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Abstract

Node-level random walk has been widely used to improve Graph Neural Networks.
However, there is limited attention to random walk on edges and, more gener-
ally, on k-simplices. This paper systematically analyzes how random walk on
different orders of simplicial complexes (SC) facilitates GNNs in their theoreti-
cal expressivity. First, on 0-simplices or node level, we establish a connection
between existing positional encoding (PE) and structure encoding (SE) methods
through the bridge of random walk. Second, on 1-simplices or edge level, we
bridge edge-level random walk and Hodge 1-Laplacians and design corresponding
edge PE respectively. In the spatial domain, we directly make use of edge level
random walk to construct EdgeRWSE. Based on the spectral analysis of Hodge
1-Laplcians, we propose Hodge1Lap, a permutation equivariant and expressive
edge-level positional encoding. Third, we generalize our theory to random walk on
higher-order simplices and propose the general principle to design PE on simplices
based on random walk and Hodge Laplacians. Inter-level random walk is also
introduced to unify a wide range of simplicial networks. Extensive experiments
verify the effectiveness of our random walk-based methods.

1 Introduction

Graph neural networks (GNNs) have recently achieved great success in tasks with graph-structured
data, benefiting many theoretical application areas, including combinatorial optimization, bio-
informatics, social-network analysis, etc. [11, 29, 16]. Two important aspects to evaluate GNN
models are their theoretical expressivity in distinguishing non-isomorphic graphs, and their perfor-
mance on real-world tasks. Positional encoding (PE) and structure encoding (SE) are widely adopted
methods to enhance both theoretical expressivity and real-world performance of GNNs. Generally,
PE encodes the information of the nodes’ local or global positions, while SE provides information
about local or global structures in the graph. For example, Kreuzer et al. [30] uses eigenvectors of
the graph Laplacian, Dwivedi et al. [18] proposes to use diagonal elements of the t-step random
walk matrix, and Bouritsas et al. [9] manually count some predefined structures. There are also some
methods based on pair-wise node distances, such as the shortest path distance [31], the heat kernel
[20], and the graph geodesic [35]. Although some work theoretically analyzes some of these methods
[51], there are still some left-out methods, and people lack a unified perspective to view all these PE
and SE designs. Moreover, most existing methods focus only on node data, while PE and SE on edge
data as well as some higher-order topological structures are waited to be studied.

In addition to PE and SE, geometric deep learning has recently become a central topic. Researchers are
inspired by concepts of differential geometry and algebraic topology, which resulted in many works
on simplices and simplicial complexes [8, 7, 47]. Despite their capability to deal with higher-order
structures, these simplicial networks should follow orientation symmetry, which brings difficulties in
their applications in undirected graphs. This work connects these two separate areas via a central
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concept: random walk on simplicial complexes. On the one hand, by introducing concepts of higher-
order simplicial complexes, we can design more PE and SE methods that are both theoretically and
practically powerful. On the other hand, PE and SE greatly facilitate simplicial data and benefit graph
learning.

In summary, we first connect a number of existing PE and SE methods through the bridge of node-
level random walk on 0-simplices. Then, for 1-simplices or edges, we design two novel sign and basis
invariant edge-level PE and SE, namely EdgeRWSE and Hodge1Lap. EdgeRWSE uses an edge-level
random walk directly to capture structure information, while Hodge1Lap is based on spectral analysis
of Hodge 1 Laplacian, which is closely related to random walk on edges. We further generalize our
theory to random walk on higher-order and inter-order simplices to facilitate graph and simplicial
learning. Our methods achieve State-Of-The-Art or highly competitive performance on several
datasets and benchmarks. Code is available at https://github.com/zhouc20/HodgeRandomWalk.

2 Related work

Theoretical expressivity and Weisfeiler-Lehman test. Weisfeiler-Lehman tests are a classical
family of algorithms to distinguish non-isomorphic graphs. Previous work has built connections
between the expressivity of GNNs and the WL hierarchy. Some classical conclusions include that for
k ≥ 2, k + 1-dimensional WL is more powerful than k-WL. [46] proves that traditional message-
passing neural networks (MPNN) are not more powerful than 1-WL. There is another variation of
the WL test called the Folklore Weisfeiler-Lehman (FWL) test, and k-FWL is equivalent to k-WL in
expressivity for k ≥ 1.

Symmetry in graph and simplicial learning. Symmetry is a central topic in graph and simplicial
learning. In graph learning, node features and edge features need to be permutation (i.e., relabeling of
nodes or edges) equivariant, while the graph features should be permutation invariant. In simplicial
learning, one needs to further orientation symmetry [47] in an oriented simplicial complex (SC). The
incidence relations and the simplicial adjacencies in an oriented SC are altered when the orientations
are reversed. The k-form remains invariant to this transformation, while the features of k-simplices
are equivariant in terms of the basis. [32] also state the standard that the graph-level functions (and
in the context of SC, k-forms) should be invariant to both sign and basis (either of orientation or of
space), which is a basic rule for our PE and SE designs.

3 Preliminary

Graphs. We denote a graph as G(V,E,A), where V,E is the set of nodes and the set of edges,
respectively, and A is the adjacency matrix for the nodes. For convenience, we use n = |V | and
m = |E| to represent the number of nodes and edges in the graph G(V,E,A). In an undirected
graph, for any u, v ∈ V , we have (u, v) ∈ E ⇔ (v, u) ∈ E. Let N (v,G) = {u ∈ V |(u, v) ∈ E}
denote the set of neighbors of node v in graph G. Let diagonal matrix D = diag(d1, ..., dn), where
di is the degree of node vi.

The transition matrix of a typical random walk at node level is P = D−1A, which indicates that
in each step the walk moves from the current node v to one of its neighboring nodes u ∈ N (v,G)
with equal probabilities. Consequently, a t step of the aforementioned random walk corresponds to a
transition matrix P t.

Discrete Hodge Laplacian of abstract simplicial complex. An abstract simplicial complex K on
a finite set V is a collection of subsets of V that is closed under inclusion. In our paper, V will be a
vertex set [n] = {1, 2, ..., n} if without special statement. An element of cardinality k + 1 is called a
k-face or k-simplex of K. For instance, 0-faces are usually called vertices, 1-faces are directed edges,
and 2-faces are 3-cliques (triangles) with an orientation. We denote the collection of all k-faces of
K as Sk(K). The dimension of a k-face is k, and the dimension of a complex K is defined as the
maximum dimension of the faces in K.

The definition of neighbors of simplices is crucial in this paper. Two k + 1-simplices sharing a
collective k-face are called k-down neighbors, and two k-simplices sharing a collective k+1-simplex
are called k + 1-up neighbors. Generally, a face F is chosen as an ordering on its vertices and is said
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to be oriented, denoted by [F ]. For any permutation element σ ∈ Gk+1 where Gk+1 is the symmetric
group of permutations on {0, ..., k}, two orders of vertices transformed by σ are said to determine
the same orientation if σ is an even permutation and opposite if σ is odd.

In the Hilbert space, the matrix representations of boundary and coboundary operators are adjacency
matrices of order k and k + 1 simplices. In order to keep coordinate with most existing literature, we
write the adjacent matrix of k-th and k+1-th simplices as Bk+1 ∈ R|Sk|×|Sk+1|. Bk+1[i, j] = 1 if the
i-th k-simplex and j-th k + 1-simplex are adjacent and share the same direction, Bk+1[i, j] = −1 if
adjacent with opposite directions, and 0 if they are not adjacent. For example, B1 is the node-to-edge
incidence matrix.

In discrete Hodge-deRham theory, the k-th order Hodge Laplacian is defined as
Lk = B∗

kBk +Bk+1B
∗
k+1 (1)

where B∗
k = BT

k is the adjoint of Bk and is equivalent to the transpose of Bk in Hilbert space. A
special case is that when k = 0, B0 is not defined and L0 = B1B

∗
1 = D−A is exactly the graph

Laplacian. We refer readers to Appendix C.2.2 for an illustrative calculation example of Hodge
Laplacians. In our following texts, we will make use of higher-order Hodge Laplacians such as L1

rather than previously used L0 alone.

The kernel space of Lk is called the k-th cohomology group: H̃k(K,R) := ker(B∗
k+1)/im(B∗

k)
∼=

ker(B∗
k+1)∩ker(Bk) = ker(Lk). We will write H̃k(K,R) simply as H̃k without causing confusion.

The kernel spaces of Hodge Laplacians are closely associated with harmonic functions and will
play an important role in our following analysis. Particularly, the multiplicity of zero eigenvalues of
Lk, or the dimension of null space of Hodge k-Laplacian ker(Lk), is called the k-th Betti number
βk [23]. This is exactly the number of cycles composed of k-simplicials that are not induced by a
k-boundary, or intuitively, k-dimensional "holes" in the simplicial complex K. For example, zero
eigenvalues and their eigenvectors of L0 are associated with the 0-th cohomology group of the graph,
corresponding to the connected components of the graph. The zero eigenvalues and eigenvectors of
L1 are associated with cycles (in the usual sense), and those of L2 correspond to cavities. We refer
readers to Appendix C.2.2 for detailed explanations and illustrative examples of cohomology groups.

4 Random walk on 0-simplices

Random walk on 0-simplices or at node level has been studied systematically. Previous work has
established comprehensive analysis on the theoretical properties of node-level random walk, which
provide theoretical insights into the design of random walk-based methods. However, there is still
limited research on the theoretical expressivity of random walk-based positional encoding (PE) and
structure encoding (SE) methods. In this section, we establish connections between several PE and
SE with node-level random walk, and provide theoretical expressive power bounds for them.

RWSE. [52] and Dwivedi et al. [18] propose a structure encoding method based on node-level
random walk, which we denote as RWSE. Concretely, RWSE considers K steps of random walk at
the node level of the graph, obtaining P,P2, ...,PK . Then the method only takes into account each
node’s return probabilities to itself, i.e. the diagonal elements of Pk, k = 1, 2, ...,K. For each node
vi, the RWSE feature is hRWSE

i = [Pii,P
2
ii, ...,P

K
ii ]. Compared with encoding methods based on

graph Laplacian eigenvalues and eigenvectors, this method is sign and basis invariant. It internally
captures some structure information within K-hops and achieves impressive results in experiments
[38]. However, there are limited investigations on the theoretical expressivity of RWSE and its
extensions. Here, we provide a theoretical bound of positional and structure encoding methods based
on random walk transition matrix P.
Theorem 4.1. RWSE is strictly less powerful than 2-FWL, i.e. RWSE ≺ 2-FWL.

The above expressivity bound holds because 2-FWL can simulate the multiplication and injective
transformations of a matrix, including the adjacency matrix A. Therefore, 2-FWL is capable
of obtaining Pk, k ∈ N. Specifically, a block of PPGN [34] can simulate one time of matrix
multiplication. Moreover, RWSE is strictly less expressive than 2-FWL, since it loses much structure
information when taking the diagonal elements of Pk only. In other words, RWSE is a summary of
full random walk transition probabilities (on spatial domain), which accelerates calculation at the
cost of losing expressivity.

3



Resistance distance and random walk. In addition to RWSE, there are a number of positional
encoding methods closely related to the node-level random walk. A.K. et al. [2], Zhang et al. [51]
connect commute time in random walks with resistance in electrical networks, which can be used
as a PE method called resistance distance (RD). Zhang et al. [51] prove that RD and shortest path
distance (SPD) [31] are both upper-bounded by 2-FWL in expressive power.

Positive definite kernels based on graph Laplacian spectrum. Graph Laplacian, or Hodge 0-
Laplacian as we refer to later, is closely connected with random walk on graph. The definition of
graph Laplacian is L0 = D−A = δ∗0δ0 = ∆0. Through the spectrum of L0, we are able to define
a family of positive definite kernels on graphs [42] by applying a regularization function r to the
spectrum of L0: Kr =

∑m
i=1 r(λi)uiu

T
i , where L0 =

∑
i λiuiu

T
i is the eigenvalue decomposition.

For example, the heat kernel or the diffusion kernel [20] can be incorporated if r(λi) = e−βλi . Other
methods directly use eigenvectors as PE [30]. These results imply that spectral analysis of graph
Laplacians can also inspire more powerful PE and SE, and we will generalize graph Laplacian L0 to
arbitrary order of Hodge k Laplacians in the following section to facilitate graph learning.

5 Random walk on 1-simplices

While node-level random walk has been widely studied, edge-level random walk is still limited. In
this section, we will first introduce Hodge 1 Laplacian L1, as well as its connection with random
walk on 1-simplices (in the lifted space) and thus edges of undirected graph. Analogous to node-level
RWSE, we introduce EdgeRWSE, a more theoretically powerful PE for edges. Furthermore, we
systematically analyze the spectra of L1 and propose a novel Hodge1Lap PE, the first sign and basis
invariant edge-level positional encoding that make use of the spectra of L1 instead of the previously
adopted L0 only.

5.1 Normalized Hodge-1 Laplacian and edge-level random walk

Theoretical analysis of edge-level random walk. The standard Hodge k-Laplacian is Lk =
B∗

kBk +Bk+1B
∗
k+1, and there are a number of normalized Hodge Laplacian because the normaliza-

tion is rather flexible. Schaub et al. [41] propose a normalized form for Hodge 1-Laplacian L1 with a
clear interpretation of a random walk in the lifted edge space. Concretely,

L̃1 = D2B
∗
1D

−1
1 B1 +B2D3B

∗
2D

−1
2 (2)

where D2 is the diagonal matrix with adjusted degrees of each edge D2 = max(diag(|B2|1), I),
D1 is the diagonal matrix of weighted degree of nodes D1 = 2 · diag(|B1|D21), and D3 = 1

3I.

To interpret this normalized Hodge 1-Laplacian L̃1, Schaub et al. [41] introduce a lifted space of
edges, where the original m = |S1| directed edges are lifted to 2m directed edges. For example,
if (i, j) ∈ S1, then we add (j, i) to the lifted space. Consequently, the edge flow f ∈ C1 expands
to a larger space D1 where there are two orientations for each edge, |D1| = 2|C1|. The matrix
representation for this lifting procedure is V = [+Im −Im]

T ∈ R2m×m. Then the probability
transition matrix for this lifted random walk corresponding to L̃1 is P̂:− 1

2 L̃1V
T = VT P̂. In practice,

we also perform a simpler row-wise normalization over L1 to obtain another form of probability
transition matrix.

Using P̂, we can construct an edge-level random walk-based PE method to enrich edge data by
encoding structure information, analogous to node-level RWSE. We will also discuss some variations
and simplified versions of the aforementioned random walk on 1-simplices and theoretically analyze
their expressivity.

EdgeRWSE. Similar to node-level random walk, a well-defined edge-level random walk contains
some structure information and can be used to facilitate edge data, namely edge-level positional
encoding. While node-level positional encodings have been widely studied, the edge-level positional
encoding is a nearly blank field.

Inspired by (node-level) RWSE, EdgeRWSE is based on edge-level random walk. A full version of
EdgeRWSE is based on the full edge-level random walk as we have stated above and in [41]. For
undirected graphs, two edges with opposite directions (i, j) and (j, i) are again merged by summing
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the two probabilities, that is, the lifted space D1 is mapped back to C1. Generally speaking, PE can
be based on any injection functions ψ in P̂ and its powers.

EdgeRWSE(P̂)i = ψ([P̂k]), k = 1, 2, ...K (3)

where K is the maximum steps we consider. One possible example is to encode the return probability
of each edge, which is written EdgeRWSEret(P̂)i = ψ([P̂k

ii]), k = 1, 2, ...K. If ψ is well defined,
the theoretical expressivity of the full EdgeRWSE above is able to break the 2-FWL bottleneck of
node-level RWSE. In practice, we can apply neural networks like MLP or Transformer to encode
P̂k and concatenate them with the original edge features. Then any standard GNN is applicable for
downstream tasks. If the GNN is at least as powerful as 1-FWL, then the GNN with EdgeRWSE is
strictly more powerful than 1-FWL and can distinguish some non-isomorphic graph pairs in which
2-FWL fails.

In addition to the edge-level random walk in the lifted space of 1-simplicials in [41], we further define
two simplified versions of the edge-level random walk only through lower adjacency. We neglect the
2-simplices or the triangles in our simplified version random walk, i.e. we only consider the 1-down
neighbors that share a 0-simplices (node). In this way, P̂ becomes Pdown. This simplification will
lead to a theoretically weaker expressivity than using full P̂, which will be bounded by 2-FWL.
However, this simplification is appropriate and beneficial for real-world data that contain a small
number of triangles. We illustrate these two variations temporarily on undirected connected graphs
without multiple edges and self-loops for simplicity.

The two variations of edge-level random walk via down-neighbors differ in whether two lower
adjacent nodes of the edge have the same status. Concretely, the first type of edge-level random walk
based on Pdown, which we define as directed 1-down random walk follows a two-stage procedure at
every step. The walk first selects one of the two lower-adjacent nodes with equal probability 0.5 each,
then moves towards the neighboring edges connected with the selected node with equal probabilities.
If there are no other edges connected to the selected node, the walk returns to the original edge. On
the other hand, the second type, which we denote as undirected 1-down random walk, chooses the
two nodes u, v with probabilities proportional to their degrees minus one (since we want to exclude
the case of returning to e itself). Consequently, the walk transits to all 1-down neighbors of the source
edge with equal probabilities.

In a similar way as the full EdgeRWSE, we propose two simplified versions of EdgeRWSE based on
directed 1-down and undirected 1-down random walk, both can be implemented in a rather flexible
way. As a special case, the return probabilities of each edge after k = 1, . . . ,K steps are encoded,
but notice again that it is not the only implementation choice.

We conclude by summarizing the expressivity of EdgeRWSE.
Theorem 5.1. Full EdgeRWSE can distinguish some non-isomorphic graphs that are indistinguish
by 2-FWL. EdgeRWSE based on directed and undirected 1-down random walk are not more powerful
than 2-FWL.

5.2 Sign and basis invariant edge-level positional encoding

Theoretical analysis of Hodge 1-Laplacian spectrum. Recall that the unnormalized Hodge 1-
Laplacian is L1 = BT

1 B1 +B2B
T
2 = L1,down +Lup. Here, we analyze the theoretical properties of

Hodge 1-Laplacian including its spectrum, which provides solid insights into our following designs.

Note that previous simplicial networks [12, 47, 8, 7] are orientation equivariant and permutation
equivariant; thus, they can only be applied to simplicial complexes where all edges are directed. This
is frustrating if we want to boost general learning on graphs rather than simplicial complexes alone.
However, the spectral analysis of Hodge 1-Laplacian is applicable to undirected graphs. An important
property of Hodge Laplacians is that their eigenvalues are invariant to permutation and orientation (if
the simplices are oriented), thus they could be directly applied to analyze undirected graphs. Hence
in this section, we temporarily omit discussion on permutation and orientation invariance since they
naturally hold. Instead, we care more about the sign and basis invariance in the field of spectral
analysis [32].

We can show that the nonzero eigenvalues of L1,down are the same as L0,up and hence L0. This
implies that if there are no 2-simplicials (triangles), Hodge 1-Laplacian has the same nonzero
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eigenvalues as Hodge 0-Laplacian. However, the corresponding eigenvectors still provide different
information about the nodes and edges, respectively.
Theorem 5.2. The number of non-zero eigenvalues of Hodge 1-Laplacian L1 is not less than the
number of non-zero eigenvalues of Hodge 0-Laplacian L0.

One direct conclusion is that graph isomorphism based on Hodge 1-Laplacian isospectra is strictly
more powerful than Hodge 0-Laplacian. Here we draw a conclusion on the theoretical expressivity of
the L1 isospectra:
Theorem 5.3. L1 isospectra is incomparable with 1-FWL and 2-FWL.

Rattan and Seppelt [39] show that the L0 isospectra is strictly bounded by 2-FWL. The L1 isospectra,
through the introduction of 2-simplices (triangles), can distinguish some non-isomorphic graph pairs
that are indistinguishable by 2-FWL. See Appendix C for detailed examples.

The zero eigenvalues of L1 have some more important properties. Its multiplicity is the 1-th Betti
number β1, which is exactly the number of cycles (except triangles) in the graph. We further consider
the eigenvectors of L1, each eigenvector ui of the eigenvalues λi has a length m, and each element
uij in it reflects the weight of the corresponding edge ej at this frequency λi. The absolute values
of elements corresponding to the edges in cycles are non-zero, while the edges not in cycles have
zero weights in the eigenvectors. In other words, the eigenvectors of zero eigenvalues can efficiently
mark the edges that are in a cycle. More intuitive illustration and theoretical proof are given in
Appendix C.2.2.

Hodge1Lap: sign and basis invariant edge PE. In this section, we propose Hodge1Lap, a novel
edge-level positional encoding method based on the spectral analysis of Hodge 1-Laplacian. To
the best of our knowledge, this is the first sign and basis invariant edge-level PE based on Hodge
1-Laplacian L1.

Recall the geometric meaning of the Hodge 1-Laplacian spectra in Section 5.2. Zero eigenvalues
and eigenvectors reflect the cycles in the graph. These insights of Hodge 1-Laplacian spectra shed
light on our design for edge-level positional encoding. Denote the eigenvalues λi with multiplicity
m(i) as λi(1), λi(2), . . . , λi(mi), respectively. The corresponding eigenvectors are ui(1), . . . ,ui(mi),
but note that these eigenvectors are: (i) not sign invariant, since if L1ui(j) = 0, j = 1, ...,mi, then
L1(−ui(j)) = 0; (ii) not basis invariant if mi > 1, since any mi linearly independent basis of
the kernel space are also eigenvectors, and the subspace they span is identical to the kernel space.
This is analogous to the L0 eigenvectors: they are not sign and basis invariant, which makes it
difficult for us to design sign and basis invariant positional encodings. Therefore, we propose a
novel projection-based method to build Hodge1Lap, a sign and basis invariant edge-level positional
encoding.

Formally, Hodge1Lap processes the eigenvalues λi with multiplicity mi and relevant eigenvectors as
follows. Recall the projection matrix

Pproj,i = UUT =

mi∑
j=1

ui(j)u
T
i(j) (4)

where the subscript proj is used to distinguish the projection matrix from probability transition matrix
P , and U = [ui(1), . . . ,ui(mi)]. For any vector v ∈ Rm, Pproj,iv projects it into the subspace
spanned by the eigenvectors ui(j), j = 1, . . . ,mi. It is straightforward to verify that the projection in
the subspace is independent of the choice of basis ui(j) as long as they are linearly independent and
hence is both sign and basis invariant. As long as the preimage v is well defined (e.g., permutation
equivariant to edge index), the projection can satisfy permutation equivariance as well as sign and
basis invariance. In Hodge1Lap, we propose to use two different forms of preimages: a unit vector
e ∈ Rm with each element ej = 1√

m
, and the original edge feature X(E) ∈ Rm×d. The first variant

considers puer structure information, while the second variant jointly encodes structure and feature
information. Taking the first variant as an example, Hodge1Lap implemented by projection can be
formulated as

Hodge1Lapproj(E) =
∑
i

ϕi(Pproj,ie) (5)

where ϕi are injective functions and can be replaced by MLP layers, and the summation is performed
over the interested eigen-subspaces.
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In addition to the projection-based implementation of Hodge1Lap, we also implement other vari-
ants (analogously to the implementation of LapPE [30]): (i) We use a shared MLP ϕ to directly
embed the neigen eigenvectors corresponding to the smallest neigen eigenvalues, where neigen is
a hyper-parameter shared for all graphs. We refer this implementation as Hodge1Lapsim(E) =∑neigen

i=1 ϕ(ui). (ii) We take the absolute value of each element in eigenvectors before passing them
to the MLP, which we denote as Hodge1Lapabs(E) =

∑neigen

i=1 ϕ(|ui|), where | · | means taking
element-wise absolute value. It is remarkable that, while Hodge1Lapproj is sign-invariant and basis-
invariant, Hodge1Lapsim is not invariant to both sign and basis, and Hodge1Lapabs is sign-invariant
yet not basis-invariant. We also allow combination of the above implementations; see Appendix E for
more implementation details.

Our Hodge1Lap has elegant geometric meanings thanks to the spectral properties of L1. For example,
the kernel space of L1 related to the zero eigenvalues is fully capable of detecting cycles and rings
in graphs [23], which can play a significant role in many domains. In molecular graphs, for example,
cycle structures such as benzene rings have crucial effects on molecular properties. Hodge1Lap is
able to extract such rings in a natural way rather than manually listing them, and Hodge1Lapabs is
able to differentiate edges from distinct cycles. Intuitively, according to the Hodge decomposition
theorem, any vector field defined on edges C1 can be decomposed into three orthogonal components:
a solenoidal component, a gradient component and a harmonic (both divergence-free and curl-free)
component; see Appendix A. ker(L1) is the harmonic component, and since divergence-free and curl-
free edge flows can only appear on cycles, the eigenvectors corresponding to ker(L1) therefore mark
out the cycles in the graph; see Appendix C.2.2 for more technical details and illustrative examples.
Moreover, taking into account more subspaces other than the kernel space of L1, Hodge1Lap contains
other structure information since the eigenvectors are real and continuous vectors. Ideally, one can
apply any sign and basis invariant functions to obtain a universal approximator [32] for functions on
1-faces besides projections, see Section 6 for general conclusions.

6 Random walk on higher-order and inter-order simplices

In Section 4 and Section 5, we systematically analyze the random walk and Hodge Laplacian-based
PE and SE on 0-simplices (node level) and 1-simplices (edge level), respectively. As we have shown,
introducing higher-order simplices into random walk benefits their theoretical expressivity. In this
section, we formally introduce random walks on higher-order simplices and analyze their expressivity.
We will also investigate the spectral analysis of Hodge k Laplacians, whose normalization forms are
closely related to random walks on k-simplices. Besides random walk within same-order simplices,
we define a novel inter-order random walk that is able to transmit within different orders of simplices.
This random walk scheme incorporates and unifies a wide range of simplicial networks [12, 8, 14].

6.1 Higher-order Hodge Laplacians and random walk

The k-th order Hodge Laplacian is defined as Lk = B∗
kBk + Bk+1B

∗
k+1 = Lk,down + Lk,up.

Analogous to L1, a properly normalized Hodge k Laplacian L̃k corresponds to a k-th order
random walk on k-simplices in the lifted space. The matrix representation for the lifting is
Vk = [+Ink

−Ink ]
T ∈ R2nk×nk , where nk = |Sk| is the number of k-simplices in the sim-

plicial complex K. For undirected graphs, one only needs to sum over different orientations to get
the cochain group Ck from Dk, where |Dk| = 2|Ck| is the cochain group in the lifted space. The
transition matrix P̂k for k-th order random walk is defined through − 1

2 L̃kV
T
k = VT

k P̂k.

Similarly to the edge-level random walk in the lifted space, the transition matrix P̂k describes that
each step of k-th order random walk move towards either k-down neighbors or k-up neighbors.
When going through the upper adjacent k + 1 faces, the walk uniformly transits to an upper adjacent
k-simplex with different orientation relative to the shared k + 1 face, unless it has no upper adjacent
faces. If the step is taken towards a lower-adjacent k − 1 face, the walk transits along or against the
original direction to one of its k-down neighbors.

Based on P̂k, we can design k-th order RWSE for k-simplicial data according to the k-th order
random walk, k − RWSE = ψk(P̂k), where ψk is an injective function that acts on either P̂k or
its polynomials. If we maintain all k-RWSE for k = 0, 1, . . . ,K in a simplicial complex K with
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dimension larger than K, then we can get a more powerful algorithm by adding K + 1-RWSE to the
K + 1-simplices in K.

In addition to directly making use of the random walk on the k-simplices, spectral analysis of Lk also
sheds light on PE designs for higher-order simplicial data. Based on the eigenvalues and eigenvectors
of Lk, we can build permutation equivariant and basis invariant functions defined on Kk+1 that can
simulate arbitrary k-cochain or k-form. Concretely, if we use the normalized version of k-th Hodge
Laplacian ∆k as in [24], the eigenvalues of ∆k will be compact 0 ≤ λ ≤ k + 2. Then applying a
permutation equivariant and basis-invariant function such as Unconstrained BasisNet [32] on the
eigenvalues and eigenvectors, we are able to approximate any k-form which is basis-invariant. We
refer interested readers to Appendix C.3 for more details.

6.2 Inter-order random walk

The concept of random walk can be even generalized to a more universal version, which we denote
as inter-order random walk. In each step, the inter-order random walk at a k-simplex can transit not
only to the k-down neighbors and k-up neighbors (they are all k-simplices as well), but also to lower
adjacent k − 1-simplices and upper adjacent k + 1-simplices. Here we denote the (unnormalized)
adjacent matrix for the inter-order random walk on a K-order simplicial complex K as AK(K),
which is defined as

AK(K) =


L0 B1

BT
1 L1 B2

... ... ...
... ... ...

BT
K−1 LK−1 BK

BT
K LK

 (6)

which is a block matrix with Lk in the k-th diagonal block, BT
k and Bk+1 in the offset ±1 diagonal

blocks, while all other blocks are zeros. Although Chen et al. [14] also mentioned a similar block
matrix, they do not pose a concrete form of the off-diagonal blocks. The inter-order adjacent matrix
we define has a clear physical interpretation that one can only transform to simplices with different
orders that are boundaries and co-boundaries of current simplex. A properly normalized version ÃK
can describe the inter-order random walk with a certain rule. Here, we give a property of the power
of AK which still holds in normalized versions.

Ar
K =


pr(L0) qr−1(L0,up)B1

qr−1(L1,down)B
T
1 pr(L1) qr−1(L1,up)B2

... ... ...
... ... ...

qr−1(LK,down)B
T
K pr(LK)

 (7)

where pr(·) and qr(·) are polynomials with maximum order r. The above equation states that
simplices with differences of order larger than one cannot directly exchange information even after
infinite rounds, but they can affect each other through the coefficients in pr and qr−1 in the blocks on
the offset ±1-diagonal blocks.

Several previous works such as [8] can be unified by AK . Additionally, we can make use of Ar
K

to build random walk-based positional encoding for all simplices in the K-dimensional simplicial
complex that contains rich information.

7 Experiments

In this section, we present a comprehensive ablation study on Zinc-12k to investigate the effectiveness
of our proposed methods. We also verify the performance on graph-level OGB benchmarks. Due
to the limited space, experiments on synthetic datasets and more real-world datasets as well as
experimental details are presented in Appendix E.

Ablation study on Zink-12k. Zinc-12k [17] is a popular real-world dataset containing 12k
molecules. The task is the graph-level molecular property (constrained solubility) regression. In our
ablation study, we use GINE [25], GAT [45], PNA [15], SSWL+ [50], GPS [38] and GRIT [33] as
our base models, where the first three are message-passing based GNNs, SSWL+ is an instance of
subgraph GNN, while GPS and GRIT are recent SOTA graph transformers. Four different factors
are studied: (1) the node-level PE or SE, where RWSE refers to [18], LapPE refers to [30] and
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Table 1: Ablation on Zinc-12k dataset [17] (MAE ↓). Highlighted are the first, second results.

model Node PE/SE EdgeRWSE Hodge1Lap RWMP Test MAE

GIN [46] - - - - 0.526± 0.051
GSN [9] - - - - 0.101± 0.010
Graphormer [48] - - - - 0.122± 0.006
SAN [30] - - - - 0.139± 0.006
GIN-AK+ [53] - - - - 0.080± 0.001
CIN [7] - - - - 0.079± 0.006
Specformer [6] - - - - 0.066± 0.003

GINE [25] - - - - 0.133± 0.002
GINE - directed - - 0.110± 0.003
GINE - undirected - - 0.104± 0.008
GINE - - abs - 0.102± 0.004
GINE - - project - 0.091± 0.004
GINE LapPE - - - 0.120± 0.005
GINE RWSE - - - 0.074± 0.003
GINE RWSE directed - - 0.070± 0.003
GINE RWSE undirected - - 0.069± 0.002
GINE RWSE - abs - 0.068± 0.003
GINE RWSE - project - 0.068± 0.004
GINE RWSE - - True 0.068± 0.003
GINE RWSE - project True 0.066± 0.003

GINE RWSE Full-EdgeRWSE - - 0.069± 0.003
GINE Inter-RWSE Inter-RWSE - - 0.083± 0.006
GINE RWSE Cellular - - 0.068± 0.003

GAT [45] - - - - 0.384± 0.007
GAT - undirected - - 0.163± 0.008
GAT - - project - 0.130± 0.005

PNA [15] - - - - 0.188± 0.004
PNA - undirected - - 0.104± 0.004
PNA - - project - 0.074± 0.005

SSWL+ [50] - - - - 0.070± 0.005
SSWL+ - undirected - - 0.067± 0.005
SSWL+ - - project - 0.066± 0.003

GPS [38] - - - - 0.113± 0.005
GPS RWSE - - - 0.070± 0.004
GPS RWSE undirected - - 0.068± 0.004
GPS RWSE - project - 0.064± 0.003

GRIT [33] - - - - 0.149± 0.008
GRIT RWSE - - - 0.081± 0.010
GRIT SPDPE - - - 0.067± 0.002
GRIT RDPE - - - 0.059± 0.003
GRIT RRWP - - - 0.059± 0.002
GRIT - undirected - - 0.103± 0.006
GRIT - - project - 0.086± 0.005
GRIT RRWP undirected - - 0.058± 0.002
GRIT RRWP - project - 0.057± 0.003

"-" suggests no node-level PE/SE; (2) EdgeRWSE, the edge-level SE based on spatial domain of
1-down random walk, where "directed" and "undirected" are used to distinguish the two types of
simplified version of 1-down random walk; (3) Hodge1Lap, the edge-level PE based on spectra of L1,
where "abs" refers to the sign-invariant method (summing over absolute values of eigenvectors, or
Hodge1Lapabs), and "project" refers to the sign and basis invariant method (project the unit vector
into interested subspace, or Hodge1Lapproj); (4) RWMP, a novel Random Walk Message Passing
scheme we propose, which performs message passing based on probability calculated by a distance
metric; see Appendix D for details of RWMP.
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Table 2: Experiments on graph-level OGB benchmarks [26]. Highlighted are the first, second, third
test results.

model ogbg-molhiv (AUROC ↑) ogbg-molpcba (Avg. Precision ↑)

GIN+virtual node 0.7707± 0.0149 0.2703± 0.0023
GSN (directional) 0.8039± 0.0090 -
PNA 0.7905± 0.0132 0.2838± 0.0035
SAN 0.7785± 0.2470 0.2765± 0.0042
GIN-AK+ 0.7961± 0.0110 0.2930± 0.0044
CIN 0.8094± 0.0057 -
GPS 0.7880± 0.0101 0.2907± 0.0028
Specformer 0.7889± 0.0124 0.2972± 0.0023

GPS+EdgeRWSE 0.7891± 0.0118 0.2934 ± 0.0025
GPS+Hodge1Lap 0.8021 ± 0.0154 0.2937± 0.0023

The full results of performance on the Zinc dataset are reported in Table 1. Note that all our base
models are improved when augmented with our EdgeRWSE or Hodge1Lap: both GAT and PNA
reduce by over 50% MAE. In particular, a simple GINE without using any transformer or subgraph
GNN variations is able to surpass GPS with our PE/SE, verifying the impressive effectiveness of our
proposed methods. Applying EdgeRWSE and Hodge1Lap to GRIT results in new State-of-the-Art
performance. Regarding ablation, all variants of our EdgeRWSE and Hodge1Lap can improve
performance of base models, see Appendix E for more implementation details of these variants. One
may observe that RWSE is significantly beneficial in this task, and combining node-level RWSE and
our edge-level PE/SE methods would lead to a further performance gain. In general, Hodge1Lap
shows better performance than EdgeRWSE, indicating the effectiveness of embedding structures such
as rings through spectral analysis. The effect of whether EdgeRWSE is directed or the implementation
method in Hodge1Lap is rather small. We also observe that Full-EdgeRWSE, Inter-RWSE, and
CellularRWSE are beneficial, see Appendix E for more details. Additionally, the RWMP mechanism
is also capable of improving performance, which we will analyze in Appendix D.

Experiments on OGB benchmarks. We also verify the performance of EdgeRWSE and
Hodge1Lap on graph-level OBG benchmarks, including the ogbg-molhiv and ogbg-molpcba datasets.
The results are shown in Table 2. We apply our Hodge1Lap and EdgeRWSE to both GatedGCN
and GPS(consists of GatedGCN and Transformer) and show that our methods can improve both
architectures. In general, both two edge-level PE/SE are able to achieve comparable performance
as the SOTA models, though EdgeRWSE suffers from overfitting on ogbg-molhiv. It should be
noted that SOTA results on ogbg-molhiv typically involve manually crafted structures, including
GSN [9] and CIN [7]. Natural methods and complex models usually suffer from overfitting and
cannot generalize well in the test set.

8 Conclusions

In this paper, we propose to facilitate graph neural networks through the lens of random walk on
simplicial complexes. The random walk on k-th order simplices is closely related to Hodge k
Laplacian Lk, and we emphasize that both spatial analysis of random walk and spectra of Lk can
improve the theoretical expressive power and performance of GNNs. For 0-simplices, we connect a
number of exsiting PE and SE methods (such as RWSE) via node-level random walk, and further
provide a theoretical expressivity bound. For 1-simplices, we propose two novel edge-level PE and
SE methods, namely EdgeRWSE and Hodge1Lap. EdgeRWSE directly encodes information based on
edge-level random walk, while Hodge1Lap is the first sign and basis invariant edge-level PE based on
Hodge-1 Laplacian spectra. We also generalize our theory to arbitrary-order simplices, showing how
k-order and inter-order random walk as well as spectral analysis of Hodge Laplacians can facilitate
graph and simplicial learning. Besides analyzing theoretical expressive power and physical meanings
of these random walk-based methods, we also verify the effectiveness of our methods, which achieve
SOTA or highly competitive performance on several datasets.
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A Discrete Hodge-deRham theory of abstract simplicial complex

Inspired by differential geometry and algebraic topology, this work investigates how random walk
on simplicial complexes can facilitate graph and simplicial learning. In our main text, we merely
introduce the Hodge Laplacian (in Hilbert space) due to limited space. In this section, we give a
complete background on discrete Hodge-deRham theory of abstract simplicial complexes to help
readers better understand relevant concepts.

An abstract simplicial complex K in a finite set V is a collection of subsets of V that is closed under
inclusion. In our paper, V will be a vertex set [n] = {1, 2, ..., n} if without special statement. An
element of cardinality k + 1 is called a k-face or k-simplex of K. For instance, 0-faces are usually
called vertices, 1-faces are directed edges and 2-faces are 3-cliques (triangles) with an orientation. We
denote the collection of all k-faces of K as Sk(K). The dimension of a k-face is k and the dimension
of a complex K is defined as the maximum dimension of faces in K.

The definition of neighbors of simplices is crucial in this paper. Two k + 1-simplices sharing a
collective k-face are called k-down neighbors, and two k-simplices sharing a collective k+1-simplex
are called k + 1-up neighbors. Generally, a face F is chosen an ordering on its vertices and is said to
be oriented, denoted by [F ]. For any permutation element σ ∈ Gk+1 where Gk+1 is the symmetric
group of permutations on {0, ..., k}, two orderings of vertices transformed by σ are said to determine
the same orientation if σ is an even permutation and opposite if σ is odd. In addition, a k-cochain or
k-form is a function defined on Kk+1, f : V × · · · × V → R that satisfies the following.

f(iσ(0), . . . , iσ(k)) = sgn(σ)f(i0, . . . , ik) (8)

for all {i0, . . . , ik} ∈ Kk+1 and all σ ∈ Gk+1. Specifically, f(i0, . . . , ik) = 0 if {i0, . . . , ik} /∈ Kk+1.
Although they have the structure of vector spaces, the vector spaces are usually called cochain groups
Ck(K,R). Chain groups Ck(K,R) are defined as duals of co-chain groups. In addition, we define the
simplicial coboundary maps δk : Ck(K,R) → Ck+1(K,R):

(δkf)([v0, . . . , vi+1]) =

k+1∑
j=0

(−1)jf([v0, . . . , v̂j , . . . , vk+1]) (9)

where v̂j suggests that the vertex vj is omitted. One can view δk as the dual of the boundary map
∂k+1, which connects the cochain complex of K with coefficients in R. Further, we can define the
adjoint of coboundary operator: δ∗k : Ck+1(K,R) → Ck(K,R). Therefore, we have the following
connection.

Ck+1(K,R)
δk
⇆
δ∗k

Ck(K,R)
δk−1

⇆
δ∗k−1

Ck−1(K,R) (10)

After determining the inner products <,>, we can define the adjoint of the coboundary operator
δ∗k : Ck+1(K,R) → Ck(K,R)

< δkf1, f2 >Ck+1=< f1, δ
∗
kf2 >Ck (11)

where f1 ∈ Ck(K,R), f2 ∈ Ck+1(K,R) are arbitrary. Specifically, in the Hilbert space L2, the matrix
representations of δk and δ∗k are adjoint matrix B∗

k+1 and Bk+1 as described in the main texts.

Define the Hodge k-Laplacian operator (also called combinatorial Laplace operator):

Lk = Lk,down + Lk,up = δk−1δ
∗
k−1 + δ∗kδk (12)

where we omit the notation K for simplicity. It is easy to verify by definition that all three operators
Lk,Lk,up,Lk,down are self-adjoint, nonnegative and compact.

In the Hilbert space, the matrix representations for boundary and co-boundary operators are adjacent
matrices of the k and k + 1 order simplices. In order to keep coordinate with most existing literature,
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we write the matrix representation for δ∗k as Bk+1 ∈ R|Sk|×|Sk+1| (one can view it as the adjacent
matrix of k-th and k + 1-th simplices); therefore, we have the definition in our main text:

Lk = B∗
kBk +Bk+1B

∗
k+1 (13)

where B∗
k = BT

k is the adjoint of Bk and is equivalent to the transpose of Bk in the Hilbert space. It
is remarkable that when k = 0, L0 is exactly the graph Laplacian L0 = D−A. In our paper, we
make use of higher-order Hodge Laplacians such as L1 rather than previously used L0 alone.

Note that the following equation always holds:

δkδk−1 = 0 (14)

This result is sometimes called the fundamental theorem of topology, which can be intuitively
interpreted as "the coboundary of a coboundary is zero".

The kernel space of Lk is called the k-th cohomology group:

H̃k(K,R) := ker(δk)/im(δk−1) ∼= ker(δk) ∩ ker(δ∗k−1) = ker(Lk) (15)

We will write H̃k(K,R) simply as H̃k without causing confusion. The kernel space is closely
associated with harmonic functions and will play an important role in our following analysis.

Proof. We already have δkδk−1 = 0 and thus δ∗k−1δ
∗
k = 0. Then,

im(Lk,down) ⊂ ker(Lk,up)im(Lk,up) ⊂ ker(Lk,down) (16)

Therefore,

ker(Lk) = ker(δ∗kδk) ∩ ker(δk−1δ
∗
k−1) (17)

= ker(δk) ∩ ker(δ∗k−1) (18)

= ker(δk) ∩
(
im(δk−1)

)⊥
(19)

∼= H̃k (20)

Equation (16) reveals an important conclusion: λ > 0 is a nonzero eigenvalue of Lk if and only
if it is a nonzero eigenvalue of Lk,up and Lk,down. Let the sorted eigenvalues of operator A be
s(A) = (λ0, . . . , λm), where the eigenvalues are in a weakly increasing rearrangement. Denote
s(A)

.
= s(B) if the multisets of s(A) and s(B) have exactly the same nonzero eigenvalues (or they

only differ in the multiplicities of zero). Then we have

s(Lk)
.
= s(Lk,up) ∪ s(Lk,down) (21)

Further using s(AB)
.
= s(BA), we have an important property that bridges the up and down Hodge

Laplacians of the adjacent dimension:

s(Lk,up)
.
= s(Lk+1,down) (22)

Now we turn our attention to the zero eigenvalues and eigenvectors. The multiplicity of zero
eigenvalues of Lk, or the dimension of null space of Hodge k-Laplacian ker(Lk), is called the k-th
Betti number βk. This is exactly the number of cycles composed of k-simplicials that are not induced
by a k-boundary, or intuitively, k-dimensional "holes" in the simplicial complex K. For example,
zero eigenvalues and their eigenvectors of L0 are associated with 0-th homology group of the graph,
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corresponding to the connected components in the graph. The zero eigenvalues and eigenvectors of
L1 are associated with cycles (in the usual sense), and those of L2 correspond to cavities.

Also note that the following relation always holds.

im(Lk) = im(δ∗k)⊕ im(δk−1) (23)

Finally, we present the central theorem of Hodge theory, known as Hodge decomposition. It states
that Ck can be decomposed into three orthogonal subspaces:

Ck(K,R) =

ker(δ∗k−1)︷ ︸︸ ︷
im(δ∗k)⊕ ker(Lk)⊕ im(δk−1)︸ ︷︷ ︸

ker(δk)

(24)

For example, for a vector field C1, the above equation can be interpreted as follows. Any edge flow
can be decomposed into three orthogonal components: a solenoidal (divergence-free) component,
a harmonic (both divergence-free and curl-free) component, and a gradient (curl-free) component.
In a discrete graph, a divergence of a vertex (0-simplex) is defined as the excess of outgoing over
incoming weights, while the curl in a directed triangle (2-simplex) is defined as the edge sum around
the triangle along the positive direction.

The Hodge decomposition theorem provides insight into our methods. For instance, the kernel space
of L1 (which plays an important role in our Hodge1Lap) is both divergence-free and curl-free, thus
only occurring along the cycles in the graph. Moreover, the Hodge decomposition holds for any order
of cochains Ck, enriching the physical insights of our PE and SE based on Hodge k-Laplacians.

B Classical results of node-level random walk

Here are some classical conclusions about the random walk at node level.

Let Xk be the node we are at step k, and Sk(x) be the number of times that the random walk visits x
during first t steps, then we have

Theorem B.1. limk→∞ E[Sk(x)
k ] = d(x)

2m . Sk(x)
k tends to stationary probability π in probability as

k → ∞.

Denote the mean hitting time of y from x by H(x, y), then clearly

H(x, y) =

∞∑
k=1

kP(Xk = y,Xk ̸= y, 1 ≤ i < k
∣∣∣X0 = x) (25)

Generally, H(x, y) is not symmetric. Specifically, H(x, x) is the mean return time from x to itself.
We have

H(x, x) = 1 +
∑
z∈V

PxzH(z, x) = 1 +
1

d(x)

∑
z∈N (x)

H(z, x) (26)

In terms of connected graph, we have the following conclusion.

Theorem B.2. If the graph G is connected, then H(x, x) = 2m
d(x)

A slight variation of the conclusion states,

Theorem B.3. ESk(yx)
k = ESk(y)

kd(y) → 1
2m

Theorem B.4. G is a connected graph, then a simple random walk satisfies
1

2m

∑
x∈V (G)

∑
y∈N (x)H(x, y) = n− 1.
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We have a reformulation for the above result if we define the mean commute time as C(x, y) =
H(x, y) +H(y, x), then

1

2m

∑
(x,y)∈E(G)

C(x, y) = n− 1 (27)

There is an interesting and well-known connection between mean commute time and resistance
between nodes rxy , see [2, 51].

Theorem B.5. C(x, y) = 2mrxy

In addition, the cover time is defined as C := max{Cv : v ∈ V }, where Cv is the expected number
of steps taken by a random walk that starts from v to hit every vertex in the graph. A bound is
obtained by Aleliunas et al. (1979),

Corollary B.6. The cover time C is at most 2m(n− 1)

These classical conclusions in node-level random walk provide insights into the design of PE/SE
methods such as resistance distance (RD). However, since they have been widely studied, we will not
restate them.

C Theoretical analysis and proof

In this section, we provide proofs, details and examples for Section 4, Section 5 and Section 6 in the
main text. Note that all the following results are novel and are of great significance in theoretically
understanding our methods.

C.1 Random walk on 0-simplices

C.1.1 Theoretical analysis of 0-RWSE

We start with proving the theoretical expressive power of PE/SE based on spatical domain of random
walk on 0-simplices. In order to distinguish RWSE for different orders of simplices, we denote the
normal node-level RWSE as 0-RWSE, our proposed EdgeRWSE as 1-RWSE, and RWSE based on
random walk on k-simplices as k-RWSE.

We first introduce 2-FWL, a powerful graph isomorphism test. It assigns colors to all 2-tuples of
nodes and iteratively updates them. The initial color c02(v, G) of tuple v ∈ V (G)2 is determined by
the isomorphism type of tuple v [34]. At the t-th iteration, the color updating scheme is

ct2(v, G) = Hash
(
ct−1
2 (v, G), {{ (

ct−1
2 (ψi(v, u), G)|i ∈ [k]

)
|u ∈ V (G)}}

)
, (28)

where ψi(v, u) means replacing the i-th element in v with u. The color of v is updated by its original
color and the color of its high-order neighbors ψi(v, u). The color of the whole graph is the multiset
of all tuple colors,

ct2(G) = Hash({{ct2(v, G)|v ∈ V (G)2}}). (29)

Given two function f, g, f can be expressed by g means that there exists a function ϕ ϕ ◦ g = f ,
which is equivalent to given arbitrary input H,G, f(H) = f(G) ⇒ g(H) = g(G). We use f → g
to denote that f can be expressed with g. If both f → g and g → f , there exists a bijective mapping
between the output of f to the output of g, denoted as f ↔ g.

Theorem C.1. (Theorem 4.1. in main text.) 0-RWSE is strictly less powerful than 2-FWL.

Proof. First, we will prove that 2-FWL can express 0-RWSE. Specifically, we will prove that
∀u ∈ V, c

(t)
2 (uv,G) → [(D−1A)kuv|k = 1, 2, ..., t]∀t = 1, 2, ...,. We prove this by induction on t.
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(a)                                        (b)

X X X

XYY Y

Y

Figure 1: A pair of non-isomorphic graphs that are distinguishable by 2-FWL but indistinguishable
by 0-RWSE in Theorem C.1. The shaded sectors denote bicliques K1,6, i.e. all six solid nodes in the
shade are connected with the hollow node in the square trunk.

1. First, 2-FWL can capture degree information in one iteration.

c
(1)
2 (uv,G) → c

(0)
2 (uv,G), {{(c(0)(uw,G), c(0)(wv,G))|w ∈ V }} (30)

→ c
(0)
2 (uv,G), {{c(0)(uw,G)|w ∈ G}} → Auv, Du (31)

→ (D−1A)uv (32)

Therefore, c(1)2 (uv,G) → (D−1A)uv .

2. If c(t)2 (uv,G) → [(D−1A)kuv|k = 1, 2, ..., t], at t+ 1-th 2-FWL iteration.

c
(t+1)
2 (uv,G) → c

(t)
2 (uv,G), {{(c(t)(uw,G), c(t)(wv,G))|w ∈ V }} (33)

→ [(D−1A)kuv|k = 1, 2, ..., t], {{(D−1A)kuw(D
−1A)kwv|w ∈ V }} (34)

→ [(D−1A)kuv|k = 1, 2, ..., t],
∑
w

(D−1A)kuw(D
−1A)kwv (35)

→ [(D−1A)kuv|k = 1, 2, ..., t+ 1] (36)

Next we prove the strictness, i.e. there exists some non-isomorphic graph pairs distinguishable by
2-FWL but not by RWSE. We will show that the graph pair in Figure 1 satisfies this requirement.
Both graphs consist of a square backbone with 4 nodes (hollow in the figure), and each backbone
node connects with every node in either a copy of X or Y . The graph X consists of two triangles,
while the graph Y consists of a six-ring. The difference of two graphs is that two backbone nodes
connected with the same graph X or Y are adjacent in (a), but are not adjacent in (b). These two
graphs are non-isomorphic and can be distinguished by 2-FWL, but not by RWSE.

The conclusion of 2-FWL can distinguish graphs (a) and (b) in Figure 1 can be proved by the 3-pebble
bijective game [13] on these two graphs, see [39] for details.

Then we show that 0-RWSE fails to distinguish these two graphs step by step.

1. For the eight hollow nodes in the square backbones in (a) and (b), regardless of whether it is
connected to a copy of X or Y , once we are at the other six nodes in the biclique K1,6 connected
with it, the probability of returning to the backbone node for the first time within k step is Pk = 1

3

k.
This can be easily verified since every solid node in X and Y has degree 3, therefore the steps it takes
to return to the backbone is a geometric distribution parameterized by 1

3 .

2. Consider random walks only within the 6 solid nodes in biclique K1,6 and not returning to the
backbone. The probability distributions (or PMFs) for all nodes in all copies of X are the same
(which we denote as pXX ), and PMFs for all nodes in all copies of Y are the same (which we denote
as pY Y ). The PMFs for nodes in X and Y are different (pXX ̸= pY Y ). This is also straightforward
to verify, since nodes in X can only get to the other two solid nodes if they do not return to the
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backbone, while nodes in Y can get to all nodes. Therefore, RWSE can distinguish subgraphs X and
Y (not including the connection between these 6 nodes with backbone).

3. For any backbone node in two graphs, it will have probability 3
4 to walk toward the connected

X or Y (but the walk cannot distinguish whether it is connected with X or Y according to 1.), and
probability 1

4 to walk towards another backbone connected with X or Y (again, either case is the
same since the returning PMF to backbone cannot distinguish X and Y ). Combining 1. and 3. and
using induction, we can conclude that the returns through biclique or backbone are the same in two
graphs, and thus the return probabilities of all eight backbone nodes are the same, which we denote
as pB .

4. For all nodes in any copies of X , in each step t, the return PMF to x ∈ X will have probability
2
3 depending on pXX , and probability 1

3 depending on pB . Once the connected backbone node is
reached, the walk returns to the backbone node according to pB , then returns to X with probability 3

4 .
Therefore, the final return probabilities of x ∈ X are the same, depending on pXX and pB . Similarly,
the return probabilities of y ∈ Y are the same, depending on pY Y and pB .

5. Finally, for both two graphs, all backbone nodes are assigned the same 0-RWSE feature as b, all
x ∈ X are assigned the same x, and all y ∈ Y are assigned y. Therefore, the two graphs have 4 b,
12 x and 12 y, indicating that 0-RWSE fails to distinguish these two graphs.

Corollary C.2. 1-FWL with 0-RWSE initialization is strictly more powerful than 0-RWSE, but is not
more powerful than 2-FWL.

Proof. Figure 1 provides a pair of graphs that 1-FWL with 0-RWSE can differentiate, while 0-RWSE
cannot. Therefore, 1-FWL with 0-RWSE initialization is strictly more powerful than 0-RWSE.
However, as shown in Theorem C.1, ∃t > 0, c(t)(uu,G) → RWSEu. Therefore,

c(t+1)(uv,G) → c(0)(uv,G), {(c(t)(uw,G), c(t)(wv,G))|w ∈ V } (37)

→ c(0)(uv,G), {c(t)(uw,G)|w ∈ V }, {c(t)(wv,G)|w ∈ V } (38)

→ c(0)(uv,G), c(t)(uu,G), c(t)(vv,G) (39)

→ c(0)(uv,G), RWSEu, RWSEv (40)

→ c(0)(uv,GRWSE). (41)

where GRWSE is the graph with the 0-RWSE feature. In other words, 2-FWL can first capture RWSE
with a few iterations and then simulate 1-FWL on the graph with RWSE.

Despite its upper bound of 2-FWL, 0-RWSE is capable of distinguishing some cases where 1-FWL
fails. For example, the non-isomorphic graph pair shown in Figure 2 is a well-known case that 1-FWL
does not distinguish. However, 0-RWSE can easily distinguish them, since a 0-random walk on graph
(b) can only visit three nodes within the same triangle, thus having a larger return probability in the
third step (and some subsequent steps) than on graph (a). 0-RWSE can also greatly enhance the
performance of GNNs in real-world tasks, as shown in experiments.

For the same reason, we can prove that the newly proposed RRWP [33] SE is also strictly less powerful
than 2-FWL. RRWP is a natural extension of RWSE, which not only uses return probabilities Pt

ii,
but also uses non-diagonal elements Pt

ij as augmented edge features. However, it is still based on
node-level random walk and can be completely simulated by 2-FWL. Combining our new results
and the results from [51], we provide the following summary for the expressive power of node-level
PE/SEs:

• RWSE is strictly less powerful than 2-FWL.

• SPDPE (shortest path distance) is strictly less powerful than 2-FWL.

• RDPE (resistance distance) is strictly less powerful than 2-FWL, but more powerful than
SPDPE in distinguishing non-isomorphic distance-regular graphs.

• RRWP is strictly less powerful than 2-FWL, but it is strictly more powerful than SPDPE.

• HK (heat kernel) is strictly less powerful than 2-FWL.
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（a)                                                                         (b)

Figure 2: A pair of non-isomorphic graphs that are indistinguishable by 1-FWL. Graph (a) is a
six-cycle, while graph (b) consists of two 3-cycles. Both 0-RWSE and Hodge-0 isospectra are able to
distinguish these two graphs.

(a)                                                        (b)

Figure 3: A pair of non-isomorphic graphs that are indistinguishable by 2-FWL. Graph (a) is the
4× 4 Rook’s graph, graph (b) is the Shrikhande’s graph, both of them are strongly regular graphs
parameterized by (16,6,2,2). Both 0-RWSE and Hodge-0 isospectra fail to distinguish these them,
while full EdgeRWSE (1-RWSE) and Hodge-1 isospectra can distinguish them.

C.1.2 Theoretical analysis of Hodge 0 spectra

As we will analyze Hodge 1-Laplacians in the following text in detail, Hodge 0-Laplacians that
have been widely studied are not our main concentrations. In this section, we briefly summarize the
properties, aiming to compare with Hodge 1-Laplacians.
Theorem C.3. Hodge 0-isospectra is incomprable with 1-FWL and not more powerful than 2-FWL.

Proof. Rattan and Seppelt [39] has already proved that Hodge 0-isospectra is upper-bounded by
2-FWL. Here we show that graphs in Figure 2 which are indistinguishable by 1-FWL can be
distinguished by Hodge 0-isospectra. The characteristic polynomial for L1 of graph (a) is

det
(
λI− L0(a)

)
= (λ− 4)(λ− 3)2(λ− 1)2λ (42)

The characteristic polynomial for L1 of graph (b) is

det
(
λI− L0(b)

)
= (λ− 8)9(λ− 4)6λ (43)

Hence they are distinguishable by Hodge 0 eigenvalues.

However, the graph pair in Figure 4 that can be distinguished by 1-FWL cannot be distinguished by
Hodge 0 eigenvalues, since the characteristic polynomial are both

det
(
λI− L0(a)

)
= det

(
λI− L0(b)

)
= λ(λ− 3)(λ− 1)2(λ3 − 9λ2 + 21λ− 7) (44)
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(a)                                                                             (b)

Figure 4: A pair of non-isomorphic graphs that have isospectral Hodge k-Laplacians for all k =
0, 1, 2, . . . , thus they are indistinguishable via eigenvalues of all Hodge k-Laplacians. However, they
are 1-FWL distinguishable.

Therefore, there exist some 1-FWL distinguishable graph pairs that cannot be distinguished by
Hodge-0 isospectra and vice versa.

C.2 Random walk on 1-simplices

C.2.1 Theoretical analysis of 1-RWSE

We start by proving the expressive power of 1-RWSE (Full EdgeRWSE and its variations).

Theorem C.4. (First part of Theorem 5.1 in the main text). Full EdgeRWSE can distinguish some
non-isomorphic graphs that are indistinguishable by 2-FWL.

Proof. We will show that a pair of strongly regular graphs parameterized by (16, 6, 2, 2), 4 × 4
Rook’s graph and Shrikhande’s graph (shown in Figure 3), are indistinguishable by 2-FWL but
distinguishable by 1-RWSE. 2-FWL fails to distinguish any pair of strongly regular graphs with same
parameters, which is a classical result, hence we refer readers to [8] for a complete proof and skip
here.

Now we show that the full 1-RWSE is able to distinguish these two graphs. Only the 1-up random
walk (i.e. walk towards those 1-up neighbors via shared 2-faces) needs to be considered, since the
1-down random walks on two graphs are identical (see Theorem C.5). For 1-up random walk, note
that all edges in the same graph share the same status, thus we only need to analyze the random walk
rooted at one arbitrary edge in two graphs, respectively. All edges in two graphs are contained in
two different 2-simplices (triangles). However, the two 2-faces in (a) 4 × 4 Rook’s graph belong
to the same 3-simplex or 4-clique, but there are no 4-cliques in (b) Shrikhande’s graph. Note that
all 2-simplices in graph (a) are only connected to the 2-simplices that are in the same 3-simplex;
consequently, an 1-up random walk on graph can only visit 4 different 2-simplices (which are all
faces of the 3-simplex or 4-clique the source edge is in), and can only visit 6 different edges in the
4-clique including the source itself. But the 2-simplices in graph (b) are all connected, so the 1-up
random walk has the probability of visiting all triangles and edges in the graph. Therefore, as time
tends to infinity, the limit return probability of a 1-up random walk on 4× 4 Rook’s graph is

lim
t→∞

pR1,up(t) =
1

6
(45)

The limit return probability of a 1-up random walk on Shrikhande’s graph is

lim
t→∞

pS1,up(t) =
1

48
(46)
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Also, one can verify the difference on two walks via the return probabilities at the third step (or
any other following steps, since the return probability on Rook’s graph is always larger than that of
Shrikhande’s graph when t ≥ 3):

pR1,up(3) =
1

8
, pS1,up(3) =

1

16
(47)

Therefore, we have shown 1-up random walk can distinguish these two graphs, so can 1-random
walk. Therefore, 1-RWSE can distinguish this pair indistinguishable from 2-FWL.

Note that the 1-down RWSE is unable to distinguish 4 × 4 Rook’s graph and Shrikhande’s graph,
since it does not consider any 2-simplicial faces. Similarly, 0-RWSE is also unable to distinguish
them, which is consistent with our previous results. Actually, both 1-down RWSE and 0-RWSE are
upper bounded by 2-FWL, see below.
Theorem C.5. (Second part of Theorem 5.1 in the main text.) 1-down RWSE is not more powerful
than 2-FWL.

Proof. When the graph has no triangle, the edge level random walk matrix is

P1 = BT
1 D

−1
1 B1 (48)

while the node level random walk matrix is

P0 = D−1
1 B1B

T
1 (49)

Therefore, ∀l, k, tr(P kl
1 ) = tr(P kl

0 ), and thus we can determine the multiset of
{(P l

1)[u,v],[u,v]|[u, v] ∈ E}.

Now we give more discussion on random walks on 1-simplices. We start by further interpretation of
the normalized Hodge 1-Laplacian and the edge-level random walk that corresponds. The transition
matrix defined by − 1

2 L̃1V
T = VT P̂ (see Section 5.1 in the main text) can be interpreted as follows:

P̂ = 1
2Pdown + 1

2Pup, where Pdown and Pup are the transition matrices determined by a lower-
adjacent and upper-adjacent random walk. Specifically, in each step with probability of 0.5 each, we
take a step toward either upper or lower adjacent edges. (1) If the step is taken towards the upper
adjacent face (2-simplex or oriented triangle), there are two cases: (1a) the edge has an upper adjacent
face, then the edge uniformly transits to an upper adjacent edge with different orientation relative to
the shared face. (2a) the edge does not have upper adjacent faces, then the walk will keep the same
orientation of this edge or change the orientation with equal probability 0.5 each. (2) If the step is
taken toward the lower adjacent face (0-simplex or node), the walk transits along or against the edge
direction to the lower adjacent nodes with each probability 0.5. Then from the selected node, the
walk further transmits to the target edges connected with the node with probability proportional to
the upper degrees or the weights of the target edges.

One can easily verify that the limit distribution of the directed 1-down random walk (case 1) is
the uniform distribution at all edges, independent of the starting position. In comparison, the limit
distribution of the undirected 1-down random walk (case 2) is proportional to the number of 1-down
neighbors of the edges (i.e., the number of edges that share one node with the interested edge), thus
providing no information except the number of neighboring edges. However, the initial steps of both
two types of edge-level 1-down random walk are capable of providing rich information on the graph
structure.

Here we further explain why simplified 1-down EdgeRWSE variations are appropriate in the cases
where the SCs contain few 2-simplices (triangles). Recall that the full edge-level 1-random walk will
have probability 0.5 to go through the upper adjacent 2-faces, but stays at the same edge (with the
same probabilities to keep or change direction) if the edge is not a face of the 2-complex. In this
case, the full edge-level random walk described by P̂ will almost have probability 0.5 to stay on the
same edge (or the edge with an inverse direction if the graph is directed). This results in the walk
having larger probability to stay still, or the walk becomes ’lazy’ and provides less information about
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Figure 5: Two simplicial complexes with order 2 and 1, respectively.

surrounding structures. In comparison, the simplified walk variations neglect the upper adjacent
2-faces, thus having a greater probability of moving out of the source edge and exploring more about
structure information. By reducing P̂ to Pdown, the simplified walk has more probability of moving
away from the source, encouraging exploration of more information about the structure.

C.2.2 Theoretical analysis of Hodge1Lap

We start analyzing the spectral properties of Hodge 1-Laplacians with proving the theorems in the
main text. The following theorem discusses the relationship between spectra of Hodge 0-Laplacian
L0 and Hodge 1-Laplacian L1.

Theorem C.6. (Theorem 5.2 in the main text.) The number of non-zero eigenvalues of Hodge
1-Laplacian L1 is not less than the number of non-zero eigenvalues of Hodge 0-Laplacian L0.

Proof. This is a direct conclusion from Equation (21) and Equation (22), which we have proved in
Appendix A.

A direct conclusion is that graph isomorphism based on Hodge 1-Laplacian isospectra (we only dis-
cuss the multisets of eigenvalues) is strictly more powerful than Hodge 0-Laplacian. The precondition
here is that the two graphs have the same number of nodes and edges, or we can construct counter
examples that two non-isomorphic graphs have the same L1 but have different numbers of nodes and
different L0 (their L0 may have different dimensions and different multiplicities of zero eigenvalues
if two graphs only differ from some extra isolated nodes). Under this condition, Equation (21) and
Equation (22) state that if we can distinguish two graphs by their eigenvalues of Hodge 0-Laplacians,
we can also do so by eigenvalues of Hodge 1-Laplacians. For the strictness, the graph pair in Figure 3
can be distinguished by Hodge 1 isospectra but not by Hodge 0 isospectra, see below.

Theorem C.7. (Theorem 5.3 in main text.)L1 isospectra is incomparable with 1-FWL and 2-FWL.

Proof. This theorem compares the expressive power of L1 isospectra with the traditional FWL
hierarchy. First, we show that there are some non-isomorphic graph pairs distinguishable by 1-FWL
and 2-FWL cannot be distinguished by L1 isospectra, see the example in Figure 4. 1-FWL can
distinguish them for the following reasons. The first iteration of 1-FWL (equivalently, 1-WL) can
hash the nodes of different degrees into different colors. Then in the second iteration, in graph (b)
there is one node with degree 3 that owns two neighbors with degree 1. However, there is no such
node in graph (a); thus, the two graphs have different multisets of colors after 2 iterations of 1-WL.
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Therefore, both 1-FWL and 2-FWL can distinguish them. However, we do not distinguish them by
the multisets of eigenvalues of L1. Both of their characteristic polynomials of L1 are:

det
(
λI− L1(a)

)
= det

(
λI− L1(b)

)
= (λ− 3)2(λ− 1)2(λ3 − 9λ2 + 21λ− 7) (50)

Thus, they have identical multisets of eigenvalues of L1.

On the other hand, we show that L1 isospectra can distinguish strongly regular graphs in Figure 3,
while 2-FWL and 1-FWL are known to fail on them. The characteristic polynomial for Hodge 1
Laplacian of 4× 4 Rook’s graph (which we denote as L1(R)) is

det
(
λI− L1(R)

)
= (λ− 8)9(λ− 4)30λ9 (51)

The characteristic polynomial of Shrikhande’s graph’s Hodge 1-Laplacian L1(S) is

det
(
λI− L1(S)

)
= (λ− 8)9(λ− 6)(λ− 3−

√
5)6(λ− 4)15(λ− 2)9(λ− 3 +

√
5)6λ2 (52)

Obviously, their multisets of eigenvalues are different, hence Hodge 1-isospectra can distinguish
some non-isomorphic graph pairs that even 2-FWL fail.

Now we turn our attention to the physical meanings and insights of the spectra of Hodge 1-Laplacians.
Recall that zero eigenvalues and corresponding eigenvectors are associated with harmonic functions,
and Hodge1Lap is able to figure out the cycles in the graph by projecting a unit vector into the subspace
spanned by zero-eigenvalue eigenvectors (or equivalently, the kernel space of L1). Furthermore,
the near-zero eigenvalues and their eigenvectors are associated with near-harmonic functions. The
eigenvectors of large eigenvalues are non-homology generators for local structures such as clusters,
stars, chains, and so on.

The following theorems state the properties of the Hodge 1-Laplacian and its harmonic space.

Theorem C.8. In the Hilbert space, the L1 of a directed graph without multiple edges or self-loops
is a m ×m matrix, where m is the number of directed edges. The elements of L1 satisfy: (1) the
i-th diagonal element corresponding to the edge ei is 2 + |δ1(ei)|, where |δ1(ei)| is the number of
2-simplices ei is in; (2) element L1[i, j] = 1 if ei and ej are 1-down adjacent (share one node but
not in the same 2-simplex) and two edges have the directions starting from the shared node; (3)
L1[i, j] = −1 if ei and ej are 1-down adjacent but have different directions starting from the shared
node; (4) L1[i, j] = 0 if ei and ej are 1-up adjacent (in the same 2-simplex).

Proof. This can be directly verified by the definition of L1 = B∗
kBk +Bk+1B

∗
k+1.

We take Figure 5 (a) as an illustrative example of calculating L1. This is a simplicial complex of
order K = 2. When writing matrices, we follow the order a, b, c, d for 0-simplices (nodes) and the
order 1, 2, 3, 4 for 1-simplices (directed edges). The node-to-edge incidence matrix is

B1 =

−1 0 0 0
+1 +1 0 −1
0 −1 −1 0
0 0 +1 +1

 (53)

Therefore the Hodge-0 Laplcian is (recall that B0 is not defined and is omitted in calculating L0)

L0 = B1B
∗
1 =

+1 −1 0 0
−1 +3 −1 −1
0 −1 +2 −1
0 −1 −1 +2

 = D−A (54)

where D is the diagonal matrix with node degrees as diagonal elements, and A is the adjacency
matrix (in the normal sense). This is completely identical to the widely used graph Laplacian.
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Now we come to compute L1. There is one 2-simplex in the simplicial complex, and we take the
direction c→ b→ d as the positive orientation of the 2-simplex, then

B2 =

 0
+1
−1
+1

 (55)

and we have the Hodge-1 Laplacian

L1 = B∗
1B1+B2B

∗
2 =

+2 +1 0 −1
+1 +2 +1 −1
0 +1 +2 +1
−1 −1 +1 +2

+

0 0 0 0
0 +1 −1 +1
0 −1 +1 −1
0 +1 −1 +1

 =

+2 +1 0 −1
+1 +3 0 0
0 0 +3 0
−1 0 0 +3


(56)

which is identical to the description in Theorem C.8. It can be seen that B∗
1B1 contributes to (1), (2),

(3) in Theorem C.8; B2B
∗
2 contributes to (1) and (4) in Theorem C.8. In some sense, if ei and ej are

both 1-down adjacent and 1-up adjacent, the elements eij or eji in B∗
1B1 and B2B

∗
2 cancel out each

other, resulting eij = eji = 0 if ei and ej belong to the same 2-simplex.

Next, we declare some properties about the kernel space of L1 (i.e., the 1-cohomology group). Note
that the following cycles are that of length larger than 4 since directed triangles are considered as
2-simplices, and in the sense of the undirected graph induced by the directed graph (i.e., we do
not care about the directions of edges in the cycle, since any changes of direction are equivalent
multiplying −1 on the original basis).

Theorem C.9. For a directed graph without multiple edges, self-loops or 2-simplices that contains c
cycles, and there are no cycles that share edges, then a group of linearly independent and orthogonal
basis of the kernel space of L1 is ui, i = 1, . . . , c, where elements in ui corresponding to the edges
on the i-th cycle is ± 1√

l(i)
and 0 otherwise, where l(i) is the length of the i-th cycle.

Proof. We have already stated that the direction of edges only affect the sign of corresponding
element in eigenvectors, WLOG, we suppose that all edges in the i-th cycle follow the anticlockwise
direction. Then all nonzero elements on the same basis ui have identical signs. We are going to prove
this.

Obviously, ui, i = 1, . . . , c are linearly independent and orthogonal, since the cycles do not share
edges, the nonzero elements in ui do not overlap consequently. Therefore, we only need to prove that
L1ui = 0. (1) For the j-th row where edge e(j) is not in the i-th cycle, there are two cases: (1a) e(j)
is not connected with any edges in the i-th cycle, then obviously the inner product of j-th row of L1

and ui is zero, since all nonzero elements in the j-th row of L1 corresponds to zero elements in ui;
(1b) e(j) is connected with some edges in the cycle, then the only situation is that e(j) connects with
two edges e(j1), e(j2), where the shared node of these three edges is the source node of e(j1) and
is the target node of e(j2), and the j-th row of L1[j] will have −1 in element j1, +1 in element j2.
Therefore, the inner product L1[j]

T · ui = 0 + 2× 0 + (−1)× 1√
l(i)

+ 1× 1√
l(i)

= 0. (2) If e(j)

is in the cycle i, then similar to (1b), the non-zero index in both L1[j]
T and ui is the index of two

neighboring nodes of e(j), hence L1[j]
T · ui = 0 + 2× 1√

l(i)
+ 2× (−1)× 1√

l(i)
= 0. Putting all

the pieces together, we have proved L1ui = 0.

Figure 5 (b) represents an example that satisfies the above conditions in the theorem. For illustration,
we calculate its L1

L1 =


+2 −1 −1 0 0
−1 +2 0 +1 −1
−1 0 +2 +1 0
0 +1 +1 +2 −1
0 −1 0 −1 +2

 (57)

It is straightforward to verify that the eigenvector corresponding to the zero eigenvalue is

u0 = ±1

2
[1, 1, 1,−1, 0]⊤ (58)
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The elements corresponding to edges in a cycle (edge 1, 2, 3, 4) are non-zero, while other elements
are strictly zero. Therefore, Hodge1Lap is capable of detecting cycles through the eigenvectors in
ker(L1).

Corollary C.10. Suppose that the above conditions hold, denote U = [u1, . . . ,uc]. Then for a

vector e of length m and all elements 1, then projection
∣∣∣UUT

∣∣∣e has j-th element 1 if e(j) is in a

cycle and 0 otherwise.
∣∣∣∣∣∣ indicates taking the absolute values element-wise.

Proof. This is a direct conclusion of Theorem C.9. Note that |UUT | has element
∣∣∣UUT

∣∣∣[i, j] =
1

l(cij)
if both edges i and j are in the cycle cij , and 0 otherwise. Hence the projection of e in the

kernel space has element 1 if the corresponding edge is in a cycle and 0 otherwise, which means
that this projection can efficiently mark out cycles. Note that the projection matrix is actually
independent of the choice of basis; hence the above conclusion is universal. For the basis matrix V
where the columns are independent but not orthogonal, the projection matrix should be calculated as
V(VTV)−1VT .

Corollary C.11. Suppose that the above conditions hold, except that two cycles c1, c2 share one
edge e(j). Then in every eigenvector u in the kernel space of L1, uj = γ1 − γ2, where γ1, γ2 are the
edge flow and are positive following the anticlockwise direction,

|ui(i ̸= j)| =


γ1, e(i) ∈ c1
γ2, e(i) ∈ c2
0, e(i) /∈ c1, e(i) /∈ c2

(59)

Further, (UUTe)j = 0.

Proof. This is also straightforward to verify, since the basis in Theorem C.9 still holds for shared
edges among cycles. However, the two edge flows in the cycle definitely have opposite directions in
the same edge, as we assign anticlockwise as the positive direction for the flows. Consequently, the
flow in e(j) is the difference of two edge flows. Moreover, for the projection without operation of
taking element-wise absolute value in the projection matrix, the projection of two cycles in the j-th
element of e will cancel out.

There are also some additional interesting conclusions, for example, if e(j) is in cycle c and in a
2-simplex, then the edge flow in e(j) will be 2

3γ, where γ is the original edge flow in the cycle, and
the edge flow in the other two edges of the 2-simplicial will be 1

3γ. Moreover, the eigenvalue 1 of
L1 will mark out the following substructure: node a, c are both only connected to b, while b is also
connected to a fourth node d. All these interesting results can be verified through simple algebra, and
we will not list all of them due to the limited space.

Finally, despite the satisfying theoretical properties of Hodge1Lap if we use the projection method
(Hodge1Lapproj in the main text), we experimentally find that a naive summation over the absolute
values of eigenvectors (referred as Hodge1Lapabs) works fine for a number of real-world tasks,
although this method is sign-invariant but not basis-invariant.

We also provide more discussion on the cycle detecting ability of Hodge1Lap. As explained above, in
Hodge1Lapproj, projecting the constant vector onto the kernel space of L1 will result in the element
j equal to 1 if the edge j is in a cycle, and 0 otherwise. However, it is unable to distinguish different
cycles or to indicate which cycle an edge belongs to. In comparison, Hodge1Lapabs can distinguish
and detect different cycles, which we explain as follows. In the main text, this implementation
is described as

∑
i ϕ(|vi|), where || indicates taking element-wise absolute values, and vi refers

to the interested eigenvectors (e.g. orthogonal basis of kernel space of L1, in case that we are
discussing detecting cycles). Note that here vi is different from ui described in Theorem C.9;
instead, they are arbitrary random eigenvectors, and we aim to use randomness to distinguish different
cycles. For simplicity, we first do not consider overlapping or 2-simplexes; then every eigenvector
vi corresponding to zero eigenvalues has the following properties: (i) the elements corresponding
to edges that are not in any cycles are zero; (ii) the elements corresponding to edges from the same
cycles have identical absolute values, while those of edges from different cycles (almost surely) have
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different absolute values. These properties can be easily verified, since any vi can be represented as
a linear combination of ui described in Theorem C.9. Therefore,

∑
iMLP (|vi|) obtains different

values for edges from different cycles, which is why we distinguish and detect them. In practical
implementations, we further apply a random projection technique to make Hodge1Lap more robust
to the choice of basis vi:

∑
j MLP (

∑
i αij |vi|), where αij ∼ N (0, 1) are random variables, and

j = 1, . . . , J where J is the maximum number of projections. Through this design, the model can
explicitly learn different cycles and implicitly maintain the basis invariance.

C.3 Random walk on higher order and inter-order simplices

C.3.1 Properties of random walk on higher order and inter-order simplices

Analogously to 0-simplices and 1-simplices, we can use random walk on any k-simplices to build
expressive k-RWSE in order to facilitate graph and simplicial learning. Meanwhile, Hodge k-
Laplacians are closely connected with random walk of k order, whose spectra, including their
eigenvalues and eigenvectors, are applicable in methods such as PE or spectral convolution learning.

Here we prove some crucial properties of Hodge Laplacians Lk.
Lemma C.12.

Lr
k = (Lk,up + Lk,down)

r = Lr
k,up + Lr

k,down (60)

Proof. We prove this by induction. For r = 1, the equation obviously holds.

Suppose Lr
k = Lr

k,up + Lr
k,down, then for its r + 1-th power, we have

Lr+1
k = (Lr

k,up + Lr
k,down)(Lk,up + Lk,down) (61)

= Lr+1
k,up + Lr+1

k,down + Lr
k,up · Lk,down + Lr

k,down · Lk,up (62)

= Lr+1
k,up + Lr+1

k,down + (δ∗kδk)
rδk−1δ

∗
k−1 + (δk−1δ

∗
k−1)

rδ∗kδk (63)

= Lr+1
k,up + Lr+1

k,down (64)

The last equation holds because δkδk−1 = 0 and δ∗k−1δ
∗
k = 0 always hold for all k ≥ 1.

Using the above property, we can prove that the power of the inter-order adjacent matrix (defined in
Section 6.2 in the main text) satisfies the following property.
Theorem C.13. (Equation 7 in main text).

Ar
K =


pr(L0) qr−1(L0,up)δ

∗
0

qr−1(L1,down)δ0 pr(L1) qr−1(L1,up)δ
∗
1

... ... ...
... ... ...

qr−1(LK,down)δK−1 p′r(LK ,LK,down)


(65)

where pr(·) and qr(·) are polynomials with maximum order r, except the last row is incomplete
without LK,up. Note that we replace B∗

k+1 in main text with coboundary operators δk for universality.

Proof. We still prove by induction. For r = 1, the equation obviously holds with p1(x) = x, q0 = 1.
Suppose the equation holds for r, then the r + 1 power satisfies the following.

(1) The block at first row and first column concerning L0, note that L0 = L0,up = δ∗0δ0, we have

Ar+1
K [1, 1] = pr(L0)L0 + qr−1(L0,up)δ

∗
0δ0 =

(
pr(L0) + qr−1(L0)

)
L0 = pr+1(L0) (66)

(2) The kth diagonal block (1 < k < K):

Ar+1
K [k, k] = qr−1(Lk,down)δk−1δ

∗
k−1 + pr(Lk)Lk + qr−1(Lk,up)δ

∗
kδk (67)

=
(
pr(Lk) + qr−1(Lk)

)
Lk (68)

= pr+1(Lk) (69)
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where we use qr−1(Lk,up) + qr−1(Lk,down) = qr−1(Lk) according to Lemma C.12. Further, we
have pr+1(x) = (pr(x) + qr−1(x)) · x.

(3) The block at k-th row and k + 1-th column:

Ar+1
K [k, k + 1] = 0 + pr(Lk)δ

∗
k + qr−1(Lk,up)δ

∗
k(δkδ

∗
k + δ∗k+1δk+1) + 0 (70)

= pr(δk−1δ
∗
k−1)δ

∗
k + pr(δ

∗
kδk)δ

∗
k + qr−1(Lk,up)Lk,up (71)

=
(
pr(Lk,up) + qr−1(Lk,up)Lk,up

)
δ∗k (72)

= qr(Lk,up)δ
∗
k (73)

Hence we have qr(x) = pr(x) + qr−1(x) · x.

Further, the block at k + 1-th and k-th column is the adjoint of that:

Ar+1
K [k + 1, k] =

(
qr(Lk,up)δ

∗
k

)∗
= δk · qr(δ∗kδk) = qr(Lk+1,down)δk (74)

(4) The block at k-th row and k + 2-th column:

Ar+1
K [k, k + 1] = 0 + 0 + qr−1(Lk,up)δ

∗
kδ

∗
k+1 = 0 (75)

Therefore, the block in k + 2-th row and k-th column is also 0.

(5) The other blocks are obviously zero.

Combining all these pieces together, we prove the theorem.

The above equation states that simplices with difference of order larger than one cannot directly
exchange information even after infinite rounds, but they can affect each other through the coefficients
in pr and qr−1 in the blocks on the offset ±1-diagonal blocks.

It’s noticable that a number of previous works such as [8] can be reformatted and unified by AK .
Additionally, we can make use of Ar

K to build random walk based positional encoding for all
simplices in K-dimensional simplicial complex that contains more information than random walks
within the same order simplices.

In addition, analogously to [7], we can introduce any form of discrete topological structures, e.g.,
cellular complex, as expanded complex cells. Our methods can also be naturally extended to discrete
domains without orientations, e.g. hypergraphs. In particular, we can define random walk on these
discrete topological structures, which can greatly facilitate graph learning by incorporating structures
of higher order other than simplicial complexes. Our methods can be easily generalized to these
structures, for example, we provide the results of random walk on cellular complexes in Table 1,
which treats cycles as 2-cellular complexes and greatly improve the performance of the base model.
More implementation details can be found in Appendix E. However, the theoretical analysis including
expressive power in distinguishing non-isomorphic graphs of these new methods are nontrivial due to
the flexibility in definition of complex cells, which is a future direction worth exploring.

C.3.2 Hodge Laplacians spectra and graph isomorphism

In the spectral domain, a necessary but insufficient condition for two graphs to be isomorphic is that
their Hodge k-Laplacians are isospectral (having the same eigenvalues) for all k ≥ 0. As we have
discussed before, the Hodge 0-isopectra is incomparable to 1-FWL and is not more powerful than 2-
FWL. Hodge 1-isospectra is incomparable with 1-FWL and 2-FWL. Note that Hodge k+1-isospectra
is not necessarily more powerful than Hodge k-isospectra, except that for k = 0 the conclusion holds
since L0,down = 0. However, we can always get a more powerful algorithm by increasing the highest
order of Hodge Laplacians while maintaining all the Hodge Laplacians of lower orders.

In addition to making use of eigenvalues, we can build more powerful GNNs based on the spectra of
Hodge k-Laplacians. We address that we can universally approximate permutation equivariant and
basis invariant functions (moreover, k-form) defined on k-simplicial complexes if we use Expressive-
BasisNets [32]. Universality is guaranteed by the following decomposition theorem.
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Theorem C.14. (Theorem 4 in [32].)Theorem 4 (Decomposition Theorem). Let X1, . . . ,Xk be
topological spaces and let Gi be a topological group that continuously acts on Xi for each i. We
assume that the mild topological conditions on Xi and Gi hold. Assume that there is a topological
embedding ψi : Xi/Gi→ Rai of each quotient space into a Euclidean space Rai for some dimension
ai. Then, for any continuous function f : X = X1 × · · · ×Xk → Rdout that is invariant to the action
of G = G1× · · · ×Gk, there exist continuous functions ϕi : Xi → Rai and a continuous function
ρ : Z ⊆ Ra → Rdout , where a =

∑
i ai such that f(v1, . . . , vk) = ρ(ϕ1(v1), . . . , ϕk(vk)).

The proof of Theorem C.14 is completed in [32]. For mild topological conditions, we only need
Gi to be a topological group that continuously acts on Xi for each i, and to know that there exists a
topological embedding of each quotient space into some Euclidean space. As a matter of fact, the
continuous group action is a very mild assumption which holds for any finite or compact matrix
group. For a finite simplicial complex, the eigenvalues and eigenvectors of Hodge-Laplacians are
finite; thus, the compactness naturally holds. Furthermore, using Hodge-Laplacians normalization in
[24], the maximum eigenvalue of Lk satisfies λmax ≤ k + 2. Finally, letting Xi be the cochain Ci

in the above theorem, we see that the permutation equivariant and basis-invariant function as well
as the k-form defined on the simplicial complex can be universally approximated, for instance, by
Expressive-BasisNet.

Although we can recover the spectra of Lk, k = 0, . . . ,K (or spectra convolution on simplicial
complexes) via Expressive-BasisNet, it is actually impractically expensive. On the other hand, we
can use spectral information, such as the eigenvalues and eigenvectors of Lk to facilitate learning via
simple networks.

D Random walk message passing

In our main text, we mainly discuss how to facilitate graph and simplicial learning through designing
PE and SE based on random walk on simplicial complexes. However, it is remarkable that random
walk on simplicial complexes can give different insights and inspirations in designing powerful
GNNs and simplicial networks in addition to PE and SE. In this section, we propose a novel random
walk message passing (RWMP) mechanism, which introduces node distance metrics and simulates a
weighted random walk at node level by dropping edges according to distances between neighboring
nodes. As revealed in the experiments shown in the main text, RWMP is able to improve the
performance of the base models and achieves SOTA performance in the Zinc dataset [17].

D.1 Connections between random walk, subgraph sampling and edge dropping

There have been a great number of relevant works on improving GNNs with subgraph sampling
and edge dropping. Subgraph GNNs are a huge family of GNN variations that encode a set of
subgraphs instead of the original graph. Some subgraph GNNs are more powerful than MPNN
or 1-WL such as [5], while Frasca et al. [22] upper bound node-based subgraph GNNs by 3-WL.
Despite the improvement in expressivity and performances, a number of subgraph GNNs suffer from
extensive computation complexity due to the exponential growth of the subgraph amount. Therefore,
various subgraph sampling methods have been proposed to improve the scalability of subgraph
GNNs. For example, K-hop GNN [21] extracts a K-hop subgraph for each root node, and Zeng et al.
[49], Toenshoff et al. [43] propose to sample subgraphs via a random walk started from a root node.
Due to its internal association with the diffusion process, random walk is a powerful tool to design
subgraph sampling methods. Meanwhile, these subgraph GNNs based on sampling in a random walk
fashion can be interpreted as implicitly encoding structure information obtained by random walk via
the following procedure: sampling subgraphs (sampling according to probability transition matrix),
running GNN on the subgraphs (encoding structure captured by a random walk), and aggregating
information among subgraphs (taking expectation).

Dropping edge is another family of methods that introduce randomness into graph learning. DropE-
dge [40] is a widely adopted technique that randomly drops edges during training to improve the
generalizability of GNNs. Unlike DropEdge, DropGNN [37] randomly drops edges in both the train-
ing and inference stages. DropGNN is able to partly improve expressive power, but it has to gather
several rounds of inference results to obtain the final representation. In the context of representation
learning for linear features, the representations obtained by randomly dropping edges layer-wise
are unbiased estimators of full message passing if we consider normalization. In comparison, the
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representations obtained by subgraph sampling are biased estimators of full message passing. The
layer-wise drop edge can be viewed as an intermediate product between full message passing and
subgraph sampling GNNs, which (1) obtains a representation in every forward pass like original
message passing and does not have to run several forward passes on subgraphs in parallel; (2) has
randomness like subgraph sampling methods and has the probability to encode subgraph structures.
We leave further discussion and more theoretical analysis for future work.

D.2 Random walk message passing: weighted random walk based on node-level distance
metric

As we discussed above, both the subgraph sampling and edge-dropping methods can be associated
with the simple node-level random walk on unweighted graphs. Through introducing randomness,
they can better encode structure information and improve expressive power of GNNs. However, these
methods use uniform sampling and uniform dropping strategies associated with unweighted random
walk, and hence they are only able to learn pure structure information but no feature information.

To address this limitation, we propose the Random Walk Message Passing mechanism (RWMP),
which can jointly learn feature and structure information by introducing distance metrics of nodes (or
node features). Briefly speaking, RWMP drops edges in a layerwise fashion, and the probability of
dropping edge e = (u, v) is a function of the distance between nodes u and v: Pdrop(e) = f(d(u, v)),
where f is the designed function, and d(u, v) is the (feature) distance between u and v in the defined
metric. For example, if we use cosine similarity between node features as the distance metric, a
possible drop probability is:

Pdrop(e) =
1

2
(1− ||u · v||

||u|| · ||v||
) (76)

where u and v denote the node feature vector of u and v. The above metric states that the probability
of message passing between two nodes is linear with their cosine similarity in node features. The more
they are different, the less likely they are to exchange information with each other. Intuitively, this can
partly address the problem of oversmoothing, since it can reserve heterogeneity by reducing message
passing times within dissimilar nodes. RWMP also encourages message passing within similar nodes,
which is beneficial for discovering local clusters (it is equivalent to sample the subgraphs containing
local structures of similar nodes with larger probabilities).

RWMP is a novel framework that can jointly learn structure and feature information by simulating a
weighted random walk based on a distance metric. Appropriate designs of distance metrics are able
to greatly improve the performance of RWMP, which is applicable to any message-passing based
GNN variations. RWMP can be regarded as an intermediate scheme between deterministic message
passing variations like GAT [45] and subgraph sampling-based methods. However, on the one hand,
RWMP is different from GAT in the way that RWMP explicitly introduces randomness via dropping
edges instead of taking expectation through the attention weights, and the stochastic process forces
RWMP to explore more about local structures while relieving oversmoothing. On the other hand,
RWMP greatly reduces the computation costs on subgraph GNNs - the latter often fail to run on large
graph benchmarks, while preserving the ability to explore more on certain structures.

Combining RWMP with edge-level PE/SE, a GINE [25] model is able to achieve highly competitive
performance in the Zinc dataset. More experimental details are listed in Appendix E.

E Experiments

E.1 Datasets description

In Section 7 in the main text and Appendix E.2, we conduct extensive experiments on various
datasets, confirming the effectiveness of our methods. Among these datasets, Zinc, MNIST, and
CIFAR10 are from Benchmarking GNN [17], ogbg-molhiv and ogbg-molpcba are from Open Graph
Benchmark [26], while PCQM-Contact, Peptides-func and Peptides-struct are from Long-range
Graph Benfchmark [19].
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Table 3: Experiments on synthetic datasets (ACC ↑). The backbone model is GINE, which is not
more expressive than 1-WL.

PE/SE EXP SR25

None 50 6.67
Hodge1Lap(eigenvalues) 100 100
EdgeRWSE(full) 100 100

Table 4: Experiments on two datasets from benchmarking GNN [17]. Highlighted are the first,
second, third test results.

model MNIST (Accuracy ↑) CIFAR10 (Accuracy ↑)

GCN [28] 90.705± 0.218 55.710± 0.381
GIN [46] 96.485± 0.252 55.255± 1.527
GAT [45] 95.535± 0.205 64.223± 0.455
GatedGCN [10] 97.340± 0.143 67.312± 0.311
PNA [15] 97.94± 0.12 70.35± 0.63
DGN [4] - 72.838± 0.417
CRaWl [43] 97.944± 0.050 69.013± 0.259
GIN-AK+ [53] - 72.19± 0.13
EGT [27] 98.173± 0.087 68.702± 0.409
GPS [38] 98.051± 0.126 72.298 ± 0.356

GatedGCN+EdgeRWSE 98.069 ± 0.115 70.260± 0.341
GPS+EdgeRWSE 98.245± 0.070 72.417± 0.221

Zinc. Zinc-12k is a subset of Zinc-250k, which consists of 12000 molecular graphs from the
ZINC database of commercially available chemical compounds. The task is to perform graph-level
molecular property regression (on constrained solubility logP). These molecular graphs are between
9 and 37 nodes large. We follow the common predefined 10K/1K/1K train/validation/test split.

MNIST and CIFAR10. These two datasets both contain directed graphs, and are derived from
like-named image classification datasets. Both of them are 10-class classification tasks, and we follow
the standard dataset splits as the original image classification datasets, i.e., 55K/5K/10K for MNIST
and 45K/5K/10K for CIFAR10 of train/validation/test graphs, respectively.

ogbg-molhiv and ogbg-molpcba. They are both molecular property prediction datasets, using a
common node (atom) and edge (bond) featurization to represent chemophysical properties. In detail,
the prediction task of ogbg-molhiv is a binary classification of the fitness of a molecule to inhibit
HIV replication, which is measured by AUROC. The task of ogbg-molpcba is a 128-task binary
classification, evaluated by average precision.

PCQM-Contact. It is a dataset derived from PCQM4Mv2 and the corresponding 3D molecular
structures. The task is a binary link prediction which is evaluated by the Mean Reciprocal Rank
(MRR).

Peptides-func and Peptides-struct. These two datasets both consist of atomic graphs of peptides.
The task for Peptides-func is a multi-label graph classification into 10 nonexclusive peptide functional
classes measured by average precision. The task for Peptides-struct is graph regression of 11 3D-
structural properties of the peptides measured by MAE.

E.2 Full experiment results

While SOTA and highly competitive results on Zinc, ogbg-molhiv and ogbg-molpcba are shown in
the main text, we further discuss the performance of our methods on other datasets here, including
synthetic datasets and real-world datasets. For real-world datasets including BenchmarkingGNN [17]
and Long Range Graph Benchmark (LRGB) [19], we follow the experimental settings of [38] and
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Table 5: Experiments on three datasets from long-range graph benchmarks (LRGB) [19]. Highlighted
are the first, second, third test results.

model Peptides-func (AP ↑) Peptides-struct (MAE ↓) PCQM-Contact (MRR ↑)

GCN 0.5930± 0.0023 0.3496± 0.0013 0.3234± 0.0006
GINE 0.5498± 0.0079 0.3547± 0.0045 0.3180± 0.0027
GatedGCN 0.5864± 0.0077 0.3420± 0.0013 0.3218± 0.0011
Transformer+LapPE 0.6326± 0.0126 0.2529± 0.0016 0.3174± 0.0020
SAN [30]+LapPE 0.6384± 0.0121 0.2683± 0.0043 0.3350 ± 0.0003
SAN+RWSE 0.6439± 0.0075 0.2545± 0.0012 0.3350 ± 0.0003
GPS 0.6535 ± 0.0041 0.2500± 0.0005 0.3337± 0.0006

GatedGCN+EdgeRWSE 0.6002± 0.0048 0.2679± 0.0015 0.3342± 0.0008
GatedGCN+Hodge1Lap 0.5926± 0.0059 0.2632± 0.0008 0.3336± 0.0004
GPS+EdgeRWSE 0.6625± 0.0042 0.2501± 0.0012 0.3408± 0.0003
GPS+Hodge1Lap 0.6584± 0.0033 0.2505 ± 0.0014 0.3407± 0.0004

do not perform a hyperparameter search, since our main goal is to verify that our Hodge1Lap and
EdgeRWSE can benefit the arbitrary base model.

Experiments on synthetic datasets. To verify the theoretical expressive power of Hodge1Lap and
EdgeRWSE, we carried out experiments on two classical synthetic datasets: EXP and SR25. EXP
[1] contains 600 pairs of non-isomorphic graphs that 1-WL and 2-WL fail to distinguish. SR25 [3]
contains 15 non-isomorphic strongly regular graphs (i.e., 105 non-isomorphic pairs) that 3-WL fails to
distinguish. An accuracy of 50% on EXP and 6.67% on SR25 suggests the model fails to distinguish
any non-isomorphic graphs in the dataset. The results are shown in Table 3. The 1-WL equivalent
GINE back-end model can fully distinguish EXP and SR25 when augmented by Hodge1Lap and
Full-EdgeRWSE, indicating that both methods can distinguish non-isomorphic graph pairs that 3-WL
(and 2-FWL) fails, which is consistent with our theoretical analysis.

Experiments on MNIST and CIFAR10. Since the graphs are all directed, only the directed version
of EdgeRWSE is applicable since a random walk can only go along the edge, while Hodge1Lap
is also applicable if we follow the strict directions of edges and simplices. Here, we evaluate the
effectiveness of EdgeRWSE acting on GatedGCN and GPS, see Table 4. With EdgeRWSE, the
GPS model (which consists of a GatedGCN and a Transformer in each layer) achieves the best
on MNIST and second best on CIFAR10. It is remarkable that a simple GatedGCN is greatly
enhanced by EdgeRWSE, achieving highly competitive performance on both datasets. This verifies
the effectiveness of EdgeRWSE in models involving edge features.

Experiments on LRGB. The results are shown in Table 5; the baseline results are adopted from
[38]. On both Peptides-func and PCQM-Contact, GPS model with EdgeRWSE (we use undirected
version) and Hodge1Lap (we use projection method) achieve the best and second best performance,
respectively. On Peptides-struct, the improvement of edge-level PE/SE is not significant for GPS,
but is obvious for the GatedGCN base model. Admittedly, as pointed out by [44], the baseline
models need some reassessing including hyper-parameter searching, and there are more SOTA results.
However, we emphasize that our results are obtained without hyperparameter searching - our main
goal is to verify the enhancement brought by EdgeRWSE and Hodge1Lap to the baseline models.
SOTA methods can always be facilitated with our PE/SE to achieve better performance.

Trajectory prediction. Since our methods originate from simplicial complexes, we also verify
the effectiveness of our Hodge1Lap on simplicial data. We adopt the trajectory prediction task
(edge flow classification) in [8]. The edge flows are represented as signals on oriented simplicial
complexes. We use the same synthetic dataset of trajectories on the simplicial complex in [8], where
each triangle is treated as a 2-simplex. There are two holes in the complex, and all trajectories pass
one of the holes, thus giving rise to two different classes to be distinguished. Due to the presence of
the two holes, the trajectories of the two classes approximately correspond to orthogonal directions
in the space of harmonic eigenfunctions of the L1 Hodge-Laplacian [41]. The dataset contains
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Table 6: Trajectory classification accuracy on synthetic flow dataset with simplicial networks.

model Train accuracy Test accuracy

MPSN [8] L0-inv 88.2± 5.1 85.3± 5.8
MPSN - Id 88.0± 3.1 82.6± 3.0
MPSN - Tanh 97.9± 0.7 95.2± 1.8

MPSN L0-inv + Hodge1Lap 98.4± 0.7 99.8± 0.4
MPSN - Id + Hodge1Lap 99.5± 0.2 99.3± 0.3
MPSN - Tanh + Hodge1Lap 100.0 ± 0.0 99.9 ± 0.1

1000 train trajectories and 200 test trajectories. Following [8], to make the task more challenging
for non-orientation-invariant models, all training complexes use the same orientation for the edges,
while the test trajectories use random orientations. We adopt orientation-invariant message-passing
simplicial networks (MPSN) [8] with orientation equivariant layers as the base models.

Note that since we aim to distinguish two orthogonal directions in the harmonic kernel space of L1

Hodge-Laplacian, we do not use the projection implementation of Hodge1Lap; instead, we use the
simple implementation Hodge1Lapsim (described in the main text) which embeds two eigenvectors
respectively with a shared MLP. Theoretically, we can distinguish the two classes of flows with the
help of eigenvectors since they correspond to two distinct cycles (i.e., two orthogonal directions in
the kernel space). As shown in Table 6, all variants of MPSN achieve better performance (almost
perfect test accuracy) when they are augmented with our Hodge1Lap. This is consistent with our
theory, which experimentally verified the capability of Hodge1Lap to distinguish cycles.

E.3 Experiment details

Dataset split and repetitiveness. In all experiments, the datasets follow the common
train/validation/test split as we stated in datasets description. The results of the baseline mod-
els are reported from [38]. For our results, we report the test results according to the best validation
results. All experiments are run under 5 different random seeds, with mean and variance reported.

Hyperparameters. To verify that our methods are capable of improving the performance of the
base models, all hyperparameters including training configuration and model hyperparameters are
set the same as in [38]. For the edge PE/SE, we keep the embedding dimensions the same as the
node PE/SE in GPS models. Hence, our experimental results strongly confirmed that our methods are
beneficial for both naive and complex base models.

E.4 Implementation details

In this subsection, we provide more implementation details of our methods and more discussion on
the corresponding variants. Our code is based on GPS [38], which enable us to integrate our methods
into a comprehensive graph learning framework.

EdgeRWSE. In real-world datasets, we use both directed 1-down RWSE and undirected 1-down
RWSE in our experiments, except in MNIST and CIFAR10 where only a directed walk is appropriate
on the directed graphs. We also integrate variance of each row in the transition matrix corresponding
to the target edge in each step by an MLP. Generally, directed and undirected versions reveal similar
performance, and we report the performance of undirected EdgeRWSE if not specific.

For Full EdgeRWSE, we verify its theoretical expressive power through experiments on synthetic
datasets; see Table 3. A GINE enhanced with Full EdgeRWSE achieves 100% performance on
the synthetic datasets EXP and SR25. To fully distinguish EXP and SR25, the model needs to be
more expressive than 1-WL and 2-FWL, respectively. This shows that Full-EdgeRWSE is (partly)
more powerful than 2-FWL (3-WL), which is consistent with our theory. In comparison, 1-down
EdgeRWSE that does not consider 2-simplices fails (0%) to distinguish strongly regular graphs in
SR25. However, we experimentally find that the performance of Full-EdgeRWSE on zinc dataset is
similar to 1-down EdgeRWSE with a GINE base model. This is because 2-simplices (or triangles)
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are actually rare in molecules, so Full-EdgeRWSE makes no significant difference than 1-down
EdgeRWSE.

We also implement the interorder random walk among 0, 1, 2-simplices. The random walk probability
matrix is the normalized A2 in our main text. We compute A2, . . . ,AT

2 (T = 20 for Zinc) and embed
the diagonal elements for both node and edge features. The performance of GINE augmented with
Inter-RWSE is significantly better than pure GINE but is slightly weaker than simultaneously applying
NodeRWSE and EdgeRWSE (which are separately computed without inter-order communications).
We attribute it to: (i) lack of tuning hyper-parameters such as T , and (ii) the return probabilities are
much less in inter-order random walk, as there are totally n+m possible targets, instead of n for
0-random walk and m for 1-random walk. This makes it harder for the model to learn meaningful
structure information and may require larger T .

CellularRWSE The concept of CellularRWSE is explained in Appendix C.3, where we treat the
edges as 1-cells and extract all the rings (cycles) as 2-cells. In this CellularRWSE, a random walk is
able to transit from one source edge to (i) another target edge sharing one node, or (ii) another target
edge that is in the same 2-cell as the source edge. The performance is slightly better than EdgeRWSE
(see Table 1), which may be due to the ability to distinguish higher-order structures (rings and cycles).

Hodge1Lap. We already include a detailed discussion in the main text and in Appendix C.2.2 on
two different implementations: projection-based methods and sign-invariant methods. As we have
shown, the projection method Hodge1Lapproj is both sign and basis invariant, and we consider the
subspace spanned by eigenvectors of zero eigenvalues. The sign-invariant method Hodge1Lapabs
simply takes absolute values of eigenvectors element-wise, and uses a MLP to encode eigenvectors
and eigenvalues. We additionally apply a MLP to learn eigenvalue-eigenvector pairs of Hodge-1
Laplacians in our Hodge1Lap implementation. In practice, we adopt the combination of these two
methods; if not specific, we report the results of the combined variant.

RWMP. We use the cosine similarities of the node features as our distance metric. The drop
probability follows Equation (76). In each layer, we use a normal GINE layer without RWMP and a
GINE layer with RWMP and add their features as the final representation of the layer. The GINE [25]
model with Hodge1Lap and RWMP achieves highly competitive performance on Zinc, outperforming
GPS [38] and Specformer [6].

Other implementation details. Some other implementation details and discussions are summarized
below.

• For SSWL+, we add edge PE/SE features embedded by a unique linear projection to the
original edge features in every layer.

• For GRIT, the PE is embedded by a linear layer and then directly added to the edge features.
For virtual edges, the PE values are padded as zeros.

• Our method is can be applied to higher-order GNNs, including simplicial networks [8, 7]
and 2-δ-FWL equivalent classes [36], while others (SPD, RD) cannot. Our method is also
more sparse.

• Our method can be applied to any base model without increasing much computation cost
and can be applied together with other levels of PE/SE.

• There are more than one way to integrate PE/SE into the models, while we choose the most
simple ones: we treat PE/SE as initialization of edge features by concatenating or adding
them to the original edge features; they can also be used as in graphormer (as attetion biases),
or any convolution/attention computation in simplicial networks.

E.5 Complexity and applicability analysis

Theoretically, the complexity to generate Hodge1Lap and EdgeRWSE are both O(m2), where m
is the number of edges. For small or sparse graphs, they share similar complexity with node-level
PE such as LapPE and RWSE. For example, the average generation times on Zinc computed by
RTX3090 are: RWSE (23s), EdgeRWSE (32s), Hodge1Lap (28s). Even for extremely large graphs
with millions of nodes, we can handle by sampling subgraphs as we are only interested in the local
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structure information for some PE/SE. For example, for a K-step EdgeRWSE, we can sample a
K-hop subgraph rooted at the target edge and continue to process, without having to deal with large
matrix multiplication. It is noticeable that we only have to preprocess once for every dataset, so the
precompute time is negligible compared to experiment time.

For the computation complexity in the forward pass of models, since all our PE/SE are embedded
by light-weight MLPs, the extra computation cost is completely ignorable compared with the whole
model. In summary, our methods are able to significantly enhance model performance with extremely
small additional computation cost.

Regarding applicability, on the base model side, our Hodge1Lap and EdgeRWSE are universally
applicable to any base model as long as edge features are considered. Our methods are orthogonal to
other PE/SE and can be used together. SOTA methods can always be facilitated with our methods to
achieve better performance. On the data type side, as we have emphasized, our methods are applicable
to (both directed and undirected) graphs, simplicial complexes, and other discrete topological data
structures, e.g. cellular complexes.
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