$ maximizes its utility $u_i(\mathbf{r})$ regardless of the realized true click times $\mathbf{t} = (t_i, \mathbf{t}_{-i})$ or the strategies τ_{-i} chosen by other platforms⁷. That is, for all platforms $i \in [n]$, all true times $t_i \leq 0$ and t_{-i} , all others' strategies τ_{-i} , and any deviation delay $\tau'_i > 0$:

$$u_i(t_i, t_{-i} + \tau_{-i}) \ge u_i(t_i + \tau'_i, t_{-i} + \tau_{-i}).$$

It is easy to verify that DSIC is equivalent to a non-increasing allocation rule with respect to a platform's own report.

Theorem 1. An attribution mechanism \mathcal{M} satisfies DSIC if and only if, for every platform i and any fixed reports from other platforms \mathbf{r}_{-i} , the credit $x_i(r_i, \mathbf{r}_{-i})$ is non-increasing in its own report r_i .

Second, we formalize attribution accuracy as the mechanism's ability to assign credit to the true last-click platform. Specifically, we defined the accuracy of a mechanism \mathcal{M} , given F as

$$ACC(\mathcal{M}; \boldsymbol{F}) = \mathbb{E}_{\boldsymbol{t} \sim \boldsymbol{F}} \left[\sum_{i=1}^{n} x_i (\boldsymbol{t} + \boldsymbol{\tau}^{NE}) \cdot \mathbb{I}[i = \arg\max_{j} \{t_j\}] \right],$$

where $\tau^{\rm NE}$ is the Nash equilibrium induced by F and \mathcal{M} . Note that $\tau^{\rm NE}=0$ for a DSIC mechanism. Thus, given a known distribution F, the advertiser's optimization problem is formulated as:

$$\max_{\mathcal{M}} \quad ACC(\mathcal{M}; \mathbf{F})$$
s.t. Feasible and DSIC. (4)

Beyond defining accuracy with respect to a fixed F, we define the accuracy of mechanism \mathcal{M} as

$$ACC(\mathcal{M}) := \inf_{\mathbf{F}} ACC(\mathcal{M}; \mathbf{F}),$$

capturing worst-case performance across F, serving as a evaluation for a mechanism's performance.

3 The Last-Click Mechanism

In this section, we conduct a rigorous analysis of the Last-Click Mechanism (LCM). We begin by formally defining LCM and then demonstrate that it fails to satisfy DSIC. We further evaluate its accuracy at equilibrium and derive accuracy bounds in both homogeneous and heterogeneous platform settings. Formally, the Last-Click Mechanism is defined as \mathcal{M}_{LCM} :

Definition 2 (Last-Click Mechanism). Given the report profile $\mathbf{r} = (r_i)_{i \in [n]}$, the Last-Click Mechanism is defined as $\mathcal{M}_{LCM} = \{x_i(\mathbf{r})\}_{i \in [n]}$. Specifically,

$$x_i(\boldsymbol{r}) = \begin{cases} 1 & \text{if } i \in S \text{ and } r_i = \max_{j \in S} \{r_j\}, \\ 0 & \text{otherwise,} \end{cases}$$

where $S = \{j \in [n] \mid r_j \leq 0\}$ is the set of platforms with effective reports. Ties are broken uniformly at random among the tied platforms.

 $^{^6}$ Note that, in the absolute-time model, the platform must take expectation over the unknown conversion time and other click times. In the conversion-aligned model, the conversion time is fixed at 0, and the same uncertainty is reflected in the distribution of t.

⁷DSIC benefits cold-start scenarios by ensuring truthful reporting without requiring prior knowledge, enabling reliable attribution from the outset and facilitating the learning of the true distribution.

Due to its simplicity and its intuitive principle of crediting the platform associated with the user's final click before conversion, LCM is widely adopted in practice. However, it is easy to see that platforms may benefit from strategically delaying their reports, making truthful reporting suboptimal. Therefore, LCM does not satisfy DSIC.

Proposition 1. The Last-Click Mechanism is not a DSIC mechanism.

3.1 Accuracy Analysis

Since LCM is not DSIC, it may assign credit to a platform that wasn't truly last, leading to inaccurate attribution. We therefore analyze its equilibrium accuracy in both homogeneous and heterogeneous platform settings, and derive accuracy bounds for both two-platform and *n*-platform cases.⁸

We first consider the case with two homogeneous platforms and present our result in Theorem 2.

Theorem 2. When there are two homogeneous platforms with identical distribution F(t), supported on $(-\infty, 0]$, the accuracy of \mathcal{M}_{LCM} is exactly $(2 - \sqrt{2})^2$, and this bound is tight.

To prove Theorem 2, we first analyze the incentive constraint at a symmetric strategy profile (τ_0, τ_0) . By requiring that no platform benefits by unilaterally deviating from τ_0 to truthful reporting, we derive the necessary condition $F(-\tau_0) \geq 2 - \sqrt{2}$. Since LCM can only attribute correctly when both true click times are before $-\tau_0$, this yield a lower bound on accuracy of $(2-\sqrt{2})^2$. We then construct a family of distributions $f_M(t) = c_M(e^{-t}-1)$, supported on [-M,0], where c_M is a normalization constant. We show that this game admits a unique symmetric Nash equilibrium, and as $M \to \infty$, the accuracy converges to exactly $(2-\sqrt{2})^2$.

We now extend our analysis to the general case with n homogeneous platforms.

Theorem 3. When there are n homogeneous platforms with identical distribution F(t), supported on $(-\infty, 0]$, the accuracy of \mathcal{M}_{LCM} is bounded as follows:

$$\left(1 - \left(\frac{1}{n}\right)^{\frac{1}{n-1}}\right)^n < ACC(\mathcal{M}_{LCM}) \le \left(1 - \left(\sqrt[3]{\frac{2+\sqrt{6}}{4}} + \sqrt[3]{\frac{2-\sqrt{6}}{4}}\right)^2\right)^n.$$

The lower bound is derived using an argument similar to the two-platform case, by examining the conditions required for a symmetric equilibrium. For the upper bound, we analyze the symmetric equilibrium under a specific distribution with a linear probability density function f(t) = -2t supported on [-1,0].

Finally, we consider the heterogeneous case, where each platform may follow a different distribution $F_i(t)$. Surprisingly, we show that the accuracy of the LCM can be arbitrarily low, even in a simple setting with just two heterogeneous platforms.

Theorem 4. When there are n heterogeneous platforms with distributions $F_i(t)$, all supported on $(-\infty, 0]$. the accuracy of \mathcal{M}_{LCM} can be arbitrarily small and approach to 0.

The proof relies on a key insight: a platform with a highly concentrated distribution (e.g., supported on $(C - \epsilon, C + \epsilon)$) can easily manipulate its report to secure attribution credit. We construct an instance where one platform has such a concentrated distribution, while the others have click time supports strictly greater than it. In this scenario, we show that in equilibrium, the concentrated platform receives attribution with probability approaching 1, causing overall accuracy to approach 0.

4 The Peer-Validated Mechanism

In this section, we introduce the Peer-Validated Mechanism (PVM), a novel mechanism addressing the non-DSIC issue of LCM. Intuitively, if the credit assigned to a platform is independent of its own report, the mechanism is DSIC. Based on this idea, we propose the PVM as follows:

⁸Since our focus is on DSIC mechanisms, we restrict our evaluation of LCM to instances where equilibrium is guaranteed, without analyzing its existence in general. Even within this limited scope, the results clearly demonstrate LCM's poor performance in our setting.

Definition 3 (Peer-Validated Mechanism). Consider n platforms with the CDF $\{F_i\}_{i\in n}$ and PDF $\{f_i\}_{i\in n}$ supported on $(-\infty,0]$. Let $\mathbf{r}=(r_i)_{i\in [n]}$ be the reported time profile from n platforms. The Peer-Validated Mechanism assigns credit based on mutual validation among platforms, and is defined as $\mathcal{M}_{PVM} = \{x_i(\mathbf{r})\}_{i\in [n]}$, with

$$x_{i}(\mathbf{r}) = \begin{cases} \mathbb{I}[r_{i} \leq 0] \cdot \mathbb{I}[\max_{j \in S \setminus \{i\}} \{r_{j}\} \leq \alpha_{S}^{(i)}] & \text{if } |S \setminus \{i\}| \geq 1, \\ \mathbb{I}[r_{i} \leq 0] \cdot \beta_{i} & \text{otherwise,} \end{cases}$$

where $S = \{j \in [n] | r_j \leq 0\}$ denotes platforms with eligible reports. $\beta_i = P(i = \arg\max_j \{t_j\}) = \int_{-\infty}^0 f_i(t) \prod_{j \neq i} F_j(t) dt$ is the probability that platform i is the true last-click platform based on the prior. The validation threshold $\alpha_S^{(i)}$ is defined as the solution to $\prod_{j \in S \setminus \{i\}} F_j(\alpha_S^{(i)}) = \beta_i$.

Roughly speaking, PVM assigns credit to platform i's credit based on eligible reports from other platforms. When such peer reports exist, the mechanism compares them to a threshold $\alpha_S^{(i)}$, which is chosen so that the probability of all peers' true click times being no later than $\alpha_S^{(i)}$ matches the prior β_i that platform i is the true last. This validation process leverages instance-level information to make attribution decisions while preserving incentive compatibility. If no eligible peer reports are available, PVM falls back to allocating β_i based on the prior. The reason only eligible reports are used for validation is that the mechanism assumes no overt misreporting among them, while ineligible reports $(r_j > 0)$ are definitely misreports and thus excluded due to unmodeled behavior. Finally, the indicator $\mathbb{I}[r_i \leq 0]$ ensures that attribution only goes to pre-conversion reports.

Since any reporting delay either disqualifies the platform itself or prevents others from being attributed, it is straightforward to verify that PVM satisfies feasibility and DSIC ¹⁰, as formalized in Proposition 2.

Proposition 2. The Peer-Validated Mechanism is a DSIC mechanism.

As PVM is DSIC, we focus on truthful reports (r = t). In this case, S = [n], and we let α_i denote the threshold used in $x_i(\cdot)$, defined by $\prod_{i \neq i} F_j(\alpha_i) = \beta_i$. The allocation rule then simplifies to

$$x_i(\mathbf{t}) = \mathbb{I}[\max_{j \neq i} \{t_j\} \le \alpha_i] \quad \forall i \in [n].$$

We adopt this reduced form throughout the remainder of our analysis of PVM.

4.1 Optimality of PVM for Homogeneous Platforms

We surprisingly find that PVM is the optimal DSIC mechanism in the homogeneous platform setting. **Theorem 5.** When the platforms are homogeneous, the Peer-Validated Mechanism (PVM) is the optimal DSIC mechanism with respect to the accuracy.

To show this optimality, we aim to identify the DSIC attribution rule $\{x_i(t)\}_{i\in[n]}$ that maximizes accuracy. This is a challenging task, as it involves optimizing over a set of functions simultaneously. However, if for any fixed expected attribution $e_i = \mathbb{E}_t[x_i(t)]$, we can characterize the most accurate DSIC rule that achieves it, then the problem reduces to optimizing over the expected attribution vector $e = (e_i)_{i \in [n]}$. The following lemma shows that such a characterization indeed exists.

Lemma 1. For platform i and a fixed expected attribution e_i , there exists an optimal DSIC attribution rule for platform i w.r.t. accuracy, satisfying $e_i = \mathbb{E}_{\mathbf{t}}[x_i(\mathbf{t})]$, that can be written as

$$x_i^*(t_i, \boldsymbol{t}_{-i}) = \begin{cases} 1, & \text{if } \max_{j \neq i} \{t_j\} \leq \theta_i, \\ 0, & \text{otherwise}, \end{cases}$$

where $G_i(t) = \prod_{j \neq i} F_j(t)$ is the CDF of the random variable $\max_{j \neq i} \{t_j\}$, and $G_i(\theta_i) = e_i$.

⁹The existence and uniqueness of $\alpha_S^{(i)}$ and β_i under standard regularity conditions, along with handling edge cases (e.g., flat or discontinuous CDFs), are detailed in full version.

¹⁰A simple variant of PVM also preserves DSIC under the click spamming problem, where a platform may repeatedly report the same click at later timestamps. Specifically, the modified mechanism takes the first valid report (if any) from each platform as input while keeping the rest of the allocation rule unchanged. Under this setting, the platform's own reporting time remains decoupled from its expected number of attributions.

Herein, we give a proof sketch of Lemma 1. First, as any DSIC rule must be non-increasing in t_i (Theorem 1), we claim that, to maximize accuracy, the optimal DSIC rule $x_i(t_i, \boldsymbol{t}_{-i})$ should be a constant when given \boldsymbol{t}_{-i} , so that larger values of t_i , which more better indicate that platform i is last, are not penalized. Second, given a fixed expected attribution e_i , the self-independent rule $x_i(\boldsymbol{t}_{-i})$ should prioritize instances with smaller $\max_{j \neq i} \{t_j\}$, where platform i is more likely to be last. This greedy strategy yields the threshold-form optimal DSIC rule in the lemma. When G_i is somewhere flat, multiple thresholds may achieve e_i , and combining them may yield non-threshold variants. Still, at least one such optimal rule exists.

Based on Lemma 1, the task reduces to finding the optimal $(e_i^*)_{i \in [n]}$. Since $G_i(\theta_i) = e_i$, the original optimization problem (4) can therefore be reformulated in terms of $\theta = (\theta_i)_{i \in [n]}$ as follows:

$$\max_{\boldsymbol{\theta}} \quad \sum_{i=1}^{n} \int_{-\infty}^{\theta_i} g_i(u) (1 - F_i(u)) du$$
s.t.
$$\sum_{i=1}^{n} G_i(\theta_i) = 1$$

In particular, for homogeneous platforms, the thresholds defined within the PVM precisely align with the solution to the optimization problem outlined above, establishing its optimality as stated in Theorem 5.

4.2 Accuracy Analysis

We now analyze the accuracy of PVM. For the homogeneous setting, we give a tight bound on the accuracy. Since PVM is the optimal DSIC mechanism, this accuracy is the maximum value a DSIC mechanism can achieve.

Theorem 6. When there are n homogeneous platforms with identical distribution F(t), supported on $(-\infty, 0]$, the accuracy of \mathcal{M}_{PVM} is exactly equal to

$$ACC(\mathcal{M}_{PVM}) = 1 - \left(1 - \frac{1}{n}\right) \left(\frac{1}{n}\right)^{\frac{1}{n-1}}.$$

In the homogeneous case, symmetry implies that all thresholds α_i are equal, denoted by α , and satisfy $F(\alpha)^{n-1}=1/n$. Therefore, PVM makes a correct attribution if either all reports are no greater than α , which occurs with probability $(1/n)^{n/(n-1)}$, or exactly one report exceeds α , which occurs with probability $1-(1/n)^{1/(n-1)}$. These probabilities depend only on n, not on the specific distribution. Summing them gives the accuracy in Theorem 6.

In practice, the number of platforms n typically does not exceed 5. We therefore conduct a comparison with the Last-Click mechanism (presented in Table 2) to show that PVM is strictly superior.

Table 2: The accuracy comparison between PVM and LCM (Upper bound).

\overline{n}	$\mathcal{M}_{ ext{PVM}}$	Upper bound of \mathcal{M}_{LCM}	Ratio (\mathcal{M}_{PVM} / \mathcal{M}_{LCM} UB)	
2	0.75	$(2-\sqrt{2})^2 \approx 0.3431$ (tight bound)	2.1857	
3	0.6151	0.3336	1.8437	
4	0.5275	0.2314	2.2799	
5	0.4650	0.1605	2.8977	

In the rest, we consider the general heterogeneous-platform setting. We show a tight bound on accuracy for two-platform case (Theorem 7) and a lower bound for *n*-platform case (Theorem 8).

Theorem 7. When there are two heterogeneous platforms, the accuracy of \mathcal{M}_{PVM} is exactly equal to $ACC(\mathcal{M}_{PVM}) = 19/27 \approx 0.7037$.

To establish the result, we first formulate an optimization problem that characterizes the worst-case accuracy by maximizing the misattribution probability. In the two-platform setting, all attribution outcomes can be explicitly enumerated, making this optimization analytically tractable. To show tightness, we then construct a concrete instance that satisfies the optimality conditions, thereby achieving the accuracy value of 19/27.

Theorem 8. When there are n heterogeneous platforms, the lower bound on the accuracy of \mathcal{M}_{PVM} is $ACC(\mathcal{M}_{PVM}) = (19/27)^{\lceil \log_2 n \rceil}$.

For n heterogeneous platforms, we design a binary-tree-based mechanism to derive a lower bound for PVM. Starting from the root node, which represents all n platforms, we recursively partition them into two disjoint subsets L and R of sizes $\lceil n/2 \rceil$ and $\lfloor n/2 \rfloor$, respectively. Each subset is treated as a virtual platform, represented by the distribution of $\max_{i \in L} \{t_i\}$ or $\max_{i \in R} \{t_i\}$. At each internal node, the attribution reduces to a problem between two heterogeneous platforms. Repeating this over $\lceil \log_2 n \rceil$ levels yields an overall accuracy lower bound of $(19/27)^{\lceil \log_2 n \rceil}$. Since PVM is guaranteed to perform at least as well as this mechanism, the same expression serves as a lower bound for its accuracy.

4.3 Fairness of PVM

Besides the DSIC and accuracy, PVM also satisfies a strong *fairness* property: the expected attribution $\mathbb{E}[x_i]$ for each platform i exactly matches its true probability of contributing the last click, $P(i = \arg\max_j\{t_j\})$. This alignment offers a principled basis for evaluating long-term platform effectiveness and simultaneously promotes trust in the mechanism's equity. To quantify this alignment and enable comparisons across mechanisms, we define the following metric:

Definition 4. The fairness score of mechanism \mathcal{M} under the joint distribution \mathbf{F} is defined as

$$FAIR(\mathcal{M}; \boldsymbol{F}) = \min_{\{i \mid P(i = \arg\max_{j}\{t_j\}) > 0\}} \left\{ \frac{\mathbb{E}[x_i(\boldsymbol{t})]}{P(i = \arg\max_{j}\{t_j\})} \right\}.$$

Definition 5. A mechanism \mathcal{M} is Fair if, for any joint distribution \mathbf{F} , it holds that

$$FAIR(\mathcal{M}; \mathbf{F}) = 1.$$

The fairness score $FAIR(\mathcal{M}; \mathbf{F})$ quantifies how closely a mechanism's expected attribution matches the true last-click probabilities, with a score of 1 indicates perfect alignment. A *Fair* mechanism ensures that attribution faithfully reflects contribution probabilities across all distributions. PVM is a fair mechanism directly from the choice of $(\alpha_i)_{i \in [n]}$ under DSIC:

$$\mathbb{E}_{\boldsymbol{t}}[x_i(\boldsymbol{t})] = \mathbb{E}_{\boldsymbol{t}}[\max_{j \neq i} \{t_j\} \le \alpha_i] = \prod_{j \neq i} F_j(\alpha_i) = P(i = \arg\max_j \{t_j\}).$$

Proposition 3. The Peer-Validated Mechanism is Fair.

In contrast, the Last-Click Mechanism fails to meet this property.

Proposition 4. The Last-Click Mechanism is not Fair.

LCM fails the *Fair* property due to its fairness score being highly sensitive to distributional differences and strategic delays, especially under heterogeneity. As shown in Table 3, the fairness score can degrade to zero in such settings.

Table 3: Worst-Case Fairness Score of LCM under Equilibrium.

Scenario	Worst-Case Fairness ($\inf_{\mathbf{F}} FAIR(\mathcal{M}_{LCM}; \mathbf{F})$)		
Homogeneous, $n=2$	$1 - (\sqrt{2} - 1)^2 \approx 0.828$		
Homogeneous, $n \ge 3$ Heterogeneous, $n \ge 2$	$(1 - (1/n)^{n/(n-1)}, 1 - (\sqrt[3]{\frac{2+\sqrt{6}}{4}} + \sqrt[3]{\frac{2-\sqrt{6}}{4}})^{2n}]$		

5 Numerical Experiments

We empirically evaluate PVM against LCM using simulations based on click time distributions fitted from real-world ad conversion logs from four advertising platforms. Experiments cover two settings: homogeneous and heterogeneous. In the homogeneous case, we simulate $n \in \{2,3,4,5\}$ identical platforms, all following the click time same distribution, repeated across four distributions derived

from real data. In the heterogeneous case with n=2, we simulate all six platform pairs formed by different combinations of the four distributions. Under LCM, platforms play in equilibrium; under PVM, they report truthfully by DSIC. Each configuration was evaluated using 5×10^4 simulated user paths, repeated over 10 independent runs.

PVM consistently outperforms LCM in both accuracy and fairness across all settings. Table 4 reports the improvements as mean \pm standard deviation over platforms (homogeneous) or platform pairs (heterogeneous). Specifically, accuracy gains grew with n (up to 0.3041 when n=5) and remains notable under heterogeneity (0.0655). Fairness improvements are small in homogeneous cases but substantial in heterogeneous ones (0.1320).

Table 4: Aggregate summary of PVM's improvements over LCM, (mean \pm standard deviation)

		Hetero Setting			
Metric	n=2	n = 3	n=4	n=5	(over 6 pairs)
Acc. Fair.	0.0404 ± 0.0396 0.0248 ± 0.0089	$0.1583 \pm 0.0439 \\ 0.0157 \pm 0.0034$	$0.2444 \pm 0.0580 \\ 0.0107 \pm 0.0047$	0.3041 ± 0.0490 0.0111 ± 0.0040	0.0655 ± 0.0283 0.1320 ± 0.0598

6 Conclusion and Discussion

This paper introduces a formal game-theoretic framework for advertising attribution under strategic platform behavior. We show that the widely used Last-Click Mechanism fails to be dominant strategy incentive-compatible (DSIC) and performs poorly in both accuracy and fairness. To address these limitations, we propose the Peer-Validated Mechanism (PVM), a novel DSIC mechanism that allocates credit based on peer reports. We prove that PVM achieves optimal accuracy in homogeneous settings, offers provable guarantees in heterogeneous ones, and satisfies a strong fairness property. Our theoretical analysis is further validated by numerical experiments using real-world data, where PVM consistently outperforms LCM.

In practice, peer-validation principle offers a concrete design guideline for incentive-compatible attribution systems. For instance, in machine learning-based models, excluding a platform's own report as an input feature ensures truthfulness, shifting the focus from detection to design.

Besides, PVM framework can be extended to settings with correlated click-time distributions while preserving the core peer-validation principle and the DSIC property. The validation rule generalizes from a scalar threshold (α_i) to a multi-dimensional acceptance region D_i over peer reports t_{-i} , constructed greedily by including outcomes with the highest posterior probability that platform i was the true last click until $P(t_{-i} \in D_i) = \beta_i$. A platform receives credit if and only if its peers' reports fall within D_i . Under this modification, the homogeneous-case results remain unchanged, since our proofs for those theorems do not rely on the independence assumption; the results for the last-click mechanism also remain the same, as its accuracy and fairness are already zero; while in heterogeneous settings, PVM retains a weaker but still meaningful 1/n lower bound on accuracy. We focus on the independence assumption in this paper to present the mechanism's core insight in the clearest setting, which is sufficient to capture the essential strategic structure, leaving correlated extensions for future work.

Several directions remain open. First, while PVM aligns the expected attribution with true last-click probability, future work may explore mechanisms that further improve instance-level accuracy. Second, investigating correlated click-time distributions could enhance a mechanism's applicability in realistic scenarios. Next, a joint optimization framework modeling both advertiser and platform utilities, integrating attribution with budget allocation, represents a compelling direction. Finally, investigating repeated games with externalities—where platforms may strategically harm peers or misreport distributions to manipulate learned priors—could address dynamic interactions, potentially incorporating bidding strategies for a more comprehensive ecosystem model.

Acknowledgment

This work was supported by National Natural Science Foundation of China (No.62472428), Public Computing Cloud, Renmin University of China, the fund for building world-class universities (disciplines) of Renmin University of China.

References

- [1] Eva Anderl, Ingo Becker, Florian von Wangenheim, and Jan Hendrik Schumann. Mapping the customer journey: Lessons learned from graph-based online attribution modeling. *International Journal of Research in Marketing*, 33(3):457–474, 2016.
- [2] Apple Inc. App tracking transparency. https://developer.apple.com/documentation/apptrackingtransparency/, 2021. Accessed: 2025-10-19.
- [3] Apple Inc. Skadnetwork. https://developer.apple.com/documentation/storekit/skadnetwork, 2021. Accessed: 2025-10-19.
- [4] Ron Berman. Beyond the last touch: Attribution in online advertising. *Marketing Science*, 37(5):771–792, 2018.
- [5] Edward H. Clarke. Multipart pricing of public goods. *Public Choice*, 11:17–33, 1971.
- [6] Ruihuan Du, Yu Zhong, Harikesh S. Nair, Bo Cui, and Ruyang Shou. Causally driven incremental multi-touch attribution using a recurrent neural network. In *Proceedings of the 2019 International Conference on Data Mining (ICDM)*. IEEE, 2019.
- [7] Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. Internet advertising and the generalized second-price auction: Selling billions of dollars worth of keywords. *American Economic Review*, 97(1):242–259, 2007.
- [8] European Union. Regulation (eu) 2016/679 of the european parliament and of the council of 27 april 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing directive 95/46/ec (general data protection regulation). https://eur-lex.europa.eu/eli/reg/2016/679/oj, 2016. Accessed: 2025-10-19.
- [9] A. Gibbard. Manipulation of voting schemes: A general result. *Econometrica*, 41(4):587–601, 1973.
- [10] Google Ads Help. About parallel tracking. https://support.google.com/google-ads/answer/7544674, 2021. Accessed: 2025-10-19.
- [11] Theodore Groves. Incentives in teams. *Econometrica*, 41(4):617–631, 1973.
- [12] Leonid Hurwicz. On informationally decentralized systems. *American Economic Review*, 62(2):61–79, 1972.
- [13] Wendi Ji and Xiaoling Wang. Additional multi-touch attribution for online advertising. In *Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)*, pages 10737–10743. AAAI Press, 2017.
- [14] Wenqi Ji, Xue Wang, and Dell Zhang. A probabilistic multi-touch attribution model for online advertising. In *Proceedings of the 25th ACM International Conference on Information and Knowledge Management (CIKM)*, pages 1373–1382. ACM, 2016.
- [15] Lukáš Kakalejčík, Jozef Bucko, Paulo A. A. Resende, and Martina Ferencová. Multichannel marketing attribution using markov chains. *Journal of Applied Management and Investments*, 7(1):49–60, 2018.
- [16] Lennart Kraft et al. Economic impact of opt-in versus opt-out requirements for personal data usage: The case of apple's app tracking transparency (att). In *Proceedings of the Conference*, 2024.
- [17] Sachin Kumar, Garima Gupta, Ranjitha Prasad, Arnab Chatterjee, Lovekesh Vig, and Gautam Shroff. Camta: Causal attention model for multi-touch attribution. In *Proceedings of the 2020 IEEE International Conference on Data Mining Workshops (ICDMW)*, pages 79–86, 2020.
- [18] Ning Li, Sai Kumar Arava, Chen Dong, Zhenyu Yan, and Abhishek Pani. Deep neural net with attention for multi-channel multi-touch attribution. *arXiv preprint arXiv:1809.02230*, 2018.

- [19] Microsoft Advertising. Accountproperty data object campaign management. https://learn.microsoft.com/en-us/advertising/campaign-management-service/accountproperty, 2021. Accessed: 2025-10-19.
- [20] Roger B. Myerson. Optimal auction design. Mathematics of Operations Research, 6(1):58–73, 1981.
- [21] Kan Ren, Yuchen Fang, Weinan Zhang, Shuhao Liu, Jiajun Li, Ya Zhang, Yong Yu, and Jun Wang. Learning multi-touch conversion attribution with dual-attention mechanisms for online advertising. In *Proceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM)*, pages 1433–1442, 2018.
- [22] Michael H. Rothkopf, A. T. S. Pekec, and R. G. Harstad. Computationally manageable combinatorial auctions. *Management Science*, 44(8):1131–1145, 1998.
- [23] Dinah Shender, Ali Nasiri Amini, Xinlong Bao, Mert Dikmen, Jing Wang, and Amy Richardson. A time to event framework for multi-touch attribution. *Journal of Data Science*, 22(1):56–76, 2023.
- [24] Raghav Singal, Omar Besbes, Antoine Désir, Vineet Goyal, and Garud Iyengar. Shapley meets uniform: An axiomatic framework for attribution in online advertising. *Management Science*, 68(10):7457–7479, 2022.
- [25] William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. *Journal of Finance*, 16(1):8–37, 1961.
- [26] Dongdong Yang, Kevin Dyer, and Senzhang Wang. Interpretable deep learning model for online multi-touch attribution. *arXiv* preprint arXiv:2004.00384, 2020.
- [27] Di Yao, Chang Gong, Lei Zhang, Sheng Chen, and Jingping Bi. Causalmta: Eliminating the user confounding bias for causal multi-touch attribution. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)*, pages 1234–1243, 2022.
- [28] Ya Zhang, Yi Wei, and Jianbiao Ren. Multi-touch attribution in online advertising with survival theory. In *Proceedings of the 2014 IEEE International Conference on Data Mining (ICDM)*, pages 687–696, 2014.
- [29] Kaifeng Zhao, Seyed Hanif Mahboobi, and Saeed R Bagheri. Revenue-based attribution modeling for online advertising. *International Journal of Market Research*, 61(2):195–209, 2019.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper's main contributions, which are consistently supported by both theoretical analysis and numerical experiments' results.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of our work are explicitly discussed in the future directions part of Section 6.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: For each theoretical result, the paper presents the full set of assumptions in the main text and provides a complete proof in the appendix.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide experimental details, these are clearly presented in supplement materials, allowing readers to fully understand and replicate our experimental setup.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: The numerical experiments are based on data that include sensitive information from both users and advertising platforms. Due to privacy concerns and contractual restrictions, we are unable to release the raw data. However, although we cannot disclose the data, we provide a description of its general distribution in supplement materials to assist in the reproducibility of our results, along with a detailed explanation of the simulation process and experimental setup in supplement materials.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We provide experimental details, these are clearly presented in supplement materials, allowing readers to fully understand and replicate our experimental setup.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide experimental details, these are clearly presented in supplement materials, each setting of experiments was repeated 10 times, and each simulation was 50,000 times.

Guidelines:

• The answer NA means that the paper does not include experiments.

- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: As introduced in supplement materials.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the societal impacts of our work in Section 1 and 6.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve human subjects.

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We only uses LLMs to edit and format this paper.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.